aboutsummaryrefslogtreecommitdiff
path: root/coqprime
diff options
context:
space:
mode:
authorGravatar Andres Erbsen <andreser@mit.edu>2018-02-24 10:17:35 -0500
committerGravatar Jason Gross <jasongross9@gmail.com>2018-02-24 15:37:16 -0500
commitef92beece3147f8af0764521e22cb7fc9a3f32a3 (patch)
tree2fe62379710ce2346ec5da62ad9203e730c55c36 /coqprime
parent238791d4dfa95b9810600643ee2ae542b41bd203 (diff)
coqprime in COQPATH (closes #269)
Diffstat (limited to 'coqprime')
m---------coqprime0
-rw-r--r--coqprime/Coqprime/Cyclic.v244
-rw-r--r--coqprime/Coqprime/EGroup.v605
-rw-r--r--coqprime/Coqprime/Euler.v88
-rw-r--r--coqprime/Coqprime/FGroup.v123
-rw-r--r--coqprime/Coqprime/IGroup.v253
-rw-r--r--coqprime/Coqprime/Iterator.v180
-rw-r--r--coqprime/Coqprime/Lagrange.v179
-rw-r--r--coqprime/Coqprime/ListAux.v271
-rw-r--r--coqprime/Coqprime/LucasLehmer.v596
-rw-r--r--coqprime/Coqprime/NatAux.v72
-rw-r--r--coqprime/Coqprime/PGroup.v347
-rw-r--r--coqprime/Coqprime/Permutation.v506
-rw-r--r--coqprime/Coqprime/Pmod.v617
-rw-r--r--coqprime/Coqprime/Pocklington.v261
-rw-r--r--coqprime/Coqprime/PocklingtonCertificat.v755
-rw-r--r--coqprime/Coqprime/Root.v239
-rw-r--r--coqprime/Coqprime/Tactic.v84
-rw-r--r--coqprime/Coqprime/UList.v286
-rw-r--r--coqprime/Coqprime/ZCAux.v295
-rw-r--r--coqprime/Coqprime/ZCmisc.v186
-rw-r--r--coqprime/Coqprime/ZProgression.v104
-rw-r--r--coqprime/Coqprime/ZSum.v335
-rw-r--r--coqprime/Coqprime/Zp.v411
-rw-r--r--coqprime/Makefile318
-rw-r--r--coqprime/README.md9
-rw-r--r--coqprime/_CoqProject24
27 files changed, 0 insertions, 7388 deletions
diff --git a/coqprime b/coqprime
new file mode 160000
+Subproject e1fac2d7d1ce737233316f62848e350ed922b33
diff --git a/coqprime/Coqprime/Cyclic.v b/coqprime/Coqprime/Cyclic.v
deleted file mode 100644
index 7a9d8e19b..000000000
--- a/coqprime/Coqprime/Cyclic.v
+++ /dev/null
@@ -1,244 +0,0 @@
-
-(*************************************************************)
-(* This file is distributed under the terms of the *)
-(* GNU Lesser General Public License Version 2.1 *)
-(*************************************************************)
-(* Benjamin.Gregoire@inria.fr Laurent.Thery@inria.fr *)
-(*************************************************************)
-
-(***********************************************************************
- Cyclic.v
-
- Proof that an abelien ring is cyclic
- ************************************************************************)
-Require Import ZCAux.
-Require Import List.
-Require Import Root.
-Require Import UList.
-Require Import IGroup.
-Require Import EGroup.
-Require Import FGroup.
-
-Open Scope Z_scope.
-
-Section Cyclic.
-
-Variable A: Set.
-Variable plus mult: A -> A -> A.
-Variable op: A -> A.
-Variable zero one: A.
-Variable support: list A.
-Variable e: A.
-
-Hypothesis A_dec: forall a b: A, {a = b} + {a <> b}.
-Hypothesis e_not_zero: zero <> e.
-Hypothesis support_ulist: ulist support.
-Hypothesis e_in_support: In e support.
-Hypothesis zero_in_support: In zero support.
-Hypothesis mult_internal: forall a b, In a support -> In b support -> In (mult a b) support.
-Hypothesis mult_assoc: forall a b c, In a support -> In b support -> In c support -> mult a (mult b c) = mult (mult a b) c.
-Hypothesis e_is_zero_l: forall a, In a support -> mult e a = a.
-Hypothesis e_is_zero_r: forall a, In a support -> mult a e = a.
-Hypothesis plus_internal: forall a b, In a support -> In b support -> In (plus a b) support.
-Hypothesis plus_zero: forall a, In a support -> plus zero a = a.
-Hypothesis plus_comm: forall a b, In a support -> In b support -> plus a b = plus b a.
-Hypothesis plus_assoc: forall a b c, In a support -> In b support -> In c support -> plus a (plus b c) = plus (plus a b) c.
-Hypothesis mult_zero: forall a, In a support -> mult zero a = zero.
-Hypothesis mult_comm: forall a b, In a support -> In b support ->mult a b = mult b a.
-Hypothesis mult_plus_distr: forall a b c, In a support -> In b support -> In c support -> mult a (plus b c) = plus (mult a b) (mult a c).
-Hypothesis op_internal: forall a, In a support -> In (op a) support.
-Hypothesis plus_op_zero: forall a, In a support -> plus a (op a) = zero.
-Hypothesis mult_integral: forall a b, In a support -> In b support -> mult a b = zero -> a = zero \/ b = zero.
-
-Definition IA := (IGroup A mult support e A_dec support_ulist e_in_support mult_internal
- mult_assoc
- e_is_zero_l e_is_zero_r).
-
-Hint Resolve (fun x => isupport_incl _ mult support e A_dec x).
-
-Theorem gpow_evaln: forall n, 0 < n ->
- exists p, (length p <= Zabs_nat n)%nat /\ (forall i, In i p -> In i support) /\
- forall x, In x IA.(s) -> eval A plus mult zero (zero::p) x = gpow x IA n.
-intros n Hn; generalize Hn; pattern n; apply natlike_ind; auto with zarith.
-intros H1; contradict H1; auto with zarith.
-intros x Hx Rec _.
-case Zle_lt_or_eq with (1 := Hx); clear Hx; intros Hx; subst; simpl.
-case Rec; auto; simpl; intros p (Hp1, (Hp2, Hp3)); clear Rec.
-exists (zero::p); split; simpl.
-rewrite Zabs_nat_Zsucc; auto with arith zarith.
-split.
-intros i [Hi | Hi]; try rewrite <- Hi; auto.
-intros x1 Hx1; simpl.
-rewrite Hp3; repeat rewrite plus_zero; unfold Zsucc; try rewrite gpow_add; auto with zarith.
-rewrite gpow_1; try apply mult_comm; auto.
-apply (fun x => isupport_incl _ mult support e A_dec x); auto.
-change (In (gpow x1 IA x) IA.(s)).
-apply gpow_in; auto.
-apply mult_internal; auto.
-apply (fun x => isupport_incl _ mult support e A_dec x); auto.
-change (In (gpow x1 IA x) IA.(s)).
-apply gpow_in; auto.
-exists (e:: nil); split; simpl.
-compute; auto with arith.
-split.
-intros i [Hi | Hi]; try rewrite <- Hi; auto; case Hi.
-intros x Hx; simpl.
-rewrite plus_zero; rewrite (fun x => mult_comm x zero); try rewrite mult_zero; auto.
-rewrite plus_comm; try rewrite plus_zero; auto.
-Qed.
-
-Definition check_list_gpow: forall l n, (incl l IA.(s)) -> {forall a, In a l -> gpow a IA n = e} + {exists a, In a l /\ gpow a IA n <> e}.
-intros l n; elim l; simpl; auto.
-intros H; left; intros a H1; case H1.
-intros a l1 Rec H.
-case (A_dec (gpow a IA n) e); intros H2.
-case Rec; try intros H3.
-apply incl_tran with (2 := H); auto with datatypes.
-left; intros a1 H4; case H4; auto.
-intros H5; rewrite <- H5; auto.
-right; case H3; clear H3; intros a1 (H3, H4).
-exists a1; auto.
-right; exists a; auto.
-Defined.
-
-
-Theorem prime_power_div: forall p q i, prime p -> 0 <= q -> 0 <= i -> (q | p ^ i) -> exists j, 0 <= j <= i /\ q = p ^ j.
-intros p q i Hp Hq Hi H.
-assert (Hp1: 0 < p).
-apply Zlt_le_trans with 2; try apply prime_ge_2; auto with zarith.
-pattern q; apply prime_div_induction with (p ^ i); auto with zarith.
-exists 0; rewrite Zpower_0_r; auto with zarith.
-intros p1 i1 Hp2 Hi1 H1.
-case Zle_lt_or_eq with (1 := Hi1); clear Hi1; intros Hi1; subst.
-assert (Heq: p1 = p).
-apply prime_div_Zpower_prime with i; auto.
-apply Zdivide_trans with (2 := H1).
-apply Zpower_divide; auto with zarith.
-exists i1; split; auto; try split; auto with zarith.
-case (Zle_or_lt i1 i); auto; intros H2.
-absurd (p1 ^ i1 <= p ^ i).
-apply Zlt_not_le; rewrite Heq; apply Zpower_lt_monotone; auto with zarith.
-apply Zlt_le_trans with 2; try apply prime_ge_2; auto with zarith.
-apply Zdivide_le; auto with zarith.
-rewrite Heq; auto.
-exists 0; repeat rewrite Zpower_exp_0; auto with zarith.
-intros p1 q1 Hpq (j1,((Hj1, Hj2), Hj3)) (j2, ((Hj4, Hj5), Hj6)).
-case Zle_lt_or_eq with (1 := Hj1); clear Hj1; intros Hj1; subst.
-case Zle_lt_or_eq with (1 := Hj4); clear Hj4; intros Hj4; subst.
-inversion Hpq as [ H0 H1 H2].
-absurd (p | 1).
-intros H3; absurd (1 < p).
-apply Zle_not_lt; apply Zdivide_le; auto with zarith.
-apply Zlt_le_trans with 2; try apply prime_ge_2; auto with zarith.
-apply H2; apply Zpower_divide; auto with zarith.
-exists j1; rewrite Zpower_0_r; auto with zarith.
-exists j2; rewrite Zpower_0_r; auto with zarith.
-Qed.
-
-Theorem inj_lt_inv: forall n m : nat, Z_of_nat n < Z_of_nat m -> (n < m)%nat.
-intros n m H; case (le_or_lt m n); auto; intros H1; contradict H.
-apply Zle_not_lt; apply inj_le; auto.
-Qed.
-
-Theorem not_all_solutions: forall i, 0 < i < g_order IA -> exists a, In a IA.(s) /\ gpow a IA i <> e.
-intros i (Hi, Hi2).
-case (check_list_gpow IA.(s) i); try intros H; auto with datatypes.
-case (gpow_evaln i); auto; intros p (Hp1, (Hp2, Hp3)).
-absurd ((op e) = zero).
-intros H1; case e_not_zero.
-rewrite <- (plus_op_zero e); try rewrite H1; auto.
-rewrite plus_comm; auto.
-apply (root_max_is_zero _ (fun x => In x support) plus mult op zero) with (l := IA.(s)) (p := op e :: p); auto with datatypes.
-simpl; intros x [Hx | Hx]; try rewrite <- Hx; auto.
-intros x Hx.
-generalize (Hp3 _ Hx); simpl; rewrite plus_zero; auto.
-intros tmp; rewrite tmp; clear tmp.
-rewrite H; auto; rewrite plus_comm; auto with datatypes.
-apply mult_internal; auto.
-apply eval_P; auto.
-simpl; apply lt_le_S; apply le_lt_trans with (1 := Hp1).
-apply inj_lt_inv.
-rewrite inj_Zabs_nat; auto with zarith.
-rewrite Zabs_eq; auto with zarith.
-Qed.
-
-Theorem divide_g_order_e_order: forall n, 0 <= n -> (n | g_order IA) -> exists a, In a IA.(s) /\ e_order A_dec a IA = n.
-intros n Hn H.
-assert (Hg: 0 < g_order IA).
-apply g_order_pos.
-assert (He: forall a, 0 <= e_order A_dec a IA).
-intros a; apply Zlt_le_weak; apply e_order_pos.
-pattern n; apply prime_div_induction with (n := g_order IA); auto.
-exists e; split; auto.
-apply IA.(e_in_s).
-apply Zle_antisym.
-apply Zdivide_le; auto with zarith.
-apply e_order_divide_gpow; auto with zarith.
-apply IA.(e_in_s).
-rewrite gpow_1; auto.
-apply IA.(e_in_s).
-match goal with |- (_ <= ?X) => assert (0 < X) end; try apply e_order_pos; auto with zarith.
-intros p i Hp Hi K.
-assert (Hp1: 0 < p).
-apply Zlt_le_trans with 2; try apply prime_ge_2; auto with zarith.
-assert (Hi1: 0 < p ^ i).
-apply Zpower_gt_0; auto.
-case Zle_lt_or_eq with (1 := Hi); clear Hi; intros Hi; subst.
-case (not_all_solutions (g_order IA / p)).
-apply Zdivide_Zdiv_lt_pos; auto with zarith.
-apply Zlt_le_trans with 2; try apply prime_ge_2; auto with zarith.
-apply Zdivide_trans with (2 := K).
-apply Zpower_divide; auto.
-intros a (Ha1, Ha2).
-exists (gpow a IA (g_order IA / p ^ i)); split.
-apply gpow_in; auto.
-match goal with |- ?X = ?Y => assert (H1: (X | Y) ) end; auto.
-apply e_order_divide_gpow; auto with zarith.
-apply gpow_in; auto.
-rewrite <- gpow_gpow; auto with zarith.
-rewrite Zmult_comm; rewrite <- Zdivide_Zdiv_eq; auto with zarith.
-apply fermat_gen; auto.
-apply Z_div_pos; auto with zarith.
-case prime_power_div with (4 := H1); auto with zarith.
-intros j ((Hj1, Hj2), Hj3).
-case Zle_lt_or_eq with (1 := Hj2); intros Hj4; subst; auto.
-case Ha2.
-replace (g_order IA) with (((g_order IA / p ^i) * p ^ j) * p ^ (i - j - 1) * p).
-rewrite Z_div_mult; auto with zarith.
-repeat rewrite gpow_gpow; auto with zarith.
-rewrite <- Hj3.
-rewrite gpow_e_order_is_e; auto with zarith.
-rewrite gpow_e; auto.
-apply Zlt_le_weak; apply Zpower_gt_0; auto with zarith.
-apply gpow_in; auto.
-apply Z_div_pos; auto with zarith.
-apply Zmult_le_0_compat; try apply Z_div_pos; auto with zarith.
-pattern p at 4; rewrite <- Zpower_1_r.
-repeat rewrite <- Zmult_assoc; repeat rewrite <- Zpower_exp; auto with zarith.
-replace (j + (i - j - 1 + 1)) with i; auto with zarith.
-apply sym_equal; rewrite Zmult_comm; apply Zdivide_Zdiv_eq; auto with zarith.
-rewrite Zpower_0_r; exists e; split.
-apply IA.(e_in_s).
-match goal with |- ?X = 1 => assert (tmp: 0 < X); try apply e_order_pos;
-case Zle_lt_or_eq with 1 X; auto with zarith; clear tmp; intros H1 end.
-absurd (gpow IA.(FGroup.e) IA 1 = IA.(FGroup.e)).
-apply gpow_e_order_lt_is_not_e with A_dec; auto with zarith.
-apply gpow_e; auto with zarith.
-intros p q H1 (a, (Ha1, Ha2)) (b, (Hb1, Hb2)).
-exists (mult a b); split.
-apply IA.(internal); auto.
-rewrite <- Ha2; rewrite <- Hb2; apply order_mult; auto.
-rewrite Ha2; rewrite Hb2; auto.
-Qed.
-
-Set Implicit Arguments.
-Definition cyclic (A: Set) A_dec (op: A -> A -> A) (G: FGroup op):= exists a, In a G.(s) /\ e_order A_dec a G = g_order G.
-Unset Implicit Arguments.
-
-Theorem cyclic_field: cyclic A_dec IA.
-red; apply divide_g_order_e_order; auto.
-apply Zlt_le_weak; apply g_order_pos.
-exists 1; ring.
-Qed.
-
-End Cyclic.
diff --git a/coqprime/Coqprime/EGroup.v b/coqprime/Coqprime/EGroup.v
deleted file mode 100644
index 2752bb002..000000000
--- a/coqprime/Coqprime/EGroup.v
+++ /dev/null
@@ -1,605 +0,0 @@
-
-(*************************************************************)
-(* This file is distributed under the terms of the *)
-(* GNU Lesser General Public License Version 2.1 *)
-(*************************************************************)
-(* Benjamin.Gregoire@inria.fr Laurent.Thery@inria.fr *)
-(*************************************************************)
-
-(**********************************************************************
- EGroup.v
-
- Given an element a, create the group {e, a, a^2, ..., a^n}
- **********************************************************************)
-Require Import ZArith.
-Require Import Tactic.
-Require Import List.
-Require Import ZCAux.
-Require Import ZArith Znumtheory.
-Require Import Wf_nat.
-Require Import UList.
-Require Import FGroup.
-Require Import Lagrange.
-
-Open Scope Z_scope.
-
-Section EGroup.
-
-Variable A: Set.
-
-Variable A_dec: forall a b: A, {a = b} + {~ a = b}.
-
-Variable op: A -> A -> A.
-
-Variable a: A.
-
-Variable G: FGroup op.
-
-Hypothesis a_in_G: In a G.(s).
-
-
-(**************************************
- The power function for the group
- **************************************)
-
-Set Implicit Arguments.
-Definition gpow n := match n with Zpos p => iter_pos _ (op a) G.(e) p | _ => G.(e) end.
-Unset Implicit Arguments.
-
-Theorem gpow_0: gpow 0 = G.(e).
-simpl; sauto.
-Qed.
-
-Theorem gpow_1 : gpow 1 = a.
-simpl; sauto.
-Qed.
-
-(**************************************
- Some properties of the power function
- **************************************)
-
-Theorem gpow_in: forall n, In (gpow n) G.(s).
-intros n; case n; simpl; auto.
-intros p; apply iter_pos_invariant with (Inv := fun x => In x G.(s)); auto.
-Qed.
-
-Theorem gpow_op: forall b p, In b G.(s) -> iter_pos _ (op a) b p = op (iter_pos _ (op a) G.(e) p) b.
-intros b p; generalize b; elim p; simpl; auto; clear b p.
-intros p Rec b Hb.
-assert (H: In (gpow (Zpos p)) G.(s)).
-apply gpow_in.
-rewrite (Rec b); try rewrite (fun x y => Rec (op x y)); try rewrite (fun x y => Rec (iter_pos A x y p)); auto.
-repeat rewrite G.(assoc); auto.
-intros p Rec b Hb.
-assert (H: In (gpow (Zpos p)) G.(s)).
-apply gpow_in.
-rewrite (Rec b); try rewrite (fun x y => Rec (op x y)); try rewrite (fun x y => Rec (iter_pos A x y p)); auto.
-repeat rewrite G.(assoc); auto.
-intros b H; rewrite e_is_zero_r; auto.
-Qed.
-
-Theorem gpow_add: forall n m, 0 <= n -> 0 <= m -> gpow (n + m) = op (gpow n) (gpow m).
-intros n; case n.
-intros m _ _; simpl; apply sym_equal; apply e_is_zero_l; apply gpow_in.
-2: intros p m H; contradict H; auto with zarith.
-intros p1 m; case m.
-intros _ _; simpl; apply sym_equal; apply e_is_zero_r.
-exact (gpow_in (Zpos p1)).
-2: intros p2 _ H; contradict H; auto with zarith.
-intros p2 _ _; simpl.
-rewrite iter_pos_plus; rewrite (fun x y => gpow_op (iter_pos A x y p2)); auto.
-exact (gpow_in (Zpos p2)).
-Qed.
-
-Theorem gpow_1_more:
- forall n, 0 < n -> gpow n = G.(e) -> forall m, 0 <= m -> exists p, 0 <= p < n /\ gpow m = gpow p.
-intros n H1 H2 m Hm; generalize Hm; pattern m; apply Z_lt_induction; auto with zarith; clear m Hm.
-intros m Rec Hm.
-case (Zle_or_lt n m); intros H3.
-case (Rec (m - n)); auto with zarith.
-intros p (H4,H5); exists p; split; auto.
-replace m with (n + (m - n)); auto with zarith.
-rewrite gpow_add; try rewrite H2; try rewrite H5; sauto; auto with zarith.
-generalize gpow_in; sauto.
-exists m; auto.
-Qed.
-
-Theorem gpow_i: forall n m, 0 <= n -> 0 <= m -> gpow n = gpow (n + m) -> gpow m = G.(e).
-intros n m H1 H2 H3; generalize gpow_in; intro PI.
-apply g_cancel_l with (g:= G) (a := gpow n); sauto.
-rewrite <- gpow_add; try rewrite <- H3; sauto.
-Qed.
-
-(**************************************
- We build the support by iterating the power function
- **************************************)
-
-Set Implicit Arguments.
-
-Fixpoint support_aux (b: A) (n: nat) {struct n}: list A :=
-b::let c := op a b in
- match n with
- O => nil |
- (S n1) =>if A_dec c G.(e) then nil else support_aux c n1
- end.
-
-Definition support := support_aux G.(e) (Zabs_nat (g_order G)).
-
-Unset Implicit Arguments.
-
-(**************************************
- Some properties of the support that helps to prove that we have a group
- **************************************)
-
-Theorem support_aux_gpow:
- forall n m b, 0 <= m -> In b (support_aux (gpow m) n) ->
- exists p, (0 <= p < length (support_aux (gpow m) n))%nat /\ b = gpow (m + Z_of_nat p).
-intros n; elim n; simpl.
-intros n1 b Hm [H1 | H1]; exists 0%nat; simpl; rewrite Zplus_0_r; auto; case H1.
-intros n1 Rec m b Hm [H1 | H1].
-exists 0%nat; simpl; rewrite Zplus_0_r; auto; auto with arith.
-generalize H1; case (A_dec (op a (gpow m)) G.(e)); clear H1; simpl; intros H1 H2.
-case H2.
-case (Rec (1 + m) b); auto with zarith.
-rewrite gpow_add; auto with zarith.
-rewrite gpow_1; auto.
-intros p (Hp1, Hp2); exists (S p); split; auto with zarith.
-rewrite <- gpow_1.
-rewrite <- gpow_add; auto with zarith.
-rewrite inj_S; rewrite Hp2; eq_tac; auto with zarith.
-Qed.
-
-Theorem gpow_support_aux_not_e:
- forall n m p, 0 <= m -> m < p < m + Z_of_nat (length (support_aux (gpow m) n)) -> gpow p <> G.(e).
-intros n; elim n; simpl.
-intros m p Hm (H1, H2); contradict H2; auto with zarith.
-intros n1 Rec m p Hm; case (A_dec (op a (gpow m)) G.(e)); simpl.
-intros _ (H1, H2); contradict H2; auto with zarith.
-assert (tmp: forall p, Zpos (P_of_succ_nat p) = 1 + Z_of_nat p).
-intros p1; apply trans_equal with (Z_of_nat (S p1)); auto; rewrite inj_S; auto with zarith.
-rewrite tmp.
-intros H1 (H2, H3); case (Zle_lt_or_eq (1 + m) p); auto with zarith; intros H4; subst.
-apply (Rec (1 + m)); try split; auto with zarith.
-rewrite gpow_add; auto with zarith.
-rewrite gpow_1; auto with zarith.
-rewrite gpow_add; try rewrite gpow_1; auto with zarith.
-Qed.
-
-Theorem support_aux_not_e: forall n m b, 0 <= m -> In b (tail (support_aux (gpow m) n)) -> ~ b = G.(e).
-intros n; elim n; simpl.
-intros m b Hm H; case H.
-intros n1 Rec m b Hm; case (A_dec (op a (gpow m)) G.(e)); intros H1 H2; simpl; auto.
-assert (Hm1: 0 <= 1 + m); auto with zarith.
-generalize( Rec (1 + m) b Hm1) H2; case n1; auto; clear Hm1.
-intros _ [H3 | H3]; auto.
-contradict H1; subst; auto.
-rewrite gpow_add; simpl; try rewrite e_is_zero_r; auto with zarith.
-intros n2; case (A_dec (op a (op a (gpow m))) G.(e)); intros H3.
-intros _ [H4 | H4].
-contradict H1; subst; auto.
-case H4.
-intros H4 [H5 | H5]; subst; auto.
-Qed.
-
-Theorem support_aux_length_le: forall n a, (length (support_aux a n) <= n + 1)%nat.
-intros n; elim n; simpl; auto.
-intros n1 Rec a1; case (A_dec (op a a1) G.(e)); simpl; auto with arith.
-Qed.
-
-Theorem support_aux_length_le_is_e:
- forall n m, 0 <= m -> (length (support_aux (gpow m) n) <= n)%nat ->
- gpow (m + Z_of_nat (length (support_aux (gpow m) n))) = G.(e) .
-intros n; elim n; simpl; auto.
-intros m _ H1; contradict H1; auto with arith.
-intros n1 Rec m Hm; case (A_dec (op a (gpow m)) G.(e)); simpl; intros H1.
-intros H2; rewrite Zplus_comm; rewrite gpow_add; simpl; try rewrite e_is_zero_r; auto with zarith.
-assert (tmp: forall p, Zpos (P_of_succ_nat p) = 1 + Z_of_nat p).
-intros p1; apply trans_equal with (Z_of_nat (S p1)); auto; rewrite inj_S; auto with zarith.
-rewrite tmp; clear tmp.
-rewrite <- gpow_1.
-rewrite <- gpow_add; auto with zarith.
-rewrite Zplus_assoc; rewrite (Zplus_comm 1); intros H2; apply Rec; auto with zarith.
-Qed.
-
-Theorem support_aux_in:
- forall n m p, 0 <= m -> (p < length (support_aux (gpow m) n))% nat ->
- (In (gpow (m + Z_of_nat p)) (support_aux (gpow m) n)).
-intros n; elim n; simpl; auto; clear n.
-intros m p Hm H1; replace p with 0%nat.
-left; eq_tac; auto with zarith.
-generalize H1; case p; simpl; auto with arith.
-intros n H2; contradict H2; apply le_not_lt; auto with arith.
-intros n1 Rec m p Hm; case (A_dec (op a (gpow m)) G.(e)); simpl; intros H1 H2; auto.
-replace p with 0%nat.
-left; eq_tac; auto with zarith.
-generalize H2; case p; simpl; auto with arith.
-intros n H3; contradict H3; apply le_not_lt; auto with arith.
-generalize H2; case p; simpl; clear H2.
-rewrite Zplus_0_r; auto.
-intros n.
-assert (tmp: forall p, Zpos (P_of_succ_nat p) = 1 + Z_of_nat p).
-intros p1; apply trans_equal with (Z_of_nat (S p1)); auto; rewrite inj_S; auto with zarith.
-rewrite tmp; clear tmp.
-rewrite <- gpow_1; rewrite <- gpow_add; auto with zarith.
-rewrite Zplus_assoc; rewrite (Zplus_comm 1); intros H2; right; apply Rec; auto with zarith.
-Qed.
-
-Theorem support_aux_ulist:
- forall n m, 0 <= m -> (forall p, 0 <= p < m -> gpow (1 + p) <> G.(e)) -> ulist (support_aux (gpow m) n).
-intros n; elim n; auto; clear n.
-intros m _ _; auto.
-simpl; apply ulist_cons; auto.
-intros n1 Rec m Hm H.
-simpl; case (A_dec (op a (gpow m)) G.(e)); auto.
-intros He; apply ulist_cons; auto.
-intros H1; case (support_aux_gpow n1 (1 + m) (gpow m)); auto with zarith.
-rewrite gpow_add; try rewrite gpow_1; auto with zarith.
-intros p (Hp1, Hp2).
-assert (H2: gpow (1 + Z_of_nat p) = G.(e)).
-apply gpow_i with m; auto with zarith.
-rewrite Hp2; eq_tac; auto with zarith.
-case (Zle_or_lt m (Z_of_nat p)); intros H3; auto.
-2: case (H (Z_of_nat p)); auto with zarith.
-case (support_aux_not_e (S n1) m (gpow (1 + Z_of_nat p))); auto.
-rewrite gpow_add; auto with zarith; simpl; rewrite e_is_zero_r; auto.
-case (A_dec (op a (gpow m)) G.(e)); auto.
-intros _; rewrite <- gpow_1; repeat rewrite <- gpow_add; auto with zarith.
-replace (1 + Z_of_nat p) with ((1 + m) + (Z_of_nat (p - Zabs_nat m))); auto with zarith.
-apply support_aux_in; auto with zarith.
-rewrite inj_minus1; auto with zarith.
-rewrite inj_Zabs_nat; auto with zarith.
-rewrite Zabs_eq; auto with zarith.
-apply inj_le_rev.
-rewrite inj_Zabs_nat; auto with zarith.
-rewrite Zabs_eq; auto with zarith.
-rewrite <- gpow_1; repeat rewrite <- gpow_add; auto with zarith.
-apply (Rec (1 + m)); auto with zarith.
-intros p H1; case (Zle_lt_or_eq p m); intros; subst; auto with zarith.
-rewrite gpow_add; auto with zarith.
-rewrite gpow_1; auto.
-Qed.
-
-Theorem support_gpow: forall b, (In b support) -> exists p, 0 <= p < Z_of_nat (length support) /\ b = gpow p.
-intros b H; case (support_aux_gpow (Zabs_nat (g_order G)) 0 b); auto with zarith.
-intros p ((H1, H2), H3); exists (Z_of_nat p); repeat split; auto with zarith.
-apply inj_lt; auto.
-Qed.
-
-Theorem support_incl_G: incl support G.(s).
-intros a1 H; case (support_gpow a1); auto; intros p (H1, H2); subst; apply gpow_in.
-Qed.
-
-Theorem gpow_support_not_e: forall p, 0 < p < Z_of_nat (length support) -> gpow p <> G.(e).
-intros p (H1, H2); apply gpow_support_aux_not_e with (m := 0) (n := length G.(s)); simpl;
- try split; auto with zarith.
-rewrite <- (Zabs_nat_Z_of_nat (length G.(s))); auto.
-Qed.
-
-Theorem support_not_e: forall b, In b (tail support) -> ~ b = G.(e).
-intros b H; apply (support_aux_not_e (Zabs_nat (g_order G)) 0); auto with zarith.
-Qed.
-
-Theorem support_ulist: ulist support.
-apply (support_aux_ulist (Zabs_nat (g_order G)) 0); auto with zarith.
-Qed.
-
-Theorem support_in_e: In G.(e) support.
-unfold support; case (Zabs_nat (g_order G)); simpl; auto with zarith.
-Qed.
-
-Theorem gpow_length_support_is_e: gpow (Z_of_nat (length support)) = G.(e).
-apply (support_aux_length_le_is_e (Zabs_nat (g_order G)) 0); simpl; auto with zarith.
-unfold g_order; rewrite Zabs_nat_Z_of_nat; apply ulist_incl_length.
-rewrite <- (Zabs_nat_Z_of_nat (length G.(s))); auto.
-exact support_ulist.
-rewrite <- (Zabs_nat_Z_of_nat (length G.(s))); auto.
-exact support_incl_G.
-Qed.
-
-Theorem support_in: forall p, 0 <= p < Z_of_nat (length support) -> In (gpow p) support.
-intros p (H, H1); unfold support.
-rewrite <- (Zabs_eq p); auto with zarith.
-rewrite <- (inj_Zabs_nat p); auto.
-generalize (support_aux_in (Zabs_nat (g_order G)) 0); simpl; intros H2; apply H2; auto with zarith.
-rewrite <- (fun x => Zabs_nat_Z_of_nat (@length A x)); auto.
-apply Zabs_nat_lt; split; auto.
-Qed.
-
-Theorem support_internal: forall a b, In a support -> In b support -> In (op a b) support.
-intros a1 b1 H1 H2.
-case support_gpow with (1 := H1); auto; intros p1 ((H3, H4), H5); subst.
-case support_gpow with (1 := H2); auto; intros p2 ((H5, H6), H7); subst.
-rewrite <- gpow_add; auto with zarith.
-case gpow_1_more with (m:= p1 + p2) (2 := gpow_length_support_is_e); auto with zarith.
-intros p3 ((H8, H9), H10); rewrite H10; apply support_in; auto with zarith.
-Qed.
-
-Theorem support_i_internal: forall a, In a support -> In (G.(i) a) support.
-generalize gpow_in; intros Hp.
-intros a1 H1.
-case support_gpow with (1 := H1); auto.
-intros p1 ((H2, H3), H4); case Zle_lt_or_eq with (1 := H2); clear H2; intros H2; subst.
-2: rewrite gpow_0; rewrite i_e; apply support_in_e.
-replace (G.(i) (gpow p1)) with (gpow (Z_of_nat (length support - Zabs_nat p1))).
-apply support_in; auto with zarith.
-rewrite inj_minus1.
-rewrite inj_Zabs_nat; auto with zarith.
-rewrite Zabs_eq; auto with zarith.
-apply inj_le_rev; rewrite inj_Zabs_nat; auto with zarith.
-rewrite Zabs_eq; auto with zarith.
-apply g_cancel_l with (g:= G) (a := gpow p1); sauto.
-rewrite <- gpow_add; auto with zarith.
-replace (p1 + Z_of_nat (length support - Zabs_nat p1)) with (Z_of_nat (length support)).
-rewrite gpow_length_support_is_e; sauto.
-rewrite inj_minus1; auto with zarith.
-rewrite inj_Zabs_nat; auto with zarith.
-rewrite Zabs_eq; auto with zarith.
-apply inj_le_rev; rewrite inj_Zabs_nat; auto with zarith.
-rewrite Zabs_eq; auto with zarith.
-Qed.
-
-(**************************************
- We are now ready to build the group
- **************************************)
-
-Definition Gsupport: (FGroup op).
-generalize support_incl_G; unfold incl; intros Ho.
-apply mkGroup with support G.(e) G.(i); sauto.
-apply support_ulist.
-apply support_internal.
-intros a1 b1 c1 H1 H2 H3; apply G.(assoc); sauto.
-apply support_in_e.
-apply support_i_internal.
-Defined.
-
-(**************************************
- Definition of the order of an element
- **************************************)
-Set Implicit Arguments.
-
-Definition e_order := Z_of_nat (length support).
-
-Unset Implicit Arguments.
-
-(**************************************
- Some properties of the order of an element
- **************************************)
-
-Theorem gpow_e_order_is_e: gpow e_order = G.(e).
-apply (support_aux_length_le_is_e (Zabs_nat (g_order G)) 0); simpl; auto with zarith.
-unfold g_order; rewrite Zabs_nat_Z_of_nat; apply ulist_incl_length.
-rewrite <- (Zabs_nat_Z_of_nat (length G.(s))); auto.
-exact support_ulist.
-rewrite <- (Zabs_nat_Z_of_nat (length G.(s))); auto.
-exact support_incl_G.
-Qed.
-
-Theorem gpow_e_order_lt_is_not_e: forall n, 1 <= n < e_order -> gpow n <> G.(e).
-intros n (H1, H2); apply gpow_support_not_e; auto with zarith.
-Qed.
-
-Theorem e_order_divide_g_order: (e_order | g_order G).
-change ((g_order Gsupport) | g_order G).
-apply lagrange; auto.
-exact support_incl_G.
-Qed.
-
-Theorem e_order_pos: 0 < e_order.
-unfold e_order, support; case (Zabs_nat (g_order G)); simpl; auto with zarith.
-Qed.
-
-Theorem e_order_divide_gpow: forall n, 0 <= n -> gpow n = G.(e) -> (e_order | n).
-generalize gpow_in; intros Hp.
-generalize e_order_pos; intros Hp1.
-intros n Hn; generalize Hn; pattern n; apply Z_lt_induction; auto; clear n Hn.
-intros n Rec Hn H.
-case (Zle_or_lt e_order n); intros H1.
-case (Rec (n - e_order)); auto with zarith.
-apply g_cancel_l with (g:= G) (a := gpow e_order); sauto.
-rewrite G.(e_is_zero_r); auto with zarith.
-rewrite <- gpow_add; try (rewrite gpow_e_order_is_e; rewrite <- H; eq_tac); auto with zarith.
-intros k Hk; exists (1 + k).
-rewrite Zmult_plus_distr_l; rewrite <- Hk; auto with zarith.
-case (Zle_lt_or_eq 0 n); auto with arith; intros H2; subst.
-contradict H; apply support_not_e.
-generalize H1; unfold e_order, support.
-case (Zabs_nat (g_order G)); simpl; auto.
-intros H3; contradict H3; auto with zarith.
-intros n1; case (A_dec (op a G.(e)) G.(e)); simpl; intros _ H3.
-contradict H3; auto with zarith.
-generalize H3; clear H3.
-assert (tmp: forall p, Zpos (P_of_succ_nat p) = 1 + Z_of_nat p).
-intros p1; apply trans_equal with (Z_of_nat (S p1)); auto; rewrite inj_S; auto with zarith.
-rewrite tmp; clear tmp; intros H3.
-change (In (gpow n) (support_aux (gpow 1) n1)).
-replace n with (1 + Z_of_nat (Zabs_nat n - 1)).
-apply support_aux_in; auto with zarith.
-rewrite <- (fun x => Zabs_nat_Z_of_nat (@length A x)).
-replace (Zabs_nat n - 1)%nat with (Zabs_nat (n - 1)).
-apply Zabs_nat_lt; split; auto with zarith.
-rewrite G.(e_is_zero_r) in H3; try rewrite gpow_1; auto with zarith.
-apply inj_eq_rev; rewrite inj_Zabs_nat; auto with zarith.
-rewrite Zabs_eq; auto with zarith.
-rewrite inj_minus1; auto with zarith.
-rewrite inj_Zabs_nat; auto with zarith.
-rewrite Zabs_eq; auto with zarith.
-apply inj_le_rev; rewrite inj_Zabs_nat; simpl; auto with zarith.
-rewrite Zabs_eq; auto with zarith.
-rewrite inj_minus1; auto with zarith.
-rewrite inj_Zabs_nat; auto with zarith.
-rewrite Zabs_eq; auto with zarith.
-rewrite Zplus_comm; simpl; auto with zarith.
-apply inj_le_rev; rewrite inj_Zabs_nat; simpl; auto with zarith.
-rewrite Zabs_eq; auto with zarith.
-exists 0; auto with arith.
-Qed.
-
-End EGroup.
-
-Theorem gpow_gpow: forall (A : Set) (op : A -> A -> A) (a : A) (G : FGroup op),
- In a (s G) -> forall n m, 0 <= n -> 0 <= m -> gpow a G (n * m ) = gpow (gpow a G n) G m.
-intros A op a G H n m; case n.
-simpl; intros _ H1; generalize H1.
-pattern m; apply natlike_ind; simpl; auto.
-intros x H2 Rec _; unfold Zsucc; rewrite gpow_add; simpl; auto with zarith.
-repeat rewrite G.(e_is_zero_r); auto with zarith.
-apply gpow_in; sauto.
-intros p1 _; case m; simpl; auto.
-assert(H1: In (iter_pos A (op a) (e G) p1) (s G)).
-refine (gpow_in _ _ _ _ _ (Zpos p1)); auto.
-intros p2 _; pattern p2; apply Pind; simpl; auto.
-rewrite Pmult_1_r; rewrite G.(e_is_zero_r); try rewrite G.(e_is_zero_r); auto.
-intros p3 Rec; rewrite Pplus_one_succ_r; rewrite Pmult_plus_distr_l.
-rewrite Pmult_1_r.
-simpl; repeat rewrite iter_pos_plus; simpl.
-rewrite G.(e_is_zero_r); auto.
-rewrite gpow_op with (G:= G); try rewrite Rec; auto.
-apply sym_equal; apply gpow_op; auto.
-intros p Hp; contradict Hp; auto with zarith.
-Qed.
-
-Theorem gpow_e: forall (A : Set) (op : A -> A -> A) (G : FGroup op) n, 0 <= n -> gpow G.(e) G n = G.(e).
-intros A op G n; case n; simpl; auto with zarith.
-intros p _; elim p; simpl; auto; intros p1 Rec; repeat rewrite Rec; auto.
-Qed.
-
-Theorem gpow_pow: forall (A : Set) (op : A -> A -> A) (a : A) (G : FGroup op),
- In a (s G) -> forall n, 0 <= n -> gpow a G (2 ^ n) = G.(e) -> forall m, n <= m -> gpow a G (2 ^ m) = G.(e).
-intros A op a G H n H1 H2 m Hm.
-replace m with (n + (m - n)); auto with zarith.
-rewrite Zpower_exp; auto with zarith.
-rewrite gpow_gpow; auto with zarith.
-rewrite H2; apply gpow_e.
-apply Zpower_ge_0; auto with zarith.
-Qed.
-
-Theorem gpow_mult: forall (A : Set) (op : A -> A -> A) (a b: A) (G : FGroup op)
- (comm: forall a b, In a (s G) -> In b (s G) -> op a b = op b a),
- In a (s G) -> In b (s G) -> forall n, 0 <= n -> gpow (op a b) G n = op (gpow a G n) (gpow b G n).
-intros A op a b G comm Ha Hb n; case n; simpl; auto.
-intros _; rewrite G.(e_is_zero_r); auto.
-2: intros p Hp; contradict Hp; auto with zarith.
-intros p _; pattern p; apply Pind; simpl; auto.
-repeat rewrite G.(e_is_zero_r); auto.
-intros p3 Rec; rewrite Pplus_one_succ_r.
-repeat rewrite iter_pos_plus; simpl.
-repeat rewrite (fun x y H z => gpow_op A op x G H (op y z)) ; auto.
-rewrite Rec.
-repeat rewrite G.(e_is_zero_r); auto.
-assert(H1: In (iter_pos A (op a) (e G) p3) (s G)).
-refine (gpow_in _ _ _ _ _ (Zpos p3)); auto.
-assert(H2: In (iter_pos A (op b) (e G) p3) (s G)).
-refine (gpow_in _ _ _ _ _ (Zpos p3)); auto.
-repeat rewrite <- G.(assoc); try eq_tac; auto.
-rewrite (fun x y => comm (iter_pos A x y p3) b); auto.
-rewrite (G.(assoc) a); try apply comm; auto.
-Qed.
-
-Theorem Zdivide_mult_rel_prime: forall a b c : Z, (a | c) -> (b | c) -> rel_prime a b -> (a * b | c).
-intros a b c (q1, H1) (q2, H2) H3.
-assert (H4: (a | q2)).
-apply Gauss with (2 := H3).
-exists q1; rewrite <- H1; rewrite H2; auto with zarith.
-case H4; intros q3 H5; exists q3; rewrite H2; rewrite H5; auto with zarith.
-Qed.
-
-Theorem order_mult: forall (A : Set) (op : A -> A -> A) (A_dec: forall a b: A, {a = b} + {~ a = b}) (G : FGroup op)
- (comm: forall a b, In a (s G) -> In b (s G) -> op a b = op b a) (a b: A),
- In a (s G) -> In b (s G) -> rel_prime (e_order A_dec a G) (e_order A_dec b G) ->
- e_order A_dec (op a b) G = e_order A_dec a G * e_order A_dec b G.
-intros A op A_dec G comm a b Ha Hb Hab.
-assert (Hoat: 0 < e_order A_dec a G); try apply e_order_pos.
-assert (Hobt: 0 < e_order A_dec b G); try apply e_order_pos.
-assert (Hoabt: 0 < e_order A_dec (op a b) G); try apply e_order_pos.
-assert (Hoa: 0 <= e_order A_dec a G); auto with zarith.
-assert (Hob: 0 <= e_order A_dec b G); auto with zarith.
-apply Zle_antisym; apply Zdivide_le; auto with zarith.
-apply Zmult_lt_O_compat; auto.
-apply e_order_divide_gpow; sauto; auto with zarith.
-rewrite gpow_mult; auto with zarith.
-rewrite gpow_gpow; auto with zarith.
-rewrite gpow_e_order_is_e; auto with zarith.
-rewrite gpow_e; auto.
-rewrite Zmult_comm.
-rewrite gpow_gpow; auto with zarith.
-rewrite gpow_e_order_is_e; auto with zarith.
-rewrite gpow_e; auto.
-apply Zdivide_mult_rel_prime; auto.
-apply Gauss with (2 := Hab).
-apply e_order_divide_gpow; auto with zarith.
-rewrite <- (gpow_e _ _ G (e_order A_dec b G)); auto.
-rewrite <- (gpow_e_order_is_e _ A_dec _ (op a b) G); auto with zarith.
-rewrite <- gpow_gpow; auto with zarith.
-rewrite (Zmult_comm (e_order A_dec (op a b) G)).
-rewrite gpow_mult; auto with zarith.
-rewrite gpow_gpow with (a := b); auto with zarith.
-rewrite gpow_e_order_is_e; auto with zarith.
-rewrite gpow_e; auto with zarith.
-rewrite G.(e_is_zero_r); auto with zarith.
-apply gpow_in; auto.
-apply Gauss with (2 := rel_prime_sym _ _ Hab).
-apply e_order_divide_gpow; auto with zarith.
-rewrite <- (gpow_e _ _ G (e_order A_dec a G)); auto.
-rewrite <- (gpow_e_order_is_e _ A_dec _ (op a b) G); auto with zarith.
-rewrite <- gpow_gpow; auto with zarith.
-rewrite (Zmult_comm (e_order A_dec (op a b) G)).
-rewrite gpow_mult; auto with zarith.
-rewrite gpow_gpow with (a := a); auto with zarith.
-rewrite gpow_e_order_is_e; auto with zarith.
-rewrite gpow_e; auto with zarith.
-rewrite G.(e_is_zero_l); auto with zarith.
-apply gpow_in; auto.
-Qed.
-
-Theorem fermat_gen: forall (A : Set) (A_dec: forall (a b: A), {a = b} + {a <>b}) (op : A -> A -> A) (a: A) (G : FGroup op),
- In a G.(s) -> gpow a G (g_order G) = G.(e).
-intros A A_dec op a G H.
-assert (H1: (e_order A_dec a G | g_order G)).
-apply e_order_divide_g_order; auto.
-case H1; intros q; intros Hq; rewrite Hq.
-assert (Hq1: 0 <= q).
-apply Zmult_le_reg_r with (e_order A_dec a G); auto with zarith.
-apply Zlt_gt; apply e_order_pos.
-rewrite Zmult_0_l; rewrite <- Hq; apply Zlt_le_weak; apply g_order_pos.
-rewrite Zmult_comm; rewrite gpow_gpow; auto with zarith.
-rewrite gpow_e_order_is_e; auto with zarith.
-apply gpow_e; auto.
-apply Zlt_le_weak; apply e_order_pos.
-Qed.
-
-Theorem order_div: forall (A : Set) (A_dec: forall (a b: A), {a = b} + {a <>b}) (op : A -> A -> A) (a: A) (G : FGroup op) m,
- 0 < m -> (forall p, prime p -> (p | m) -> gpow a G (m / p) <> G.(e)) ->
- In a G.(s) -> gpow a G m = G.(e) -> e_order A_dec a G = m.
-intros A Adec op a G m Hm H H1 H2.
-assert (F1: 0 <= m); auto with zarith.
-case (e_order_divide_gpow A Adec op a G H1 m F1 H2); intros q Hq.
-assert (F2: 1 <= q).
- case (Zle_or_lt 0 q); intros HH.
- case (Zle_lt_or_eq _ _ HH); auto with zarith.
- intros HH1; generalize Hm; rewrite Hq; rewrite <- HH1;
- auto with zarith.
- assert (F2: 0 <= (- q) * e_order Adec a G); auto with zarith.
- apply Zmult_le_0_compat; auto with zarith.
- apply Zlt_le_weak; apply e_order_pos.
- generalize F2; rewrite Zopp_mult_distr_l_reverse;
- rewrite <- Hq; auto with zarith.
-case (Zle_lt_or_eq _ _ F2); intros H3; subst; auto with zarith.
-case (prime_dec q); intros Hq.
- case (H q); auto with zarith.
- rewrite Zmult_comm; rewrite Z_div_mult; auto with zarith.
- apply gpow_e_order_is_e; auto.
-case (Zdivide_div_prime_le_square _ H3 Hq); intros r (Hr1, (Hr2, Hr3)).
-case (H _ Hr1); auto.
- apply Zdivide_trans with (1 := Hr2).
- apply Zdivide_factor_r.
-case Hr2; intros q1 Hq1; subst.
-assert (F3: 0 < r).
- generalize (prime_ge_2 _ Hr1); auto with zarith.
-rewrite <- Zmult_assoc; rewrite Zmult_comm; rewrite <- Zmult_assoc;
- rewrite Zmult_comm; rewrite Z_div_mult; auto with zarith.
-rewrite gpow_gpow; auto with zarith.
- rewrite gpow_e_order_is_e; try rewrite gpow_e; auto.
- apply Zmult_le_reg_r with r; auto with zarith.
- apply Zlt_le_weak; apply e_order_pos.
-apply Zmult_le_reg_r with r; auto with zarith.
-Qed.
diff --git a/coqprime/Coqprime/Euler.v b/coqprime/Coqprime/Euler.v
deleted file mode 100644
index 93f6956ba..000000000
--- a/coqprime/Coqprime/Euler.v
+++ /dev/null
@@ -1,88 +0,0 @@
-
-(*************************************************************)
-(* This file is distributed under the terms of the *)
-(* GNU Lesser General Public License Version 2.1 *)
-(*************************************************************)
-(* Benjamin.Gregoire@inria.fr Laurent.Thery@inria.fr *)
-(*************************************************************)
-
-(************************************************************************
-
- Definition of the Euler Totient function
-
-*************************************************************************)
-Require Import ZArith.
-Require Export Znumtheory.
-Require Import Tactic.
-Require Export ZSum.
-
-Open Scope Z_scope.
-
-Definition phi n := Zsum 1 (n - 1) (fun x => if rel_prime_dec x n then 1 else 0).
-
-Theorem phi_def_with_0:
- forall n, 1< n -> phi n = Zsum 0 (n - 1) (fun x => if rel_prime_dec x n then 1 else 0).
-intros n H; rewrite Zsum_S_left; auto with zarith.
-case (rel_prime_dec 0 n); intros H2.
-contradict H2; apply not_rel_prime_0; auto.
-rewrite Zplus_0_l; auto.
-Qed.
-
-Theorem phi_pos: forall n, 1 < n -> 0 < phi n.
-intros n H; unfold phi.
-case (Zle_lt_or_eq 2 n); auto with zarith; intros H1; subst.
-rewrite Zsum_S_left; simpl; auto with zarith.
-case (rel_prime_dec 1 n); intros H2.
-apply Zlt_le_trans with (1 + 0); auto with zarith.
-apply Zplus_le_compat_l.
-pattern 0 at 1; replace 0 with ((1 + (n - 1) - 2) * 0); auto with zarith.
-rewrite <- Zsum_c; auto with zarith.
-apply Zsum_le; auto with zarith.
-intros x H3; case (rel_prime_dec x n); auto with zarith.
-case H2; apply rel_prime_1; auto with zarith.
-rewrite Zsum_nn.
-case (rel_prime_dec (2 - 1) 2); auto with zarith.
-intros H1; contradict H1; apply rel_prime_1; auto with zarith.
-Qed.
-
-Theorem phi_le_n_minus_1: forall n, 1 < n -> phi n <= n - 1.
-intros n H; replace (n-1) with ((1 + (n - 1) - 1) * 1); auto with zarith.
-rewrite <- Zsum_c; auto with zarith.
-unfold phi; apply Zsum_le; auto with zarith.
-intros x H1; case (rel_prime_dec x n); auto with zarith.
-Qed.
-
-Theorem prime_phi_n_minus_1: forall n, prime n -> phi n = n - 1.
-intros n H; replace (n-1) with ((1 + (n - 1) - 1) * 1); auto with zarith.
-assert (Hu: 1 <= n - 1).
-assert (2 <= n); auto with zarith.
-apply prime_ge_2; auto.
-rewrite <- Zsum_c; auto with zarith; unfold phi; apply Zsum_ext; auto.
-intros x (H2, H3); case H; clear H; intros H H1.
-generalize (H1 x); case (rel_prime_dec x n); auto with zarith.
-intros H6 H7; contradict H6; apply H7; split; auto with zarith.
-Qed.
-
-Theorem phi_n_minus_1_prime: forall n, 1 < n -> phi n = n - 1 -> prime n.
-intros n H H1; case (prime_dec n); auto; intros H2.
-assert (H3: phi n < n - 1); auto with zarith.
-replace (n-1) with ((1 + (n - 1) - 1) * 1); auto with zarith.
-assert (Hu: 1 <= n - 1); auto with zarith.
-rewrite <- Zsum_c; auto with zarith; unfold phi; apply Zsum_lt; auto.
-intros x _; case (rel_prime_dec x n); auto with zarith.
-case not_prime_divide with n; auto.
-intros x (H3, H4); exists x; repeat split; auto with zarith.
-case (rel_prime_dec x n); auto with zarith.
-intros H5; absurd (x = 1 \/ x = -1); auto with zarith.
-case (Zis_gcd_unique x n x 1); auto.
-apply Zis_gcd_intro; auto; exists 1; auto with zarith.
-contradict H3; rewrite H1; auto with zarith.
-Qed.
-
-Theorem phi_divide_prime: forall n, 1 < n -> (n - 1 | phi n) -> prime n.
-intros n H1 H2; apply phi_n_minus_1_prime; auto.
-apply Zle_antisym.
-apply phi_le_n_minus_1; auto.
-apply Zdivide_le; auto; auto with zarith.
-apply phi_pos; auto.
-Qed.
diff --git a/coqprime/Coqprime/FGroup.v b/coqprime/Coqprime/FGroup.v
deleted file mode 100644
index ee18761ab..000000000
--- a/coqprime/Coqprime/FGroup.v
+++ /dev/null
@@ -1,123 +0,0 @@
-
-(*************************************************************)
-(* This file is distributed under the terms of the *)
-(* GNU Lesser General Public License Version 2.1 *)
-(*************************************************************)
-(* Benjamin.Gregoire@inria.fr Laurent.Thery@inria.fr *)
-(*************************************************************)
-
-(**********************************************************************
- FGroup.v
-
- Defintion and properties of finite groups
-
- Definition: FGroup
- **********************************************************************)
-Require Import List.
-Require Import UList.
-Require Import Tactic.
-Require Import ZArith.
-
-Open Scope Z_scope.
-
-Set Implicit Arguments.
-
-(**************************************
- A finite group is defined for an operation op
- it has a support (s)
- op operates inside the group (internal)
- op is associative (assoc)
- it has an element (e) that is neutral (e_is_zero_l e_is_zero_r)
- it has an inverse operator (i)
- the inverse operates inside the group (i_internal)
- it gives an inverse (i_is_inverse_l is_is_inverse_r)
- **************************************)
-
-Record FGroup (A: Set) (op: A -> A -> A): Set := mkGroup
- {s : (list A);
- unique_s: ulist s;
- internal: forall a b, In a s -> In b s -> In (op a b) s;
- assoc: forall a b c, In a s -> In b s -> In c s -> op a (op b c) = op (op a b) c;
- e: A;
- e_in_s: In e s;
- e_is_zero_l: forall a, In a s -> op e a = a;
- e_is_zero_r: forall a, In a s -> op a e = a;
- i: A -> A;
- i_internal: forall a, In a s -> In (i a) s;
- i_is_inverse_l: forall a, (In a s) -> op (i a) a = e;
- i_is_inverse_r: forall a, (In a s) -> op a (i a) = e
-}.
-
-(**************************************
- The order of a group is the lengh of the support
- **************************************)
-
-Definition g_order (A: Set) (op: A -> A -> A) (g: FGroup op) := Z_of_nat (length g.(s)).
-
-Unset Implicit Arguments.
-
-Hint Resolve unique_s internal e_in_s e_is_zero_l e_is_zero_r i_internal
- i_is_inverse_l i_is_inverse_r assoc.
-
-
-Section FGroup.
-
-Variable A: Set.
-Variable op: A -> A -> A.
-
-(**************************************
- Some properties of a finite group
- **************************************)
-
-Theorem g_cancel_l: forall (g : FGroup op), forall a b c, In a g.(s) -> In b g.(s) -> In c g.(s) -> op a b = op a c -> b = c.
-intros g a b c H1 H2 H3 H4; apply trans_equal with (op g.(e) b); sauto.
-replace (g.(e)) with (op (g.(i) a) a); sauto.
-apply trans_equal with (op (i g a) (op a b)); sauto.
-apply sym_equal; apply assoc with g; auto.
-rewrite H4.
-apply trans_equal with (op (op (i g a) a) c); sauto.
-apply assoc with g; auto.
-replace (op (g.(i) a) a) with g.(e); sauto.
-Qed.
-
-Theorem g_cancel_r: forall (g : FGroup op), forall a b c, In a g.(s) -> In b g.(s) -> In c g.(s) -> op b a = op c a -> b = c.
-intros g a b c H1 H2 H3 H4; apply trans_equal with (op b g.(e)); sauto.
-replace (g.(e)) with (op a (g.(i) a)); sauto.
-apply trans_equal with (op (op b a) (i g a)); sauto.
-apply assoc with g; auto.
-rewrite H4.
-apply trans_equal with (op c (op a (i g a))); sauto.
-apply sym_equal; apply assoc with g; sauto.
-replace (op a (g.(i) a)) with g.(e); sauto.
-Qed.
-
-Theorem e_unique: forall (g : FGroup op), forall e1, In e1 g.(s) -> (forall a, In a g.(s) -> op e1 a = a) -> e1 = g.(e).
-intros g e1 He1 H2.
-apply trans_equal with (op e1 g.(e)); sauto.
-Qed.
-
-Theorem inv_op: forall (g: FGroup op) a b, In a g.(s) -> In b g.(s) -> g.(i) (op a b) = op (g.(i) b) (g.(i) a).
-intros g a1 b1 H1 H2; apply g_cancel_l with (g := g) (a := op a1 b1); sauto.
-repeat rewrite g.(assoc); sauto.
-apply trans_equal with g.(e); sauto.
-rewrite <- g.(assoc) with (a := a1); sauto.
-rewrite g.(i_is_inverse_r); sauto.
-rewrite g.(e_is_zero_r); sauto.
-Qed.
-
-Theorem i_e: forall (g: FGroup op), g.(i) g.(e) = g.(e).
-intro g; apply g_cancel_l with (g:= g) (a := g.(e)); sauto.
-apply trans_equal with g.(e); sauto.
-Qed.
-
-(**************************************
- A group has at least one element
- **************************************)
-
-Theorem g_order_pos: forall g: FGroup op, 0 < g_order g.
-intro g; generalize g.(e_in_s); unfold g_order; case g.(s); simpl; auto with zarith.
-Qed.
-
-
-
-End FGroup.
diff --git a/coqprime/Coqprime/IGroup.v b/coqprime/Coqprime/IGroup.v
deleted file mode 100644
index 775596a71..000000000
--- a/coqprime/Coqprime/IGroup.v
+++ /dev/null
@@ -1,253 +0,0 @@
-
-(*************************************************************)
-(* This file is distributed under the terms of the *)
-(* GNU Lesser General Public License Version 2.1 *)
-(*************************************************************)
-(* Benjamin.Gregoire@inria.fr Laurent.Thery@inria.fr *)
-(*************************************************************)
-
-(**********************************************************************
- Igroup
-
- Build the group of the inversible elements for the operation
-
- Definition: ZpGroup
- **********************************************************************)
-Require Import ZArith.
-Require Import Tactic.
-Require Import Wf_nat.
-Require Import UList.
-Require Import ListAux.
-Require Import FGroup.
-
-Open Scope Z_scope.
-
-Section IG.
-
-Variable A: Set.
-Variable op: A -> A -> A.
-Variable support: list A.
-Variable e: A.
-
-Hypothesis A_dec: forall a b: A, {a = b} + {a <> b}.
-Hypothesis support_ulist: ulist support.
-Hypothesis e_in_support: In e support.
-Hypothesis op_internal: forall a b, In a support -> In b support -> In (op a b) support.
-Hypothesis op_assoc: forall a b c, In a support -> In b support -> In c support -> op a (op b c) = op (op a b) c.
-Hypothesis e_is_zero_l: forall a, In a support -> op e a = a.
-Hypothesis e_is_zero_r: forall a, In a support -> op a e = a.
-
-(**************************************
- is_inv_aux tests if there is an inverse of a for op in l
- **************************************)
-
-Fixpoint is_inv_aux (l: list A) (a: A) {struct l}: bool :=
- match l with nil => false | cons b l1 =>
- if (A_dec (op a b) e) then if (A_dec (op b a) e) then true else is_inv_aux l1 a else is_inv_aux l1 a
- end.
-
-Theorem is_inv_aux_false: forall b l, (forall a, (In a l) -> op b a <> e \/ op a b <> e) -> is_inv_aux l b = false.
-intros b l; elim l; simpl; auto.
-intros a l1 Rec H; case (A_dec (op a b) e); case (A_dec (op b a) e); auto.
-intros H1 H2; case (H a); auto; intros H3; case H3; auto.
-Qed.
-
-(**************************************
- is_inv tests if there is an inverse in support
- **************************************)
-Definition is_inv := is_inv_aux support.
-
-(**************************************
- isupport_aux returns the sublist of inversible element of support
- **************************************)
-
-Fixpoint isupport_aux (l: list A) : list A :=
- match l with nil => nil | cons a l1 => if is_inv a then a::isupport_aux l1 else isupport_aux l1 end.
-
-(**************************************
- Some properties of isupport_aux
- **************************************)
-
-Theorem isupport_aux_is_inv_true: forall l a, In a (isupport_aux l) -> is_inv a = true.
-intros l a; elim l; simpl; auto.
-intros b l1 H; case_eq (is_inv b); intros H1; simpl; auto.
-intros [H2 | H2]; subst; auto.
-Qed.
-
-Theorem isupport_aux_is_in: forall l a, is_inv a = true -> In a l -> In a (isupport_aux l).
-intros l a; elim l; simpl; auto.
-intros b l1 Rec H [H1 | H1]; subst.
-rewrite H; auto with datatypes.
-case (is_inv b); auto with datatypes.
-Qed.
-
-
-Theorem isupport_aux_not_in:
- forall b l, (forall a, (In a support) -> op b a <> e \/ op a b <> e) -> ~ In b (isupport_aux l).
-intros b l; elim l; simpl; simpl; auto.
-intros a l1 H; case_eq (is_inv a); intros H1; simpl; auto.
-intros H2 [H3 | H3]; subst.
-contradict H1.
-unfold is_inv; rewrite is_inv_aux_false; auto.
-case H; auto; apply isupport_aux_is_in; auto.
-Qed.
-
-Theorem isupport_aux_incl: forall l, incl (isupport_aux l) l.
-intros l; elim l; simpl; auto with datatypes.
-intros a l1 H1; case (is_inv a); auto with datatypes.
-Qed.
-
-Theorem isupport_aux_ulist: forall l, ulist l -> ulist (isupport_aux l).
-intros l; elim l; simpl; auto with datatypes.
-intros a l1 H1 H2; case_eq (is_inv a); intros H3; auto with datatypes.
-apply ulist_cons; auto with datatypes.
-intros H4; apply (ulist_app_inv _ (a::nil) l1 a); auto with datatypes.
-apply (isupport_aux_incl l1 a); auto.
-apply H1; apply ulist_app_inv_r with (a:: nil); auto.
-apply H1; apply ulist_app_inv_r with (a:: nil); auto.
-Qed.
-
-(**************************************
- isupport is the sublist of inversible element of support
- **************************************)
-
-Definition isupport := isupport_aux support.
-
-(**************************************
- Some properties of isupport
- **************************************)
-
-Theorem isupport_is_inv_true: forall a, In a isupport -> is_inv a = true.
-unfold isupport; intros a H; apply isupport_aux_is_inv_true with (1 := H).
-Qed.
-
-Theorem isupport_is_in: forall a, is_inv a = true -> In a support -> In a isupport.
-intros a H H1; unfold isupport; apply isupport_aux_is_in; auto.
-Qed.
-
-Theorem isupport_incl: incl isupport support.
-unfold isupport; apply isupport_aux_incl.
-Qed.
-
-Theorem isupport_ulist: ulist isupport.
-unfold isupport; apply isupport_aux_ulist.
-apply support_ulist.
-Qed.
-
-Theorem isupport_length: (length isupport <= length support)%nat.
-apply ulist_incl_length.
-apply isupport_ulist.
-apply isupport_incl.
-Qed.
-
-Theorem isupport_length_strict:
- forall b, (In b support) -> (forall a, (In a support) -> op b a <> e \/ op a b <> e) ->
- (length isupport < length support)%nat.
-intros b H H1; apply ulist_incl_length_strict.
-apply isupport_ulist.
-apply isupport_incl.
-intros H2; case (isupport_aux_not_in b support); auto.
-Qed.
-
-Fixpoint inv_aux (l: list A) (a: A) {struct l}: A :=
- match l with nil => e | cons b l1 =>
- if A_dec (op a b) e then if (A_dec (op b a) e) then b else inv_aux l1 a else inv_aux l1 a
- end.
-
-Theorem inv_aux_prop_r: forall l a, is_inv_aux l a = true -> op a (inv_aux l a) = e.
-intros l a; elim l; simpl.
-intros; discriminate.
-intros b l1 H1; case (A_dec (op a b) e); case (A_dec (op b a) e); intros H3 H4; subst; auto.
-Qed.
-
-Theorem inv_aux_prop_l: forall l a, is_inv_aux l a = true -> op (inv_aux l a) a = e.
-intros l a; elim l; simpl.
-intros; discriminate.
-intros b l1 H1; case (A_dec (op a b) e); case (A_dec (op b a) e); intros H3 H4; subst; auto.
-Qed.
-
-Theorem inv_aux_inv: forall l a b, op a b = e -> op b a = e -> (In a l) -> is_inv_aux l b = true.
-intros l a b; elim l; simpl.
-intros _ _ H; case H.
-intros c l1 Rec H H0 H1; case H1; clear H1; intros H1; subst; rewrite H.
-case (A_dec (op b a) e); case (A_dec e e); auto.
-intros H1 H2; contradict H2; rewrite H0; auto.
-case (A_dec (op b c) e); case (A_dec (op c b) e); auto.
-Qed.
-
-Theorem inv_aux_in: forall l a, In (inv_aux l a) l \/ inv_aux l a = e.
-intros l a; elim l; simpl; auto.
-intros b l1; case (A_dec (op a b) e); case (A_dec (op b a) e); intros _ _ [H1 | H1]; auto.
-Qed.
-
-(**************************************
- The inverse function
- **************************************)
-
-Definition inv := inv_aux support.
-
-(**************************************
- Some properties of inv
- **************************************)
-
-Theorem inv_prop_r: forall a, In a isupport -> op a (inv a) = e.
-intros a H; unfold inv; apply inv_aux_prop_r with (l := support).
-change (is_inv a = true).
-apply isupport_is_inv_true; auto.
-Qed.
-
-Theorem inv_prop_l: forall a, In a isupport -> op (inv a) a = e.
-intros a H; unfold inv; apply inv_aux_prop_l with (l := support).
-change (is_inv a = true).
-apply isupport_is_inv_true; auto.
-Qed.
-
-Theorem is_inv_true: forall a b, op b a = e -> op a b = e -> (In a support) -> is_inv b = true.
-intros a b H H1 H2; unfold is_inv; apply inv_aux_inv with a; auto.
-Qed.
-
-Theorem is_inv_false: forall b, (forall a, (In a support) -> op b a <> e \/ op a b <> e) -> is_inv b = false.
-intros b H; unfold is_inv; apply is_inv_aux_false; auto.
-Qed.
-
-Theorem inv_internal: forall a, In a isupport -> In (inv a) isupport.
-intros a H; apply isupport_is_in.
-apply is_inv_true with a; auto.
-apply inv_prop_l; auto.
-apply inv_prop_r; auto.
-apply (isupport_incl a); auto.
-case (inv_aux_in support a); unfold inv; auto.
-intros H1; rewrite H1; apply e_in_support; auto with zarith.
-Qed.
-
-(**************************************
- We are now ready to build our group
- **************************************)
-
-Definition IGroup : (FGroup op).
-generalize (fun x=> (isupport_incl x)); intros Hx.
-apply mkGroup with (s := isupport) (e := e) (i := inv); auto.
-apply isupport_ulist.
-intros a b H H1.
-assert (Haii: In (inv a) isupport); try apply inv_internal; auto.
-assert (Hbii: In (inv b) isupport); try apply inv_internal; auto.
-apply isupport_is_in; auto.
-apply is_inv_true with (op (inv b) (inv a)); auto.
-rewrite op_assoc; auto.
-rewrite <- (op_assoc a); auto.
-rewrite inv_prop_r; auto.
-rewrite e_is_zero_r; auto.
-apply inv_prop_r; auto.
-rewrite <- (op_assoc (inv b)); auto.
-rewrite (op_assoc (inv a)); auto.
-rewrite inv_prop_l; auto.
-rewrite e_is_zero_l; auto.
-apply inv_prop_l; auto.
-apply isupport_is_in; auto.
-apply is_inv_true with e; auto.
-intros a H; apply inv_internal; auto.
-intros; apply inv_prop_l; auto.
-intros; apply inv_prop_r; auto.
-Defined.
-
-End IG.
diff --git a/coqprime/Coqprime/Iterator.v b/coqprime/Coqprime/Iterator.v
deleted file mode 100644
index ed5261bcc..000000000
--- a/coqprime/Coqprime/Iterator.v
+++ /dev/null
@@ -1,180 +0,0 @@
-
-(*************************************************************)
-(* This file is distributed under the terms of the *)
-(* GNU Lesser General Public License Version 2.1 *)
-(*************************************************************)
-(* Benjamin.Gregoire@inria.fr Laurent.Thery@inria.fr *)
-(*************************************************************)
-
-Require Export List.
-Require Export Permutation.
-Require Import Arith.
-
-Section Iterator.
-Variables A B : Set.
-Variable zero : B.
-Variable f : A -> B.
-Variable g : B -> B -> B.
-Hypothesis g_zero : forall a, g a zero = a.
-Hypothesis g_trans : forall a b c, g a (g b c) = g (g a b) c.
-Hypothesis g_sym : forall a b, g a b = g b a.
-
-Definition iter := fold_right (fun a r => g (f a) r) zero.
-Hint Unfold iter .
-
-Theorem iter_app: forall l1 l2, iter (app l1 l2) = g (iter l1) (iter l2).
-intros l1; elim l1; simpl; auto.
-intros l2; rewrite g_sym; auto.
-intros a l H l2; rewrite H.
-rewrite g_trans; auto.
-Qed.
-
-Theorem iter_permutation: forall l1 l2, permutation l1 l2 -> iter l1 = iter l2.
-intros l1 l2 H; elim H; simpl; auto; clear H l1 l2.
-intros a l1 l2 H1 H2; apply f_equal2 with ( f := g ); auto.
-intros a b l; (repeat rewrite g_trans).
-apply f_equal2 with ( f := g ); auto.
-intros l1 l2 l3 H H0 H1 H2; apply trans_equal with ( 1 := H0 ); auto.
-Qed.
-
-Lemma iter_inv:
- forall P l,
- P zero ->
- (forall a b, P a -> P b -> P (g a b)) ->
- (forall x, In x l -> P (f x)) -> P (iter l).
-intros P l H H0; (elim l; simpl; auto).
-Qed.
-Variable next : A -> A.
-
-Fixpoint progression (m : A) (n : nat) {struct n} : list A :=
- match n with 0 => nil
- | S n1 => cons m (progression (next m) n1) end.
-
-Fixpoint next_n (c : A) (n : nat) {struct n} : A :=
- match n with 0 => c | S n1 => next_n (next c) n1 end.
-
-Theorem progression_app:
- forall a b n m,
- le m n ->
- b = next_n a m ->
- progression a n = app (progression a m) (progression b (n - m)).
-intros a b n m; generalize a b n; clear a b n; elim m; clear m; simpl.
-intros a b n H H0; apply f_equal2 with ( f := progression ); auto with arith.
-intros m H a b n; case n; simpl; clear n.
-intros H1; absurd (0 < 1 + m); auto with arith.
-intros n H0 H1; apply f_equal2 with ( f := @cons A ); auto with arith.
-Qed.
-
-Let iter_progression := fun m n => iter (progression m n).
-
-Theorem iter_progression_app:
- forall a b n m,
- le m n ->
- b = next_n a m ->
- iter (progression a n) =
- g (iter (progression a m)) (iter (progression b (n - m))).
-intros a b n m H H0; unfold iter_progression; rewrite (progression_app a b n m);
- (try apply iter_app); auto.
-Qed.
-
-Theorem length_progression: forall z n, length (progression z n) = n.
-intros z n; generalize z; elim n; simpl; auto.
-Qed.
-
-End Iterator.
-Arguments iter [A B].
-Arguments progression [A].
-Arguments next_n [A].
-Hint Unfold iter .
-Hint Unfold progression .
-Hint Unfold next_n .
-
-Theorem iter_ext:
- forall (A B : Set) zero (f1 : A -> B) f2 g l,
- (forall a, In a l -> f1 a = f2 a) -> iter zero f1 g l = iter zero f2 g l.
-intros A B zero f1 f2 g l; elim l; simpl; auto.
-intros a l0 H H0; apply f_equal2 with ( f := g ); auto.
-Qed.
-
-Theorem iter_map:
- forall (A B C : Set) zero (f : B -> C) g (k : A -> B) l,
- iter zero f g (map k l) = iter zero (fun x => f (k x)) g l.
-intros A B C zero f g k l; elim l; simpl; auto.
-intros; apply f_equal2 with ( f := g ); auto with arith.
-Qed.
-
-Theorem iter_comp:
- forall (A B : Set) zero (f1 f2 : A -> B) g l,
- (forall a, g a zero = a) ->
- (forall a b c, g a (g b c) = g (g a b) c) ->
- (forall a b, g a b = g b a) ->
- g (iter zero f1 g l) (iter zero f2 g l) =
- iter zero (fun x => g (f1 x) (f2 x)) g l.
-intros A B zero f1 f2 g l g_zero g_trans g_sym; elim l; simpl; auto.
-intros a l0 H; rewrite <- H; (repeat rewrite <- g_trans).
-apply f_equal2 with ( f := g ); auto.
-(repeat rewrite g_trans); apply f_equal2 with ( f := g ); auto.
-Qed.
-
-Theorem iter_com:
- forall (A B : Set) zero (f : A -> A -> B) g l1 l2,
- (forall a, g a zero = a) ->
- (forall a b c, g a (g b c) = g (g a b) c) ->
- (forall a b, g a b = g b a) ->
- iter zero (fun x => iter zero (fun y => f x y) g l1) g l2 =
- iter zero (fun y => iter zero (fun x => f x y) g l2) g l1.
-intros A B zero f g l1 l2 H H0 H1; generalize l2; elim l1; simpl; auto;
- clear l1 l2.
-intros l2; elim l2; simpl; auto with arith.
-intros; rewrite H1; rewrite H; auto with arith.
-intros a l1 H2 l2; case l2; clear l2; simpl; auto.
-elim l1; simpl; auto with arith.
-intros; rewrite H1; rewrite H; auto with arith.
-intros b l2.
-rewrite <- (iter_comp
- _ _ zero (fun x => f x a)
- (fun x => iter zero (fun (y : A) => f x y) g l1)); auto with arith.
-rewrite <- (iter_comp
- _ _ zero (fun y => f b y)
- (fun y => iter zero (fun (x : A) => f x y) g l2)); auto with arith.
-(repeat rewrite H0); auto.
-apply f_equal2 with ( f := g ); auto.
-(repeat rewrite <- H0); auto.
-apply f_equal2 with ( f := g ); auto.
-Qed.
-
-Theorem iter_comp_const:
- forall (A B : Set) zero (f : A -> B) g k l,
- k zero = zero ->
- (forall a b, k (g a b) = g (k a) (k b)) ->
- k (iter zero f g l) = iter zero (fun x => k (f x)) g l.
-intros A B zero f g k l H H0; elim l; simpl; auto.
-intros a l0 H1; rewrite H0; apply f_equal2 with ( f := g ); auto.
-Qed.
-
-Lemma next_n_S: forall n m, next_n S n m = plus n m.
-intros n m; generalize n; elim m; clear n m; simpl; auto with arith.
-intros m H n; case n; simpl; auto with arith.
-rewrite H; auto with arith.
-intros n1; rewrite H; simpl; auto with arith.
-Qed.
-
-Theorem progression_S_le_init:
- forall n m p, In p (progression S n m) -> le n p.
-intros n m; generalize n; elim m; clear n m; simpl; auto.
-intros; contradiction.
-intros m H n p [H1|H1]; auto with arith.
-subst n; auto.
-apply le_S_n; auto with arith.
-Qed.
-
-Theorem progression_S_le_end:
- forall n m p, In p (progression S n m) -> lt p (n + m).
-intros n m; generalize n; elim m; clear n m; simpl; auto.
-intros; contradiction.
-intros m H n p [H1|H1]; auto with arith.
-subst n; auto with arith.
-rewrite <- plus_n_Sm; auto with arith.
-rewrite <- plus_n_Sm; auto with arith.
-generalize (H (S n) p); auto with arith.
-Qed.
diff --git a/coqprime/Coqprime/Lagrange.v b/coqprime/Coqprime/Lagrange.v
deleted file mode 100644
index 4765c76c4..000000000
--- a/coqprime/Coqprime/Lagrange.v
+++ /dev/null
@@ -1,179 +0,0 @@
-
-(*************************************************************)
-(* This file is distributed under the terms of the *)
-(* GNU Lesser General Public License Version 2.1 *)
-(*************************************************************)
-(* Benjamin.Gregoire@inria.fr Laurent.Thery@inria.fr *)
-(*************************************************************)
-
-(**********************************************************************
- Lagrange.v
-
- Proof of Lagrange theorem:
- the oder of a subgroup divides the order of a group
-
- Definition: lagrange
- **********************************************************************)
-Require Import List.
-Require Import UList.
-Require Import ListAux.
-Require Import ZArith Znumtheory.
-Require Import NatAux.
-Require Import FGroup.
-
-Open Scope Z_scope.
-
-Section Lagrange.
-
-Variable A: Set.
-
-Variable A_dec: forall a b: A, {a = b} + {~ a = b}.
-
-Variable op: A -> A -> A.
-
-Variable G: (FGroup op).
-
-Variable H:(FGroup op).
-
-Hypothesis G_in_H: (incl G.(s) H.(s)).
-
-(**************************************
- A group and a subgroup have the same neutral element
- **************************************)
-
-Theorem same_e_for_H_and_G: H.(e) = G.(e).
-apply trans_equal with (op H.(e) H.(e)); sauto.
-apply trans_equal with (op H.(e) (op G.(e) (H.(i) G.(e)))); sauto.
-eq_tac; sauto.
-apply trans_equal with (op G.(e) (op G.(e) (H.(i) G.(e)))); sauto.
-repeat rewrite H.(assoc); sauto.
-eq_tac; sauto.
-apply trans_equal with G.(e); sauto.
-apply trans_equal with (op G.(e) H.(e)); sauto.
-eq_tac; sauto.
-Qed.
-
-(**************************************
- The proof works like this.
- If G = {e, g1, g2, g3, .., gn} and {e, h1, h2, h3, ..., hm}
- we construct the list mkGH
- {e, g1, g2, g3, ...., gn
- hi*e, hi * g1, hi * g2, ..., hi * gn if hi does not appear before
- ....
- hk*e, hk * g1, hk * g2, ..., hk * gn if hk does not appear before
- }
- that contains all the element of H.
- We show that this list does not contain double (ulist).
- **************************************)
-
-Fixpoint mkList (base l: (list A)) { struct l} : (list A) :=
- match l with
- nil => nil
- | cons a l1 => let r1 := mkList base l1 in
- if (In_dec A_dec a r1) then r1 else
- (map (op a) base) ++ r1
- end.
-
-Definition mkGH := mkList G.(s) H.(s).
-
-Theorem mkGH_length: divide (length G.(s)) (length mkGH).
-unfold mkGH; elim H.(s); simpl.
-exists 0%nat; auto with arith.
-intros a l1 (c, H1); case (In_dec A_dec a (mkList G.(s) l1)); intros H2.
-exists c; auto.
-exists (1 + c)%nat; rewrite ListAux.length_app; rewrite ListAux.length_map; rewrite H1; ring.
-Qed.
-
-Theorem mkGH_incl: incl H.(s) mkGH.
-assert (H1: forall l, incl l H.(s) -> incl l (mkList G.(s) l)).
-intros l; elim l; simpl; auto with datatypes.
-intros a l1 H1 H2.
-case (In_dec A_dec a (mkList (s G) l1)); auto with datatypes.
-intros H3; assert (H4: incl l1 (mkList (s G) l1)).
-apply H1; auto with datatypes.
-intros b H4; apply H2; auto with datatypes.
-intros b; simpl; intros [H5 | H5]; subst; auto.
-intros _ b; simpl; intros [H3 | H3]; subst; auto.
-apply in_or_app; left.
-cut (In H.(e) G.(s)).
-elim (s G); simpl; auto.
-intros c l2 Hl2 [H3 | H3]; subst; sauto.
-assert (In b H.(s)); sauto.
-apply (H2 b); auto with datatypes.
-rewrite same_e_for_H_and_G; sauto.
-apply in_or_app; right.
-apply H1; auto with datatypes.
-apply incl_tran with (2:= H2); auto with datatypes.
-unfold mkGH; apply H1; auto with datatypes.
-Qed.
-
-Theorem incl_mkGH: incl mkGH H.(s).
-assert (H1: forall l, incl l H.(s) -> incl (mkList G.(s) l) H.(s)).
-intros l; elim l; simpl; auto with datatypes.
-intros a l1 H1 H2.
-case (In_dec A_dec a (mkList (s G) l1)); intros H3; auto with datatypes.
-apply H1; apply incl_tran with (2 := H2); auto with datatypes.
-apply incl_app.
-intros b H4.
-case ListAux.in_map_inv with (1:= H4); auto.
-intros c (Hc1, Hc2); subst; sauto.
-apply internal; auto with datatypes.
-apply H1; apply incl_tran with (2 := H2); auto with datatypes.
-unfold mkGH; apply H1; auto with datatypes.
-Qed.
-
-Theorem ulist_mkGH: ulist mkGH.
-assert (H1: forall l, incl l H.(s) -> ulist (mkList G.(s) l)).
-intros l; elim l; simpl; auto with datatypes.
-intros a l1 H1 H2.
-case (In_dec A_dec a (mkList (s G) l1)); intros H3; auto with datatypes.
-apply H1; apply incl_tran with (2 := H2); auto with datatypes.
-apply ulist_app; auto.
-apply ulist_map; sauto.
-intros x y H4 H5 H6; apply g_cancel_l with (g:= H) (a := a); sauto.
-apply H2; auto with datatypes.
-apply H1; apply incl_tran with (2 := H2); auto with datatypes.
-intros b H4 H5.
-case ListAux.in_map_inv with (1:= H4); auto.
-intros c (Hc, Hc1); subst.
-assert (H6: forall l a b, In b G.(s) -> incl l H.(s) -> In a (mkList G.(s) l) -> In (op a b) (mkList G.(s) l)).
-intros ll u v; elim ll; simpl; auto with datatypes.
-intros w ll1 T0 T1 T2.
-case (In_dec A_dec w (mkList (s G) ll1)); intros T3 T4; auto with datatypes.
-apply T0; auto; apply incl_tran with (2:= T2); auto with datatypes.
-case in_app_or with (1 := T4); intros T5; auto with datatypes.
-apply in_or_app; left.
-case ListAux.in_map_inv with (1:= T5); auto.
-intros z (Hz1, Hz2); subst.
-replace (op (op w z) v) with (op w (op z v)); sauto.
-apply in_map; sauto.
-apply assoc with H; auto with datatypes.
-apply in_or_app; right; auto with datatypes.
-apply T0; try apply incl_tran with (2 := T2); auto with datatypes.
-case H3; replace a with (op (op a c) (G.(i) c)); auto with datatypes.
-apply H6; sauto.
-apply incl_tran with (2 := H2); auto with datatypes.
-apply trans_equal with (op a (op c (G.(i) c))); sauto.
-apply sym_equal; apply assoc with H; auto with datatypes.
-replace (op c (G.(i) c)) with (G.(e)); sauto.
-rewrite <- same_e_for_H_and_G.
-assert (In a H.(s)); sauto; apply (H2 a); auto with datatypes.
-unfold mkGH; apply H1; auto with datatypes.
-Qed.
-
-(**************************************
- Lagrange theorem
- **************************************)
-
-Theorem lagrange: (g_order G | (g_order H)).
-unfold g_order.
-rewrite Permutation.permutation_length with (l := H.(s)) (m:= mkGH).
-case mkGH_length; intros x H1; exists (Z_of_nat x).
-rewrite H1; rewrite Zmult_comm; apply inj_mult.
-apply ulist_incl2_permutation; auto.
-apply ulist_mkGH.
-apply mkGH_incl.
-apply incl_mkGH.
-Qed.
-
-End Lagrange.
diff --git a/coqprime/Coqprime/ListAux.v b/coqprime/Coqprime/ListAux.v
deleted file mode 100644
index 2443faf52..000000000
--- a/coqprime/Coqprime/ListAux.v
+++ /dev/null
@@ -1,271 +0,0 @@
-
-(*************************************************************)
-(* This file is distributed under the terms of the *)
-(* GNU Lesser General Public License Version 2.1 *)
-(*************************************************************)
-(* Benjamin.Gregoire@inria.fr Laurent.Thery@inria.fr *)
-(*************************************************************)
-
-(**********************************************************************
- Aux.v
-
- Auxillary functions & Theorems
- **********************************************************************)
-Require Export List.
-Require Export Arith.
-Require Export Tactic.
-Require Import Inverse_Image.
-Require Import Wf_nat.
-
-(**************************************
- Some properties on list operators: app, map,...
-**************************************)
-
-Section List.
-Variables (A : Set) (B : Set) (C : Set).
-Variable f : A -> B.
-
-(**************************************
- An induction theorem for list based on length
-**************************************)
-
-Theorem list_length_ind:
- forall (P : list A -> Prop),
- (forall (l1 : list A),
- (forall (l2 : list A), length l2 < length l1 -> P l2) -> P l1) ->
- forall (l : list A), P l.
-intros P H l;
- apply well_founded_ind with ( R := fun (x y : list A) => length x < length y );
- auto.
-apply wf_inverse_image with ( R := lt ); auto.
-apply lt_wf.
-Qed.
-
-Definition list_length_induction:
- forall (P : list A -> Set),
- (forall (l1 : list A),
- (forall (l2 : list A), length l2 < length l1 -> P l2) -> P l1) ->
- forall (l : list A), P l.
-intros P H l;
- apply well_founded_induction
- with ( R := fun (x y : list A) => length x < length y ); auto.
-apply wf_inverse_image with ( R := lt ); auto.
-apply lt_wf.
-Qed.
-
-Theorem in_ex_app:
- forall (a : A) (l : list A),
- In a l -> (exists l1 : list A , exists l2 : list A , l = l1 ++ (a :: l2) ).
-intros a l; elim l; clear l; simpl; auto.
-intros H; case H.
-intros a1 l H [H1|H1]; auto.
-exists (nil (A:=A)); exists l; simpl; auto.
-rewrite H1; auto.
-case H; auto; intros l1 [l2 Hl2]; exists (a1 :: l1); exists l2; simpl; auto.
-rewrite Hl2; auto.
-Qed.
-
-(**************************************
- Properties on app
-**************************************)
-
-Theorem length_app:
- forall (l1 l2 : list A), length (l1 ++ l2) = length l1 + length l2.
-intros l1; elim l1; simpl; auto.
-Qed.
-
-Theorem app_inv_head:
- forall (l1 l2 l3 : list A), l1 ++ l2 = l1 ++ l3 -> l2 = l3.
-intros l1; elim l1; simpl; auto.
-intros a l H l2 l3 H0; apply H; injection H0; auto.
-Qed.
-
-Theorem app_inv_tail:
- forall (l1 l2 l3 : list A), l2 ++ l1 = l3 ++ l1 -> l2 = l3.
-intros l1 l2; generalize l1; elim l2; clear l1 l2; simpl; auto.
-intros l1 l3; case l3; auto.
-intros b l H; absurd (length ((b :: l) ++ l1) <= length l1).
-simpl; rewrite length_app; auto with arith.
-rewrite <- H; auto with arith.
-intros a l H l1 l3; case l3.
-simpl; intros H1; absurd (length (a :: (l ++ l1)) <= length l1).
-simpl; rewrite length_app; auto with arith.
-rewrite H1; auto with arith.
-simpl; intros b l0 H0; injection H0.
-intros H1 H2; rewrite H2, (H _ _ H1); auto.
-Qed.
-
-Theorem app_inv_app:
- forall l1 l2 l3 l4 a,
- l1 ++ l2 = l3 ++ (a :: l4) ->
- (exists l5 : list A , l1 = l3 ++ (a :: l5) ) \/
- (exists l5 , l2 = l5 ++ (a :: l4) ).
-intros l1; elim l1; simpl; auto.
-intros l2 l3 l4 a H; right; exists l3; auto.
-intros a l H l2 l3 l4 a0; case l3; simpl.
-intros H0; left; exists l; injection H0; intros; subst; auto.
-intros b l0 H0; case (H l2 l0 l4 a0); auto.
-injection H0; auto.
-intros [l5 H1].
-left; exists l5; injection H0; intros; subst; auto.
-Qed.
-
-Theorem app_inv_app2:
- forall l1 l2 l3 l4 a b,
- l1 ++ l2 = l3 ++ (a :: (b :: l4)) ->
- (exists l5 : list A , l1 = l3 ++ (a :: (b :: l5)) ) \/
- ((exists l5 , l2 = l5 ++ (a :: (b :: l4)) ) \/
- l1 = l3 ++ (a :: nil) /\ l2 = b :: l4).
-intros l1; elim l1; simpl; auto.
-intros l2 l3 l4 a b H; right; left; exists l3; auto.
-intros a l H l2 l3 l4 a0 b; case l3; simpl.
-case l; simpl.
-intros H0; right; right; injection H0; split; auto.
-rewrite H2; auto.
-intros b0 l0 H0; left; exists l0; injection H0; intros; subst; auto.
-intros b0 l0 H0; case (H l2 l0 l4 a0 b); auto.
-injection H0; auto.
-intros [l5 HH1]; left; exists l5; injection H0; intros; subst; auto.
-intros [H1|[H1 H2]]; auto.
-right; right; split; auto; injection H0; intros; subst; auto.
-Qed.
-
-Theorem same_length_ex:
- forall (a : A) l1 l2 l3,
- length (l1 ++ (a :: l2)) = length l3 ->
- (exists l4 ,
- exists l5 ,
- exists b : B ,
- length l1 = length l4 /\ (length l2 = length l5 /\ l3 = l4 ++ (b :: l5)) ).
-intros a l1; elim l1; simpl; auto.
-intros l2 l3; case l3; simpl; (try (intros; discriminate)).
-intros b l H; exists (nil (A:=B)); exists l; exists b; (repeat (split; auto)).
-intros a0 l H l2 l3; case l3; simpl; (try (intros; discriminate)).
-intros b l0 H0.
-case (H l2 l0); auto.
-intros l4 [l5 [b1 [HH1 [HH2 HH3]]]].
-exists (b :: l4); exists l5; exists b1; (repeat (simpl; split; auto)).
-rewrite HH3; auto.
-Qed.
-
-(**************************************
- Properties on map
-**************************************)
-
-Theorem in_map_inv:
- forall (b : B) (l : list A),
- In b (map f l) -> (exists a : A , In a l /\ b = f a ).
-intros b l; elim l; simpl; auto.
-intros tmp; case tmp.
-intros a0 l0 H [H1|H1]; auto.
-exists a0; auto.
-case (H H1); intros a1 [H2 H3]; exists a1; auto.
-Qed.
-
-Theorem in_map_fst_inv:
- forall a (l : list (B * C)),
- In a (map (fst (B:=_)) l) -> (exists c , In (a, c) l ).
-intros a l; elim l; simpl; auto.
-intros H; case H.
-intros a0 l0 H [H0|H0]; auto.
-exists (snd a0); left; rewrite <- H0; case a0; simpl; auto.
-case H; auto; intros l1 Hl1; exists l1; auto.
-Qed.
-
-Theorem length_map: forall l, length (map f l) = length l.
-intros l; elim l; simpl; auto.
-Qed.
-
-Theorem map_app: forall l1 l2, map f (l1 ++ l2) = map f l1 ++ map f l2.
-intros l; elim l; simpl; auto.
-intros a l0 H l2; rewrite H; auto.
-Qed.
-
-Theorem map_length_decompose:
- forall l1 l2 l3 l4,
- length l1 = length l2 ->
- map f (app l1 l3) = app l2 l4 -> map f l1 = l2 /\ map f l3 = l4.
-intros l1; elim l1; simpl; auto; clear l1.
-intros l2; case l2; simpl; auto.
-intros; discriminate.
-intros a l1 Rec l2; case l2; simpl; clear l2; auto.
-intros; discriminate.
-intros b l2 l3 l4 H1 H2.
-injection H2; clear H2; intros H2 H3.
-case (Rec l2 l3 l4); auto.
-intros H4 H5; split; auto.
-subst; auto.
-Qed.
-
-(**************************************
- Properties of flat_map
-**************************************)
-
-Theorem in_flat_map:
- forall (l : list B) (f : B -> list C) a b,
- In a (f b) -> In b l -> In a (flat_map f l).
-intros l g; elim l; simpl; auto.
-intros a l0 H a0 b H0 [H1|H1]; apply in_or_app; auto.
-left; rewrite H1; auto.
-right; apply H with ( b := b ); auto.
-Qed.
-
-Theorem in_flat_map_ex:
- forall (l : list B) (f : B -> list C) a,
- In a (flat_map f l) -> (exists b , In b l /\ In a (f b) ).
-intros l g; elim l; simpl; auto.
-intros a H; case H.
-intros a l0 H a0 H0; case in_app_or with ( 1 := H0 ); simpl; auto.
-intros H1; exists a; auto.
-intros H1; case H with ( 1 := H1 ).
-intros b [H2 H3]; exists b; simpl; auto.
-Qed.
-
-(**************************************
- Properties of fold_left
-**************************************)
-
-Theorem fold_left_invol:
- forall (f: A -> B -> A) (P: A -> Prop) l a,
- P a -> (forall x y, P x -> P (f x y)) -> P (fold_left f l a).
-intros f1 P l; elim l; simpl; auto.
-Qed.
-
-Theorem fold_left_invol_in:
- forall (f: A -> B -> A) (P: A -> Prop) l a b,
- In b l -> (forall x, P (f x b)) -> (forall x y, P x -> P (f x y)) ->
- P (fold_left f l a).
-intros f1 P l; elim l; simpl; auto.
-intros a1 b HH; case HH.
-intros a1 l1 Rec a2 b [V|V] V1 V2; subst; auto.
-apply fold_left_invol; auto.
-apply Rec with (b := b); auto.
-Qed.
-
-End List.
-
-
-(**************************************
- Propertie of list_prod
-**************************************)
-
-Theorem length_list_prod:
- forall (A : Set) (l1 l2 : list A),
- length (list_prod l1 l2) = length l1 * length l2.
-intros A l1 l2; elim l1; simpl; auto.
-intros a l H; rewrite length_app; rewrite length_map; rewrite H; auto.
-Qed.
-
-Theorem in_list_prod_inv:
- forall (A B : Set) a l1 l2,
- In a (list_prod l1 l2) ->
- (exists b : A , exists c : B , a = (b, c) /\ (In b l1 /\ In c l2) ).
-intros A B a l1 l2; elim l1; simpl; auto; clear l1.
-intros H; case H.
-intros a1 l1 H1 H2.
-case in_app_or with ( 1 := H2 ); intros H3; auto.
-case in_map_inv with ( 1 := H3 ); intros b1 [Hb1 Hb2]; auto.
-exists a1; exists b1; split; auto.
-case H1; auto; intros b1 [c1 [Hb1 [Hb2 Hb3]]].
-exists b1; exists c1; split; auto.
-Qed.
diff --git a/coqprime/Coqprime/LucasLehmer.v b/coqprime/Coqprime/LucasLehmer.v
deleted file mode 100644
index 6e3d218f2..000000000
--- a/coqprime/Coqprime/LucasLehmer.v
+++ /dev/null
@@ -1,596 +0,0 @@
-
-(*************************************************************)
-(* This file is distributed under the terms of the *)
-(* GNU Lesser General Public License Version 2.1 *)
-(*************************************************************)
-(* Benjamin.Gregoire@inria.fr Laurent.Thery@inria.fr *)
-(*************************************************************)
-
-(**********************************************************************
- LucasLehamer.v
-
- Build the sequence for the primality test of Mersenne numbers
-
- Definition: LucasLehmer
- **********************************************************************)
-Require Import ZArith.
-Require Import ZCAux.
-Require Import Tactic.
-Require Import Wf_nat.
-Require Import NatAux.
-Require Import UList.
-Require Import ListAux.
-Require Import FGroup.
-Require Import EGroup.
-Require Import PGroup.
-Require Import IGroup.
-
-Open Scope Z_scope.
-
-(**************************************
- The seeds of the serie
- **************************************)
-
-Definition w := (2, 1).
-
-Definition v := (2, -1).
-
-Theorem w_plus_v: pplus w v = (4, 0).
-simpl; auto.
-Qed.
-
-Theorem w_mult_v : pmult w v = (1, 0).
-simpl; auto.
-Qed.
-
-(**************************************
- Definition of the power function for pairs p^n
- **************************************)
-
-Definition ppow p n := match n with Zpos q => iter_pos _ (pmult p) (1, 0) q | _ => (1, 0) end.
-
-(**************************************
- Some properties of ppow
- **************************************)
-
-Theorem ppow_0: forall n, ppow n 0 = (1, 0).
-simpl; auto.
-Qed.
-
-Theorem ppow_1: forall n, ppow (1, 0) n = (1, 0).
-intros n; case n; simpl; auto.
-intros p; apply iter_pos_invariant with (Inv := fun x => x = (1, 0)); auto.
-intros x H; rewrite H; auto.
-Qed.
-
-Theorem ppow_op: forall a b p, iter_pos _ (pmult a) b p = pmult (iter_pos _ (pmult a) (1, 0) p) b.
-intros a b p; generalize b; elim p; simpl; auto; clear b p.
-intros p Rec b.
-rewrite (Rec b).
-try rewrite (fun x y => Rec (pmult x y)); try rewrite (fun x y => Rec (iter_pos _ x y p)); auto.
-repeat rewrite pmult_assoc; auto.
-intros p Rec b.
-rewrite (Rec b); try rewrite (fun x y => Rec (pmult x y)); try rewrite (fun x y => Rec (iter_pos _ x y p)); auto.
-repeat rewrite pmult_assoc; auto.
-intros b; rewrite pmult_1_r; auto.
-Qed.
-
-Theorem ppow_add: forall n m p, 0 <= m -> 0 <= p -> ppow n (m + p) = pmult (ppow n m) (ppow n p).
-intros n m; case m; clear m.
-intros p _ _; rewrite ppow_0; rewrite pmult_1_l; auto.
-2: intros p m H; contradict H; auto with zarith.
-intros p1 m _; case m.
-intros _; rewrite Zplus_0_r; simpl; apply sym_equal; apply pmult_1_r.
-2: intros p2 H; contradict H; auto with zarith.
-intros p2 _; simpl.
-rewrite iter_pos_plus.
-rewrite ppow_op; auto.
-Qed.
-
-Theorem ppow_ppow: forall n m p, 0 <= n -> 0 <= m -> ppow p (n * m ) = ppow (ppow p n) m.
-intros n m; case n.
-intros p _ Hm; rewrite Zmult_0_l.
-rewrite ppow_0; apply sym_equal; apply ppow_1.
-2: intros p p1 H; contradict H; auto with zarith.
-intros p1 p _; case m; simpl; auto.
-intros p2 _; pattern p2; apply Pind; simpl; auto.
-rewrite Pmult_1_r; rewrite pmult_1_r; auto.
-intros p3 Rec; rewrite Pplus_one_succ_r; rewrite Pmult_plus_distr_l.
-rewrite Pmult_1_r.
-simpl; repeat rewrite iter_pos_plus; simpl.
-rewrite pmult_1_r.
-rewrite ppow_op; try rewrite Rec; auto.
-apply sym_equal; apply ppow_op; auto.
-Qed.
-
-
-Theorem ppow_mult: forall n m p, 0 <= n -> ppow (pmult m p) n = pmult (ppow m n) (ppow p n).
-intros n m p; case n; simpl; auto.
-intros p1 _; pattern p1; apply Pind; simpl; auto.
-repeat rewrite pmult_1_r; auto.
-intros p3 Rec; rewrite Pplus_one_succ_r.
-repeat rewrite iter_pos_plus; simpl.
-repeat rewrite (fun x y z => ppow_op x (pmult y z)) ; auto.
-rewrite Rec.
-repeat rewrite pmult_1_r; auto.
-repeat rewrite <- pmult_assoc; try eq_tac; auto.
-rewrite (fun x y => pmult_comm (iter_pos _ x y p3) p); auto.
-rewrite (pmult_assoc m); try apply pmult_comm; auto.
-Qed.
-
-(**************************************
- We can now define our series of pairs s
- **************************************)
-
-Definition s n := pplus (ppow w (2 ^ n)) (ppow v (2 ^ n)).
-
-(**************************************
- Some properties of s
- **************************************)
-
-Theorem s0 : s 0 = (4, 0).
-simpl; auto.
-Qed.
-
-Theorem sn_aux: forall n, 0 <= n -> s (n+1) = (pplus (pmult (s n) (s n)) (-2, 0)).
-intros n Hn.
-assert (Hu: 0 <= 2 ^n); auto with zarith.
-set (y := (fst (s n) * fst (s n) - 2, 0)).
-unfold s; simpl; rewrite Zpower_exp; auto with zarith.
-rewrite Zpower_1_r; rewrite ppow_ppow; auto with zarith.
-repeat rewrite pplus_pmult_dist_r || rewrite pplus_pmult_dist_l.
-repeat rewrite <- pplus_assoc.
-eq_tac; auto.
-pattern 2 at 2; replace 2 with (1 + 1); auto with zarith.
-rewrite ppow_add; auto with zarith; simpl.
-rewrite pmult_1_r; auto.
-rewrite Zmult_comm; rewrite ppow_ppow; simpl; auto with zarith.
-repeat rewrite <- ppow_mult; auto with zarith.
-rewrite (pmult_comm v w); rewrite w_mult_v.
-rewrite ppow_1.
-repeat rewrite tpower_1.
-rewrite pplus_comm; repeat rewrite <- pplus_assoc;
-rewrite pplus_comm; repeat rewrite <- pplus_assoc.
-simpl; case (ppow (7, -4) (2 ^n)); simpl; intros z1 z2; eq_tac; auto with zarith.
-Qed.
-
-Theorem sn_snd: forall n, snd (s n) = 0.
-intros n; case n; simpl; auto.
-intros p; pattern p; apply Pind; auto.
-intros p1 H; rewrite Zpos_succ_morphism; unfold Zsucc.
-rewrite sn_aux; auto with zarith.
-generalize H; case (s (Zpos p1)); simpl.
-intros x y H1; rewrite H1; auto with zarith.
-Qed.
-
-Theorem sn: forall n, 0 <= n -> s (n+1) = (fst (s n) * fst (s n) -2, 0).
-intros n Hn; rewrite sn_aux; generalize (sn_snd n); case (s n); auto.
-intros x y H; simpl in H; rewrite H; simpl.
-eq_tac; ring.
-Qed.
-
-Theorem sn_w: forall n, 0 <= n -> ppow w (2 ^ (n + 1)) = pplus (pmult (s n) (ppow w (2 ^ n))) (- 1, 0).
-intros n H; unfold s; simpl; rewrite Zpower_exp; auto with zarith.
-assert (Hu: 0 <= 2 ^n); auto with zarith.
-rewrite Zpower_1_r; rewrite ppow_ppow; auto with zarith.
-repeat rewrite pplus_pmult_dist_r || rewrite pplus_pmult_dist_l.
-pattern 2 at 2; replace 2 with (1 + 1); auto with zarith.
-rewrite ppow_add; auto with zarith; simpl.
-rewrite pmult_1_r; auto.
-repeat rewrite <- ppow_mult; auto with zarith.
-rewrite (pmult_comm v w); rewrite w_mult_v.
-rewrite ppow_1; simpl.
-simpl; case (ppow (7, 4) (2 ^n)); simpl; intros z1 z2; eq_tac; auto with zarith.
-Qed.
-
-Theorem sn_w_next: forall n, 0 <= n -> ppow w (2 ^ (n + 1)) = pplus (pmult (s n) (ppow w (2 ^ n))) (- 1, 0).
-intros n H; unfold s; simpl; rewrite Zpower_exp; auto with zarith.
-assert (Hu: 0 <= 2 ^n); auto with zarith.
-rewrite Zpower_1_r; rewrite ppow_ppow; auto with zarith.
-repeat rewrite pplus_pmult_dist_r || rewrite pplus_pmult_dist_l.
-pattern 2 at 2; replace 2 with (1 + 1); auto with zarith.
-rewrite ppow_add; auto with zarith; simpl.
-rewrite pmult_1_r; auto.
-repeat rewrite <- ppow_mult; auto with zarith.
-rewrite (pmult_comm v w); rewrite w_mult_v.
-rewrite ppow_1; simpl.
-simpl; case (ppow (7, 4) (2 ^n)); simpl; intros z1 z2; eq_tac; auto with zarith.
-Qed.
-
-Section Lucas.
-
-Variable p: Z.
-
-(**************************************
- Definition of the mersenne number
- **************************************)
-
-Definition Mp := 2^p -1.
-
-Theorem mersenne_pos: 1 < p -> 1 < Mp.
-intros H; unfold Mp; assert (2 < 2 ^p); auto with zarith.
-apply Zlt_le_trans with (2^2); auto with zarith.
-refine (refl_equal _).
-apply Zpower_le_monotone; auto with zarith.
-Qed.
-
-Hypothesis p_pos2: 2 < p.
-
-(**************************************
- We suppose that the mersenne number divides s
- **************************************)
-
-Hypothesis Mp_divide_sn: (Mp | fst (s (p - 2))).
-
-Variable q: Z.
-
-(**************************************
- We take a divisor of Mp and shows that Mp <= q^2, hence Mp is prime
- **************************************)
-
-Hypothesis q_divide_Mp: (q | Mp).
-
-Hypothesis q_pos2: 2 < q.
-
-Theorem q_pos: 1 < q.
-apply Zlt_trans with (2 := q_pos2); auto with zarith.
-Qed.
-
-(**************************************
- The definition of the groups of inversible pairs
- **************************************)
-
-Definition pgroup := PGroup q q_pos.
-
-Theorem w_in_pgroup: (In w pgroup.(FGroup.s)).
-generalize q_pos; intros HM.
-generalize q_pos2; intros HM2.
-assert (H0: 0 < q); auto with zarith.
-simpl; apply isupport_is_in; auto.
-assert (zpmult q w (2, q - 1) = (1, 0)).
-unfold zpmult, w, pmult, base; repeat (rewrite Zmult_1_r || rewrite Zmult_1_l).
-eq_tac.
-apply trans_equal with ((3 * q + 1) mod q).
-eq_tac; auto with zarith.
-rewrite Zplus_mod; auto.
-rewrite Zmult_mod; auto.
-rewrite Z_mod_same; auto with zarith.
-rewrite Zmult_0_r; repeat rewrite Zmod_small; auto with zarith.
-apply trans_equal with (2 * q mod q).
-eq_tac; auto with zarith.
-apply Zdivide_mod; auto with zarith; exists 2; auto with zarith.
-apply is_inv_true with (2, q - 1); auto.
-apply mL_in; auto with zarith.
-intros; apply zpmult_1_l; auto with zarith.
-intros; apply zpmult_1_r; auto with zarith.
-rewrite zpmult_comm; auto.
-apply mL_in; auto with zarith.
-unfold w; apply mL_in; auto with zarith.
-Qed.
-
-Theorem e_order_divide_order: (e_order P_dec w pgroup | g_order pgroup).
-apply e_order_divide_g_order.
-apply w_in_pgroup.
-Qed.
-
-Theorem order_lt: g_order pgroup < q * q.
-unfold g_order, pgroup, PGroup; simpl.
-rewrite <- (Zabs_eq (q * q)); auto with zarith.
-rewrite <- (inj_Zabs_nat (q * q)); auto with zarith.
-rewrite <- mL_length; auto with zarith.
-apply inj_lt; apply isupport_length_strict with (0, 0).
-apply mL_ulist.
-apply mL_in; auto with zarith.
-intros a _; left; rewrite zpmult_0_l; auto with zarith.
-intros; discriminate.
-Qed.
-
-(**************************************
- The power function zpow: a^n
- **************************************)
-
-Definition zpow a := gpow a pgroup.
-
-(**************************************
- Some properties of zpow
- **************************************)
-
-Theorem zpow_def:
- forall a b, In a pgroup.(FGroup.s) -> 0 <= b ->
- zpow a b = ((fst (ppow a b)) mod q, (snd (ppow a b)) mod q).
-generalize q_pos; intros HM.
-generalize q_pos2; intros HM2.
-assert (H0: 0 < q); auto with zarith.
-intros a b Ha Hb; generalize Hb; pattern b; apply natlike_ind; auto.
-intros _; repeat rewrite Zmod_small; auto with zarith.
-rewrite ppow_0; simpl; auto with zarith.
-unfold zpow; intros n1 H Rec _; unfold Zsucc.
-rewrite gpow_add; auto with zarith.
-rewrite ppow_add; simpl; try rewrite pmult_1_r; auto with zarith.
-rewrite Rec; unfold zpmult; auto with zarith.
-case (ppow a n1); case a; unfold pmult, fst, snd.
-intros x y z t.
-repeat (rewrite Zmult_1_r || rewrite Zmult_0_r || rewrite Zplus_0_r || rewrite Zplus_0_l); eq_tac.
-repeat rewrite (fun u v => Zplus_mod (u * v)); auto.
-eq_tac; try eq_tac; auto.
-repeat rewrite (Zmult_mod z); auto with zarith.
-repeat rewrite (fun u v => Zmult_mod (u * v)); auto.
-eq_tac; try eq_tac; auto with zarith.
-repeat rewrite (Zmult_mod base); auto with zarith.
-eq_tac; try eq_tac; auto with zarith.
-apply Zmod_mod; auto.
-apply Zmod_mod; auto.
-repeat rewrite (fun u v => Zplus_mod (u * v)); auto.
-eq_tac; try eq_tac; auto.
-repeat rewrite (Zmult_mod z); auto with zarith.
-repeat rewrite (Zmult_mod t); auto with zarith.
-Qed.
-
-Theorem zpow_w_n_minus_1: zpow w (2 ^ (p - 1)) = (-1 mod q, 0).
-generalize q_pos; intros HM.
-generalize q_pos2; intros HM2.
-assert (H0: 0 < q); auto with zarith.
-rewrite zpow_def.
-replace (p - 1) with ((p - 2) + 1); auto with zarith.
-rewrite sn_w; auto with zarith.
-generalize Mp_divide_sn (sn_snd (p - 2)); case (s (p -2)); case (ppow w (2 ^ (p -2))).
-unfold fst, snd; intros x y z t H1 H2; unfold pmult, pplus; subst.
-repeat (rewrite Zmult_0_l || rewrite Zmult_0_r || rewrite Zplus_0_l || rewrite Zplus_0_r).
-assert (H2: z mod q = 0).
-case H1; intros q1 Hq1; rewrite Hq1.
-case q_divide_Mp; intros q2 Hq2; rewrite Hq2.
-rewrite Zmult_mod; auto.
-rewrite (Zmult_mod q2); auto.
-rewrite Z_mod_same; auto with zarith.
-repeat (rewrite Zmult_0_r; rewrite (Zmod_small 0)); auto with zarith.
-assert (H3: forall x, (z * x) mod q = 0).
-intros y1; rewrite Zmult_mod; try rewrite H2; auto.
-assert (H4: forall x y, (z * x + y) mod q = y mod q).
-intros x1 y1; rewrite Zplus_mod; try rewrite H3; auto.
-rewrite Zplus_0_l; apply Zmod_mod; auto.
-eq_tac; auto.
-apply w_in_pgroup.
-apply Zlt_le_weak; apply Zpower_gt_0; auto with zarith.
-Qed.
-
-Theorem zpow_w_n: zpow w (2 ^ p) = (1, 0).
-generalize q_pos; intros HM.
-generalize q_pos2; intros HM2.
-assert (H0: 0 < q); auto with zarith.
-replace p with ((p - 1) + 1); auto with zarith.
-rewrite Zpower_exp; try rewrite Zpower_exp_1; auto with zarith.
-unfold zpow; rewrite gpow_gpow; auto with zarith.
-generalize zpow_w_n_minus_1; unfold zpow; intros H1; rewrite H1; clear H1.
-simpl; unfold zpmult, pmult.
-repeat (rewrite Zmult_0_l || rewrite Zmult_0_r || rewrite Zplus_0_l ||
- rewrite Zplus_0_r || rewrite Zmult_1_r).
-eq_tac; auto.
-pattern (-1 mod q) at 1; rewrite <- (Zmod_mod (-1) q); auto with zarith.
-repeat rewrite <- Zmult_mod; auto.
-rewrite Zmod_small; auto with zarith.
-apply w_in_pgroup.
-Qed.
-
-(**************************************
- As e = (1, 0), the previous equation implies that the order of the group divide 2^p
- **************************************)
-
-Theorem e_order_divide_pow: (e_order P_dec w pgroup | 2 ^ p).
-generalize q_pos; intros HM.
-generalize q_pos2; intros HM2.
-assert (H0: 0 < q); auto with zarith.
-apply e_order_divide_gpow.
-apply w_in_pgroup.
-apply Zlt_le_weak; apply Zpower_gt_0; auto with zarith.
-exact zpow_w_n.
-Qed.
-
-(**************************************
- So it is less than equal
- **************************************)
-
-Theorem e_order_le_pow : e_order P_dec w pgroup <= 2 ^ p.
-apply Zdivide_le.
-apply Zlt_le_weak; apply e_order_pos.
-apply Zpower_gt_0; auto with zarith.
-apply e_order_divide_pow.
-Qed.
-
-(**************************************
- So order(w) must be 2^q
- **************************************)
-
-Theorem e_order_eq_pow: exists q, (e_order P_dec w pgroup) = 2 ^ q.
-case (Zdivide_power_2 (e_order P_dec w pgroup) 2 p); auto with zarith.
-apply Zlt_le_weak; apply e_order_pos.
-apply prime_2.
-apply e_order_divide_pow; auto.
-intros x H; exists x; auto with zarith.
-Qed.
-
-(**************************************
- Buth this q can only be p otherwise it would contradict w^2^(p -1) = (-1, 0)
- **************************************)
-
-Theorem e_order_eq_p: e_order P_dec w pgroup = 2 ^ p.
-case (Zdivide_power_2 (e_order P_dec w pgroup) 2 p); auto with zarith.
-apply Zlt_le_weak; apply e_order_pos.
-apply prime_2.
-apply e_order_divide_pow; auto.
-intros p1 Hp1.
-case (Zle_lt_or_eq p1 p); try (intro H1; subst; auto; fail).
-case (Zle_or_lt p1 p); auto; intros H1.
-absurd (2 ^ p1 <= 2 ^ p); auto with zarith.
-apply Zlt_not_le; apply Zpower_lt_monotone; auto with zarith.
-apply Zdivide_le.
-apply Zlt_le_weak; apply Zpower_gt_0; auto with zarith.
-apply Zpower_gt_0; auto with zarith.
-rewrite <- Hp1; apply e_order_divide_pow.
-intros H1.
-assert (Hu: 0 <= p1).
-generalize Hp1; case p1; simpl; auto with zarith.
-intros p2 Hu; absurd (0 < e_order P_dec w pgroup).
-rewrite Hu; auto with zarith.
-apply e_order_pos.
-absurd (zpow w (2 ^ (p - 1)) = (1, 0)).
-rewrite zpow_w_n_minus_1.
-intros H2; injection H2; clear H2; intros H2.
-assert (H0: 0 < q); auto with zarith.
-absurd (0 mod q = 0).
-pattern 0 at 1; replace 0 with (-1 + 1); auto with zarith.
-rewrite Zplus_mod; auto with zarith.
-rewrite H2; rewrite (Zmod_small 1); auto with zarith.
-rewrite Zmod_small; auto with zarith.
-rewrite Zmod_small; auto with zarith.
-unfold zpow; apply (gpow_pow _ _ w pgroup) with p1; auto with zarith.
-apply w_in_pgroup.
-rewrite <- Hp1.
-apply (gpow_e_order_is_e _ P_dec _ w pgroup).
-apply w_in_pgroup.
-Qed.
-
-(**************************************
- We have then the expected conclusion
- **************************************)
-
-Theorem q_more_than_square: Mp < q * q.
-unfold Mp.
-assert (2 ^ p <= q * q); auto with zarith.
-rewrite <- e_order_eq_p.
-apply Zle_trans with (g_order pgroup).
-apply Zdivide_le; auto with zarith.
-apply Zlt_le_weak; apply e_order_pos; auto with zarith.
-2: apply e_order_divide_order.
-2: apply Zlt_le_weak; apply order_lt.
-apply Zlt_le_trans with 2; auto with zarith.
-replace 2 with (Z_of_nat (length ((1, 0)::w::nil))); auto.
-unfold g_order; apply inj_le.
-apply ulist_incl_length.
-apply ulist_cons; simpl; auto.
-unfold w; intros [H2 | H2]; try (case H2; fail); discriminate.
-intro a; simpl; intros [H1 | [H1 | H1]]; subst.
-assert (In (1, 0) (mL q)).
-apply mL_in; auto with zarith.
-apply isupport_is_in; auto.
-apply is_inv_true with (1, 0); simpl; auto.
-intros; apply zpmult_1_l; auto with zarith.
-intros; apply zpmult_1_r; auto with zarith.
-rewrite zpmult_1_r; auto with zarith.
-rewrite zpmult_1_r; auto with zarith.
-exact w_in_pgroup.
-case H1.
-Qed.
-
-End Lucas.
-
-(**************************************
- We build the sequence in Z
- **************************************)
-
-Definition SS p :=
- let n := Mp p in
- match p - 2 with
- Zpos p1 => iter_pos _ (fun x => Zmodd (Zsquare x - 2) n) (Zmodd 4 n) p1
- | _ => (Zmodd 4 n)
- end.
-
-Theorem SS_aux_correct:
- forall p z1 z2 n, 0 <= n -> 0 < z1 -> z2 = fst (s n) mod z1 ->
- iter_pos _ (fun x => Zmodd (Zsquare x - 2) z1) z2 p = fst (s (n + Zpos p)) mod z1.
-intros p; pattern p; apply Pind.
-simpl.
-intros z1 z2 n Hn H H1; rewrite sn; auto; rewrite H1; rewrite Zmodd_correct; rewrite Zsquare_correct; simpl.
-unfold Zminus; rewrite Zplus_mod; auto.
-rewrite (Zplus_mod (fst (s n) * fst (s n))); auto with zarith.
-eq_tac; auto.
-eq_tac; auto.
-apply sym_equal; apply Zmult_mod; auto.
-intros n Rec z1 z2 n1 Hn1 H1 H2.
-rewrite Pplus_one_succ_l; rewrite iter_pos_plus.
-rewrite Rec with (n0 := n1); auto.
-replace (n1 + Zpos (1 + n)) with ((n1 + Zpos n) + 1); auto with zarith.
-rewrite sn; simpl; try rewrite Zmodd_correct; try rewrite Zsquare_correct; simpl; auto with zarith.
-unfold Zminus; rewrite Zplus_mod; auto.
-unfold Zmodd.
-rewrite (Zplus_mod (fst (s (n1 + Zpos n)) * fst (s (n1 + Zpos n)))); auto with zarith.
-eq_tac; auto.
-eq_tac; auto.
-apply sym_equal; apply Zmult_mod; auto.
-rewrite Zpos_plus_distr; auto with zarith.
-Qed.
-
-Theorem SS_prop: forall n, 1 < n -> SS n = fst(s (n -2)) mod (Mp n).
-intros n Hn; unfold SS.
-cut (0 <= n - 2); auto with zarith.
-case (n - 2).
-intros _; rewrite Zmodd_correct; rewrite s0; auto.
-intros p1 H2; rewrite SS_aux_correct with (n := 0); auto with zarith.
-apply Zle_lt_trans with 1; try apply mersenne_pos; auto with zarith.
-rewrite Zmodd_correct; rewrite s0; auto.
-intros p1 H2; case H2; auto.
-Qed.
-
-Theorem SS_prop_cor: forall p, 1 < p -> SS p = 0 -> (Mp p | fst(s (p -2))).
-intros p H H1.
-apply Zmod_divide.
-generalize (mersenne_pos _ H); auto with zarith.
-apply trans_equal with (2:= H1); apply sym_equal; apply SS_prop; auto.
-Qed.
-
-Theorem LucasLehmer: forall p, 2 < p -> SS p = 0 -> prime (Mp p).
-intros p H H1; case (prime_dec (Mp p)); auto; intros H2.
-case Zdivide_div_prime_le_square with (2 := H2).
-apply mersenne_pos; apply Zlt_trans with 2; auto with zarith.
-intros q (H3, (H4, H5)).
-contradict H5; apply Zlt_not_le.
-apply q_more_than_square; auto.
-apply SS_prop_cor; auto.
-apply Zlt_trans with 2; auto with zarith.
-case (Zle_lt_or_eq 2 q); auto.
-apply prime_ge_2; auto.
-intros H5; subst.
-absurd (2 <= 1); auto with arith.
-apply Zdivide_le; auto with zarith.
-case H4; intros x Hx.
-exists (2 ^ (p -1) - x).
-rewrite Zmult_minus_distr_r; rewrite <- Hx; unfold Mp.
-pattern 2 at 2; rewrite <- Zpower_1_r; rewrite <- Zpower_exp; auto with zarith.
-replace (p - 1 + 1) with p; auto with zarith.
-Qed.
-
-(**************************************
- The test
- **************************************)
-
-Definition lucas_test n :=
- if Z_lt_dec 2 n then if Z_eq_dec (SS n) 0 then true else false else false.
-
-Theorem LucasTest: forall n, lucas_test n = true -> prime (Mp n).
-intros n; unfold lucas_test; case (Z_lt_dec 2 n); intros H1; try (intros; discriminate).
-case (Z_eq_dec (SS n) 0); intros H2; try (intros; discriminate).
-intros _; apply LucasLehmer; auto.
-Qed.
-
-Theorem prime7: prime 7.
-exact (LucasTest 3 (refl_equal _)).
-Qed.
-
-Theorem prime31: prime 31.
-exact (LucasTest 5 (refl_equal _)).
-Qed.
-
-Theorem prime127: prime 127.
-exact (LucasTest 7 (refl_equal _)).
-Qed.
-
-Theorem prime8191: prime 8191.
-exact (LucasTest 13 (refl_equal _)).
-Qed.
-
-Theorem prime131071: prime 131071.
-exact (LucasTest 17 (refl_equal _)).
-Qed.
-
-Theorem prime524287: prime 524287.
-exact (LucasTest 19 (refl_equal _)).
-Qed.
diff --git a/coqprime/Coqprime/NatAux.v b/coqprime/Coqprime/NatAux.v
deleted file mode 100644
index 71d90cf9f..000000000
--- a/coqprime/Coqprime/NatAux.v
+++ /dev/null
@@ -1,72 +0,0 @@
-
-(*************************************************************)
-(* This file is distributed under the terms of the *)
-(* GNU Lesser General Public License Version 2.1 *)
-(*************************************************************)
-(* Benjamin.Gregoire@inria.fr Laurent.Thery@inria.fr *)
-(*************************************************************)
-
-(**********************************************************************
- Aux.v
-
- Auxillary functions & Theorems
- **********************************************************************)
-Require Export Arith.
-
-(**************************************
- Some properties of minus
-**************************************)
-
-Theorem minus_O : forall a b : nat, a <= b -> a - b = 0.
-intros a; elim a; simpl in |- *; auto with arith.
-intros a1 Rec b; case b; elim b; auto with arith.
-Qed.
-
-
-(**************************************
- Definitions and properties of the power for nat
-**************************************)
-
-Fixpoint pow (n m: nat) {struct m} : nat := match m with O => 1%nat | (S m1) => (n * pow n m1)%nat end.
-
-Theorem pow_add: forall n m p, pow n (m + p) = (pow n m * pow n p)%nat.
-intros n m; elim m; simpl.
-intros p; rewrite plus_0_r; auto.
-intros m1 Rec p; rewrite Rec; auto with arith.
-Qed.
-
-
-Theorem pow_pos: forall p n, (0 < p)%nat -> (0 < pow p n)%nat.
-intros p1 n H; elim n; simpl; auto with arith.
-intros n1 H1; replace 0%nat with (p1 * 0)%nat; auto with arith.
-repeat rewrite (mult_comm p1); apply mult_lt_compat_r; auto with arith.
-Qed.
-
-
-Theorem pow_monotone: forall n p q, (1 < n)%nat -> (p < q)%nat -> (pow n p < pow n q)%nat.
-intros n p1 q1 H H1; elim H1; simpl.
-pattern (pow n p1) at 1; rewrite <- (mult_1_l (pow n p1)).
-apply mult_lt_compat_r; auto.
-apply pow_pos; auto with arith.
-intros n1 H2 H3.
-apply lt_trans with (1 := H3).
-pattern (pow n n1) at 1; rewrite <- (mult_1_l (pow n n1)).
-apply mult_lt_compat_r; auto.
-apply pow_pos; auto with arith.
-Qed.
-
-(************************************
- Definition of the divisibility for nat
-**************************************)
-
-Definition divide a b := exists c, b = a * c.
-
-
-Theorem divide_le: forall p q, (1 < q)%nat -> divide p q -> (p <= q)%nat.
-intros p1 q1 H (x, H1); subst.
-apply le_trans with (p1 * 1)%nat; auto with arith.
-rewrite mult_1_r; auto with arith.
-apply mult_le_compat_l.
-case (le_lt_or_eq 0 x); auto with arith.
-intros H2; subst; contradict H; rewrite mult_0_r; auto with arith.
-Qed.
diff --git a/coqprime/Coqprime/PGroup.v b/coqprime/Coqprime/PGroup.v
deleted file mode 100644
index 5d8dc5d35..000000000
--- a/coqprime/Coqprime/PGroup.v
+++ /dev/null
@@ -1,347 +0,0 @@
-
-(*************************************************************)
-(* This file is distributed under the terms of the *)
-(* GNU Lesser General Public License Version 2.1 *)
-(*************************************************************)
-(* Benjamin.Gregoire@inria.fr Laurent.Thery@inria.fr *)
-(*************************************************************)
-
-(**********************************************************************
- PGroup.v
-
- Build the group of pairs modulo needed for the theorem of
- lucas lehmer
-
- Definition: PGroup
- **********************************************************************)
-Require Import ZArith.
-Require Import Znumtheory.
-Require Import Tactic.
-Require Import Wf_nat.
-Require Import ListAux.
-Require Import UList.
-Require Import FGroup.
-Require Import EGroup.
-Require Import IGroup.
-
-Open Scope Z_scope.
-
-Definition base := 3.
-
-
-(**************************************
- Equality is decidable on pairs
- **************************************)
-
-Definition P_dec: forall p q: Z * Z, {p = q} + {p <> q}.
-intros p1 q1; case p1; case q1; intros z t x y; case (Z_eq_dec x z); intros H1.
-case (Z_eq_dec y t); intros H2.
-left; eq_tac; auto.
-right; contradict H2; injection H2; auto.
-right; contradict H1; injection H1; auto.
-Defined.
-
-
-(**************************************
- Addition of two pairs
- **************************************)
-
-Definition pplus (p q: Z * Z) := let (x ,y) := p in let (z,t) := q in (x + z, y + t).
-
-(**************************************
- Properties of addition
- **************************************)
-
-Theorem pplus_assoc: forall p q r, (pplus p (pplus q r)) = (pplus (pplus p q) r).
-intros p q r; case p; case q; case r; intros r1 r2 q1 q2 p1 p2; unfold pplus.
-eq_tac; ring.
-Qed.
-
-Theorem pplus_comm: forall p q, (pplus p q) = (pplus q p).
-intros p q; case p; case q; intros q1 q2 p1 p2; unfold pplus.
-eq_tac; ring.
-Qed.
-
-(**************************************
- Multiplication of two pairs
- **************************************)
-
-Definition pmult (p q: Z * Z) := let (x ,y) := p in let (z,t) := q in (x * z + base * y * t, x * t + y * z).
-
-(**************************************
- Properties of multiplication
- **************************************)
-
-Theorem pmult_assoc: forall p q r, (pmult p (pmult q r)) = (pmult (pmult p q) r).
-intros p q r; case p; case q; case r; intros r1 r2 q1 q2 p1 p2; unfold pmult.
-eq_tac; ring.
-Qed.
-
-Theorem pmult_0_l: forall p, (pmult (0, 0) p) = (0, 0).
-intros p; case p; intros x y; unfold pmult; eq_tac; ring.
-Qed.
-
-Theorem pmult_0_r: forall p, (pmult p (0, 0)) = (0, 0).
-intros p; case p; intros x y; unfold pmult; eq_tac; ring.
-Qed.
-
-Theorem pmult_1_l: forall p, (pmult (1, 0) p) = p.
-intros p; case p; intros x y; unfold pmult; eq_tac; ring.
-Qed.
-
-Theorem pmult_1_r: forall p, (pmult p (1, 0)) = p.
-intros p; case p; intros x y; unfold pmult; eq_tac; ring.
-Qed.
-
-Theorem pmult_comm: forall p q, (pmult p q) = (pmult q p).
-intros p q; case p; case q; intros q1 q2 p1 p2; unfold pmult.
-eq_tac; ring.
-Qed.
-
-Theorem pplus_pmult_dist_l: forall p q r, (pmult p (pplus q r)) = (pplus (pmult p q) (pmult p r)).
-intros p q r; case p; case q; case r; intros r1 r2 q1 q2 p1 p2; unfold pplus, pmult.
-eq_tac; ring.
-Qed.
-
-
-Theorem pplus_pmult_dist_r: forall p q r, (pmult (pplus q r) p) = (pplus (pmult q p) (pmult r p)).
-intros p q r; case p; case q; case r; intros r1 r2 q1 q2 p1 p2; unfold pplus, pmult.
-eq_tac; ring.
-Qed.
-
-(**************************************
- In this section we create the group PGroup of inversible elements {(p, q) | 0 <= p < m /\ 0 <= q < m}
- **************************************)
-Section Mod.
-
-Variable m : Z.
-
-Hypothesis m_pos: 1 < m.
-
-(**************************************
- mkLine creates {(a, p) | 0 <= p < n}
- **************************************)
-
-Fixpoint mkLine (a: Z) (n: nat) {struct n} : list (Z * Z) :=
- (a, Z_of_nat n) :: match n with O => nil | (S n1) => mkLine a n1 end.
-
-(**************************************
- Some properties of mkLine
- **************************************)
-
-Theorem mkLine_length: forall a n, length (mkLine a n) = (n + 1)%nat.
-intros a n; elim n; simpl; auto.
-Qed.
-
-Theorem mkLine_in: forall a n p, 0 <= p <= Z_of_nat n -> (In (a, p) (mkLine a n)).
-intros a n; elim n.
-simpl; auto with zarith.
-intros p (H1, H2); replace p with 0; auto with zarith.
-intros n1 Rec p (H1, H2).
-case (Zle_lt_or_eq p (Z_of_nat (S n1))); auto with zarith.
-rewrite inj_S in H2; auto with zarith.
-rewrite inj_S; auto with zarith.
-intros H3; right; apply Rec; auto with zarith.
-intros H3; subst; simpl; auto.
-Qed.
-
-Theorem in_mkLine: forall a n p, In p (mkLine a n) -> exists q, 0 <= q <= Z_of_nat n /\ p = (a, q).
-intros a n p; elim n; clear n.
-simpl; intros [H1 | H1]; exists 0; auto with zarith; case H1.
-simpl; intros n Rec [H1 | H1]; auto.
-exists (Z_of_nat (S n)); auto with zarith.
-case Rec; auto; intros q ((H2, H3), H4); exists q; repeat split; auto with zarith.
-change (q <= Z_of_nat (S n)).
-rewrite inj_S; auto with zarith.
-Qed.
-
-Theorem mkLine_ulist: forall a n, ulist (mkLine a n).
-intros a n; elim n; simpl; auto.
-intros n1 H; apply ulist_cons; auto.
-change (~ In (a, Z_of_nat (S n1)) (mkLine a n1)).
-rewrite inj_S; intros H1.
-case in_mkLine with (1 := H1); auto with zarith.
-intros x ((H2, H3), H4); injection H4.
-intros H5; subst; auto with zarith.
-Qed.
-
-(**************************************
- mkRect creates the list {(p, q) | 0 <= p < n /\ 0 <= q < m}
- **************************************)
-
-Fixpoint mkRect (n m: nat) {struct n} : list (Z * Z) :=
- (mkLine (Z_of_nat n) m) ++ match n with O => nil | (S n1) => mkRect n1 m end.
-
-(**************************************
- Some properties of mkRect
- **************************************)
-
-Theorem mkRect_length: forall n m, length (mkRect n m) = ((n + 1) * (m + 1))%nat.
-intros n; elim n; simpl; auto.
-intros n1; rewrite <- app_nil_end; rewrite mkLine_length; rewrite plus_0_r; auto.
-intros n1 Rec m1; rewrite length_app; rewrite Rec; rewrite mkLine_length; auto.
-Qed.
-
-Theorem mkRect_in: forall n m p q, 0 <= p <= Z_of_nat n -> 0 <= q <= Z_of_nat m -> (In (p, q) (mkRect n m)).
-intros n m1; elim n; simpl.
-intros p q (H1, H2) (H3, H4); replace p with 0; auto with zarith.
-rewrite <- app_nil_end; apply mkLine_in; auto.
-intros n1 Rec p q (H1, H2) (H3, H4).
-case (Zle_lt_or_eq p (Z_of_nat (S n1))); auto with zarith; intros H5.
-rewrite inj_S in H5; apply in_or_app; auto with zarith.
-apply in_or_app; left; subst; apply mkLine_in; auto with zarith.
-Qed.
-
-Theorem in_mkRect: forall n m p, In p (mkRect n m) -> exists p1, exists p2, 0 <= p1 <= Z_of_nat n /\ 0 <= p2 <= Z_of_nat m /\ p = (p1, p2).
-intros n m1 p; elim n; clear n; simpl.
-rewrite <- app_nil_end; intros H1.
-case in_mkLine with (1 := H1).
-intros p2 (H2, H3); exists 0; exists p2; auto with zarith.
-intros n Rec H1.
-case in_app_or with (1 := H1); intros H2.
-case in_mkLine with (1 := H2).
-intros p2 (H3, H4); exists (Z_of_nat (S n)); exists p2; subst; simpl; auto with zarith.
-case Rec with (1 := H2); auto.
-intros p1 (p2, (H3, (H4, H5))); exists p1; exists p2; repeat split; auto with zarith.
-change (p1 <= Z_of_nat (S n)).
-rewrite inj_S; auto with zarith.
-Qed.
-
-Theorem mkRect_ulist: forall n m, ulist (mkRect n m).
-intros n; elim n; simpl; auto.
-intros n1; rewrite <- app_nil_end; apply mkLine_ulist; auto.
-intros n1 Rec m1; apply ulist_app; auto.
-apply mkLine_ulist.
-intros a H1 H2.
-case in_mkLine with (1 := H1); intros p1 ((H3, H4), H5).
-case in_mkRect with (1 := H2); intros p2 (p3, ((H6, H7), ((H8, H9), H10))).
-subst; injection H10; clear H10; intros; subst.
-contradict H7.
-change (~ Z_of_nat (S n1) <= Z_of_nat n1).
-rewrite inj_S; auto with zarith.
-Qed.
-
-(**************************************
- mL is the list {(p, q) | 0 <= p < m-1 /\ 0 <= q < m - 1}
- **************************************)
-Definition mL := mkRect (Zabs_nat (m - 1)) (Zabs_nat (m -1)).
-
-(**************************************
- Some properties of mL
- **************************************)
-
-Theorem mL_length : length mL = Zabs_nat (m * m).
-unfold mL; rewrite mkRect_length; simpl; apply inj_eq_rev.
-repeat (rewrite inj_mult || rewrite inj_plus || rewrite inj_Zabs_nat || rewrite Zabs_eq); simpl; auto with zarith.
-eq_tac; auto with zarith.
-Qed.
-
-Theorem mL_in: forall p q, 0 <= p < m -> 0 <= q < m -> (In (p, q) mL).
-intros p q (H1, H2) (H3, H4); unfold mL; apply mkRect_in; rewrite inj_Zabs_nat;
- rewrite Zabs_eq; auto with zarith.
-Qed.
-
-Theorem in_mL: forall p, In p mL-> exists p1, exists p2, 0 <= p1 < m /\ 0 <= p2 < m /\ p = (p1, p2).
-unfold mL; intros p H1; case in_mkRect with (1 := H1).
-repeat (rewrite inj_Zabs_nat || rewrite Zabs_eq); auto with zarith.
-intros p1 (p2, ((H2, H3), ((H4, H5), H6))); exists p1; exists p2; repeat split; auto with zarith.
-Qed.
-
-Theorem mL_ulist: ulist mL.
-unfold mL; apply mkRect_ulist; auto.
-Qed.
-
-(**************************************
- We define zpmult the multiplication of pairs module m
- **************************************)
-
-Definition zpmult (p q: Z * Z) := let (x ,y) := pmult p q in (Zmod x m, Zmod y m).
-
-(**************************************
- Some properties of zpmult
- **************************************)
-
-Theorem zpmult_internal: forall p q, (In (zpmult p q) mL).
-intros p q; unfold zpmult; case (pmult p q); intros z y; apply mL_in; auto with zarith.
-apply Z_mod_lt; auto with zarith.
-apply Z_mod_lt; auto with zarith.
-Qed.
-
-Theorem zpmult_assoc: forall p q r, (zpmult p (zpmult q r)) = (zpmult (zpmult p q) r).
-assert (U: 0 < m); auto with zarith.
-intros p q r; unfold zpmult.
-generalize (pmult_assoc p q r).
-case (pmult p q); intros x1 x2.
-case (pmult q r); intros y1 y2.
-case p; case r; unfold pmult.
-intros z1 z2 t1 t2 H.
-match goal with
- H: (?X, ?Y) = (?Z, ?T) |- _ =>
- assert (H1: X = Z); assert (H2: Y = T); try (injection H; simpl; auto; fail); clear H
-end.
-eq_tac.
-generalize (f_equal (fun x => x mod m) H1).
-repeat rewrite <- Zmult_assoc.
-repeat (rewrite (fun x => Zplus_mod (t1 * x))); auto.
-repeat (rewrite (fun x => Zplus_mod (x1 * x))); auto.
-repeat (rewrite (fun x => Zplus_mod (x1 mod m * x))); auto.
-repeat (rewrite (Zmult_mod t1)); auto.
-repeat (rewrite (Zmult_mod x1)); auto.
-repeat (rewrite (Zmult_mod base)); auto.
-repeat (rewrite (Zmult_mod t2)); auto.
-repeat (rewrite (Zmult_mod x2)); auto.
-repeat (rewrite (Zmult_mod (t2 mod m))); auto.
-repeat (rewrite (Zmult_mod (x1 mod m))); auto.
-repeat (rewrite (Zmult_mod (x2 mod m))); auto.
-repeat (rewrite Zmod_mod); auto.
-generalize (f_equal (fun x => x mod m) H2).
-repeat (rewrite (fun x => Zplus_mod (t1 * x))); auto.
-repeat (rewrite (fun x => Zplus_mod (x1 * x))); auto.
-repeat (rewrite (fun x => Zplus_mod (x1 mod m * x))); auto.
-repeat (rewrite (Zmult_mod t1)); auto.
-repeat (rewrite (Zmult_mod x1)); auto.
-repeat (rewrite (Zmult_mod t2)); auto.
-repeat (rewrite (Zmult_mod x2)); auto.
-repeat (rewrite (Zmult_mod (t2 mod m))); auto.
-repeat (rewrite (Zmult_mod (x1 mod m))); auto.
-repeat (rewrite (Zmult_mod (x2 mod m))); auto.
-repeat (rewrite Zmod_mod); auto.
-Qed.
-
-Theorem zpmult_0_l: forall p, (zpmult (0, 0) p) = (0, 0).
-intros p; case p; intros x y; unfold zpmult, pmult; simpl.
-rewrite Zmod_small; auto with zarith.
-Qed.
-
-Theorem zpmult_1_l: forall p, In p mL -> zpmult (1, 0) p = p.
-intros p H; case in_mL with (1 := H); clear H; intros p1 (p2, ((H1, H2), (H3, H4))); subst.
-unfold zpmult; rewrite pmult_1_l.
-repeat rewrite Zmod_small; auto with zarith.
-Qed.
-
-Theorem zpmult_1_r: forall p, In p mL -> zpmult p (1, 0) = p.
-intros p H; case in_mL with (1 := H); clear H; intros p1 (p2, ((H1, H2), (H3, H4))); subst.
-unfold zpmult; rewrite pmult_1_r.
-repeat rewrite Zmod_small; auto with zarith.
-Qed.
-
-Theorem zpmult_comm: forall p q, zpmult p q = zpmult q p.
-intros p q; unfold zpmult; rewrite pmult_comm; auto.
-Qed.
-
-(**************************************
- We are now ready to build our group
- **************************************)
-
-Definition PGroup : (FGroup zpmult).
-apply IGroup with (support := mL) (e:= (1, 0)).
-exact P_dec.
-apply mL_ulist.
-apply mL_in; auto with zarith.
-intros; apply zpmult_internal.
-intros; apply zpmult_assoc.
-exact zpmult_1_l.
-exact zpmult_1_r.
-Defined.
-
-End Mod.
diff --git a/coqprime/Coqprime/Permutation.v b/coqprime/Coqprime/Permutation.v
deleted file mode 100644
index eb6969882..000000000
--- a/coqprime/Coqprime/Permutation.v
+++ /dev/null
@@ -1,506 +0,0 @@
-
-(*************************************************************)
-(* This file is distributed under the terms of the *)
-(* GNU Lesser General Public License Version 2.1 *)
-(*************************************************************)
-(* Benjamin.Gregoire@inria.fr Laurent.Thery@inria.fr *)
-(*************************************************************)
-
-(**********************************************************************
- Permutation.v
-
- Defintion and properties of permutations
- **********************************************************************)
-Require Export List.
-Require Export ListAux.
-
-Section permutation.
-Variable A : Set.
-
-(**************************************
- Definition of permutations as sequences of adjacent transpositions
- **************************************)
-
-Inductive permutation : list A -> list A -> Prop :=
- | permutation_nil : permutation nil nil
- | permutation_skip :
- forall (a : A) (l1 l2 : list A),
- permutation l2 l1 -> permutation (a :: l2) (a :: l1)
- | permutation_swap :
- forall (a b : A) (l : list A), permutation (a :: b :: l) (b :: a :: l)
- | permutation_trans :
- forall l1 l2 l3 : list A,
- permutation l1 l2 -> permutation l2 l3 -> permutation l1 l3.
-Hint Constructors permutation.
-
-(**************************************
- Reflexivity
- **************************************)
-
-Theorem permutation_refl : forall l : list A, permutation l l.
-simple induction l.
-apply permutation_nil.
-intros a l1 H.
-apply permutation_skip with (1 := H).
-Qed.
-Hint Resolve permutation_refl.
-
-(**************************************
- Symmetry
- **************************************)
-
-Theorem permutation_sym :
- forall l m : list A, permutation l m -> permutation m l.
-intros l1 l2 H'; elim H'.
-apply permutation_nil.
-intros a l1' l2' H1 H2.
-apply permutation_skip with (1 := H2).
-intros a b l1'.
-apply permutation_swap.
-intros l1' l2' l3' H1 H2 H3 H4.
-apply permutation_trans with (1 := H4) (2 := H2).
-Qed.
-
-(**************************************
- Compatibility with list length
- **************************************)
-
-Theorem permutation_length :
- forall l m : list A, permutation l m -> length l = length m.
-intros l m H'; elim H'; simpl in |- *; auto.
-intros l1 l2 l3 H'0 H'1 H'2 H'3.
-rewrite <- H'3; auto.
-Qed.
-
-(**************************************
- A permutation of the nil list is the nil list
- **************************************)
-
-Theorem permutation_nil_inv : forall l : list A, permutation l nil -> l = nil.
-intros l H; generalize (permutation_length _ _ H); case l; simpl in |- *;
- auto.
-intros; discriminate.
-Qed.
-
-(**************************************
- A permutation of the singleton list is the singleton list
- **************************************)
-
-Let permutation_one_inv_aux :
- forall l1 l2 : list A,
- permutation l1 l2 -> forall a : A, l1 = a :: nil -> l2 = a :: nil.
-intros l1 l2 H; elim H; clear H l1 l2; auto.
-intros a l3 l4 H0 H1 b H2.
-injection H2; intros; subst; auto.
-rewrite (permutation_nil_inv _ (permutation_sym _ _ H0)); auto.
-intros; discriminate.
-Qed.
-
-Theorem permutation_one_inv :
- forall (a : A) (l : list A), permutation (a :: nil) l -> l = a :: nil.
-intros a l H; apply permutation_one_inv_aux with (l1 := a :: nil); auto.
-Qed.
-
-(**************************************
- Compatibility with the belonging
- **************************************)
-
-Theorem permutation_in :
- forall (a : A) (l m : list A), permutation l m -> In a l -> In a m.
-intros a l m H; elim H; simpl in |- *; auto; intuition.
-Qed.
-
-(**************************************
- Compatibility with the append function
- **************************************)
-
-Theorem permutation_app_comp :
- forall l1 l2 l3 l4,
- permutation l1 l2 -> permutation l3 l4 -> permutation (l1 ++ l3) (l2 ++ l4).
-intros l1 l2 l3 l4 H1; generalize l3 l4; elim H1; clear H1 l1 l2 l3 l4;
- simpl in |- *; auto.
-intros a b l l3 l4 H.
-cut (permutation (l ++ l3) (l ++ l4)); auto.
-intros; apply permutation_trans with (a :: b :: l ++ l4); auto.
-elim l; simpl in |- *; auto.
-intros l1 l2 l3 H H0 H1 H2 l4 l5 H3.
-apply permutation_trans with (l2 ++ l4); auto.
-Qed.
-Hint Resolve permutation_app_comp.
-
-(**************************************
- Swap two sublists
- **************************************)
-
-Theorem permutation_app_swap :
- forall l1 l2, permutation (l1 ++ l2) (l2 ++ l1).
-intros l1; elim l1; auto.
-intros; rewrite <- app_nil_end; auto.
-intros a l H l2.
-replace (l2 ++ a :: l) with ((l2 ++ a :: nil) ++ l).
-apply permutation_trans with (l ++ l2 ++ a :: nil); auto.
-apply permutation_trans with (((a :: nil) ++ l2) ++ l); auto.
-simpl in |- *; auto.
-apply permutation_trans with (l ++ (a :: nil) ++ l2); auto.
-apply permutation_sym; auto.
-replace (l2 ++ a :: l) with ((l2 ++ a :: nil) ++ l).
-apply permutation_app_comp; auto.
-elim l2; simpl in |- *; auto.
-intros a0 l0 H0.
-apply permutation_trans with (a0 :: a :: l0); auto.
-apply (app_ass l2 (a :: nil) l).
-apply (app_ass l2 (a :: nil) l).
-Qed.
-
-(**************************************
- A transposition is a permutation
- **************************************)
-
-Theorem permutation_transposition :
- forall a b l1 l2 l3,
- permutation (l1 ++ a :: l2 ++ b :: l3) (l1 ++ b :: l2 ++ a :: l3).
-intros a b l1 l2 l3.
-apply permutation_app_comp; auto.
-change
- (permutation ((a :: nil) ++ l2 ++ (b :: nil) ++ l3)
- ((b :: nil) ++ l2 ++ (a :: nil) ++ l3)) in |- *.
-repeat rewrite <- app_ass.
-apply permutation_app_comp; auto.
-apply permutation_trans with ((b :: nil) ++ (a :: nil) ++ l2); auto.
-apply permutation_app_swap; auto.
-repeat rewrite app_ass.
-apply permutation_app_comp; auto.
-apply permutation_app_swap; auto.
-Qed.
-
-(**************************************
- An element of a list can be put on top of the list to get a permutation
- **************************************)
-
-Theorem in_permutation_ex :
- forall a l, In a l -> exists l1 : list A, permutation (a :: l1) l.
-intros a l; elim l; simpl in |- *; auto.
-intros H; case H; auto.
-intros a0 l0 H [H0| H0].
-exists l0; rewrite H0; auto.
-case H; auto; intros l1 Hl1; exists (a0 :: l1).
-apply permutation_trans with (a0 :: a :: l1); auto.
-Qed.
-
-(**************************************
- A permutation of a cons can be inverted
- **************************************)
-
-Let permutation_cons_ex_aux :
- forall (a : A) (l1 l2 : list A),
- permutation l1 l2 ->
- forall l11 l12 : list A,
- l1 = l11 ++ a :: l12 ->
- exists l3 : list A,
- (exists l4 : list A,
- l2 = l3 ++ a :: l4 /\ permutation (l11 ++ l12) (l3 ++ l4)).
-intros a l1 l2 H; elim H; clear H l1 l2.
-intros l11 l12; case l11; simpl in |- *; intros; discriminate.
-intros a0 l1 l2 H H0 l11 l12; case l11; simpl in |- *.
-exists (nil (A:=A)); exists l1; simpl in |- *; split; auto.
-injection H1; intros; subst; auto.
-injection H1; intros H2 H3; rewrite <- H2; auto.
-intros a1 l111 H1.
-case (H0 l111 l12); auto.
-injection H1; auto.
-intros l3 (l4, (Hl1, Hl2)).
-exists (a0 :: l3); exists l4; split; simpl in |- *; auto.
-injection H1; intros; subst; auto.
-injection H1; intros H2 H3; rewrite H3; auto.
-intros a0 b l l11 l12; case l11; simpl in |- *.
-case l12; try (intros; discriminate).
-intros a1 l0 H; exists (b :: nil); exists l0; simpl in |- *; split; auto.
-injection H; intros; subst; auto.
-injection H; intros H1 H2 H3; rewrite H2; auto.
-intros a1 l111; case l111; simpl in |- *.
-intros H; exists (nil (A:=A)); exists (a0 :: l12); simpl in |- *; split; auto.
-injection H; intros; subst; auto.
-injection H; intros H1 H2 H3; rewrite H3; auto.
-intros a2 H1111 H; exists (a2 :: a1 :: H1111); exists l12; simpl in |- *;
- split; auto.
-injection H; intros; subst; auto.
-intros l1 l2 l3 H H0 H1 H2 l11 l12 H3.
-case H0 with (1 := H3).
-intros l4 (l5, (Hl1, Hl2)).
-case H2 with (1 := Hl1).
-intros l6 (l7, (Hl3, Hl4)).
-exists l6; exists l7; split; auto.
-apply permutation_trans with (1 := Hl2); auto.
-Qed.
-
-Theorem permutation_cons_ex :
- forall (a : A) (l1 l2 : list A),
- permutation (a :: l1) l2 ->
- exists l3 : list A,
- (exists l4 : list A, l2 = l3 ++ a :: l4 /\ permutation l1 (l3 ++ l4)).
-intros a l1 l2 H.
-apply (permutation_cons_ex_aux a (a :: l1) l2 H nil l1); simpl in |- *; auto.
-Qed.
-
-(**************************************
- A permutation can be simply inverted if the two list starts with a cons
- **************************************)
-
-Theorem permutation_inv :
- forall (a : A) (l1 l2 : list A),
- permutation (a :: l1) (a :: l2) -> permutation l1 l2.
-intros a l1 l2 H; case permutation_cons_ex with (1 := H).
-intros l3 (l4, (Hl1, Hl2)).
-apply permutation_trans with (1 := Hl2).
-generalize Hl1; case l3; simpl in |- *; auto.
-intros H1; injection H1; intros H2; rewrite H2; auto.
-intros a0 l5 H1; injection H1; intros H2 H3; rewrite H2; rewrite H3; auto.
-apply permutation_trans with (a0 :: l4 ++ l5); auto.
-apply permutation_skip; apply permutation_app_swap.
-apply (permutation_app_swap (a0 :: l4) l5).
-Qed.
-
-(**************************************
- Take a list and return tle list of all pairs of an element of the
- list and the remaining list
- **************************************)
-
-Fixpoint split_one (l : list A) : list (A * list A) :=
- match l with
- | nil => nil (A:=A * list A)
- | a :: l1 =>
- (a, l1)
- :: map (fun p : A * list A => (fst p, a :: snd p)) (split_one l1)
- end.
-
-(**************************************
- The pairs of the list are a permutation
- **************************************)
-
-Theorem split_one_permutation :
- forall (a : A) (l1 l2 : list A),
- In (a, l1) (split_one l2) -> permutation (a :: l1) l2.
-intros a l1 l2; generalize a l1; elim l2; clear a l1 l2; simpl in |- *; auto.
-intros a l1 H1; case H1.
-intros a l H a0 l1 [H0| H0].
-injection H0; intros H1 H2; rewrite H2; rewrite H1; auto.
-generalize H H0; elim (split_one l); simpl in |- *; auto.
-intros H1 H2; case H2.
-intros a1 l0 H1 H2 [H3| H3]; auto.
-injection H3; intros H4 H5; (rewrite <- H4; rewrite <- H5).
-apply permutation_trans with (a :: fst a1 :: snd a1); auto.
-apply permutation_skip.
-apply H2; auto.
-case a1; simpl in |- *; auto.
-Qed.
-
-(**************************************
- All elements of the list are there
- **************************************)
-
-Theorem split_one_in_ex :
- forall (a : A) (l1 : list A),
- In a l1 -> exists l2 : list A, In (a, l2) (split_one l1).
-intros a l1; elim l1; simpl in |- *; auto.
-intros H; case H.
-intros a0 l H [H0| H0]; auto.
-exists l; left; subst; auto.
-case H; auto.
-intros x H1; exists (a0 :: x); right; auto.
-apply
- (in_map (fun p : A * list A => (fst p, a0 :: snd p)) (split_one l) (a, x));
- auto.
-Qed.
-
-(**************************************
- An auxillary function to generate all permutations
- **************************************)
-
-Fixpoint all_permutations_aux (l : list A) (n : nat) {struct n} :
- list (list A) :=
- match n with
- | O => nil :: nil
- | S n1 =>
- flat_map
- (fun p : A * list A =>
- map (cons (fst p)) (all_permutations_aux (snd p) n1)) (
- split_one l)
- end.
-(**************************************
- Generate all the permutations
- **************************************)
-
-Definition all_permutations (l : list A) := all_permutations_aux l (length l).
-
-(**************************************
- All the elements of the list are permutations
- **************************************)
-
-Let all_permutations_aux_permutation :
- forall (n : nat) (l1 l2 : list A),
- n = length l2 -> In l1 (all_permutations_aux l2 n) -> permutation l1 l2.
-intros n; elim n; simpl in |- *; auto.
-intros l1 l2; case l2.
-simpl in |- *; intros H0 [H1| H1].
-rewrite <- H1; auto.
-case H1.
-simpl in |- *; intros; discriminate.
-intros n0 H l1 l2 H0 H1.
-case in_flat_map_ex with (1 := H1).
-clear H1; intros x; case x; clear x; intros a1 l3 (H1, H2).
-case in_map_inv with (1 := H2).
-simpl in |- *; intros y (H3, H4).
-rewrite H4; auto.
-apply permutation_trans with (a1 :: l3); auto.
-apply permutation_skip; auto.
-apply H with (2 := H3).
-apply eq_add_S.
-apply trans_equal with (1 := H0).
-change (length l2 = length (a1 :: l3)) in |- *.
-apply permutation_length; auto.
-apply permutation_sym; apply split_one_permutation; auto.
-apply split_one_permutation; auto.
-Qed.
-
-Theorem all_permutations_permutation :
- forall l1 l2 : list A, In l1 (all_permutations l2) -> permutation l1 l2.
-intros l1 l2 H; apply all_permutations_aux_permutation with (n := length l2);
- auto.
-Qed.
-
-(**************************************
- A permutation is in the list
- **************************************)
-
-Let permutation_all_permutations_aux :
- forall (n : nat) (l1 l2 : list A),
- n = length l2 -> permutation l1 l2 -> In l1 (all_permutations_aux l2 n).
-intros n; elim n; simpl in |- *; auto.
-intros l1 l2; case l2.
-intros H H0; rewrite permutation_nil_inv with (1 := H0); auto with datatypes.
-simpl in |- *; intros; discriminate.
-intros n0 H l1; case l1.
-intros l2 H0 H1;
- rewrite permutation_nil_inv with (1 := permutation_sym _ _ H1) in H0;
- discriminate.
-clear l1; intros a1 l1 l2 H1 H2.
-case (split_one_in_ex a1 l2); auto.
-apply permutation_in with (1 := H2); auto with datatypes.
-intros x H0.
-apply in_flat_map with (b := (a1, x)); auto.
-apply in_map; simpl in |- *.
-apply H; auto.
-apply eq_add_S.
-apply trans_equal with (1 := H1).
-change (length l2 = length (a1 :: x)) in |- *.
-apply permutation_length; auto.
-apply permutation_sym; apply split_one_permutation; auto.
-apply permutation_inv with (a := a1).
-apply permutation_trans with (1 := H2).
-apply permutation_sym; apply split_one_permutation; auto.
-Qed.
-
-Theorem permutation_all_permutations :
- forall l1 l2 : list A, permutation l1 l2 -> In l1 (all_permutations l2).
-intros l1 l2 H; unfold all_permutations in |- *;
- apply permutation_all_permutations_aux; auto.
-Qed.
-
-(**************************************
- Permutation is decidable
- **************************************)
-
-Definition permutation_dec :
- (forall a b : A, {a = b} + {a <> b}) ->
- forall l1 l2 : list A, {permutation l1 l2} + {~ permutation l1 l2}.
-intros H l1 l2.
-case (In_dec (list_eq_dec H) l1 (all_permutations l2)).
-intros i; left; apply all_permutations_permutation; auto.
-intros i; right; contradict i; apply permutation_all_permutations; auto.
-Defined.
-
-End permutation.
-
-(**************************************
- Hints
- **************************************)
-
-Hint Constructors permutation.
-Hint Resolve permutation_refl.
-Hint Resolve permutation_app_comp.
-Hint Resolve permutation_app_swap.
-
-(**************************************
- Implicits
- **************************************)
-
-Arguments permutation [A] _ _.
-Arguments split_one [A] _.
-Arguments all_permutations [A] _.
-Arguments permutation_dec [A].
-
-(**************************************
- Permutation is compatible with map
- **************************************)
-
-Theorem permutation_map :
- forall (A B : Set) (f : A -> B) l1 l2,
- permutation l1 l2 -> permutation (map f l1) (map f l2).
-intros A B f l1 l2 H; elim H; simpl in |- *; auto.
-intros l0 l3 l4 H0 H1 H2 H3; apply permutation_trans with (2 := H3); auto.
-Qed.
-Hint Resolve permutation_map.
-
-(**************************************
- Permutation of a map can be inverted
- *************************************)
-
-Let permutation_map_ex_aux :
- forall (A B : Set) (f : A -> B) l1 l2 l3,
- permutation l1 l2 ->
- l1 = map f l3 -> exists l4, permutation l4 l3 /\ l2 = map f l4.
-intros A1 B1 f l1 l2 l3 H; generalize l3; elim H; clear H l1 l2 l3.
-intros l3; case l3; simpl in |- *; auto.
-intros H; exists (nil (A:=A1)); auto.
-intros; discriminate.
-intros a0 l1 l2 H H0 l3; case l3; simpl in |- *; auto.
-intros; discriminate.
-intros a1 l H1; case (H0 l); auto.
-injection H1; auto.
-intros l5 (H2, H3); exists (a1 :: l5); split; simpl in |- *; auto.
-injection H1; intros; subst; auto.
-intros a0 b l l3; case l3.
-intros; discriminate.
-intros a1 l0; case l0; simpl in |- *.
-intros; discriminate.
-intros a2 l1 H; exists (a2 :: a1 :: l1); split; simpl in |- *; auto.
-injection H; intros; subst; auto.
-intros l1 l2 l3 H H0 H1 H2 l0 H3.
-case H0 with (1 := H3); auto.
-intros l4 (HH1, HH2).
-case H2 with (1 := HH2); auto.
-intros l5 (HH3, HH4); exists l5; split; auto.
-apply permutation_trans with (1 := HH3); auto.
-Qed.
-
-Theorem permutation_map_ex :
- forall (A B : Set) (f : A -> B) l1 l2,
- permutation (map f l1) l2 ->
- exists l3, permutation l3 l1 /\ l2 = map f l3.
-intros A0 B f l1 l2 H; apply permutation_map_ex_aux with (l1 := map f l1);
- auto.
-Qed.
-
-(**************************************
- Permutation is compatible with flat_map
- **************************************)
-
-Theorem permutation_flat_map :
- forall (A B : Set) (f : A -> list B) l1 l2,
- permutation l1 l2 -> permutation (flat_map f l1) (flat_map f l2).
-intros A B f l1 l2 H; elim H; simpl in |- *; auto.
-intros a b l; auto.
-repeat rewrite <- app_ass.
-apply permutation_app_comp; auto.
-intros k3 l4 l5 H0 H1 H2 H3; apply permutation_trans with (1 := H1); auto.
-Qed.
diff --git a/coqprime/Coqprime/Pmod.v b/coqprime/Coqprime/Pmod.v
deleted file mode 100644
index fdaf321a2..000000000
--- a/coqprime/Coqprime/Pmod.v
+++ /dev/null
@@ -1,617 +0,0 @@
-
-(*************************************************************)
-(* This file is distributed under the terms of the *)
-(* GNU Lesser General Public License Version 2.1 *)
-(*************************************************************)
-(* Benjamin.Gregoire@inria.fr Laurent.Thery@inria.fr *)
-(*************************************************************)
-
-Require Export ZArith.
-Require Export ZCmisc.
-
-Local Open Scope positive_scope.
-
-Local Open Scope P_scope.
-
-(* [div_eucl a b] return [(q,r)] such that a = q*b + r *)
-Fixpoint div_eucl (a b : positive) {struct a} : N * N :=
- match a with
- | xH => if 1 ?< b then (0%N, 1%N) else (1%N, 0%N)
- | xO a' =>
- let (q, r) := div_eucl a' b in
- match q, r with
- | N0, N0 => (0%N, 0%N) (* n'arrive jamais *)
- | N0, Npos r =>
- if (xO r) ?< b then (0%N, Npos (xO r))
- else (1%N,PminusN (xO r) b)
- | Npos q, N0 => (Npos (xO q), 0%N)
- | Npos q, Npos r =>
- if (xO r) ?< b then (Npos (xO q), Npos (xO r))
- else (Npos (xI q),PminusN (xO r) b)
- end
- | xI a' =>
- let (q, r) := div_eucl a' b in
- match q, r with
- | N0, N0 => (0%N, 0%N) (* Impossible *)
- | N0, Npos r =>
- if (xI r) ?< b then (0%N, Npos (xI r))
- else (1%N,PminusN (xI r) b)
- | Npos q, N0 => if 1 ?< b then (Npos (xO q), 1%N) else (Npos (xI q), 0%N)
- | Npos q, Npos r =>
- if (xI r) ?< b then (Npos (xO q), Npos (xI r))
- else (Npos (xI q),PminusN (xI r) b)
- end
- end.
-Infix "/" := div_eucl : P_scope.
-
-Open Scope Z_scope.
-Opaque Zmult.
-Lemma div_eucl_spec : forall a b,
- Zpos a = fst (a/b)%P * b + snd (a/b)%P
- /\ snd (a/b)%P < b.
-Proof with zsimpl;try apply Zlt_0_pos;try ((ring;fail) || omega).
- intros a b;generalize a;clear a;induction a;simpl;zsimpl.
- case IHa; destruct (a/b)%P as [q r].
- case q; case r; simpl fst; simpl snd.
- rewrite Zmult_0_l; rewrite Zplus_0_r; intros HH; discriminate HH.
- intros p H; rewrite H;
- match goal with
- | [|- context [ ?xx ?< b ]] =>
- generalize (is_lt_spec xx b);destruct (xx ?< b)
- | _ => idtac
- end; zsimpl; simpl; intros H1 H2; split; zsimpl; auto.
- rewrite PminusN_le...
- generalize H1; zsimpl; auto.
- rewrite PminusN_le...
- generalize H1; zsimpl; auto.
- intros p H; rewrite H;
- match goal with
- | [|- context [ ?xx ?< b ]] =>
- generalize (is_lt_spec xx b);destruct (xx ?< b)
- | _ => idtac
- end; zsimpl; simpl; intros H1 H2; split; zsimpl; auto; try ring.
- ring_simplify.
- case (Zle_lt_or_eq _ _ H1); auto with zarith.
- intros p p1 H; rewrite H.
- match goal with
- | [|- context [ ?xx ?< b ]] =>
- generalize (is_lt_spec xx b);destruct (xx ?< b)
- | _ => idtac
- end; zsimpl; simpl; intros H1 H2; split; zsimpl; auto; try ring.
- rewrite PminusN_le...
- generalize H1; zsimpl; auto.
- rewrite PminusN_le...
- generalize H1; zsimpl; auto.
- case IHa; destruct (a/b)%P as [q r].
- case q; case r; simpl fst; simpl snd.
- rewrite Zmult_0_l; rewrite Zplus_0_r; intros HH; discriminate HH.
- intros p H; rewrite H;
- match goal with
- | [|- context [ ?xx ?< b ]] =>
- generalize (is_lt_spec xx b);destruct (xx ?< b)
- | _ => idtac
- end; zsimpl; simpl; intros H1 H2; split; zsimpl; auto.
- rewrite PminusN_le...
- generalize H1; zsimpl; auto.
- rewrite PminusN_le...
- generalize H1; zsimpl; auto.
- intros p H; rewrite H; simpl; intros H1; split; auto.
- zsimpl; ring.
- intros p p1 H; rewrite H.
- match goal with
- | [|- context [ ?xx ?< b ]] =>
- generalize (is_lt_spec xx b);destruct (xx ?< b)
- | _ => idtac
- end; zsimpl; simpl; intros H1 H2; split; zsimpl; auto; try ring.
- rewrite PminusN_le...
- generalize H1; zsimpl; auto.
- rewrite PminusN_le...
- generalize H1; zsimpl; auto.
- match goal with
- | [|- context [ ?xx ?< b ]] =>
- generalize (is_lt_spec xx b);destruct (xx ?< b)
- | _ => idtac
- end; zsimpl; simpl.
- split; auto.
- case (Zle_lt_or_eq 1 b); auto with zarith.
- generalize (Zlt_0_pos b); auto with zarith.
-Qed.
-Transparent Zmult.
-
-(******** Definition du modulo ************)
-
-(* [mod a b] return [a] modulo [b] *)
-Fixpoint Pmod (a b : positive) {struct a} : N :=
- match a with
- | xH => if 1 ?< b then 1%N else 0%N
- | xO a' =>
- let r := Pmod a' b in
- match r with
- | N0 => 0%N
- | Npos r' =>
- if (xO r') ?< b then Npos (xO r')
- else PminusN (xO r') b
- end
- | xI a' =>
- let r := Pmod a' b in
- match r with
- | N0 => if 1 ?< b then 1%N else 0%N
- | Npos r' =>
- if (xI r') ?< b then Npos (xI r')
- else PminusN (xI r') b
- end
- end.
-
-Infix "mod" := Pmod (at level 40, no associativity) : P_scope.
-Local Open Scope P_scope.
-
-Lemma Pmod_div_eucl : forall a b, a mod b = snd (a/b).
-Proof with auto.
- intros a b;generalize a;clear a;induction a;simpl;
- try (rewrite IHa;
- assert (H1 := div_eucl_spec a b); destruct (a/b) as [q r];
- destruct q as [|q];destruct r as [|r];simpl in *;
- match goal with
- | [|- context [ ?xx ?< b ]] =>
- assert (H2 := is_lt_spec xx b);destruct (xx ?< b)
- | _ => idtac
- end;simpl) ...
- destruct H1 as [H3 H4];discriminate H3.
- destruct (1 ?< b);simpl ...
-Qed.
-
-Lemma mod1: forall a, a mod 1 = 0%N.
-Proof. induction a;simpl;try rewrite IHa;trivial. Qed.
-
-Lemma mod_a_a_0 : forall a, a mod a = N0.
-Proof.
- intros a;generalize (div_eucl_spec a a);rewrite <- Pmod_div_eucl.
- destruct (fst (a / a));unfold Z_of_N at 1.
- rewrite Zmult_0_l;intros (H1,H2);elimtype False;omega.
- assert (a<=p*a).
- pattern (Zpos a) at 1;rewrite <- (Zmult_1_l a).
- assert (H1:= Zlt_0_pos p);assert (H2:= Zle_0_pos a);
- apply Zmult_le_compat;trivial;try omega.
- destruct (a mod a)%P;auto with zarith.
- unfold Z_of_N;assert (H1:= Zlt_0_pos p0);intros (H2,H3);elimtype False;omega.
-Qed.
-
-Lemma mod_le_2r : forall (a b r: positive) (q:N),
- Zpos a = b*q + r -> b <= a -> r < b -> 2*r <= a.
-Proof.
- intros a b r q H0 H1 H2.
- assert (H3:=Zlt_0_pos a). assert (H4:=Zlt_0_pos b). assert (H5:=Zlt_0_pos r).
- destruct q as [|q]. rewrite Zmult_0_r in H0. elimtype False;omega.
- assert (H6:=Zlt_0_pos q). unfold Z_of_N in H0.
- assert (Zpos r = a - b*q). omega.
- simpl;zsimpl. pattern r at 2;rewrite H.
- assert (b <= b * q).
- pattern (Zpos b) at 1;rewrite <- (Zmult_1_r b).
- apply Zmult_le_compat;try omega.
- apply Zle_trans with (a - b * q + b). omega.
- apply Zle_trans with (a - b + b);omega.
-Qed.
-
-Lemma mod_lt : forall a b r, a mod b = Npos r -> r < b.
-Proof.
- intros a b r H;generalize (div_eucl_spec a b);rewrite <- Pmod_div_eucl;
- rewrite H;simpl;intros (H1,H2);omega.
-Qed.
-
-Lemma mod_le : forall a b r, a mod b = Npos r -> r <= b.
-Proof. intros a b r H;assert (H1:= mod_lt _ _ _ H);omega. Qed.
-
-Lemma mod_le_a : forall a b r, a mod b = r -> r <= a.
-Proof.
- intros a b r H;generalize (div_eucl_spec a b);rewrite <- Pmod_div_eucl;
- rewrite H;simpl;intros (H1,H2).
- assert (0 <= fst (a / b) * b).
- destruct (fst (a / b));simpl;auto with zarith.
- auto with zarith.
-Qed.
-
-Lemma lt_mod : forall a b, Zpos a < Zpos b -> (a mod b)%P = Npos a.
-Proof.
- intros a b H; rewrite Pmod_div_eucl. case (div_eucl_spec a b).
- assert (0 <= snd(a/b)). destruct (snd(a/b));simpl;auto with zarith.
- destruct (fst (a/b)).
- unfold Z_of_N at 1;rewrite Zmult_0_l;rewrite Zplus_0_l.
- destruct (snd (a/b));simpl; intros H1 H2;inversion H1;trivial.
- unfold Z_of_N at 1;assert (b <= p*b).
- pattern (Zpos b) at 1; rewrite <- (Zmult_1_l (Zpos b)).
- assert (H1 := Zlt_0_pos p);apply Zmult_le_compat;try omega.
- apply Zle_0_pos.
- intros;elimtype False;omega.
-Qed.
-
-Fixpoint gcd_log2 (a b c:positive) {struct c}: option positive :=
- match a mod b with
- | N0 => Some b
- | Npos r =>
- match b mod r, c with
- | N0, _ => Some r
- | Npos r', xH => None
- | Npos r', xO c' => gcd_log2 r r' c'
- | Npos r', xI c' => gcd_log2 r r' c'
- end
- end.
-
-Fixpoint egcd_log2 (a b c:positive) {struct c}:
- option (Z * Z * positive) :=
- match a/b with
- | (_, N0) => Some (0, 1, b)
- | (q, Npos r) =>
- match b/r, c with
- | (_, N0), _ => Some (1, -q, r)
- | (q', Npos r'), xH => None
- | (q', Npos r'), xO c' =>
- match egcd_log2 r r' c' with
- None => None
- | Some (u', v', w') =>
- let u := u' - v' * q' in
- Some (u, v' - q * u, w')
- end
- | (q', Npos r'), xI c' =>
- match egcd_log2 r r' c' with
- None => None
- | Some (u', v', w') =>
- let u := u' - v' * q' in
- Some (u, v' - q * u, w')
- end
- end
- end.
-
-Lemma egcd_gcd_log2: forall c a b,
- match egcd_log2 a b c, gcd_log2 a b c with
- None, None => True
- | Some (u,v,r), Some r' => r = r'
- | _, _ => False
- end.
-induction c; simpl; auto; try
- (intros a b; generalize (Pmod_div_eucl a b); case (a/b); simpl;
- intros q r1 H; subst; case (a mod b); auto;
- intros r; generalize (Pmod_div_eucl b r); case (b/r); simpl;
- intros q' r1 H; subst; case (b mod r); auto;
- intros r'; generalize (IHc r r'); case egcd_log2; auto;
- intros ((p1,p2),p3); case gcd_log2; auto).
-Qed.
-
-Ltac rw l :=
- match l with
- | (?r, ?r1) =>
- match type of r with
- True => rewrite <- r1
- | _ => rw r; rw r1
- end
- | ?r => rewrite r
- end.
-
-Lemma egcd_log2_ok: forall c a b,
- match egcd_log2 a b c with
- None => True
- | Some (u,v,r) => u * a + v * b = r
- end.
-induction c; simpl; auto;
- intros a b; generalize (div_eucl_spec a b); case (a/b);
- simpl fst; simpl snd; intros q r1; case r1; try (intros; ring);
- simpl; intros r (Hr1, Hr2); clear r1;
- generalize (div_eucl_spec b r); case (b/r);
- simpl fst; simpl snd; intros q' r1; case r1;
- try (intros; rewrite Hr1; ring);
- simpl; intros r' (Hr'1, Hr'2); clear r1; auto;
- generalize (IHc r r'); case egcd_log2; auto;
- intros ((u',v'),w'); case gcd_log2; auto; intros;
- rw ((I, H), Hr1, Hr'1); ring.
-Qed.
-
-
-Fixpoint log2 (a:positive) : positive :=
- match a with
- | xH => xH
- | xO a => Psucc (log2 a)
- | xI a => Psucc (log2 a)
- end.
-
-Lemma gcd_log2_1: forall a c, gcd_log2 a xH c = Some xH.
-Proof. destruct c;simpl;try rewrite mod1;trivial. Qed.
-
-Lemma log2_Zle :forall a b, Zpos a <= Zpos b -> log2 a <= log2 b.
-Proof with zsimpl;try omega.
- induction a;destruct b;zsimpl;intros;simpl ...
- assert (log2 a <= log2 b) ... apply IHa ...
- assert (log2 a <= log2 b) ... apply IHa ...
- assert (H1 := Zlt_0_pos a);elimtype False;omega.
- assert (log2 a <= log2 b) ... apply IHa ...
- assert (log2 a <= log2 b) ... apply IHa ...
- assert (H1 := Zlt_0_pos a);elimtype False;omega.
- assert (H1 := Zlt_0_pos (log2 b)) ...
- assert (H1 := Zlt_0_pos (log2 b)) ...
-Qed.
-
-Lemma log2_1_inv : forall a, Zpos (log2 a) = 1 -> a = xH.
-Proof.
- destruct a;simpl;zsimpl;intros;trivial.
- assert (H1:= Zlt_0_pos (log2 a));elimtype False;omega.
- assert (H1:= Zlt_0_pos (log2 a));elimtype False;omega.
-Qed.
-
-Lemma mod_log2 :
- forall a b r:positive, a mod b = Npos r -> b <= a -> log2 r + 1 <= log2 a.
-Proof.
- intros; cut (log2 (xO r) <= log2 a). simpl;zsimpl;trivial.
- apply log2_Zle.
- replace (Zpos (xO r)) with (2 * r)%Z;trivial.
- generalize (div_eucl_spec a b);rewrite <- Pmod_div_eucl;rewrite H.
- rewrite Zmult_comm;intros [H1 H2];apply mod_le_2r with b (fst (a/b));trivial.
-Qed.
-
-Lemma gcd_log2_None_aux :
- forall c a b, Zpos b <= Zpos a -> log2 b <= log2 c ->
- gcd_log2 a b c <> None.
-Proof.
- induction c;simpl;intros;
- (CaseEq (a mod b);[intros Heq|intros r Heq];try (intro;discriminate));
- (CaseEq (b mod r);[intros Heq'|intros r' Heq'];try (intro;discriminate)).
- apply IHc. apply mod_le with b;trivial.
- generalize H0 (mod_log2 _ _ _ Heq' (mod_le _ _ _ Heq));zsimpl;intros;omega.
- apply IHc. apply mod_le with b;trivial.
- generalize H0 (mod_log2 _ _ _ Heq' (mod_le _ _ _ Heq));zsimpl;intros;omega.
- assert (Zpos (log2 b) = 1).
- assert (H1 := Zlt_0_pos (log2 b));omega.
- rewrite (log2_1_inv _ H1) in Heq;rewrite mod1 in Heq;discriminate Heq.
-Qed.
-
-Lemma gcd_log2_None : forall a b, Zpos b <= Zpos a -> gcd_log2 a b b <> None.
-Proof. intros;apply gcd_log2_None_aux;auto with zarith. Qed.
-
-Lemma gcd_log2_Zle :
- forall c1 c2 a b, log2 c1 <= log2 c2 ->
- gcd_log2 a b c1 <> None -> gcd_log2 a b c2 = gcd_log2 a b c1.
-Proof with zsimpl;trivial;try omega.
- induction c1;destruct c2;simpl;intros;
- (destruct (a mod b) as [|r];[idtac | destruct (b mod r)]) ...
- apply IHc1;trivial. generalize H;zsimpl;intros;omega.
- apply IHc1;trivial. generalize H;zsimpl;intros;omega.
- elim H;destruct (log2 c1);trivial.
- apply IHc1;trivial. generalize H;zsimpl;intros;omega.
- apply IHc1;trivial. generalize H;zsimpl;intros;omega.
- elim H;destruct (log2 c1);trivial.
- elim H0;trivial. elim H0;trivial.
-Qed.
-
-Lemma gcd_log2_Zle_log :
- forall a b c, log2 b <= log2 c -> Zpos b <= Zpos a ->
- gcd_log2 a b c = gcd_log2 a b b.
-Proof.
- intros a b c H1 H2; apply gcd_log2_Zle; trivial.
- apply gcd_log2_None; trivial.
-Qed.
-
-Lemma gcd_log2_mod0 :
- forall a b c, a mod b = N0 -> gcd_log2 a b c = Some b.
-Proof. intros a b c H;destruct c;simpl;rewrite H;trivial. Qed.
-
-
-Require Import Zwf.
-
-Lemma Zwf_pos : well_founded (fun x y => Zpos x < Zpos y).
-Proof.
- unfold well_founded.
- assert (forall x a ,x = Zpos a -> Acc (fun x y : positive => x < y) a).
- intros x;assert (Hacc := Zwf_well_founded 0 x);induction Hacc;intros;subst x.
- constructor;intros. apply H0 with (Zpos y);trivial.
- split;auto with zarith.
- intros a;apply H with (Zpos a);trivial.
-Qed.
-
-Opaque Pmod.
-Lemma gcd_log2_mod : forall a b, Zpos b <= Zpos a ->
- forall r, a mod b = Npos r -> gcd_log2 a b b = gcd_log2 b r r.
-Proof.
- intros a b;generalize a;clear a; assert (Hacc := Zwf_pos b).
- induction Hacc; intros a Hle r Hmod.
- rename x into b. destruct b;simpl;rewrite Hmod.
- CaseEq (xI b mod r)%P;intros. rewrite gcd_log2_mod0;trivial.
- assert (H2 := mod_le _ _ _ H1);assert (H3 := mod_lt _ _ _ Hmod);
- assert (H4 := mod_le _ _ _ Hmod).
- rewrite (gcd_log2_Zle_log r p b);trivial.
- symmetry;apply H0;trivial.
- generalize (mod_log2 _ _ _ H1 H4);simpl;zsimpl;intros;omega.
- CaseEq (xO b mod r)%P;intros. rewrite gcd_log2_mod0;trivial.
- assert (H2 := mod_le _ _ _ H1);assert (H3 := mod_lt _ _ _ Hmod);
- assert (H4 := mod_le _ _ _ Hmod).
- rewrite (gcd_log2_Zle_log r p b);trivial.
- symmetry;apply H0;trivial.
- generalize (mod_log2 _ _ _ H1 H4);simpl;zsimpl;intros;omega.
- rewrite mod1 in Hmod;discriminate Hmod.
-Qed.
-
-Lemma gcd_log2_xO_Zle :
- forall a b, Zpos b <= Zpos a -> gcd_log2 a b (xO b) = gcd_log2 a b b.
-Proof.
- intros a b Hle;apply gcd_log2_Zle.
- simpl;zsimpl;auto with zarith.
- apply gcd_log2_None_aux;auto with zarith.
-Qed.
-
-Lemma gcd_log2_xO_Zlt :
- forall a b, Zpos a < Zpos b -> gcd_log2 a b (xO b) = gcd_log2 b a a.
-Proof.
- intros a b H;simpl. assert (Hlt := Zlt_0_pos a).
- assert (H0 := lt_mod _ _ H).
- rewrite H0;simpl.
- CaseEq (b mod a)%P;intros;simpl.
- symmetry;apply gcd_log2_mod0;trivial.
- assert (H2 := mod_lt _ _ _ H1).
- rewrite (gcd_log2_Zle_log a p b);auto with zarith.
- symmetry;apply gcd_log2_mod;auto with zarith.
- apply log2_Zle.
- replace (Zpos p) with (Z_of_N (Npos p));trivial.
- apply mod_le_a with a;trivial.
-Qed.
-
-Lemma gcd_log2_x0 : forall a b, gcd_log2 a b (xO b) <> None.
-Proof.
- intros;simpl;CaseEq (a mod b)%P;intros. intro;discriminate.
- CaseEq (b mod p)%P;intros. intro;discriminate.
- assert (H1 := mod_le_a _ _ _ H0). unfold Z_of_N in H1.
- assert (H2 := mod_le _ _ _ H0).
- apply gcd_log2_None_aux. trivial.
- apply log2_Zle. trivial.
-Qed.
-
-Lemma egcd_log2_x0 : forall a b, egcd_log2 a b (xO b) <> None.
-Proof.
-intros a b H; generalize (egcd_gcd_log2 (xO b) a b) (gcd_log2_x0 a b);
- rw H; case gcd_log2; auto.
-Qed.
-
-Definition gcd a b :=
- match gcd_log2 a b (xO b) with
- | Some p => p
- | None => (* can not appear *) 1%positive
- end.
-
-Definition egcd a b :=
- match egcd_log2 a b (xO b) with
- | Some p => p
- | None => (* can not appear *) (1,1,1%positive)
- end.
-
-
-Lemma gcd_mod0 : forall a b, (a mod b)%P = N0 -> gcd a b = b.
-Proof.
- intros a b H;unfold gcd.
- pattern (gcd_log2 a b (xO b)) at 1;
- rewrite (gcd_log2_mod0 _ _ (xO b) H);trivial.
-Qed.
-
-Lemma gcd1 : forall a, gcd a xH = xH.
-Proof. intros a;rewrite gcd_mod0;[trivial|apply mod1]. Qed.
-
-Lemma gcd_mod : forall a b r, (a mod b)%P = Npos r ->
- gcd a b = gcd b r.
-Proof.
- intros a b r H;unfold gcd.
- assert (log2 r <= log2 (xO r)). simpl;zsimpl;omega.
- assert (H1 := mod_lt _ _ _ H).
- pattern (gcd_log2 b r (xO r)) at 1; rewrite gcd_log2_Zle_log;auto with zarith.
- destruct (Z_lt_le_dec a b) as [z|z].
- pattern (gcd_log2 a b (xO b)) at 1; rewrite gcd_log2_xO_Zlt;trivial.
- rewrite (lt_mod _ _ z) in H;inversion H.
- assert (r <= b). omega.
- generalize (gcd_log2_None _ _ H2).
- destruct (gcd_log2 b r r);intros;trivial.
- assert (log2 b <= log2 (xO b)). simpl;zsimpl;omega.
- pattern (gcd_log2 a b (xO b)) at 1; rewrite gcd_log2_Zle_log;auto with zarith.
- pattern (gcd_log2 a b b) at 1;rewrite (gcd_log2_mod _ _ z _ H).
- assert (r <= b). omega.
- generalize (gcd_log2_None _ _ H3).
- destruct (gcd_log2 b r r);intros;trivial.
-Qed.
-
-Require Import ZArith.
-Require Import Znumtheory.
-
-Hint Rewrite Zpos_mult times_Zmult square_Zmult Psucc_Zplus: zmisc.
-
-Ltac mauto :=
- trivial;autorewrite with zmisc;trivial;auto with zarith.
-
-Lemma gcd_Zis_gcd : forall a b:positive, (Zis_gcd b a (gcd b a)%P).
-Proof with mauto.
- intros a;assert (Hacc := Zwf_pos a);induction Hacc;rename x into a;intros.
- generalize (div_eucl_spec b a)...
- rewrite <- (Pmod_div_eucl b a).
- CaseEq (b mod a)%P;[intros Heq|intros r Heq]; intros (H1,H2).
- simpl in H1;rewrite Zplus_0_r in H1.
- rewrite (gcd_mod0 _ _ Heq).
- constructor;mauto.
- apply Zdivide_intro with (fst (b/a)%P);trivial.
- rewrite (gcd_mod _ _ _ Heq).
- rewrite H1;apply Zis_gcd_sym.
- rewrite Zmult_comm;apply Zis_gcd_for_euclid2;simpl in *.
- apply Zis_gcd_sym;auto.
-Qed.
-
-Lemma egcd_Zis_gcd : forall a b:positive,
- let (uv,w) := egcd a b in
- let (u,v) := uv in
- u * a + v * b = w /\ (Zis_gcd b a w).
-Proof with mauto.
- intros a b; unfold egcd.
- generalize (egcd_log2_ok (xO b) a b) (egcd_gcd_log2 (xO b) a b)
- (egcd_log2_x0 a b) (gcd_Zis_gcd b a); unfold egcd, gcd.
- case egcd_log2; try (intros ((u,v),w)); case gcd_log2;
- try (intros; match goal with H: False |- _ => case H end);
- try (intros _ _ H1; case H1; auto; fail).
- intros; subst; split; try apply Zis_gcd_sym; auto.
-Qed.
-
-Definition Zgcd a b :=
- match a, b with
- | Z0, _ => b
- | _, Z0 => a
- | Zpos a, Zneg b => Zpos (gcd a b)
- | Zneg a, Zpos b => Zpos (gcd a b)
- | Zpos a, Zpos b => Zpos (gcd a b)
- | Zneg a, Zneg b => Zpos (gcd a b)
- end.
-
-
-Lemma Zgcd_is_gcd : forall x y, Zis_gcd x y (Zgcd x y).
-Proof.
- destruct x;destruct y;simpl.
- apply Zis_gcd_0.
- apply Zis_gcd_sym;apply Zis_gcd_0.
- apply Zis_gcd_sym;apply Zis_gcd_0.
- apply Zis_gcd_0.
- apply gcd_Zis_gcd.
- apply Zis_gcd_sym;apply Zis_gcd_minus;simpl;apply gcd_Zis_gcd.
- apply Zis_gcd_0.
- apply Zis_gcd_minus;simpl;apply Zis_gcd_sym;apply gcd_Zis_gcd.
- apply Zis_gcd_minus;apply Zis_gcd_minus;simpl;apply gcd_Zis_gcd.
-Qed.
-
-Definition Zegcd a b :=
- match a, b with
- | Z0, Z0 => (0,0,0)
- | Zpos _, Z0 => (1,0,a)
- | Zneg _, Z0 => (-1,0,-a)
- | Z0, Zpos _ => (0,1,b)
- | Z0, Zneg _ => (0,-1,-b)
- | Zpos a, Zneg b =>
- match egcd a b with (u,v,w) => (u,-v, Zpos w) end
- | Zneg a, Zpos b =>
- match egcd a b with (u,v,w) => (-u,v, Zpos w) end
- | Zpos a, Zpos b =>
- match egcd a b with (u,v,w) => (u,v, Zpos w) end
- | Zneg a, Zneg b =>
- match egcd a b with (u,v,w) => (-u,-v, Zpos w) end
- end.
-
-Lemma Zegcd_is_egcd : forall x y,
- match Zegcd x y with
- (u,v,w) => u * x + v * y = w /\ Zis_gcd x y w /\ 0 <= w
- end.
-Proof.
- assert (zx0: forall x, Zneg x = -x).
- simpl; auto.
- assert (zx1: forall x, -(-x) = x).
- intro x; case x; simpl; auto.
- destruct x;destruct y;simpl; try (split; [idtac|split]);
- auto; try (red; simpl; intros; discriminate);
- try (rewrite zx0; apply Zis_gcd_minus; try rewrite zx1; auto;
- apply Zis_gcd_minus; try rewrite zx1; simpl; auto);
- try apply Zis_gcd_0; try (apply Zis_gcd_sym;apply Zis_gcd_0);
- generalize (egcd_Zis_gcd p p0); case egcd; intros (u,v) w (H1, H2);
- split; repeat rewrite zx0; try (rewrite <- H1; ring); auto;
- (split; [idtac | red; intros; discriminate]).
- apply Zis_gcd_sym; auto.
- apply Zis_gcd_sym; apply Zis_gcd_minus; rw zx1;
- apply Zis_gcd_sym; auto.
- apply Zis_gcd_minus; rw zx1; auto.
- apply Zis_gcd_minus; rw zx1; auto.
- apply Zis_gcd_minus; rw zx1; auto.
- apply Zis_gcd_sym; auto.
-Qed.
diff --git a/coqprime/Coqprime/Pocklington.v b/coqprime/Coqprime/Pocklington.v
deleted file mode 100644
index 09c0b901c..000000000
--- a/coqprime/Coqprime/Pocklington.v
+++ /dev/null
@@ -1,261 +0,0 @@
-
-(*************************************************************)
-(* This file is distributed under the terms of the *)
-(* GNU Lesser General Public License Version 2.1 *)
-(*************************************************************)
-(* Benjamin.Gregoire@inria.fr Laurent.Thery@inria.fr *)
-(*************************************************************)
-
-Require Import ZArith.
-Require Export Znumtheory.
-Require Import Tactic.
-Require Import ZCAux.
-Require Import Zp.
-Require Import FGroup.
-Require Import EGroup.
-Require Import Euler.
-
-Open Scope Z_scope.
-
-Theorem Pocklington:
-forall N F1 R1, 1 < F1 -> 0 < R1 -> N - 1 = F1 * R1 ->
- (forall p, prime p -> (p | F1) -> exists a, 1 < a /\ a^(N - 1) mod N = 1 /\ Zgcd (a ^ ((N - 1)/ p) - 1) N = 1) ->
- forall n, prime n -> (n | N) -> n mod F1 = 1.
-intros N F1 R1 HF1 HR1 Neq Rec n Hn H.
-assert (HN: 1 < N).
-assert (0 < N - 1); auto with zarith.
-rewrite Neq; auto with zarith.
-apply Zlt_le_trans with (1* R1); auto with zarith.
-assert (Hn1: 1 < n); auto with zarith.
-apply Zlt_le_trans with 2; try apply prime_ge_2; auto with zarith.
-assert (H1: (F1 | n - 1)).
-2: rewrite <- (Zmod_small 1 F1); auto with zarith.
-2: case H1; intros k H1'.
-2: replace n with (1 + (n - 1)); auto with zarith.
-2: rewrite H1'; apply Z_mod_plus; auto with zarith.
-apply Zdivide_Zpower; auto with zarith.
-intros p i Hp Hi HiF1.
-case (Rec p); auto.
-apply Zdivide_trans with (2 := HiF1).
-apply Zpower_divide; auto with zarith.
-intros a (Ha1, (Ha2, Ha3)).
-assert (HNn: a ^ (N - 1) mod n = 1).
-apply Zdivide_mod_minus; auto with zarith.
-apply Zdivide_trans with (1 := H).
-apply Zmod_divide_minus; auto with zarith.
-assert (~(n | a)).
-intros H1; absurd (0 = 1); auto with zarith.
-rewrite <- HNn; auto.
-apply sym_equal; apply Zdivide_mod; auto with zarith.
-apply Zdivide_trans with (1 := H1); apply Zpower_divide; auto with zarith.
-assert (Hr: rel_prime a n).
-apply rel_prime_sym; apply prime_rel_prime; auto.
-assert (Hz: 0 < Zorder a n).
-apply Zorder_power_pos; auto.
-apply Zdivide_trans with (Zorder a n).
-apply prime_divide_Zpower_Zdiv with (N - 1); auto with zarith.
-apply Zorder_div_power; auto with zarith.
-intros H1; absurd (1 < n); auto; apply Zle_not_lt; apply Zdivide_le; auto with zarith.
-rewrite <- Ha3; apply Zdivide_Zgcd; auto with zarith.
-apply Zmod_divide_minus; auto with zarith.
-case H1; intros t Ht; rewrite Ht.
-assert (Ht1: 0 <= t).
-apply Zmult_le_reg_r with (Zorder a n); auto with zarith.
-rewrite Zmult_0_l; rewrite <- Ht.
-apply Zge_le; apply Z_div_ge0; auto with zarith.
-apply Zlt_gt; apply Zlt_le_trans with 2; try apply prime_ge_2; auto with zarith.
-rewrite Zmult_comm; rewrite Zpower_mult; auto with zarith.
-rewrite Zpower_mod; auto with zarith.
-rewrite Zorder_power_is_1; auto with zarith.
-rewrite Zpower_1_l; auto with zarith.
-apply Zmod_small; auto with zarith.
-apply Zdivide_trans with (1:= HiF1); rewrite Neq; apply Zdivide_factor_r.
-apply Zorder_div; auto.
-Qed.
-
-Theorem PocklingtonCorollary1:
-forall N F1 R1, 1 < F1 -> 0 < R1 -> N - 1 = F1 * R1 -> N < F1 * F1 ->
- (forall p, prime p -> (p | F1) -> exists a, 1 < a /\ a^(N - 1) mod N = 1 /\ Zgcd (a ^ ((N - 1)/ p) - 1) N = 1) ->
- prime N.
-intros N F1 R1 H H1 H2 H3 H4; case (prime_dec N); intros H5; auto.
-assert (HN: 1 < N).
-assert (0 < N - 1); auto with zarith.
-rewrite H2; auto with zarith.
-apply Zlt_le_trans with (1* R1); auto with zarith.
-case Zdivide_div_prime_le_square with (2:= H5); auto with zarith.
-intros n (Hn, (Hn1, Hn2)).
-assert (Hn3: 0 <= n).
-apply Zle_trans with 2; try apply prime_ge_2; auto with zarith.
-absurd (n = 1).
-intros H6; contradict Hn; subst; apply not_prime_1.
-rewrite <- (Zmod_small n F1); try split; auto.
-apply Pocklington with (R1 := R1) (4 := H4); auto.
-apply Zlt_square_mult_inv; auto with zarith.
-Qed.
-
-Theorem PocklingtonCorollary2:
-forall N F1 R1, 1 < F1 -> 0 < R1 -> N - 1 = F1 * R1 ->
- (forall p, prime p -> (p | F1) -> exists a, 1 < a /\ a^(N - 1) mod N = 1 /\ Zgcd (a ^ ((N - 1)/ p) - 1) N = 1) ->
- forall n, 0 <= n -> (n | N) -> n mod F1 = 1.
-intros N F1 R1 H1 H2 H3 H4 n H5; pattern n; apply prime_induction; auto.
-assert (HN: 1 < N).
-assert (0 < N - 1); auto with zarith.
-rewrite H3; auto with zarith.
-apply Zlt_le_trans with (1* R1); auto with zarith.
-intros (u, Hu); contradict HN; subst; rewrite Zmult_0_r; auto with zarith.
-intro H6; rewrite Zmod_small; auto with zarith.
-intros p q Hp Hp1 Hp2; rewrite Zmult_mod; auto with zarith.
-rewrite Pocklington with (n := p) (R1 := R1) (4 := H4); auto.
-rewrite Hp1.
-rewrite Zmult_1_r; rewrite Zmod_small; auto with zarith.
-apply Zdivide_trans with (2 := Hp2); apply Zdivide_factor_l.
-apply Zdivide_trans with (2 := Hp2); apply Zdivide_factor_r; auto.
-Qed.
-
-Definition isSquare x := exists y, x = y * y.
-
-Theorem PocklingtonExtra:
-forall N F1 R1, 1 < F1 -> 0 < R1 -> N - 1 = F1 * R1 -> Zeven F1 -> Zodd R1 ->
- (forall p, prime p -> (p | F1) -> exists a, 1 < a /\ a^(N - 1) mod N = 1 /\ Zgcd (a ^ ((N - 1)/ p) - 1) N = 1) ->
- forall m, 1 <= m -> (forall l, 1 <= l < m -> ~((l * F1 + 1) | N)) ->
- let s := (R1 / (2 * F1)) in
- let r := (R1 mod (2 * F1)) in
- N < (m * F1 + 1) * (2 * F1 * F1 + (r - m) * F1 + 1) ->
- (s = 0 \/ ~ isSquare (r * r - 8 * s)) -> prime N.
-intros N F1 R1 H1 H2 H3 OF1 ER1 H4 m H5 H6 s r H7 H8.
-case (prime_dec N); auto; intros H9.
-assert (HN: 1 < N).
-assert (0 < N - 1); auto with zarith.
-rewrite H3; auto with zarith.
-apply Zlt_le_trans with (1* R1); auto with zarith.
-case Zdivide_div_prime_le_square with N; auto.
-intros X (Hx1, (Hx2, Hx3)).
-assert (Hx0: 1 < X).
-apply Zlt_le_trans with 2; try apply prime_ge_2; auto with zarith.
-pose (c := (X / F1)).
-assert(Hc1: 0 <= c); auto with zarith.
-apply Zge_le; unfold c; apply Z_div_ge0; auto with zarith.
-assert (Hc2: X = c * F1 + 1).
-rewrite (Z_div_mod_eq X F1); auto with zarith.
-eq_tac; auto.
-rewrite (Zmult_comm F1); auto.
-apply PocklingtonCorollary2 with (R1 := R1) (4 := H4); auto with zarith.
-case Zle_lt_or_eq with (1 := Hc1); clear Hc1; intros Hc1.
-2: contradict Hx0; rewrite Hc2; try rewrite <- Hc1; auto with zarith.
-case (Zle_or_lt m c); intros Hc3.
-2: case Zle_lt_or_eq with (1 := H5); clear H5; intros H5; auto with zarith.
-2: case (H6 c); auto with zarith; rewrite <- Hc2; auto.
-2: contradict Hc3; rewrite <- H5; auto with zarith.
-pose (d := ((N / X) / F1)).
-assert(Hd0: 0 <= N / X); try apply Z_div_pos; auto with zarith.
-(*
-apply Zge_le; unfold d; repeat apply Z_div_ge0; auto with zarith.
-*)
-assert(Hd1: 0 <= d); auto with zarith.
-apply Zge_le; unfold d; repeat apply Z_div_ge0; auto with zarith.
-assert (Hd2: N / X = d * F1 + 1).
-rewrite (Z_div_mod_eq (N / X) F1); auto with zarith.
-eq_tac; auto.
-rewrite (Zmult_comm F1); auto.
-apply PocklingtonCorollary2 with (R1 := R1) (4 := H4); auto with zarith.
-exists X; auto with zarith.
-apply Zdivide_Zdiv_eq; auto with zarith.
-case Zle_lt_or_eq with (1 := Hd0); clear Hd0; intros Hd0.
-2: contradict HN; rewrite (Zdivide_Zdiv_eq X N); auto with zarith.
-2: rewrite <- Hd0; auto with zarith.
-case (Zle_lt_or_eq 1 (N / X)); auto with zarith; clear Hd0; intros Hd0.
-2: contradict H9; rewrite (Zdivide_Zdiv_eq X N); auto with zarith.
-2: rewrite <- Hd0; rewrite Zmult_1_r; auto with zarith.
-case Zle_lt_or_eq with (1 := Hd1); clear Hd1; intros Hd1.
-2: contradict Hd0; rewrite Hd2; try rewrite <- Hd1; auto with zarith.
-case (Zle_or_lt m d); intros Hd3.
-2: case Zle_lt_or_eq with (1 := H5); clear H5; intros H5; auto with zarith.
-2: case (H6 d); auto with zarith; rewrite <- Hd2; auto.
-2: exists X; auto with zarith.
-2: apply Zdivide_Zdiv_eq; auto with zarith.
-2: contradict Hd3; rewrite <- H5; auto with zarith.
-assert (L5: N = (c * F1 + 1) * (d * F1 + 1)).
-rewrite <- Hc2; rewrite <- Hd2; apply Zdivide_Zdiv_eq; auto with zarith.
-assert (L6: R1 = c * d * F1 + c + d).
-apply trans_equal with ((N - 1) / F1).
-rewrite H3; rewrite Zmult_comm; apply sym_equal; apply Z_div_mult; auto with zarith.
-rewrite L5.
-match goal with |- (?X / ?Y = ?Z) => replace X with (Z * Y) end; try ring; apply Z_div_mult; auto with zarith.
-assert (L6_1: Zodd (c + d)).
-case (Zeven_odd_dec (c + d)); auto; intros O1.
-contradict ER1; apply Zeven_not_Zodd; rewrite L6; rewrite <- Zplus_assoc; apply Zeven_plus_Zeven; auto.
-apply Zeven_mult_Zeven_r; auto.
-assert (L6_2: Zeven (c * d)).
-case (Zeven_odd_dec c); intros HH1.
-apply Zeven_mult_Zeven_l; auto.
-case (Zeven_odd_dec d); intros HH2.
-apply Zeven_mult_Zeven_r; auto.
-contradict L6_1; apply Zeven_not_Zodd; apply Zodd_plus_Zodd; auto.
-assert ((c + d) mod (2 * F1) = r).
-rewrite <- Z_mod_plus with (b := Zdiv2 (c * d)); auto with zarith.
-match goal with |- ?X mod _ = _ => replace X with R1 end; auto.
-rewrite L6; pattern (c * d) at 1.
-rewrite Zeven_div2 with (1 := L6_2); ring.
-assert (L9: c + d - r < 2 * F1).
-apply Zplus_lt_reg_r with (r - m).
-apply Zmult_lt_reg_r with (F1); auto with zarith.
-apply Zplus_lt_reg_r with 1.
-match goal with |- ?X < ?Y =>
- replace Y with (2 * F1 * F1 + (r - m) * F1 + 1); try ring;
- replace X with ((((c + d) - m) * F1) + 1); try ring
-end.
-apply Zmult_lt_reg_r with (m * F1 + 1); auto with zarith.
-apply Zlt_trans with (m * F1 + 0); auto with zarith.
-rewrite Zplus_0_r; apply Zmult_lt_O_compat; auto with zarith.
-repeat rewrite (fun x => Zmult_comm x (m * F1 + 1)).
-apply Zle_lt_trans with (2 := H7).
-rewrite L5.
-match goal with |- ?X <= ?Y =>
- replace X with ((m * (c + d) - m * m ) * F1 * F1 + (c + d) * F1 + 1); try ring;
- replace Y with ((c * d) * F1 * F1 + (c + d) * F1 + 1); try ring
-end.
-repeat apply Zplus_le_compat_r.
-repeat apply Zmult_le_compat_r; auto with zarith.
-assert (tmp: forall p q, 0 <= p - q -> q <= p); auto with zarith; try apply tmp.
-match goal with |- _ <= ?X =>
- replace X with ((c - m) * (d - m)); try ring; auto with zarith
-end.
-assert (L10: c + d = r).
-apply Zmod_closeby_eq with (2 * F1); auto with zarith.
-unfold r; apply Z_mod_lt; auto with zarith.
-assert (L11: 2 * s = c * d).
-apply Zmult_reg_r with F1; auto with zarith.
-apply trans_equal with (R1 - (c + d)).
-rewrite L10; rewrite (Z_div_mod_eq R1 (2 * F1)); auto with zarith.
-unfold s, r; ring.
-rewrite L6; ring.
-case H8; intro H10.
-absurd (0 < c * d); auto with zarith.
-apply Zmult_lt_O_compat; auto with zarith.
-case H10; exists (c - d); auto with zarith.
-rewrite <- L10.
-replace (8 * s) with (4 * (2 * s)); auto with zarith; try rewrite L11; ring.
-Qed.
-
-Theorem PocklingtonExtraCorollary:
-forall N F1 R1, 1 < F1 -> 0 < R1 -> N - 1 = F1 * R1 -> Zeven F1 -> Zodd R1 ->
- (forall p, prime p -> (p | F1) -> exists a, 1 < a /\ a^(N - 1) mod N = 1 /\ Zgcd (a ^ ((N - 1)/ p) - 1) N = 1) ->
- let s := (R1 / (2 * F1)) in
- let r := (R1 mod (2 * F1)) in
- N < 2 * F1 * F1 * F1 -> (s = 0 \/ ~ isSquare (r * r - 8 * s)) -> prime N.
-intros N F1 R1 H1 H2 H3 OF1 ER1 H4 s r H5 H6.
-apply PocklingtonExtra with (6 := H4) (R1 := R1) (m := 1); auto with zarith.
-apply Zlt_le_trans with (1 := H5).
-match goal with |- ?X <= ?K * ((?Y + ?Z) + ?T) =>
- rewrite <- (Zplus_0_l X);
- replace (K * ((Y + Z) + T)) with ((F1 * (Z + T) + Y + Z + T) + X);[idtac | ring]
-end.
-apply Zplus_le_compat_r.
-case (Zle_lt_or_eq 0 r); unfold r; auto with zarith.
-case (Z_mod_lt R1 (2 * F1)); auto with zarith.
-intros HH; repeat ((rewrite <- (Zplus_0_r 0); apply Zplus_le_compat)); auto with zarith.
-intros HH; contradict ER1; apply Zeven_not_Zodd.
-rewrite (Z_div_mod_eq R1 (2 * F1)); auto with zarith.
-rewrite <- HH; rewrite Zplus_0_r.
-rewrite <- Zmult_assoc; apply Zeven_2p.
-Qed.
diff --git a/coqprime/Coqprime/PocklingtonCertificat.v b/coqprime/Coqprime/PocklingtonCertificat.v
deleted file mode 100644
index 9d3a032fd..000000000
--- a/coqprime/Coqprime/PocklingtonCertificat.v
+++ /dev/null
@@ -1,755 +0,0 @@
-
-(*************************************************************)
-(* This file is distributed under the terms of the *)
-(* GNU Lesser General Public License Version 2.1 *)
-(*************************************************************)
-(* Benjamin.Gregoire@inria.fr Laurent.Thery@inria.fr *)
-(*************************************************************)
-
-Require Import List.
-Require Import ZArith.
-Require Import Zorder.
-Require Import ZCAux.
-Require Import LucasLehmer.
-Require Import Pocklington.
-Require Import ZCmisc.
-Require Import Pmod.
-
-Definition dec_prime := list (positive * positive).
-
-Inductive singleCertif : Set :=
- | Proof_certif : forall N:positive, prime N -> singleCertif
- | Lucas_certif : forall (n:positive) (p: Z), singleCertif
- | Pock_certif : forall N a : positive, dec_prime -> positive -> singleCertif
- | SPock_certif : forall N a : positive, dec_prime -> singleCertif
- | Ell_certif: forall (N S: positive) (l: list (positive * positive))
- (A B x y: Z), singleCertif.
-
-Definition Certif := list singleCertif.
-
-Definition nprim sc :=
- match sc with
- | Proof_certif n _ => n
- | Lucas_certif n _ => n
- | Pock_certif n _ _ _ => n
- | SPock_certif n _ _ => n
- | Ell_certif n _ _ _ _ _ _ => n
-
- end.
-
-Open Scope positive_scope.
-Open Scope P_scope.
-
-Fixpoint pow (a p:positive) {struct p} : positive :=
- match p with
- | xH => a
- | xO p' =>let z := pow a p' in square z
- | xI p' => let z := pow a p' in square z * a
- end.
-
-Definition mkProd' (l:dec_prime) :=
- fold_right (fun (k:positive*positive) r => times (fst k) r) 1%positive l.
-
-Definition mkProd_pred (l:dec_prime) :=
- fold_right (fun (k:positive*positive) r =>
- if ((snd k) ?= 1)%P then r else times (pow (fst k) (Ppred (snd k))) r)
- 1%positive l.
-
-Definition mkProd (l:dec_prime) :=
- fold_right (fun (k:positive*positive) r => times (pow (fst k) (snd k)) r) 1%positive l.
-
-(* [pow_mod a m n] return [a^m mod n] *)
-Fixpoint pow_mod (a m n : positive) {struct m} : N :=
- match m with
- | xH => (a mod n)%P
- | xO m' =>
- let z := pow_mod a m' n in
- match z with
- | N0 => 0%N
- | Npos z' => ((square z') mod n)%P
- end
- | xI m' =>
- let z := pow_mod a m' n in
- match z with
- | N0 => 0%N
- | Npos z' => (((square z') * a)%P mod n)%P
- end
- end.
-
-Definition Npow_mod a m n :=
- match a with
- | N0 => 0%N
- | Npos a => pow_mod a m n
- end.
-
-(* [fold_pow_mod a [q1,_;...;qn,_]] b = a ^(q1*...*qn) mod b *)
-(* invariant a mod N = a *)
-Definition fold_pow_mod a l n :=
- fold_left
- (fun a' (qp:positive*positive) => Npow_mod a' (fst qp) n)
- l a.
-
-Definition times_mod x y n :=
- match x, y with
- | N0, _ => N0
- | _, N0 => N0
- | Npos x, Npos y => ((x * y)%P mod n)
- end.
-
-Definition Npred_mod p n :=
- match p with
- | N0 => Npos (Ppred n)
- | Npos p =>
- if (p ?= 1) then N0
- else Npos (Ppred p)
- end.
-
-Fixpoint all_pow_mod (prod a : N) (l:dec_prime) (n:positive) {struct l}: N*N :=
- match l with
- | nil => (prod,a)
- | (q,_) :: l =>
- let m := Npred_mod (fold_pow_mod a l n) n in
- all_pow_mod (times_mod prod m n) (Npow_mod a q n) l n
- end.
-
-Fixpoint pow_mod_pred (a:N) (l:dec_prime) (n:positive) {struct l} : N :=
- match l with
- | nil => a
- | (q,p)::l =>
- if (p ?= 1) then pow_mod_pred a l n
- else
- let a' := iter_pos _ (fun x => Npow_mod x q n) a (Ppred p) in
- pow_mod_pred a' l n
- end.
-
-Definition is_odd p :=
- match p with
- | xO _ => false
- | _ => true
- end.
-
-Definition is_even p :=
- match p with
- | xO _ => true
- | _ => false
- end.
-
-Definition check_s_r s r sqrt :=
- match s with
- | N0 => true
- | Npos p =>
- match (Zminus (square r) (xO (xO (xO p)))) with
- | Zpos x =>
- let sqrt2 := square sqrt in
- let sqrt12 := square (Psucc sqrt) in
- if sqrt2 ?< x then x ?< sqrt12
- else false
- | Zneg _ => true
- | Z0 => false
- end
- end.
-
-Definition test_pock N a dec sqrt :=
- if (2 ?< N) then
- let Nm1 := Ppred N in
- let F1 := mkProd dec in
- match Nm1 / F1 with
- | (Npos R1, N0) =>
- if is_odd R1 then
- if is_even F1 then
- if (1 ?< a) then
- let (s,r') := (R1 / (xO F1))in
- match r' with
- | Npos r =>
- let A := pow_mod_pred (pow_mod a R1 N) dec N in
- match all_pow_mod 1%N A dec N with
- | (Npos p, Npos aNm1) =>
- if (aNm1 ?= 1) then
- if gcd p N ?= 1 then
- if check_s_r s r sqrt then
- (N ?< (times ((times ((xO F1)+r+1) F1) + r) F1) + 1)
- else false
- else false
- else false
- | _ => false
- end
- | _ => false
- end
- else false
- else false
- else false
- | _=> false
- end
- else false.
-
-Fixpoint is_in (p : positive) (lc : Certif) {struct lc} : bool :=
- match lc with
- | nil => false
- | c :: l => if p ?= (nprim c) then true else is_in p l
- end.
-
-Fixpoint all_in (lc : Certif) (lp : dec_prime) {struct lp} : bool :=
- match lp with
- | nil => true
- | (p,_) :: lp =>
- if all_in lc lp
- then is_in p lc
- else false
- end.
-
-Definition gt2 n :=
- match n with
- | Zpos p => (2 ?< p)%positive
- | _ => false
- end.
-
-Fixpoint test_Certif (lc : Certif) : bool :=
- match lc with
- | nil => true
- | (Proof_certif _ _) :: lc => test_Certif lc
- | (Lucas_certif n p) :: lc =>
- if test_Certif lc then
- if gt2 p then
- match Mp p with
- | Zpos n' =>
- if (n ?= n') then
- match SS p with
- | Z0 => true
- | _ => false
- end
- else false
- | _ => false
- end
- else false
- else false
- | (Pock_certif n a dec sqrt) :: lc =>
- if test_pock n a dec sqrt then
- if all_in lc dec then test_Certif lc else false
- else false
-(* Shoudl be done later to do it with Z *)
- | (SPock_certif n a dec) :: lc => false
- | (Ell_certif _ _ _ _ _ _ _):: lc => false
- end.
-
-Lemma pos_eq_1_spec :
- forall p,
- if (p ?= 1)%P then p = xH
- else (1 < p).
-Proof.
- unfold Zlt;destruct p;simpl; auto; red;reflexivity.
-Qed.
-
-Open Scope Z_scope.
-Lemma mod_unique : forall b q1 r1 q2 r2,
- 0 <= r1 < b ->
- 0 <= r2 < b ->
- b * q1 + r1 = b * q2 + r2 ->
- q1 = q2 /\ r1 = r2.
-Proof with auto with zarith.
- intros b q1 r1 q2 r2 H1 H2 H3.
- assert (r2 = (b * q1 + r1) -b*q2). rewrite H3;ring.
- assert (b*(q2 - q1) = r1 - r2 ). rewrite H;ring.
- assert (-b < r1 - r2 < b). omega.
- destruct (Ztrichotomy q1 q2) as [H5 | [H5 | H5]].
- assert (q2 - q1 >= 1). omega.
- assert (r1- r2 >= b).
- rewrite <- H0.
- pattern b at 2; replace b with (b*1).
- apply Zmult_ge_compat_l; omega. ring.
- elimtype False; omega.
- split;trivial. rewrite H;rewrite H5;ring.
- assert (r1- r2 <= -b).
- rewrite <- H0.
- replace (-b) with (b*(-1)); try (ring;fail).
- apply Zmult_le_compat_l; omega.
- elimtype False; omega.
-Qed.
-
-Lemma Zge_0_pos : forall p:positive, p>= 0.
-Proof.
- intros;unfold Zge;simpl;intro;discriminate.
-Qed.
-
-Lemma Zge_0_pos_add : forall p:positive, p+p>= 0.
-Proof.
- intros;simpl;apply Zge_0_pos.
-Qed.
-
-Hint Resolve Zpower_gt_0 Zlt_0_pos Zge_0_pos Zlt_le_weak Zge_0_pos_add: zmisc.
-
-Hint Rewrite Zpos_mult Zpower_mult Zpower_1_r Zmod_mod Zpower_exp
- times_Zmult square_Zmult Psucc_Zplus: zmisc.
-
-Ltac mauto :=
- trivial;autorewrite with zmisc;trivial;auto with zmisc zarith.
-
-Lemma mod_lt : forall a (b:positive), a mod b < b.
-Proof.
- intros a b;destruct (Z_mod_lt a b);mauto.
-Qed.
-Hint Resolve mod_lt : zmisc.
-
-Lemma Zmult_mod_l : forall (n:positive) a b, (a mod n * b) mod n = (a * b) mod n.
-Proof with mauto.
- intros;rewrite Zmult_mod ... rewrite (Zmult_mod a) ...
-Qed.
-
-Lemma Zmult_mod_r : forall (n:positive) a b, (a * (b mod n)) mod n = (a * b) mod n.
-Proof with mauto.
- intros;rewrite Zmult_mod ... rewrite (Zmult_mod a) ...
-Qed.
-
-Lemma Zminus_mod_l : forall (n:positive) a b, (a mod n - b) mod n = (a - b) mod n.
-Proof with mauto.
- intros;rewrite Zminus_mod ... rewrite (Zminus_mod a) ...
-Qed.
-
-Lemma Zminus_mod_r : forall (n:positive) a b, (a - (b mod n)) mod n = (a - b) mod n.
-Proof with mauto.
- intros;rewrite Zminus_mod ... rewrite (Zminus_mod a) ...
-Qed.
-
-Hint Rewrite Zmult_mod_l Zmult_mod_r Zminus_mod_l Zminus_mod_r : zmisc.
-Hint Rewrite <- Zpower_mod : zmisc.
-
-Lemma Pmod_Zmod : forall a b, Z_of_N (a mod b)%P = a mod b.
-Proof.
- intros a b; rewrite Pmod_div_eucl.
- assert (b>0). mauto.
- unfold Zmod; assert (H1 := Z_div_mod a b H).
- destruct (Zdiv_eucl a b) as (q2, r2).
- assert (H2 := div_eucl_spec a b).
- assert (Z_of_N (fst (a / b)%P) = q2 /\ Z_of_N (snd (a/b)%P) = r2).
- destruct H1;destruct H2.
- apply mod_unique with b;mauto.
- split;mauto.
- unfold Zle;destruct (snd (a / b)%P);intro;discriminate.
- rewrite <- H0;symmetry;rewrite Zmult_comm;trivial.
- destruct H0;auto.
-Qed.
-Hint Rewrite Pmod_Zmod : zmisc.
-
-Lemma Zpower_0 : forall p : positive, 0^p = 0.
-Proof.
- intros;simpl;destruct p;unfold Zpower_pos;simpl;trivial.
- generalize (iter_pos Z (Z.mul 0) 1 p).
- induction p;simpl;trivial.
-Qed.
-
-Lemma pow_Zpower : forall a p, Zpos (pow a p) = a ^ p.
-Proof.
- induction p; mauto; simpl; mauto; rewrite IHp; mauto.
-Qed.
-Hint Rewrite pow_Zpower : zmisc.
-
-Lemma pow_mod_spec : forall n a m, Z_of_N (pow_mod a m n) = a^m mod n.
-Proof.
- induction m; mauto; simpl; intros; mauto.
- rewrite Zmult_mod; auto with zmisc.
- rewrite (Zmult_mod (a^m)(a^m)); auto with zmisc.
- rewrite <- IHm; mauto.
- destruct (pow_mod a m n); mauto.
- rewrite (Zmult_mod (a^m)(a^m)); auto with zmisc.
- rewrite <- IHm. destruct (pow_mod a m n);simpl; mauto.
-Qed.
-Hint Rewrite pow_mod_spec Zpower_0 : zmisc.
-
-Lemma Npow_mod_spec : forall a p n, Z_of_N (Npow_mod a p n) = a^p mod n.
-Proof.
- intros a p n;destruct a; mauto; simpl; mauto.
-Qed.
-Hint Rewrite Npow_mod_spec : zmisc.
-
-Lemma iter_Npow_mod_spec : forall n q p a,
- Z_of_N (iter_pos N (fun x : N => Npow_mod x q n) a p) = a^q^p mod n.
-Proof.
- induction p; mauto; intros; simpl Pos.iter; mauto; repeat rewrite IHp.
- rewrite (Zpower_mod ((a ^ q ^ p) ^ q ^ p));auto with zmisc.
- rewrite (Zpower_mod (a ^ q ^ p)); mauto.
- mauto.
-Qed.
-Hint Rewrite iter_Npow_mod_spec : zmisc.
-
-Lemma fold_pow_mod_spec : forall (n:positive) l (a:N),
- Z_of_N a = a mod n ->
- Z_of_N (fold_pow_mod a l n) = a^(mkProd' l) mod n.
-Proof.
- unfold fold_pow_mod;induction l; simpl fold_left; simpl mkProd';
- intros; mauto.
- rewrite IHl; mauto.
-Qed.
-Hint Rewrite fold_pow_mod_spec : zmisc.
-
-Lemma pow_mod_pred_spec : forall (n:positive) l (a:N),
- Z_of_N a = a mod n ->
- Z_of_N (pow_mod_pred a l n) = a^(mkProd_pred l) mod n.
-Proof.
- unfold pow_mod_pred;induction l;simpl mkProd;intros; mauto.
- destruct a as (q,p).
- simpl mkProd_pred.
- destruct (p ?= 1)%P; rewrite IHl; mauto; simpl.
-Qed.
-Hint Rewrite pow_mod_pred_spec : zmisc.
-
-Lemma mkProd_pred_mkProd : forall l,
- (mkProd_pred l)*(mkProd' l) = mkProd l.
-Proof.
- induction l;simpl;intros; mauto.
- generalize (pos_eq_1_spec (snd a)); destruct (snd a ?= 1)%P;intros.
- rewrite H; mauto.
- replace (mkProd_pred l * (fst a * mkProd' l)) with
- (fst a *(mkProd_pred l * mkProd' l));try ring.
- rewrite IHl; mauto.
- rewrite Zmult_assoc. rewrite times_Zmult.
- rewrite (Zmult_comm (pow (fst a) (Ppred (snd a)) * mkProd_pred l)).
- rewrite Zmult_assoc. rewrite pow_Zpower. rewrite <-Ppred_Zminus;trivial.
- rewrite <- Zpower_Zsucc; try omega.
- replace (Zsucc (snd a - 1)) with ((snd a - 1)+1).
- replace ((snd a - 1)+1) with (Zpos (snd a)); mauto.
- rewrite <- IHl;repeat rewrite Zmult_assoc; mauto.
- destruct (snd a - 1);trivial.
- assert (1 < snd a); auto with zarith.
-Qed.
-Hint Rewrite mkProd_pred_mkProd : zmisc.
-
-Lemma lt_Zmod : forall p n, 0 <= p < n -> p mod n = p.
-Proof.
- intros a b H.
- assert ( 0 <= a mod b < b).
- apply Z_mod_lt; mauto.
- destruct (mod_unique b (a/b) (a mod b) 0 a H0 H); mauto.
- rewrite <- Z_div_mod_eq; mauto.
-Qed.
-
-Lemma Npred_mod_spec : forall p n, Z_of_N p < Zpos n ->
- 1 < Zpos n -> Z_of_N (Npred_mod p n) = (p - 1) mod n.
-Proof.
- destruct p;intros;simpl.
- rewrite <- Ppred_Zminus; auto.
- apply Zmod_unique with (q := -1); mauto.
- assert (H1 := pos_eq_1_spec p);destruct (p?=1)%P.
- rewrite H1; mauto.
- unfold Z_of_N;rewrite <- Ppred_Zminus; auto.
- simpl in H;symmetry; apply (lt_Zmod (p-1) n).
- assert (1 < p); auto with zarith.
-Qed.
-Hint Rewrite Npred_mod_spec : zmisc.
-
-Lemma times_mod_spec : forall x y n, Z_of_N (times_mod x y n) = (x * y) mod n.
-Proof.
- intros; destruct x; mauto.
- destruct y;simpl; mauto.
-Qed.
-Hint Rewrite times_mod_spec : zmisc.
-
-Lemma snd_all_pow_mod :
- forall n l (prod a :N),
- a mod (Zpos n) = a ->
- Z_of_N (snd (all_pow_mod prod a l n)) = (a^(mkProd' l)) mod n.
-Proof.
- induction l; simpl all_pow_mod; simpl mkProd';intros; mauto.
- destruct a as (q,p).
- rewrite IHl; mauto.
-Qed.
-
-Lemma fold_aux : forall a N (n:positive) l prod,
- fold_left
- (fun (r : Z) (k : positive * positive) =>
- r * (a ^(N / fst k) - 1) mod n) l (prod mod n) mod n =
- fold_left
- (fun (r : Z) (k : positive * positive) =>
- r * (a^(N / fst k) - 1)) l prod mod n.
-Proof.
- induction l;simpl;intros; mauto.
-Qed.
-
-Lemma fst_all_pow_mod :
- forall (n a:positive) l (R:positive) (prod A :N),
- 1 < n ->
- Z_of_N prod = prod mod n ->
- Z_of_N A = a^R mod n ->
- Z_of_N (fst (all_pow_mod prod A l n)) =
- (fold_left
- (fun r (k:positive*positive) =>
- (r * (a ^ (R* mkProd' l / (fst k)) - 1))) l prod) mod n.
-Proof.
- induction l;simpl;intros; mauto.
- destruct a0 as (q,p);simpl.
- assert (Z_of_N A = A mod n).
- rewrite H1; mauto.
- rewrite (IHl (R * q)%positive); mauto; mauto.
- pattern (q * mkProd' l) at 2;rewrite (Zmult_comm q).
- repeat rewrite Zmult_assoc.
- rewrite Z_div_mult;auto with zmisc zarith.
- rewrite <- fold_aux.
- rewrite <- (fold_aux a (R * q * mkProd' l) n l (prod * (a ^ (R * mkProd' l) - 1)))...
- assert ( ((prod * (A ^ mkProd' l - 1)) mod n) =
- ((prod * ((a ^ R) ^ mkProd' l - 1)) mod n)).
- repeat rewrite (Zmult_mod prod);auto with zmisc.
- rewrite Zminus_mod;auto with zmisc.
- rewrite (Zminus_mod ((a ^ R) ^ mkProd' l));auto with zmisc.
- rewrite (Zpower_mod (a^R));auto with zmisc. rewrite H1; mauto.
- rewrite H3; mauto.
- rewrite H1; mauto.
-Qed.
-
-Lemma is_odd_Zodd : forall p, is_odd p = true -> Zodd p.
-Proof.
- destruct p;intros;simpl;trivial;discriminate.
-Qed.
-
-Lemma is_even_Zeven : forall p, is_even p = true -> Zeven p.
-Proof.
- destruct p;intros;simpl;trivial;discriminate.
-Qed.
-
-Lemma lt_square : forall x y, 0 < x -> x < y -> x*x < y*y.
-Proof.
- intros; apply Zlt_trans with (x*y).
- apply Zmult_lt_compat_l;trivial.
- apply Zmult_lt_compat_r;trivial. omega.
-Qed.
-
-Lemma le_square : forall x y, 0 <= x -> x <= y -> x*x <= y*y.
-Proof.
- intros; apply Zle_trans with (x*y).
- apply Zmult_le_compat_l;trivial.
- apply Zmult_le_compat_r;trivial. omega.
-Qed.
-
-Lemma borned_square : forall x y, 0 <= x -> 0 <= y ->
- x*x < y*y < (x+1)*(x+1) -> False.
-Proof.
- intros;destruct (Z_lt_ge_dec x y) as [z|z].
- assert (x + 1 <= y). omega.
- assert (0 <= x+1). omega.
- assert (H4 := le_square _ _ H3 H2). omega.
- assert (H4 := le_square _ _ H0 (Zge_le _ _ z)). omega.
-Qed.
-
-Lemma not_square : forall (sqrt:positive) n, sqrt * sqrt < n < (sqrt+1)*(sqrt + 1) -> ~(isSquare n).
-Proof.
- intros sqrt n H (y,H0).
- destruct (Z_lt_ge_dec 0 y).
- apply (borned_square sqrt y);mauto.
- assert (y*y = (-y)*(-y)). ring. rewrite H1 in H0;clear H1.
- apply (borned_square sqrt (-y));mauto.
-Qed.
-
-Ltac spec_dec :=
- repeat match goal with
- | [H:(?x ?= ?y)%P = _ |- _] =>
- generalize (is_eq_spec x y);
- rewrite H;clear H; autorewrite with zmisc;
- intro
- | [H:(?x ?< ?y)%P = _ |- _] =>
- generalize (is_lt_spec x y);
- rewrite H; clear H; autorewrite with zmisc;
- intro
- end.
-
-Ltac elimif :=
- match goal with
- | [H: (if ?b then _ else _) = _ |- _] =>
- let H1 := fresh "H" in
- (CaseEq b;intros H1; rewrite H1 in H;
- try discriminate H); elimif
- | _ => spec_dec
- end.
-
-Lemma check_s_r_correct : forall s r sqrt, check_s_r s r sqrt = true ->
- Z_of_N s = 0 \/ ~ isSquare (r * r - 8 * s).
-Proof.
- unfold check_s_r;intros.
- destruct s as [|s]; trivial;auto.
- right;CaseEq (square r - xO (xO (xO s)));[intros H1|intros p1 H1| intros p1 H1];
- rewrite H1 in H;try discriminate H.
- elimif.
- assert (Zpos (xO (xO (xO s))) = 8 * s). repeat rewrite Zpos_xO_add;ring.
- generalizeclear H1; rewrite H2;mauto;intros.
- apply (not_square sqrt).
- simpl Z.of_N; rewrite H1;auto.
- intros (y,Heq).
- generalize H1 Heq;mauto.
- unfold Z_of_N.
- match goal with |- ?x = _ -> ?y = _ -> _ =>
- replace x with y; try ring
- end.
- intros Heq1;rewrite Heq1;intros Heq2.
- destruct y;discriminate Heq2.
-Qed.
-
-Lemma in_mkProd_prime_div_in :
- forall p:positive, prime p ->
- forall (l:dec_prime),
- (forall k, In k l -> prime (fst k)) ->
- Zdivide p (mkProd l) -> exists n,In (p, n) l.
-Proof.
- induction l;simpl mkProd; simpl In; mauto.
- intros _ H1; absurd (p <= 1).
- apply Zlt_not_le; apply Zlt_le_trans with 2; try apply prime_ge_2; auto with zarith.
- apply Zdivide_le; auto with zarith.
- intros.
- case prime_mult with (2 := H1); auto with zarith; intros H2.
- exists (snd a);left.
- destruct a;simpl in *.
- assert (Zpos p = Zpos p0).
- rewrite (prime_div_Zpower_prime p1 p p0); mauto.
- apply (H0 (p0,p1));auto.
- inversion H3; auto.
- destruct IHl as (n,H3); mauto.
- exists n; auto.
-Qed.
-
-Lemma gcd_Zis_gcd : forall a b:positive, (Zis_gcd b a (gcd b a)%P).
-Proof.
- intros a;assert (Hacc := Zwf_pos a);induction Hacc;rename x into a;intros.
- generalize (div_eucl_spec b a); mauto.
- rewrite <- (Pmod_div_eucl b a).
- CaseEq (b mod a)%P;[intros Heq|intros r Heq]; intros (H1,H2).
- simpl in H1;rewrite Zplus_0_r in H1.
- rewrite (gcd_mod0 _ _ Heq).
- constructor;mauto.
- apply Zdivide_intro with (fst (b/a)%P);trivial.
- rewrite (gcd_mod _ _ _ Heq).
- rewrite H1;apply Zis_gcd_sym.
- rewrite Zmult_comm;apply Zis_gcd_for_euclid2;simpl in *.
- apply Zis_gcd_sym;auto.
-Qed.
-
-Lemma test_pock_correct : forall N a dec sqrt,
- (forall k, In k dec -> prime (Zpos (fst k))) ->
- test_pock N a dec sqrt = true ->
- prime N.
-Proof.
- unfold test_pock;intros.
- elimif.
- generalize (div_eucl_spec (Ppred N) (mkProd dec));
- destruct ((Ppred N) / (mkProd dec))%P as (R1,n); mauto;intros (H2,H3).
- destruct R1 as [|R1];try discriminate H0.
- destruct n;try discriminate H0.
- elimif.
- generalize (div_eucl_spec R1 (xO (mkProd dec)));
- destruct ((R1 / xO (mkProd dec))%P) as (s,r'); mauto;intros (H7,H8).
- destruct r' as [|r];try discriminate H0.
- generalize (fst_all_pow_mod N a dec (R1*mkProd_pred dec) 1
- (pow_mod_pred (pow_mod a R1 N) dec N)).
- generalize (snd_all_pow_mod N dec 1 (pow_mod_pred (pow_mod a R1 N) dec N)).
- destruct (all_pow_mod 1 (pow_mod_pred (pow_mod a R1 N) dec N) dec N) as
- (prod,aNm1); mauto; simpl Z_of_N.
- destruct prod as [|prod];try discriminate H0.
- destruct aNm1 as [|aNm1];try discriminate H0;elimif.
- simpl in H3; simpl in H2.
- rewrite <- Ppred_Zminus in H2;try omega.
- rewrite <- Zmult_assoc;rewrite mkProd_pred_mkProd.
- intros H12;assert (a^(N-1) mod N = 1).
- pattern 1 at 2;rewrite <- H9;symmetry.
- simpl Z.of_N in H12.
- rewrite H2; rewrite H12; mauto.
- rewrite <- Zpower_mult; mauto.
- clear H12.
- intros H14.
- match type of H14 with _ -> _ -> _ -> ?X =>
- assert (H12:X); try apply H14; clear H14
- end; mauto.
- rewrite Zmod_small; mauto.
- assert (1 < mkProd dec).
- assert (H14 := Zlt_0_pos (mkProd dec)).
- assert (1 <= mkProd dec); mauto.
- destruct (Zle_lt_or_eq _ _ H15); mauto.
- inversion H16. rewrite <- H18 in H5;discriminate H5.
- simpl in H8.
- assert (Z_of_N s = R1 / (2 * mkProd dec) /\ Zpos r = R1 mod (2 * mkProd dec)).
- apply mod_unique with (2 * mkProd dec);auto with zarith.
- revert H8; mauto.
- apply Z_mod_lt; mauto.
- rewrite <- Z_div_mod_eq; mauto; rewrite H7.
- simpl fst; simpl snd; simpl Z_of_N.
- ring.
- destruct H15 as (H15,Heqr).
- apply PocklingtonExtra with (F1:=mkProd dec) (R1:=R1) (m:=1);
- auto with zmisc zarith.
- rewrite H2; mauto.
- apply is_even_Zeven; auto.
- apply is_odd_Zodd; auto.
- intros p; case p; clear p.
- intros HH; contradict HH.
- apply not_prime_0.
- 2: intros p (V1, _); contradict V1; apply Zle_not_lt; red; simpl; intros;
- discriminate.
- intros p Hprime Hdec; exists (Zpos a);repeat split; auto with zarith.
- apply Zis_gcd_gcd; auto with zarith.
- change (rel_prime (a ^ ((N - 1) / p) - 1) N).
- match type of H12 with _ = ?X mod _ =>
- apply rel_prime_div with (p := X); auto with zarith
- end.
- apply rel_prime_mod_rev; auto with zarith.
- red.
- pattern 1 at 3; rewrite <- H10; rewrite <- H12.
- apply Pmod.gcd_Zis_gcd.
- destruct (in_mkProd_prime_div_in _ Hprime _ H Hdec) as (q,Hin).
- revert H2; mauto; intro H2.
- rewrite <- H2.
- match goal with |- context [fold_left ?f _ _] =>
- apply (ListAux.fold_left_invol_in _ _ f (fun k => Zdivide (a ^ ((N - 1) / p) - 1) k))
- with (b := (p, q)); auto with zarith
- end.
- rewrite <- Heqr.
- generalizeclear H0; ring_simplify
- (((mkProd dec + mkProd dec + r + 1) * mkProd dec + r) * mkProd dec + 1)
- ((1 * mkProd dec + 1) * (2 * mkProd dec * mkProd dec + (r - 1) * mkProd dec + 1)); mauto.
- rewrite <- H15;rewrite <- Heqr.
- apply check_s_r_correct with sqrt; mauto.
-Qed.
-
-Lemma is_in_In :
- forall p lc, is_in p lc = true -> exists c, In c lc /\ p = nprim c.
-Proof.
- induction lc;simpl;try (intros;discriminate).
- intros;elimif.
- exists a;split;auto. inversion H0;trivial.
- destruct (IHlc H) as [c [H1 H2]];exists c;auto.
-Qed.
-
-Lemma all_in_In :
- forall lc lp, all_in lc lp = true ->
- forall pq, In pq lp -> exists c, In c lc /\ fst pq = nprim c.
-Proof.
- induction lp;simpl. intros H pq HF;elim HF.
- intros;destruct a;elimif.
- destruct H0;auto.
- rewrite <- H0;simpl;apply is_in_In;trivial.
-Qed.
-
-Lemma test_Certif_In_Prime :
- forall lc, test_Certif lc = true ->
- forall c, In c lc -> prime (nprim c).
-Proof with mauto.
- induction lc;simpl;intros. elim H0.
- destruct H0.
- subst c;destruct a;simpl...
- elimif.
- CaseEq (Mp p);[intros Heq|intros N' Heq|intros N' Heq];rewrite Heq in H;
- try discriminate H. elimif.
- CaseEq (SS p);[intros Heq'|intros N'' Heq'|intros N'' Heq'];rewrite Heq' in H;
- try discriminate H.
- rewrite H2;rewrite <- Heq.
-apply LucasLehmer;trivial.
-(destruct p; try discriminate H1).
-simpl in H1; generalize (is_lt_spec 2 p); rewrite H1; auto.
-elimif.
-apply (test_pock_correct N a d p); mauto.
- intros k Hin;destruct (all_in_In _ _ H1 _ Hin) as (c,(H2,H3)).
- rewrite H3;auto.
-discriminate.
-discriminate.
- destruct a;elimif;auto.
-discriminate.
-discriminate.
-Qed.
-
-Lemma Pocklington_refl :
- forall c lc, test_Certif (c::lc) = true -> prime (nprim c).
-Proof.
- intros c lc Heq;apply test_Certif_In_Prime with (c::lc);trivial;simpl;auto.
-Qed.
diff --git a/coqprime/Coqprime/Root.v b/coqprime/Coqprime/Root.v
deleted file mode 100644
index 0b432b788..000000000
--- a/coqprime/Coqprime/Root.v
+++ /dev/null
@@ -1,239 +0,0 @@
-
-(*************************************************************)
-(* This file is distributed under the terms of the *)
-(* GNU Lesser General Public License Version 2.1 *)
-(*************************************************************)
-(* Benjamin.Gregoire@inria.fr Laurent.Thery@inria.fr *)
-(*************************************************************)
-
-(***********************************************************************
- Root.v
-
- Proof that a polynomial has at most n roots
-************************************************************************)
-Require Import ZArith.
-Require Import List.
-Require Import UList.
-Require Import Tactic.
-Require Import Permutation.
-
-Open Scope Z_scope.
-
-Section Root.
-
-Variable A: Set.
-Variable P: A -> Prop.
-Variable plus mult: A -> A -> A.
-Variable op: A -> A.
-Variable zero one: A.
-
-
-Let pol := list A.
-
-Definition toA z :=
-match z with
- Z0 => zero
-| Zpos p => iter_pos _ (plus one) zero p
-| Zneg p => op (iter_pos _ (plus one) zero p)
-end.
-
-Fixpoint eval (p: pol) (x: A) {struct p} : A :=
-match p with
- nil => zero
-| a::p1 => plus a (mult x (eval p1 x))
-end.
-
-Fixpoint div (p: pol) (x: A) {struct p} : pol * A :=
-match p with
- nil => (nil, zero)
-| a::nil => (nil, a)
-| a::p1 =>
- (snd (div p1 x)::fst (div p1 x),
- (plus a (mult x (snd (div p1 x)))))
-end.
-
-Hypothesis Pzero: P zero.
-Hypothesis Pplus: forall x y, P x -> P y -> P (plus x y).
-Hypothesis Pmult: forall x y, P x -> P y -> P (mult x y).
-Hypothesis Pop: forall x, P x -> P (op x).
-Hypothesis plus_zero: forall a, P a -> plus zero a = a.
-Hypothesis plus_comm: forall a b, P a -> P b -> plus a b = plus b a.
-Hypothesis plus_assoc: forall a b c, P a -> P b -> P c -> plus a (plus b c) = plus (plus a b) c.
-Hypothesis mult_zero: forall a, P a -> mult zero a = zero.
-Hypothesis mult_comm: forall a b, P a -> P b -> mult a b = mult b a.
-Hypothesis mult_assoc: forall a b c, P a -> P b -> P c -> mult a (mult b c) = mult (mult a b) c.
-Hypothesis mult_plus_distr: forall a b c, P a -> P b -> P c -> mult a (plus b c) = plus (mult a b) (mult a c).
-Hypothesis plus_op_zero: forall a, P a -> plus a (op a) = zero.
-Hypothesis mult_integral: forall a b, P a -> P b -> mult a b = zero -> a = zero \/ b = zero.
-(* Not necessary in Set just handy *)
-Hypothesis A_dec: forall a b: A, {a = b} + {a <> b}.
-
-Theorem eval_P: forall p a, P a -> (forall i, In i p -> P i) -> P (eval p a).
-intros p a Pa; elim p; simpl; auto with datatypes.
-intros a1 l1 Rec H; apply Pplus; auto.
-Qed.
-
-Hint Resolve eval_P.
-
-Theorem div_P: forall p a, P a -> (forall i, In i p -> P i) -> (forall i, In i (fst (div p a)) -> P i) /\ P (snd (div p a)).
-intros p a Pa; elim p; auto with datatypes.
-intros a1 l1; case l1.
-simpl; intuition.
-intros a2 p2 Rec Hi; split.
-case Rec; auto with datatypes.
-intros H H1 i.
-replace (In i (fst (div (a1 :: a2 :: p2) a))) with
- (snd (div (a2::p2) a) = i \/ In i (fst (div (a2::p2) a))); auto.
-intros [Hi1 | Hi1]; auto.
-rewrite <- Hi1; auto.
-change ( P (plus a1 (mult a (snd (div (a2::p2) a))))); auto with datatypes.
-apply Pplus; auto with datatypes.
-apply Pmult; auto with datatypes.
-case Rec; auto with datatypes.
-Qed.
-
-
-Theorem div_correct:
- forall p x y, P x -> P y -> (forall i, In i p -> P i) -> eval p y = plus (mult (eval (fst (div p x)) y) (plus y (op x))) (snd (div p x)).
-intros p x y; elim p; simpl.
-intros; rewrite mult_zero; try rewrite plus_zero; auto.
-intros a l; case l; simpl; auto.
-intros _ px py pa; rewrite (fun x => mult_comm x zero); repeat rewrite mult_zero; try apply plus_comm; auto.
-intros a1 l1.
-generalize (div_P (a1::l1) x); simpl.
-match goal with |- context[fst ?A] => case A end; simpl.
-intros q r Hd Rec px py pi.
-assert (pr: P r).
-case Hd; auto.
-assert (pa1: P a1).
-case Hd; auto.
-assert (pey: P (eval q y)).
-apply eval_P; auto.
-case Hd; auto.
-rewrite Rec; auto with datatypes.
-rewrite (fun x y => plus_comm x (plus a y)); try rewrite <- plus_assoc; auto.
-apply f_equal2 with (f := plus); auto.
-repeat rewrite mult_plus_distr; auto.
-repeat (rewrite (fun x y => (mult_comm (plus x y))) || rewrite mult_plus_distr); auto.
-rewrite (fun x => (plus_comm x (mult y r))); auto.
-repeat rewrite plus_assoc; try apply f_equal2 with (f := plus); auto.
-2: repeat rewrite mult_assoc; try rewrite (fun y => mult_comm y (op x));
- repeat rewrite mult_assoc; auto.
-rewrite (fun z => (plus_comm z (mult (op x) r))); auto.
-repeat rewrite plus_assoc; try apply f_equal2 with (f := plus); auto.
-2: apply f_equal2 with (f := mult); auto.
-repeat rewrite (fun x => mult_comm x r); try rewrite <- mult_plus_distr; auto.
-rewrite (plus_comm (op x)); try rewrite plus_op_zero; auto.
-rewrite (fun x => mult_comm x zero); try rewrite mult_zero; try rewrite plus_zero; auto.
-Qed.
-
-Theorem div_correct_factor:
- forall p a, (forall i, In i p -> P i) -> P a ->
- eval p a = zero -> forall x, P x -> eval p x = (mult (eval (fst (div p a)) x) (plus x (op a))).
-intros p a Hp Ha H x px.
-case (div_P p a); auto; intros Hd1 Hd2.
-rewrite (div_correct p a x); auto.
-generalize (div_correct p a a).
-rewrite plus_op_zero; try rewrite (fun x => mult_comm x zero); try rewrite mult_zero; try rewrite plus_zero; try rewrite H; auto.
-intros H1; rewrite <- H1; auto.
-rewrite (fun x => plus_comm x zero); auto.
-Qed.
-
-Theorem length_decrease: forall p x, p <> nil -> (length (fst (div p x)) < length p)%nat.
-intros p x; elim p; simpl; auto.
-intros H1; case H1; auto.
-intros a l; case l; simpl; auto.
-intros a1 l1.
-match goal with |- context[fst ?A] => case A end; simpl; auto with zarith.
-intros p1 _ H H1.
-apply lt_n_S; apply H; intros; discriminate.
-Qed.
-
-Theorem root_max:
-forall p l, ulist l -> (forall i, In i p -> P i) -> (forall i, In i l -> P i) ->
- (forall x, In x l -> eval p x = zero) -> (length p <= length l)%nat -> forall x, P x -> eval p x = zero.
-intros p l; generalize p; elim l; clear l p; simpl; auto.
-intros p; case p; simpl; auto.
-intros a p1 _ _ _ _ H; contradict H; auto with arith.
-intros a p1 Rec p; case p.
-simpl; auto.
-intros a1 p2 H H1 H2 H3 H4 x px.
-assert (Hu: eval (a1 :: p2) a = zero); auto with datatypes.
-rewrite (div_correct_factor (a1 :: p2) a); auto with datatypes.
-match goal with |- mult ?X _ = _ => replace X with zero end; try apply mult_zero; auto.
-apply sym_equal; apply Rec; auto with datatypes.
-apply ulist_inv with (1 := H).
-intros i Hi; case (div_P (a1 :: p2) a); auto.
-intros x1 H5; case (mult_integral (eval (fst (div (a1 :: p2) a)) x1) (plus x1 (op a))); auto.
-apply eval_P; auto.
-intros i Hi; case (div_P (a1 :: p2) a); auto.
-rewrite <- div_correct_factor; auto.
-intros H6; case (ulist_app_inv _ (a::nil) p1 x1); simpl; auto.
-left.
-apply trans_equal with (plus zero x1); auto.
-rewrite <- (plus_op_zero a); try rewrite <- plus_assoc; auto.
-rewrite (fun x => plus_comm (op x)); try rewrite H6; try rewrite plus_comm; auto.
-apply sym_equal; apply plus_zero; auto.
-apply lt_n_Sm_le;apply lt_le_trans with (length (a1 :: p2)); auto with zarith.
-apply length_decrease; auto with datatypes.
-Qed.
-
-Theorem root_max_is_zero:
-forall p l, ulist l -> (forall i, In i p -> P i) -> (forall i, In i l -> P i) ->
- (forall x, In x l -> eval p x = zero) -> (length p <= length l)%nat -> forall x, (In x p) -> x = zero.
-intros p l; generalize p; elim l; clear l p; simpl; auto.
-intros p; case p; simpl; auto.
-intros _ _ _ _ _ x H; case H.
-intros a p1 _ _ _ _ H; contradict H; auto with arith.
-intros a p1 Rec p; case p.
-simpl; auto.
-intros _ _ _ _ _ x H; case H.
-simpl; intros a1 p2 H H1 H2 H3 H4 x H5.
-assert (Ha1: a1 = zero).
-assert (Hu: (eval (a1::p2) zero = zero)).
-apply root_max with (l := a :: p1); auto.
-rewrite <- Hu; simpl; rewrite mult_zero; try rewrite plus_comm; sauto.
-case H5; clear H5; intros H5; subst; auto.
-apply Rec with p2; auto with arith.
-apply ulist_inv with (1 := H).
-intros x1 Hx1.
-case (In_dec A_dec zero p1); intros Hz.
-case (in_permutation_ex _ zero p1); auto; intros p3 Hp3.
-apply root_max with (l := a::p3); auto.
-apply ulist_inv with zero.
-apply ulist_perm with (a::p1); auto.
-apply permutation_trans with (a:: (zero:: p3)); auto.
-apply permutation_skip; auto.
-apply permutation_sym; auto.
-simpl; intros x2 [Hx2 | Hx2]; subst; auto.
-apply H2; right; apply permutation_in with (1 := Hp3); auto with datatypes.
-simpl; intros x2 [Hx2 | Hx2]; subst.
-case (mult_integral x2 (eval p2 x2)); auto.
-rewrite <- H3 with x2; sauto.
-rewrite plus_zero; auto.
-intros H6; case (ulist_app_inv _ (x2::nil) p1 x2) ; auto with datatypes.
-rewrite H6; apply permutation_in with (1 := Hp3); auto with datatypes.
-case (mult_integral x2 (eval p2 x2)); auto.
-apply H2; right; apply permutation_in with (1 := Hp3); auto with datatypes.
-apply eval_P; auto.
-apply H2; right; apply permutation_in with (1 := Hp3); auto with datatypes.
-rewrite <- H3 with x2; sauto; try right.
-apply sym_equal; apply plus_zero; auto.
-apply Pmult; auto.
-apply H2; right; apply permutation_in with (1 := Hp3); auto with datatypes.
-apply eval_P; auto.
-apply H2; right; apply permutation_in with (1 := Hp3); auto with datatypes.
-apply permutation_in with (1 := Hp3); auto with datatypes.
-intros H6; case (ulist_app_inv _ (zero::nil) p3 x2) ; auto with datatypes.
-simpl; apply ulist_perm with (1:= (permutation_sym _ _ _ Hp3)).
-apply ulist_inv with (1 := H).
-rewrite H6; auto with datatypes.
-replace (length (a :: p3)) with (length (zero::p3)); auto.
-rewrite permutation_length with (1 := Hp3); auto with arith.
-case (mult_integral x1 (eval p2 x1)); auto.
-rewrite <- H3 with x1; sauto; try right.
-apply sym_equal; apply plus_zero; auto.
-intros HH; case Hz; rewrite <- HH; auto.
-Qed.
-
-End Root.
diff --git a/coqprime/Coqprime/Tactic.v b/coqprime/Coqprime/Tactic.v
deleted file mode 100644
index b0f8f4f28..000000000
--- a/coqprime/Coqprime/Tactic.v
+++ /dev/null
@@ -1,84 +0,0 @@
-
-(*************************************************************)
-(* This file is distributed under the terms of the *)
-(* GNU Lesser General Public License Version 2.1 *)
-(*************************************************************)
-(* Benjamin.Gregoire@inria.fr Laurent.Thery@inria.fr *)
-(*************************************************************)
-
-
-(**********************************************************************
- Tactic.v
- Useful tactics
- **********************************************************************)
-
-(**************************************
- A simple tactic to end a proof
-**************************************)
-Ltac finish := intros; auto; trivial; discriminate.
-
-
-(**************************************
- A tactic for proof by contradiction
- with contradict H
- H: ~A |- B gives |- A
- H: ~A |- ~ B gives H: B |- A
- H: A |- B gives |- ~ A
- H: A |- B gives |- ~ A
- H: A |- ~ B gives H: A |- ~ A
-**************************************)
-
-Ltac contradict name :=
- let term := type of name in (
- match term with
- (~_) =>
- match goal with
- |- ~ _ => let x := fresh in
- (intros x; case name;
- generalize x; clear x name;
- intro name)
- | |- _ => case name; clear name
- end
- | _ =>
- match goal with
- |- ~ _ => let x := fresh in
- (intros x; absurd term;
- [idtac | exact name]; generalize x; clear x name;
- intros name)
- | |- _ => generalize name; absurd term;
- [idtac | exact name]; clear name
- end
- end).
-
-
-(**************************************
- A tactic to do case analysis keeping the equality
-**************************************)
-
-Ltac case_eq name :=
- generalize (refl_equal name); pattern name at -1 in |- *; case name.
-
-
-(**************************************
- A tactic to use f_equal? theorems
-**************************************)
-
-Ltac eq_tac :=
- match goal with
- |- (?g _ = ?g _) => apply f_equal with (f := g)
- | |- (?g ?X _ = ?g ?X _) => apply f_equal with (f := g X)
- | |- (?g _ _ = ?g _ _) => apply f_equal2 with (f := g)
- | |- (?g ?X ?Y _ = ?g ?X ?Y _) => apply f_equal with (f := g X Y)
- | |- (?g ?X _ _ = ?g ?X _ _) => apply f_equal2 with (f := g X)
- | |- (?g _ _ _ = ?g _ _ _) => apply f_equal3 with (f := g)
- | |- (?g ?X ?Y ?Z _ = ?g ?X ?Y ?Z _) => apply f_equal with (f := g X Y Z)
- | |- (?g ?X ?Y _ _ = ?g ?X ?Y _ _) => apply f_equal2 with (f := g X Y)
- | |- (?g ?X _ _ _ = ?g ?X _ _ _) => apply f_equal3 with (f := g X)
- | |- (?g _ _ _ _ _ = ?g _ _ _ _) => apply f_equal4 with (f := g)
- end.
-
-(**************************************
- A stupid tactic that tries auto also after applying sym_equal
-**************************************)
-
-Ltac sauto := (intros; apply sym_equal; auto; fail) || auto.
diff --git a/coqprime/Coqprime/UList.v b/coqprime/Coqprime/UList.v
deleted file mode 100644
index b787aad41..000000000
--- a/coqprime/Coqprime/UList.v
+++ /dev/null
@@ -1,286 +0,0 @@
-
-(*************************************************************)
-(* This file is distributed under the terms of the *)
-(* GNU Lesser General Public License Version 2.1 *)
-(*************************************************************)
-(* Benjamin.Gregoire@inria.fr Laurent.Thery@inria.fr *)
-(*************************************************************)
-
-(***********************************************************************
- UList.v
-
- Definition of list with distinct elements
-
- Definition: ulist
-************************************************************************)
-Require Import List.
-Require Import Arith.
-Require Import Permutation.
-Require Import ListSet.
-
-Section UniqueList.
-Variable A : Set.
-Variable eqA_dec : forall (a b : A), ({ a = b }) + ({ a <> b }).
-(* A list is unique if there is not twice the same element in the list *)
-
-Inductive ulist : list A -> Prop :=
- ulist_nil: ulist nil
- | ulist_cons: forall a l, ~ In a l -> ulist l -> ulist (a :: l) .
-Hint Constructors ulist .
-(* Inversion theorem *)
-
-Theorem ulist_inv: forall a l, ulist (a :: l) -> ulist l.
-intros a l H; inversion H; auto.
-Qed.
-(* The append of two unique list is unique if the list are distinct *)
-
-Theorem ulist_app:
- forall l1 l2,
- ulist l1 ->
- ulist l2 -> (forall (a : A), In a l1 -> In a l2 -> False) -> ulist (l1 ++ l2).
-intros L1; elim L1; simpl; auto.
-intros a l H l2 H0 H1 H2; apply ulist_cons; simpl; auto.
-red; intros H3; case in_app_or with ( 1 := H3 ); auto; intros H4.
-inversion H0; auto.
-apply H2 with a; auto.
-apply H; auto.
-apply ulist_inv with ( 1 := H0 ); auto.
-intros a0 H3 H4; apply (H2 a0); auto.
-Qed.
-(* Iinversion theorem the appended list *)
-
-Theorem ulist_app_inv:
- forall l1 l2 (a : A), ulist (l1 ++ l2) -> In a l1 -> In a l2 -> False.
-intros l1; elim l1; simpl; auto.
-intros a l H l2 a0 H0 [H1|H1] H2.
-inversion H0 as [|a1 l0 H3 H4 H5]; auto.
-case H3; rewrite H1; auto with datatypes.
-apply (H l2 a0); auto.
-apply ulist_inv with ( 1 := H0 ); auto.
-Qed.
-(* Iinversion theorem the appended list *)
-
-Theorem ulist_app_inv_l: forall (l1 l2 : list A), ulist (l1 ++ l2) -> ulist l1.
-intros l1; elim l1; simpl; auto.
-intros a l H l2 H0.
-inversion H0 as [|il1 iH1 iH2 il2 [iH4 iH5]]; apply ulist_cons; auto.
-intros H5; case iH2; auto with datatypes.
-apply H with l2; auto.
-Qed.
-(* Iinversion theorem the appended list *)
-
-Theorem ulist_app_inv_r: forall (l1 l2 : list A), ulist (l1 ++ l2) -> ulist l2.
-intros l1; elim l1; simpl; auto.
-intros a l H l2 H0; inversion H0; auto.
-Qed.
-(* Uniqueness is decidable *)
-
-Definition ulist_dec: forall l, ({ ulist l }) + ({ ~ ulist l }).
-intros l; elim l; auto.
-intros a l1 [H|H]; auto.
-case (In_dec eqA_dec a l1); intros H2; auto.
-right; red; intros H1; inversion H1; auto.
-right; intros H1; case H; apply ulist_inv with ( 1 := H1 ).
-Defined.
-(* Uniqueness is compatible with permutation *)
-
-Theorem ulist_perm:
- forall (l1 l2 : list A), permutation l1 l2 -> ulist l1 -> ulist l2.
-intros l1 l2 H; elim H; clear H l1 l2; simpl; auto.
-intros a l1 l2 H0 H1 H2; apply ulist_cons; auto.
-inversion_clear H2 as [|ia il iH1 iH2 [iH3 iH4]]; auto.
-intros H3; case iH1;
- apply permutation_in with ( 1 := permutation_sym _ _ _ H0 ); auto.
-inversion H2; auto.
-intros a b L H0; apply ulist_cons; auto.
-inversion_clear H0 as [|ia il iH1 iH2]; auto.
-inversion_clear iH2 as [|ia il iH3 iH4]; auto.
-intros H; case H; auto.
-intros H1; case iH1; rewrite H1; simpl; auto.
-apply ulist_cons; auto.
-inversion_clear H0 as [|ia il iH1 iH2]; auto.
-intros H; case iH1; simpl; auto.
-inversion_clear H0 as [|ia il iH1 iH2]; auto.
-inversion iH2; auto.
-Qed.
-
-Theorem ulist_def:
- forall l a,
- In a l -> ulist l -> ~ (exists l1 , permutation l (a :: (a :: l1)) ).
-intros l a H H0 [l1 H1].
-absurd (ulist (a :: (a :: l1))); auto.
-intros H2; inversion_clear H2; simpl; auto with datatypes.
-apply ulist_perm with ( 1 := H1 ); auto.
-Qed.
-
-Theorem ulist_incl_permutation:
- forall (l1 l2 : list A),
- ulist l1 -> incl l1 l2 -> (exists l3 , permutation l2 (l1 ++ l3) ).
-intros l1; elim l1; simpl; auto.
-intros l2 H H0; exists l2; simpl; auto.
-intros a l H l2 H0 H1; auto.
-case (in_permutation_ex _ a l2); auto with datatypes.
-intros l3 Hl3.
-case (H l3); auto.
-apply ulist_inv with ( 1 := H0 ); auto.
-intros b Hb.
-assert (H2: In b (a :: l3)).
-apply permutation_in with ( 1 := permutation_sym _ _ _ Hl3 );
- auto with datatypes.
-simpl in H2 |-; case H2; intros H3; simpl; auto.
-inversion_clear H0 as [|c lc Hk1]; auto.
-case Hk1; subst a; auto.
-intros l4 H4; exists l4.
-apply permutation_trans with (a :: l3); auto.
-apply permutation_sym; auto.
-Qed.
-
-Theorem ulist_eq_permutation:
- forall (l1 l2 : list A),
- ulist l1 -> incl l1 l2 -> length l1 = length l2 -> permutation l1 l2.
-intros l1 l2 H1 H2 H3.
-case (ulist_incl_permutation l1 l2); auto.
-intros l3 H4.
-assert (H5: l3 = @nil A).
-generalize (permutation_length _ _ _ H4); rewrite length_app; rewrite H3.
-rewrite plus_comm; case l3; simpl; auto.
-intros a l H5; absurd (lt (length l2) (length l2)); auto with arith.
-pattern (length l2) at 2; rewrite H5; auto with arith.
-replace l1 with (app l1 l3); auto.
-apply permutation_sym; auto.
-rewrite H5; rewrite app_nil_end; auto.
-Qed.
-
-
-Theorem ulist_incl_length:
- forall (l1 l2 : list A), ulist l1 -> incl l1 l2 -> le (length l1) (length l2).
-intros l1 l2 H1 Hi; case ulist_incl_permutation with ( 2 := Hi ); auto.
-intros l3 Hl3; rewrite permutation_length with ( 1 := Hl3 ); auto.
-rewrite length_app; simpl; auto with arith.
-Qed.
-
-Theorem ulist_incl2_permutation:
- forall (l1 l2 : list A),
- ulist l1 -> ulist l2 -> incl l1 l2 -> incl l2 l1 -> permutation l1 l2.
-intros l1 l2 H1 H2 H3 H4.
-apply ulist_eq_permutation; auto.
-apply le_antisym; apply ulist_incl_length; auto.
-Qed.
-
-
-Theorem ulist_incl_length_strict:
- forall (l1 l2 : list A),
- ulist l1 -> incl l1 l2 -> ~ incl l2 l1 -> lt (length l1) (length l2).
-intros l1 l2 H1 Hi Hi0; case ulist_incl_permutation with ( 2 := Hi ); auto.
-intros l3 Hl3; rewrite permutation_length with ( 1 := Hl3 ); auto.
-rewrite length_app; simpl; auto with arith.
-generalize Hl3; case l3; simpl; auto with arith.
-rewrite <- app_nil_end; auto.
-intros H2; case Hi0; auto.
-intros a HH; apply permutation_in with ( 1 := H2 ); auto.
-intros a l Hl0; (rewrite plus_comm; simpl; rewrite plus_comm; auto with arith).
-Qed.
-
-Theorem in_inv_dec:
- forall (a b : A) l, In a (cons b l) -> a = b \/ ~ a = b /\ In a l.
-intros a b l H; case (eqA_dec a b); auto; intros H1.
-right; split; auto; inversion H; auto.
-case H1; auto.
-Qed.
-
-Theorem in_ex_app_first:
- forall (a : A) (l : list A),
- In a l ->
- (exists l1 : list A , exists l2 : list A , l = l1 ++ (a :: l2) /\ ~ In a l1 ).
-intros a l; elim l; clear l; auto.
-intros H; case H.
-intros a1 l H H1; auto.
-generalize (in_inv_dec _ _ _ H1); intros [H2|[H2 H3]].
-exists (nil (A:=A)); exists l; simpl; split; auto.
-subst; auto.
-case H; auto; intros l1 [l2 [Hl2 Hl3]]; exists (a1 :: l1); exists l2; simpl;
- split; auto.
-subst; auto.
-intros H4; case H4; auto.
-Qed.
-
-Theorem ulist_inv_ulist:
- forall (l : list A),
- ~ ulist l ->
- (exists a ,
- exists l1 ,
- exists l2 ,
- exists l3 , l = l1 ++ ((a :: l2) ++ (a :: l3)) /\ ulist (l1 ++ (a :: l2)) ).
-intros l; elim l using list_length_ind; clear l.
-intros l; case l; simpl; auto; clear l.
-intros Rec H0; case H0; auto.
-intros a l H H0.
-case (In_dec eqA_dec a l); intros H1; auto.
-case in_ex_app_first with ( 1 := H1 ); intros l1 [l2 [Hl1 Hl2]]; subst l.
-case (ulist_dec l1); intros H2.
-exists a; exists (@nil A); exists l1; exists l2; split; auto.
-simpl; apply ulist_cons; auto.
-case (H l1); auto.
-rewrite length_app; auto with arith.
-intros b [l3 [l4 [l5 [Hl3 Hl4]]]]; subst l1.
-exists b; exists (a :: l3); exists l4; exists (l5 ++ (a :: l2)); split; simpl;
- auto.
-(repeat (rewrite <- ass_app; simpl)); auto.
-apply ulist_cons; auto.
-contradict Hl2; auto.
-replace (l3 ++ (b :: (l4 ++ (b :: l5)))) with ((l3 ++ (b :: l4)) ++ (b :: l5));
- auto with datatypes.
-(repeat (rewrite <- ass_app; simpl)); auto.
-case (H l); auto; intros a1 [l1 [l2 [l3 [Hl3 Hl4]]]]; subst l.
-exists a1; exists (a :: l1); exists l2; exists l3; split; auto.
-simpl; apply ulist_cons; auto.
-contradict H1.
-replace (l1 ++ (a1 :: (l2 ++ (a1 :: l3))))
- with ((l1 ++ (a1 :: l2)) ++ (a1 :: l3)); auto with datatypes.
-(repeat (rewrite <- ass_app; simpl)); auto.
-Qed.
-
-Theorem incl_length_repetition:
- forall (l1 l2 : list A),
- incl l1 l2 ->
- lt (length l2) (length l1) ->
- (exists a ,
- exists ll1 ,
- exists ll2 ,
- exists ll3 ,
- l1 = ll1 ++ ((a :: ll2) ++ (a :: ll3)) /\ ulist (ll1 ++ (a :: ll2)) ).
-intros l1 l2 H H0; apply ulist_inv_ulist.
-intros H1; absurd (le (length l1) (length l2)); auto with arith.
-apply ulist_incl_length; auto.
-Qed.
-
-End UniqueList.
-Arguments ulist [A].
-Hint Constructors ulist .
-
-Theorem ulist_map:
- forall (A B : Set) (f : A -> B) l,
- (forall x y, (In x l) -> (In y l) -> f x = f y -> x = y) -> ulist l -> ulist (map f l).
-intros a b f l Hf Hl; generalize Hf; elim Hl; clear Hf; auto.
-simpl; auto.
-intros a1 l1 H1 H2 H3 Hf; simpl.
-apply ulist_cons; auto with datatypes.
-contradict H1.
-case in_map_inv with ( 1 := H1 ); auto with datatypes.
-intros b1 [Hb1 Hb2].
-replace a1 with b1; auto with datatypes.
-Qed.
-
-Theorem ulist_list_prod:
- forall (A : Set) (l1 l2 : list A),
- ulist l1 -> ulist l2 -> ulist (list_prod l1 l2).
-intros A l1 l2 Hl1 Hl2; elim Hl1; simpl; auto.
-intros a l H1 H2 H3; apply ulist_app; auto.
-apply ulist_map; auto.
-intros x y _ _ H; inversion H; auto.
-intros p Hp1 Hp2; case H1.
-case in_map_inv with ( 1 := Hp1 ); intros a1 [Ha1 Ha2]; auto.
-case in_list_prod_inv with ( 1 := Hp2 ); intros b1 [c1 [Hb1 [Hb2 Hb3]]]; auto.
-replace a with b1; auto.
-rewrite Ha2 in Hb1; injection Hb1; auto.
-Qed.
diff --git a/coqprime/Coqprime/ZCAux.v b/coqprime/Coqprime/ZCAux.v
deleted file mode 100644
index 2da30c800..000000000
--- a/coqprime/Coqprime/ZCAux.v
+++ /dev/null
@@ -1,295 +0,0 @@
-
-(*************************************************************)
-(* This file is distributed under the terms of the *)
-(* GNU Lesser General Public License Version 2.1 *)
-(*************************************************************)
-(* Benjamin.Gregoire@inria.fr Laurent.Thery@inria.fr *)
-(*************************************************************)
-
-(**********************************************************************
- ZCAux.v
-
- Auxillary functions & Theorems
- **********************************************************************)
-
-Require Import ArithRing.
-Require Export ZArith Zpow_facts.
-Require Export Znumtheory.
-Require Export Tactic.
-
-Theorem Zdivide_div_prime_le_square: forall x, 1 < x -> ~prime x -> exists p, prime p /\ (p | x) /\ p * p <= x.
-intros x Hx; generalize Hx; pattern x; apply Z_lt_induction; auto with zarith.
-clear x Hx; intros x Rec H H1.
-case (not_prime_divide x); auto.
-intros x1 ((H2, H3), H4); case (prime_dec x1); intros H5.
-case (Zle_or_lt (x1 * x1) x); intros H6.
-exists x1; auto.
-case H4; clear H4; intros x2 H4; subst.
-assert (Hx2: x2 <= x1).
-case (Zle_or_lt x2 x1); auto; intros H8; contradict H6; apply Zle_not_lt.
-apply Zmult_le_compat_r; auto with zarith.
-case (prime_dec x2); intros H7.
-exists x2; repeat (split; auto with zarith).
-apply Zmult_le_compat_l; auto with zarith.
-apply Zle_trans with 2%Z; try apply prime_ge_2; auto with zarith.
-case (Zle_or_lt 0 x2); intros H8.
-case Zle_lt_or_eq with (1 := H8); auto with zarith; clear H8; intros H8; subst; auto with zarith.
-case (Zle_lt_or_eq 1 x2); auto with zarith; clear H8; intros H8; subst; auto with zarith.
-case (Rec x2); try split; auto with zarith.
-intros x3 (H9, (H10, H11)).
-exists x3; repeat (split; auto with zarith).
-contradict H; apply Zle_not_lt; auto with zarith.
-apply Zle_trans with (0 * x1); auto with zarith.
-case (Rec x1); try split; auto with zarith.
-intros x3 (H9, (H10, H11)).
-exists x3; repeat (split; auto with zarith).
-apply Zdivide_trans with x1; auto with zarith.
-Qed.
-
-
-Theorem Zmult_interval: forall p q, 0 < p * q -> 1 < p -> 0 < q < p * q.
-intros p q H1 H2; assert (0 < q).
-case (Zle_or_lt q 0); auto; intros H3; contradict H1; apply Zle_not_lt.
-rewrite <- (Zmult_0_r p).
-apply Zmult_le_compat_l; auto with zarith.
-split; auto.
-pattern q at 1; rewrite <- (Zmult_1_l q).
-apply Zmult_lt_compat_r; auto with zarith.
-Qed.
-
-Theorem prime_induction: forall (P: Z -> Prop), P 0 -> P 1 -> (forall p q, prime p -> P q -> P (p * q)) -> forall p, 0 <= p -> P p.
-intros P H H1 H2 p Hp.
-generalize Hp; pattern p; apply Z_lt_induction; auto; clear p Hp.
-intros p Rec Hp.
-case Zle_lt_or_eq with (1 := Hp); clear Hp; intros Hp; subst; auto.
-case (Zle_lt_or_eq 1 p); auto with zarith; clear Hp; intros Hp; subst; auto.
-case (prime_dec p); intros H3.
-rewrite <- (Zmult_1_r p); apply H2; auto.
- case (Zdivide_div_prime_le_square p); auto.
-intros q (Hq1, ((q2, Hq2), Hq3)); subst.
-case (Zmult_interval q q2).
-rewrite Zmult_comm; apply Zlt_trans with 1; auto with zarith.
-apply Zlt_le_trans with 2; auto with zarith; apply prime_ge_2; auto.
-intros H4 H5; rewrite Zmult_comm; apply H2; auto.
-apply Rec; try split; auto with zarith.
-rewrite Zmult_comm; auto.
-Qed.
-
-Theorem div_power_max: forall p q, 1 < p -> 0 < q -> exists n, 0 <= n /\ (p ^n | q) /\ ~(p ^(1 + n) | q).
-intros p q H1 H2; generalize H2; pattern q; apply Z_lt_induction; auto with zarith; clear q H2.
-intros q Rec H2.
-case (Zdivide_dec p q); intros H3.
-case (Zdivide_Zdiv_lt_pos p q); auto with zarith; intros H4 H5.
-case (Rec (Zdiv q p)); auto with zarith.
-intros n (Ha1, (Ha2, Ha3)); exists (n + 1); split; auto with zarith; split.
-case Ha2; intros q1 Hq; exists q1.
-rewrite Zpower_exp; try rewrite Zpower_1_r; auto with zarith.
-rewrite Zmult_assoc; rewrite <- Hq.
-rewrite Zmult_comm; apply Zdivide_Zdiv_eq; auto with zarith.
-intros (q1, Hu); case Ha3; exists q1.
-apply Zmult_reg_r with p; auto with zarith.
-rewrite (Zmult_comm (q / p)); rewrite <- Zdivide_Zdiv_eq; auto with zarith.
-apply trans_equal with (1 := Hu); repeat rewrite Zpower_exp; try rewrite Zpower_exp_1; auto with zarith.
-ring.
-exists 0; repeat split; try rewrite Zpower_1_r; try rewrite Zpower_exp_0; auto with zarith.
-Qed.
-
-Theorem prime_div_induction:
- forall (P: Z -> Prop) n,
- 0 < n ->
- (P 1) ->
- (forall p i, prime p -> 0 <= i -> (p^i | n) -> P (p^i)) ->
- (forall p q, rel_prime p q -> P p -> P q -> P (p * q)) ->
- forall m, 0 <= m -> (m | n) -> P m.
-intros P n P1 Hn H H1 m Hm.
-generalize Hm; pattern m; apply Z_lt_induction; auto; clear m Hm.
-intros m Rec Hm H2.
-case (prime_dec m); intros Hm1.
-rewrite <- Zpower_1_r; apply H; auto with zarith.
-rewrite Zpower_1_r; auto.
-case Zle_lt_or_eq with (1 := Hm); clear Hm; intros Hm; subst.
-2: contradict P1; case H2; intros; subst; auto with zarith.
-case (Zle_lt_or_eq 1 m); auto with zarith; clear Hm; intros Hm; subst; auto.
-case Zdivide_div_prime_le_square with m; auto.
-intros p (Hp1, (Hp2, Hp3)).
-case (div_power_max p m); auto with zarith.
-generalize (prime_ge_2 p Hp1); auto with zarith.
-intros i (Hi, (Hi1, Hi2)).
-case Zle_lt_or_eq with (1 := Hi); clear Hi; intros Hi.
-assert (Hpi: 0 < p ^ i).
-apply Zpower_gt_0; auto with zarith.
-apply Zlt_le_trans with 2; try apply prime_ge_2; auto with zarith.
-rewrite (Z_div_exact_2 m (p ^ i)); auto with zarith.
-apply H1; auto with zarith.
-apply rel_prime_sym; apply rel_prime_Zpower_r; auto with zarith.
-apply rel_prime_sym.
-apply prime_rel_prime; auto.
-contradict Hi2.
-case Hi1; intros; subst.
-rewrite Z_div_mult in Hi2; auto with zarith.
-case Hi2; intros q0 Hq0; subst.
-exists q0; rewrite Zpower_exp; try rewrite Zpower_1_r; auto with zarith.
-apply H; auto with zarith.
-apply Zdivide_trans with (1 := Hi1); auto.
-apply Rec; auto with zarith.
-split; auto with zarith.
-apply Z_div_pos; auto with zarith.
-apply Z_div_lt; auto with zarith.
-apply Zle_ge; apply Zle_trans with p.
-apply prime_ge_2; auto.
-pattern p at 1; rewrite <- Zpower_1_r; apply Zpower_le_monotone; auto with zarith.
-apply Zlt_le_trans with 2; try apply prime_ge_2; auto with zarith.
-apply Z_div_pos; auto with zarith.
-apply Zdivide_trans with (2 := H2); auto.
-exists (p ^ i); apply Z_div_exact_2; auto with zarith.
-apply Zdivide_mod; auto with zarith.
-apply Zdivide_mod; auto with zarith.
-case Hi2; rewrite <- Hi; rewrite Zplus_0_r; rewrite Zpower_1_r; auto.
-Qed.
-
-Theorem prime_div_Zpower_prime: forall n p q, 0 <= n -> prime p -> prime q -> (p | q ^ n) -> p = q.
-intros n p q Hp Hq; generalize p q Hq; pattern n; apply natlike_ind; auto; clear n p q Hp Hq.
-intros p q Hp Hq; rewrite Zpower_0_r.
-intros (r, H); subst.
-case (Zmult_interval p r); auto; try rewrite Zmult_comm.
-rewrite <- H; auto with zarith.
-apply Zlt_le_trans with 2; try apply prime_ge_2; auto with zarith.
-rewrite <- H; intros H1 H2; contradict H2; auto with zarith.
-intros n1 H Rec p q Hp Hq; try rewrite Zpower_Zsucc; auto with zarith; intros H1.
-case prime_mult with (2 := H1); auto.
-intros H2; apply prime_div_prime; auto.
-Qed.
-
-Definition Zmodd a b :=
-match a with
-| Z0 => 0
-| Zpos a' =>
- match b with
- | Z0 => 0
- | Zpos _ => Zmod_POS a' b
- | Zneg b' =>
- let r := Zmod_POS a' (Zpos b') in
- match r with Z0 => 0 | _ => b + r end
- end
-| Zneg a' =>
- match b with
- | Z0 => 0
- | Zpos _ =>
- let r := Zmod_POS a' b in
- match r with Z0 => 0 | _ => b - r end
- | Zneg b' => - (Zmod_POS a' (Zpos b'))
- end
-end.
-
-Theorem Zmodd_correct: forall a b, Zmodd a b = Zmod a b.
-intros a b; unfold Zmod; case a; simpl; auto.
-intros p; case b; simpl; auto.
-intros p1; refine (Zmod_POS_correct _ _); auto.
-intros p1; rewrite Zmod_POS_correct; auto.
-case (Zdiv_eucl_POS p (Zpos p1)); simpl; intros z1 z2; case z2; auto.
-intros p; case b; simpl; auto.
-intros p1; rewrite Zmod_POS_correct; auto.
-case (Zdiv_eucl_POS p (Zpos p1)); simpl; intros z1 z2; case z2; auto.
-intros p1; rewrite Zmod_POS_correct; simpl; auto.
-case (Zdiv_eucl_POS p (Zpos p1)); auto.
-Qed.
-
-Theorem prime_divide_prime_eq:
- forall p1 p2, prime p1 -> prime p2 -> Zdivide p1 p2 -> p1 = p2.
-intros p1 p2 Hp1 Hp2 Hp3.
-assert (Ha: 1 < p1).
-inversion Hp1; auto.
-assert (Ha1: 1 < p2).
-inversion Hp2; auto.
-case (Zle_lt_or_eq p1 p2); auto with zarith.
-apply Zdivide_le; auto with zarith.
-intros Hp4.
-case (prime_div_prime p1 p2); auto with zarith.
-Qed.
-
-Theorem Zdivide_Zpower: forall n m, 0 < n -> (forall p i, prime p -> 0 < i -> (p^i | n) -> (p^i | m)) -> (n | m).
-intros n m Hn; generalize m Hn; pattern n; apply prime_induction; auto with zarith; clear n m Hn.
-intros m H1; contradict H1; auto with zarith.
-intros p q H Rec m H1 H2.
-assert (H3: (p | m)).
-rewrite <- (Zpower_1_r p); apply H2; auto with zarith; rewrite Zpower_1_r; apply Zdivide_factor_r.
-case (Zmult_interval p q); auto.
-apply Zlt_le_trans with 2; auto with zarith; apply prime_ge_2; auto.
-case H3; intros k Hk; subst.
-intros Hq Hq1.
-rewrite (Zmult_comm k); apply Zmult_divide_compat_l.
-apply Rec; auto.
-intros p1 i Hp1 Hp2 Hp3.
-case (Z_eq_dec p p1); intros Hpp1; subst.
-case (H2 p1 (Zsucc i)); auto with zarith.
-rewrite Zpower_Zsucc; try apply Zmult_divide_compat_l; auto with zarith.
-intros q2 Hq2; exists q2.
-apply Zmult_reg_r with p1.
-contradict H; subst; apply not_prime_0.
-rewrite Hq2; rewrite Zpower_Zsucc; try ring; auto with zarith.
-apply Gauss with p.
-rewrite Zmult_comm; apply H2; auto.
-apply Zdivide_trans with (1:= Hp3).
-apply Zdivide_factor_l.
-apply rel_prime_sym; apply rel_prime_Zpower_r; auto with zarith.
-apply prime_rel_prime; auto.
-contradict Hpp1; apply prime_divide_prime_eq; auto.
-Qed.
-
-Theorem prime_divide_Zpower_Zdiv: forall m a p i, 0 <= i -> prime p -> (m | a) -> ~(m | (a/p)) -> (p^i | a) -> (p^i | m).
-intros m a p i Hi Hp (k, Hk) H (l, Hl); subst.
-case (Zle_lt_or_eq 0 i); auto with arith; intros Hi1; subst.
-assert (Hp0: 0 < p).
-apply Zlt_le_trans with 2; auto with zarith; apply prime_ge_2; auto.
-case (Zdivide_dec p k); intros H1.
-case H1; intros k' H2; subst.
-case H; replace (k' * p * m) with ((k' * m) * p); try ring; rewrite Z_div_mult; auto with zarith.
-apply Gauss with k.
-exists l; rewrite Hl; ring.
-apply rel_prime_sym; apply rel_prime_Zpower_r; auto.
-apply rel_prime_sym; apply prime_rel_prime; auto.
-rewrite Zpower_0_r; apply Zone_divide.
-Qed.
-
-Theorem Zle_square_mult: forall a b, 0 <= a <= b -> a * a <= b * b.
-intros a b (H1, H2); apply Zle_trans with (a * b); auto with zarith.
-Qed.
-
-Theorem Zlt_square_mult_inv: forall a b, 0 <= a -> 0 <= b -> a * a < b * b -> a < b.
-intros a b H1 H2 H3; case (Zle_or_lt b a); auto; intros H4; apply Zmult_lt_reg_r with a;
- contradict H3; apply Zle_not_lt; apply Zle_square_mult; auto.
-Qed.
-
-
-Theorem Zmod_closeby_eq: forall a b n, 0 <= a -> 0 <= b < n -> a - b < n -> a mod n = b -> a = b.
-intros a b n H H1 H2 H3.
-case (Zle_or_lt 0 (a - b)); intros H4.
-case Zle_lt_or_eq with (1 := H4); clear H4; intros H4; auto with zarith.
-contradict H2; apply Zle_not_lt; apply Zdivide_le; auto with zarith.
-apply Zmod_divide_minus; auto with zarith.
-rewrite <- (Zmod_small a n); try split; auto with zarith.
-Qed.
-
-
-Theorem Zpow_mod_pos_Zpower_pos_correct: forall a m n, 0 < n -> Zpow_mod_pos a m n = (Zpower_pos a m) mod n.
-intros a m; elim m; simpl; auto.
-intros p Rec n H1; rewrite xI_succ_xO; rewrite Pplus_one_succ_r; rewrite <- Pplus_diag; auto.
-repeat rewrite Zpower_pos_is_exp; auto.
-repeat rewrite Rec; auto.
-replace (Zpower_pos a 1) with a; auto.
-2: unfold Zpower_pos; simpl; auto with zarith.
-repeat rewrite (fun x => (Zmult_mod x a)); auto.
-rewrite (Zmult_mod (Zpower_pos a p)); auto.
-case (Zpower_pos a p mod n); auto.
-intros p Rec n H1; rewrite <- Pplus_diag; auto.
-repeat rewrite Zpower_pos_is_exp; auto.
-repeat rewrite Rec; auto.
-rewrite (Zmult_mod (Zpower_pos a p)); auto.
-case (Zpower_pos a p mod n); auto.
-unfold Zpower_pos; simpl; rewrite Zmult_1_r; auto with zarith.
-Qed.
-
-Theorem Zpow_mod_Zpower_correct: forall a m n, 1 < n -> 0 <= m -> Zpow_mod a m n = (a ^ m) mod n.
-intros a m n; case m; simpl; auto.
-intros; apply Zpow_mod_pos_Zpower_pos_correct; auto with zarith.
-Qed.
diff --git a/coqprime/Coqprime/ZCmisc.v b/coqprime/Coqprime/ZCmisc.v
deleted file mode 100644
index ee6881849..000000000
--- a/coqprime/Coqprime/ZCmisc.v
+++ /dev/null
@@ -1,186 +0,0 @@
-
-(*************************************************************)
-(* This file is distributed under the terms of the *)
-(* GNU Lesser General Public License Version 2.1 *)
-(*************************************************************)
-(* Benjamin.Gregoire@inria.fr Laurent.Thery@inria.fr *)
-(*************************************************************)
-
-Require Export ZArith.
-Local Open Scope Z_scope.
-
-Coercion Zpos : positive >-> Z.
-Coercion Z_of_N : N >-> Z.
-
-Lemma Zpos_plus : forall p q, Zpos (p + q) = p + q.
-Proof. intros;trivial. Qed.
-
-Lemma Zpos_mult : forall p q, Zpos (p * q) = p * q.
-Proof. intros;trivial. Qed.
-
-Lemma Zpos_xI_add : forall p, Zpos (xI p) = Zpos p + Zpos p + Zpos 1.
-Proof. intros p;rewrite Zpos_xI;ring. Qed.
-
-Lemma Zpos_xO_add : forall p, Zpos (xO p) = Zpos p + Zpos p.
-Proof. intros p;rewrite Zpos_xO;ring. Qed.
-
-Lemma Psucc_Zplus : forall p, Zpos (Psucc p) = p + 1.
-Proof. intros p;rewrite Zpos_succ_morphism;unfold Zsucc;trivial. Qed.
-
-Hint Rewrite Zpos_xI_add Zpos_xO_add Pplus_carry_spec
- Psucc_Zplus Zpos_plus : zmisc.
-
-Lemma Zlt_0_pos : forall p, 0 < Zpos p.
-Proof. unfold Zlt;trivial. Qed.
-
-
-Lemma Pminus_mask_carry_spec : forall p q,
- Pminus_mask_carry p q = Pminus_mask p (Psucc q).
-Proof.
- intros p q;generalize q p;clear q p.
- induction q;destruct p;simpl;try rewrite IHq;trivial.
- destruct p;trivial. destruct p;trivial.
-Qed.
-
-Hint Rewrite Pminus_mask_carry_spec : zmisc.
-
-Ltac zsimpl := autorewrite with zmisc.
-Ltac CaseEq t := generalize (refl_equal t);pattern t at -1;case t.
-Ltac generalizeclear H := generalize H;clear H.
-
-Lemma Pminus_mask_spec :
- forall p q,
- match Pminus_mask p q with
- | IsNul => Zpos p = Zpos q
- | IsPos k => Zpos p = q + k
- | IsNeq => p < q
- end.
-Proof with zsimpl;auto with zarith.
- induction p;destruct q;simpl;zsimpl;
- match goal with
- | [|- context [(Pminus_mask ?p1 ?q1)]] =>
- assert (H1 := IHp q1);destruct (Pminus_mask p1 q1)
- | _ => idtac
- end;simpl ...
- inversion H1 ... inversion H1 ...
- rewrite Psucc_Zplus in H1 ...
- clear IHp;induction p;simpl ...
- rewrite IHp;destruct (Pdouble_minus_one p) ...
- assert (H:= Zlt_0_pos q) ... assert (H:= Zlt_0_pos q) ...
-Qed.
-
-Definition PminusN x y :=
- match Pminus_mask x y with
- | IsPos k => Npos k
- | _ => N0
- end.
-
-Lemma PminusN_le : forall x y:positive, x <= y -> Z_of_N (PminusN y x) = y - x.
-Proof.
- intros x y Hle;unfold PminusN.
- assert (H := Pminus_mask_spec y x);destruct (Pminus_mask y x).
- rewrite H;unfold Z_of_N;auto with zarith.
- rewrite H;unfold Z_of_N;auto with zarith.
- elimtype False;omega.
-Qed.
-
-Lemma Ppred_Zminus : forall p, 1< Zpos p -> (p-1)%Z = Ppred p.
-Proof. destruct p;simpl;trivial. intros;elimtype False;omega. Qed.
-
-
-Local Open Scope positive_scope.
-
-Delimit Scope P_scope with P.
-Local Open Scope P_scope.
-
-Definition is_lt (n m : positive) :=
- match (n ?= m) with
- | Lt => true
- | _ => false
- end.
-Infix "?<" := is_lt (at level 70, no associativity) : P_scope.
-
-Lemma is_lt_spec : forall n m, if n ?< m then (n < m)%Z else (m <= n)%Z.
-Proof.
-intros n m; unfold is_lt, Zlt, Zle, Zcompare.
-rewrite Pos.compare_antisym.
-case (m ?= n); simpl; auto; intros HH; discriminate HH.
-Qed.
-
-Definition is_eq a b :=
- match (a ?= b) with
- | Eq => true
- | _ => false
- end.
-Infix "?=" := is_eq (at level 70, no associativity) : P_scope.
-
-Lemma is_eq_refl : forall n, n ?= n = true.
-Proof. intros n;unfold is_eq;rewrite Pos.compare_refl;trivial. Qed.
-
-Lemma is_eq_eq : forall n m, n ?= m = true -> n = m.
-Proof.
- unfold is_eq;intros n m H; apply Pos.compare_eq.
-destruct (n ?= m)%positive;trivial;try discriminate.
-Qed.
-
-Lemma is_eq_spec_pos : forall n m, if n ?= m then n = m else m <> n.
-Proof.
- intros n m; CaseEq (n ?= m);intro H.
- rewrite (is_eq_eq _ _ H);trivial.
- intro H1;rewrite H1 in H;rewrite is_eq_refl in H;discriminate H.
-Qed.
-
-Lemma is_eq_spec : forall n m, if n ?= m then Zpos n = m else Zpos m <> n.
-Proof.
- intros n m; CaseEq (n ?= m);intro H.
- rewrite (is_eq_eq _ _ H);trivial.
- intro H1;inversion H1.
- rewrite H2 in H;rewrite is_eq_refl in H;discriminate H.
-Qed.
-
-Definition is_Eq a b :=
- match a, b with
- | N0, N0 => true
- | Npos a', Npos b' => a' ?= b'
- | _, _ => false
- end.
-
-Lemma is_Eq_spec :
- forall n m, if is_Eq n m then Z_of_N n = m else Z_of_N m <> n.
-Proof.
- destruct n;destruct m;simpl;trivial;try (intro;discriminate).
- apply is_eq_spec.
-Qed.
-
-(* [times x y] return [x * y], a litle bit more efficiant *)
-Fixpoint times (x y : positive) {struct y} : positive :=
- match x, y with
- | xH, _ => y
- | _, xH => x
- | xO x', xO y' => xO (xO (times x' y'))
- | xO x', xI y' => xO (x' + xO (times x' y'))
- | xI x', xO y' => xO (y' + xO (times x' y'))
- | xI x', xI y' => xI (x' + y' + xO (times x' y'))
- end.
-
-Infix "*" := times : P_scope.
-
-Lemma times_Zmult : forall p q, Zpos (p * q)%P = (p * q)%Z.
-Proof.
- intros p q;generalize q p;clear p q.
- induction q;destruct p; unfold times; try fold (times p q);
- autorewrite with zmisc; try rewrite IHq; ring.
-Qed.
-
-Fixpoint square (x:positive) : positive :=
- match x with
- | xH => xH
- | xO x => xO (xO (square x))
- | xI x => xI (xO (square x + x))
- end.
-
-Lemma square_Zmult : forall x, Zpos (square x) = (x * x) %Z.
-Proof.
- induction x as [x IHx|x IHx |];unfold square;try (fold (square x));
- autorewrite with zmisc; try rewrite IHx; ring.
-Qed.
diff --git a/coqprime/Coqprime/ZProgression.v b/coqprime/Coqprime/ZProgression.v
deleted file mode 100644
index ec69df5a6..000000000
--- a/coqprime/Coqprime/ZProgression.v
+++ /dev/null
@@ -1,104 +0,0 @@
-
-(*************************************************************)
-(* This file is distributed under the terms of the *)
-(* GNU Lesser General Public License Version 2.1 *)
-(*************************************************************)
-(* Benjamin.Gregoire@inria.fr Laurent.Thery@inria.fr *)
-(*************************************************************)
-
-Require Export Iterator.
-Require Import ZArith.
-Require Export UList.
-Open Scope Z_scope.
-
-Theorem next_n_Z: forall n m, next_n Zsucc n m = n + Z_of_nat m.
-intros n m; generalize n; elim m; clear n m.
-intros n; simpl; auto with zarith.
-intros m H n.
-replace (n + Z_of_nat (S m)) with (Zsucc n + Z_of_nat m); auto with zarith.
-rewrite <- H; auto with zarith.
-rewrite inj_S; auto with zarith.
-Qed.
-
-Theorem Zprogression_end:
- forall n m,
- progression Zsucc n (S m) =
- app (progression Zsucc n m) (cons (n + Z_of_nat m) nil).
-intros n m; generalize n; elim m; clear n m.
-simpl; intros; apply f_equal2 with ( f := @cons Z ); auto with zarith.
-intros m1 Hm1 n1.
-apply trans_equal with (cons n1 (progression Zsucc (Zsucc n1) (S m1))); auto.
-rewrite Hm1.
-replace (Zsucc n1 + Z_of_nat m1) with (n1 + Z_of_nat (S m1)); auto with zarith.
-replace (Z_of_nat (S m1)) with (1 + Z_of_nat m1); auto with zarith.
-rewrite inj_S; auto with zarith.
-Qed.
-
-Theorem Zprogression_pred_end:
- forall n m,
- progression Zpred n (S m) =
- app (progression Zpred n m) (cons (n - Z_of_nat m) nil).
-intros n m; generalize n; elim m; clear n m.
-simpl; intros; apply f_equal2 with ( f := @cons Z ); auto with zarith.
-intros m1 Hm1 n1.
-apply trans_equal with (cons n1 (progression Zpred (Zpred n1) (S m1))); auto.
-rewrite Hm1.
-replace (Zpred n1 - Z_of_nat m1) with (n1 - Z_of_nat (S m1)); auto with zarith.
-replace (Z_of_nat (S m1)) with (1 + Z_of_nat m1); auto with zarith.
-rewrite inj_S; auto with zarith.
-Qed.
-
-Theorem Zprogression_opp:
- forall n m,
- rev (progression Zsucc n m) = progression Zpred (n + Z_of_nat (pred m)) m.
-intros n m; generalize n; elim m; clear n m.
-simpl; auto.
-intros m Hm n.
-rewrite (Zprogression_end n); auto.
-rewrite distr_rev.
-rewrite Hm; simpl; auto.
-case m.
-simpl; auto.
-intros m1;
- replace (n + Z_of_nat (pred (S m1))) with (Zpred (n + Z_of_nat (S m1))); auto.
-rewrite inj_S; simpl; (unfold Zpred; unfold Zsucc); auto with zarith.
-Qed.
-
-Theorem Zprogression_le_init:
- forall n m p, In p (progression Zsucc n m) -> (n <= p).
-intros n m; generalize n; elim m; clear n m; simpl; auto.
-intros; contradiction.
-intros m H n p [H1|H1]; auto with zarith.
-generalize (H _ _ H1); auto with zarith.
-Qed.
-
-Theorem Zprogression_le_end:
- forall n m p, In p (progression Zsucc n m) -> (p < n + Z_of_nat m).
-intros n m; generalize n; elim m; clear n m; auto.
-intros; contradiction.
-intros m H n p H1; simpl in H1 |-; case H1; clear H1; intros H1;
- auto with zarith.
-subst n; auto with zarith.
-apply Zle_lt_trans with (p + 0); auto with zarith.
-apply Zplus_lt_compat_l; red; simpl; auto with zarith.
-apply Zlt_le_trans with (Zsucc n + Z_of_nat m); auto with zarith.
-rewrite inj_S; rewrite Zplus_succ_comm; auto with zarith.
-Qed.
-
-Theorem ulist_Zprogression: forall a n, ulist (progression Zsucc a n).
-intros a n; generalize a; elim n; clear a n; simpl; auto with zarith.
-intros n H1 a; apply ulist_cons; auto.
-intros H2; absurd (Zsucc a <= a); auto with zarith.
-apply Zprogression_le_init with ( 1 := H2 ).
-Qed.
-
-Theorem in_Zprogression:
- forall a b n, ( a <= b < a + Z_of_nat n ) -> In b (progression Zsucc a n).
-intros a b n; generalize a b; elim n; clear a b n; auto with zarith.
-simpl; auto with zarith.
-intros n H a b.
-replace (a + Z_of_nat (S n)) with (Zsucc a + Z_of_nat n); auto with zarith.
-intros [H1 H2]; simpl; auto with zarith.
-case (Zle_lt_or_eq _ _ H1); auto with zarith.
-rewrite inj_S; auto with zarith.
-Qed.
diff --git a/coqprime/Coqprime/ZSum.v b/coqprime/Coqprime/ZSum.v
deleted file mode 100644
index 95a8f74a5..000000000
--- a/coqprime/Coqprime/ZSum.v
+++ /dev/null
@@ -1,335 +0,0 @@
-
-(*************************************************************)
-(* This file is distributed under the terms of the *)
-(* GNU Lesser General Public License Version 2.1 *)
-(*************************************************************)
-(* Benjamin.Gregoire@inria.fr Laurent.Thery@inria.fr *)
-(*************************************************************)
-
-(***********************************************************************
- Summation.v from Z to Z
- *********************************************************************)
-Require Import Arith.
-Require Import ArithRing.
-Require Import ListAux.
-Require Import ZArith.
-Require Import Iterator.
-Require Import ZProgression.
-
-
-Open Scope Z_scope.
-(* Iterated Sum *)
-
-Definition Zsum :=
- fun n m f =>
- if Zle_bool n m
- then iter 0 f Zplus (progression Zsucc n (Zabs_nat ((1 + m) - n)))
- else iter 0 f Zplus (progression Zpred n (Zabs_nat ((1 + n) - m))).
-Hint Unfold Zsum .
-
-Lemma Zsum_nn: forall n f, Zsum n n f = f n.
-intros n f; unfold Zsum; rewrite Zle_bool_refl.
-replace ((1 + n) - n) with 1; auto with zarith.
-simpl; ring.
-Qed.
-
-Theorem permutation_rev: forall (A:Set) (l : list A), permutation (rev l) l.
-intros a l; elim l; simpl; auto.
-intros a1 l1 Hl1.
-apply permutation_trans with (cons a1 (rev l1)); auto.
-change (permutation (rev l1 ++ (a1 :: nil)) (app (cons a1 nil) (rev l1))); auto.
-Qed.
-
-Lemma Zsum_swap: forall (n m : Z) (f : Z -> Z), Zsum n m f = Zsum m n f.
-intros n m f; unfold Zsum.
-generalize (Zle_cases n m) (Zle_cases m n); case (Zle_bool n m);
- case (Zle_bool m n); auto with arith.
-intros; replace n with m; auto with zarith.
-3:intros H1 H2; contradict H2; auto with zarith.
-intros H1 H2; apply iter_permutation; auto with zarith.
-apply permutation_trans
- with (rev (progression Zsucc n (Zabs_nat ((1 + m) - n)))).
-apply permutation_sym; apply permutation_rev.
-rewrite Zprogression_opp; auto with zarith.
-replace (n + Z_of_nat (pred (Zabs_nat ((1 + m) - n)))) with m; auto.
-replace (Zabs_nat ((1 + m) - n)) with (S (Zabs_nat (m - n))); auto with zarith.
-simpl.
-rewrite inj_Zabs_nat; auto with zarith.
-rewrite Zabs_eq; auto with zarith.
-replace ((1 + m) - n) with (1 + (m - n)); auto with zarith.
-cut (0 <= m - n); auto with zarith; unfold Zabs_nat.
-case (m - n); auto with zarith.
-intros p; case p; simpl; auto with zarith.
-intros p1 Hp1; rewrite nat_of_P_xO; rewrite nat_of_P_xI;
- rewrite nat_of_P_succ_morphism.
-simpl; repeat rewrite plus_0_r.
-repeat rewrite <- plus_n_Sm; simpl; auto.
-intros p H3; contradict H3; auto with zarith.
-intros H1 H2; apply iter_permutation; auto with zarith.
-apply permutation_trans
- with (rev (progression Zsucc m (Zabs_nat ((1 + n) - m)))).
-rewrite Zprogression_opp; auto with zarith.
-replace (m + Z_of_nat (pred (Zabs_nat ((1 + n) - m)))) with n; auto.
-replace (Zabs_nat ((1 + n) - m)) with (S (Zabs_nat (n - m))); auto with zarith.
-simpl.
-rewrite inj_Zabs_nat; auto with zarith.
-rewrite Zabs_eq; auto with zarith.
-replace ((1 + n) - m) with (1 + (n - m)); auto with zarith.
-cut (0 <= n - m); auto with zarith; unfold Zabs_nat.
-case (n - m); auto with zarith.
-intros p; case p; simpl; auto with zarith.
-intros p1 Hp1; rewrite nat_of_P_xO; rewrite nat_of_P_xI;
- rewrite nat_of_P_succ_morphism.
-simpl; repeat rewrite plus_0_r.
-repeat rewrite <- plus_n_Sm; simpl; auto.
-intros p H3; contradict H3; auto with zarith.
-apply permutation_rev.
-Qed.
-
-Lemma Zsum_split_up:
- forall (n m p : Z) (f : Z -> Z),
- ( n <= m < p ) -> Zsum n p f = Zsum n m f + Zsum (m + 1) p f.
-intros n m p f [H H0].
-case (Zle_lt_or_eq _ _ H); clear H; intros H.
-unfold Zsum; (repeat rewrite Zle_imp_le_bool); auto with zarith.
-assert (H1: n < p).
-apply Zlt_trans with ( 1 := H ); auto with zarith.
-assert (H2: m < 1 + p).
-apply Zlt_trans with ( 1 := H0 ); auto with zarith.
-assert (H3: n < 1 + m).
-apply Zlt_trans with ( 1 := H ); auto with zarith.
-assert (H4: n < 1 + p).
-apply Zlt_trans with ( 1 := H1 ); auto with zarith.
-replace (Zabs_nat ((1 + p) - (m + 1)))
- with (minus (Zabs_nat ((1 + p) - n)) (Zabs_nat ((1 + m) - n))).
-apply iter_progression_app; auto with zarith.
-apply inj_le_rev.
-(repeat rewrite inj_Zabs_nat); auto with zarith.
-(repeat rewrite Zabs_eq); auto with zarith.
-rewrite next_n_Z; auto with zarith.
-rewrite inj_Zabs_nat; auto with zarith.
-rewrite Zabs_eq; auto with zarith.
-apply inj_eq_rev; auto with zarith.
-rewrite inj_minus1; auto with zarith.
-(repeat rewrite inj_Zabs_nat); auto with zarith.
-(repeat rewrite Zabs_eq); auto with zarith.
-apply inj_le_rev.
-(repeat rewrite inj_Zabs_nat); auto with zarith.
-(repeat rewrite Zabs_eq); auto with zarith.
-subst m.
-rewrite Zsum_nn; auto with zarith.
-unfold Zsum; generalize (Zle_cases n p); generalize (Zle_cases (n + 1) p);
- case (Zle_bool n p); case (Zle_bool (n + 1) p); auto with zarith.
-intros H1 H2.
-replace (Zabs_nat ((1 + p) - n)) with (S (Zabs_nat (p - n))); auto with zarith.
-replace (n + 1) with (Zsucc n); auto with zarith.
-replace ((1 + p) - Zsucc n) with (p - n); auto with zarith.
-apply inj_eq_rev; auto with zarith.
-rewrite inj_S; (repeat rewrite inj_Zabs_nat); auto with zarith.
-(repeat rewrite Zabs_eq); auto with zarith.
-Qed.
-
-Lemma Zsum_S_left:
- forall (n m : Z) (f : Z -> Z), n < m -> Zsum n m f = f n + Zsum (n + 1) m f.
-intros n m f H; rewrite (Zsum_split_up n n m f); auto with zarith.
-rewrite Zsum_nn; auto with zarith.
-Qed.
-
-Lemma Zsum_S_right:
- forall (n m : Z) (f : Z -> Z),
- n <= m -> Zsum n (m + 1) f = Zsum n m f + f (m + 1).
-intros n m f H; rewrite (Zsum_split_up n m (m + 1) f); auto with zarith.
-rewrite Zsum_nn; auto with zarith.
-Qed.
-
-Lemma Zsum_split_down:
- forall (n m p : Z) (f : Z -> Z),
- ( p < m <= n ) -> Zsum n p f = Zsum n m f + Zsum (m - 1) p f.
-intros n m p f [H H0].
-case (Zle_lt_or_eq p (m - 1)); auto with zarith; intros H1.
-pattern m at 1; replace m with ((m - 1) + 1); auto with zarith.
-repeat rewrite (Zsum_swap n).
-rewrite (Zsum_swap (m - 1)).
-rewrite Zplus_comm.
-apply Zsum_split_up; auto with zarith.
-subst p.
-repeat rewrite (Zsum_swap n).
-rewrite Zsum_nn.
-unfold Zsum; (repeat rewrite Zle_imp_le_bool); auto with zarith.
-replace (Zabs_nat ((1 + n) - (m - 1))) with (S (Zabs_nat (n - (m - 1)))).
-rewrite Zplus_comm.
-replace (Zabs_nat ((1 + n) - m)) with (Zabs_nat (n - (m - 1))); auto with zarith.
-pattern m at 4; replace m with (Zsucc (m - 1)); auto with zarith.
-apply f_equal with ( f := Zabs_nat ); auto with zarith.
-apply inj_eq_rev; auto with zarith.
-rewrite inj_S.
-(repeat rewrite inj_Zabs_nat); auto with zarith.
-(repeat rewrite Zabs_eq); auto with zarith.
-Qed.
-
-
-Lemma Zsum_ext:
- forall (n m : Z) (f g : Z -> Z),
- n <= m ->
- (forall (x : Z), ( n <= x <= m ) -> f x = g x) -> Zsum n m f = Zsum n m g.
-intros n m f g HH H.
-unfold Zsum; auto.
-unfold Zsum; (repeat rewrite Zle_imp_le_bool); auto with zarith.
-apply iter_ext; auto with zarith.
-intros a H1; apply H; auto; split.
-apply Zprogression_le_init with ( 1 := H1 ).
-cut (a < Zsucc m); auto with zarith.
-replace (Zsucc m) with (n + Z_of_nat (Zabs_nat ((1 + m) - n))); auto with zarith.
-apply Zprogression_le_end; auto with zarith.
-rewrite inj_Zabs_nat; auto with zarith.
-(repeat rewrite Zabs_eq); auto with zarith.
-Qed.
-
-Lemma Zsum_add:
- forall (n m : Z) (f g : Z -> Z),
- Zsum n m f + Zsum n m g = Zsum n m (fun (i : Z) => f i + g i).
-intros n m f g; unfold Zsum; case (Zle_bool n m); apply iter_comp;
- auto with zarith.
-Qed.
-
-Lemma Zsum_times:
- forall n m x f, x * Zsum n m f = Zsum n m (fun i=> x * f i).
-intros n m x f.
-unfold Zsum. case (Zle_bool n m); intros; apply iter_comp_const with (k := (fun y : Z => x * y)); auto with zarith.
-Qed.
-
-Lemma inv_Zsum:
- forall (P : Z -> Prop) (n m : Z) (f : Z -> Z),
- n <= m ->
- P 0 ->
- (forall (a b : Z), P a -> P b -> P (a + b)) ->
- (forall (x : Z), ( n <= x <= m ) -> P (f x)) -> P (Zsum n m f).
-intros P n m f HH H H0 H1.
-unfold Zsum; rewrite Zle_imp_le_bool; auto with zarith; apply iter_inv; auto.
-intros x H3; apply H1; auto; split.
-apply Zprogression_le_init with ( 1 := H3 ).
-cut (x < Zsucc m); auto with zarith.
-replace (Zsucc m) with (n + Z_of_nat (Zabs_nat ((1 + m) - n))); auto with zarith.
-apply Zprogression_le_end; auto with zarith.
-rewrite inj_Zabs_nat; auto with zarith.
-(repeat rewrite Zabs_eq); auto with zarith.
-Qed.
-
-
-Lemma Zsum_pred:
- forall (n m : Z) (f : Z -> Z),
- Zsum n m f = Zsum (n + 1) (m + 1) (fun (i : Z) => f (Zpred i)).
-intros n m f.
-unfold Zsum.
-generalize (Zle_cases n m); generalize (Zle_cases (n + 1) (m + 1));
- case (Zle_bool n m); case (Zle_bool (n + 1) (m + 1)); auto with zarith.
-replace ((1 + (m + 1)) - (n + 1)) with ((1 + m) - n); auto with zarith.
-intros H1 H2; cut (exists c , c = Zabs_nat ((1 + m) - n) ).
-intros [c H3]; rewrite <- H3.
-generalize n; elim c; auto with zarith; clear H1 H2 H3 c n.
-intros c H n; simpl; eq_tac; auto with zarith.
-eq_tac; unfold Zpred; auto with zarith.
-replace (Zsucc (n + 1)) with (Zsucc n + 1); auto with zarith.
-exists (Zabs_nat ((1 + m) - n)); auto.
-replace ((1 + (n + 1)) - (m + 1)) with ((1 + n) - m); auto with zarith.
-intros H1 H2; cut (exists c , c = Zabs_nat ((1 + n) - m) ).
-intros [c H3]; rewrite <- H3.
-generalize n; elim c; auto with zarith; clear H1 H2 H3 c n.
-intros c H n; simpl; (eq_tac; auto with zarith).
-eq_tac; unfold Zpred; auto with zarith.
-replace (Zpred (n + 1)) with (Zpred n + 1); auto with zarith.
-unfold Zpred; auto with zarith.
-exists (Zabs_nat ((1 + n) - m)); auto.
-Qed.
-
-Theorem Zsum_c:
- forall (c p q : Z), p <= q -> Zsum p q (fun x => c) = ((1 + q) - p) * c.
-intros c p q Hq; unfold Zsum.
-rewrite Zle_imp_le_bool; auto with zarith.
-pattern ((1 + q) - p) at 2.
- rewrite <- Zabs_eq; auto with zarith.
- rewrite <- inj_Zabs_nat; auto with zarith.
-cut (exists r , r = Zabs_nat ((1 + q) - p) );
- [intros [r H1]; rewrite <- H1 | exists (Zabs_nat ((1 + q) - p))]; auto.
-generalize p; elim r; auto with zarith.
-intros n H p0; replace (Z_of_nat (S n)) with (Z_of_nat n + 1); auto with zarith.
-simpl; rewrite H; ring.
-rewrite inj_S; auto with zarith.
-Qed.
-
-Theorem Zsum_Zsum_f:
- forall (i j k l : Z) (f : Z -> Z -> Z),
- i <= j ->
- k < l ->
- Zsum i j (fun x => Zsum k (l + 1) (fun y => f x y)) =
- Zsum i j (fun x => Zsum k l (fun y => f x y) + f x (l + 1)).
-intros; apply Zsum_ext; intros; auto with zarith.
-rewrite Zsum_S_right; auto with zarith.
-Qed.
-
-Theorem Zsum_com:
- forall (i j k l : Z) (f : Z -> Z -> Z),
- Zsum i j (fun x => Zsum k l (fun y => f x y)) =
- Zsum k l (fun y => Zsum i j (fun x => f x y)).
-intros; unfold Zsum; case (Zle_bool i j); case (Zle_bool k l); apply iter_com;
- auto with zarith.
-Qed.
-
-Theorem Zsum_le:
- forall (n m : Z) (f g : Z -> Z),
- n <= m ->
- (forall (x : Z), ( n <= x <= m ) -> (f x <= g x )) ->
- (Zsum n m f <= Zsum n m g ).
-intros n m f g Hl H.
-unfold Zsum; rewrite Zle_imp_le_bool; auto with zarith.
-unfold Zsum;
- cut
- (forall x,
- In x (progression Zsucc n (Zabs_nat ((1 + m) - n))) -> ( f x <= g x )).
-elim (progression Zsucc n (Zabs_nat ((1 + m) - n))); simpl; auto with zarith.
-intros x H1; apply H; split.
-apply Zprogression_le_init with ( 1 := H1 ); auto.
-cut (x < m + 1); auto with zarith.
-replace (m + 1) with (n + Z_of_nat (Zabs_nat ((1 + m) - n))); auto with zarith.
-apply Zprogression_le_end; auto with zarith.
-rewrite inj_Zabs_nat; auto with zarith.
-rewrite Zabs_eq; auto with zarith.
-Qed.
-
-Theorem iter_le:
-forall (f g: Z -> Z) l, (forall a, In a l -> f a <= g a) ->
- iter 0 f Zplus l <= iter 0 g Zplus l.
-intros f g l; elim l; simpl; auto with zarith.
-Qed.
-
-Theorem Zsum_lt:
- forall n m f g,
- (forall x, n <= x -> x <= m -> f x <= g x) ->
- (exists x, n <= x /\ x <= m /\ f x < g x) ->
- Zsum n m f < Zsum n m g.
-intros n m f g H (d, (Hd1, (Hd2, Hd3))); unfold Zsum; rewrite Zle_imp_le_bool; auto with zarith.
-cut (In d (progression Zsucc n (Zabs_nat (1 + m - n)))).
-cut (forall x, In x (progression Zsucc n (Zabs_nat (1 + m - n)))-> f x <= g x).
-elim (progression Zsucc n (Zabs_nat (1 + m - n))); simpl; auto with zarith.
-intros a l Rec H0 [H1 | H1]; subst; auto.
-apply Zle_lt_trans with (f d + iter 0 g Zplus l); auto with zarith.
-apply Zplus_le_compat_l.
-apply iter_le; auto.
-apply Zlt_le_trans with (f a + iter 0 g Zplus l); auto with zarith.
-intros x H1; apply H.
-apply Zprogression_le_init with ( 1 := H1 ); auto.
-cut (x < m + 1); auto with zarith.
-replace (m + 1) with (n + Z_of_nat (Zabs_nat ((1 + m) - n))); auto with zarith.
-apply Zprogression_le_end with ( 1 := H1 ); auto with arith.
-rewrite inj_Zabs_nat; auto with zarith.
-rewrite Zabs_eq; auto with zarith.
-apply in_Zprogression.
-rewrite inj_Zabs_nat; auto with zarith.
-rewrite Zabs_eq; auto with zarith.
-Qed.
-
-Theorem Zsum_minus:
- forall n m f g, Zsum n m f - Zsum n m g = Zsum n m (fun x => f x - g x).
-intros n m f g; apply trans_equal with (Zsum n m f + (-1) * Zsum n m g); auto with zarith.
-rewrite Zsum_times; rewrite Zsum_add; auto with zarith.
-Qed.
diff --git a/coqprime/Coqprime/Zp.v b/coqprime/Coqprime/Zp.v
deleted file mode 100644
index 6383b08b9..000000000
--- a/coqprime/Coqprime/Zp.v
+++ /dev/null
@@ -1,411 +0,0 @@
-
-(*************************************************************)
-(* This file is distributed under the terms of the *)
-(* GNU Lesser General Public License Version 2.1 *)
-(*************************************************************)
-(* Benjamin.Gregoire@inria.fr Laurent.Thery@inria.fr *)
-(*************************************************************)
-
-(**********************************************************************
- Zp.v
-
- Build the group of the inversible element on {1, 2, .., n-1}
- for the multiplication modulo n
-
- Definition: ZpGroup
- **********************************************************************)
-Require Import ZArith Znumtheory Zpow_facts.
-Require Import Tactic.
-Require Import Wf_nat.
-Require Import UList.
-Require Import FGroup.
-Require Import EGroup.
-Require Import IGroup.
-Require Import Cyclic.
-Require Import Euler.
-Require Import ZProgression.
-
-Open Scope Z_scope.
-
-Section Zp.
-
-Variable n: Z.
-
-Hypothesis n_pos: 1 < n.
-
-
-(**************************************
- mkZp m creates {m, m - 1, ..., 0}
- **************************************)
-
-Fixpoint mkZp_aux (m: nat): list Z:=
- Z_of_nat m :: match m with O => nil | (S m1) => mkZp_aux m1 end.
-
-(**************************************
- Some properties of mkZp_aux
- **************************************)
-
-Theorem mkZp_aux_length: forall m, length (mkZp_aux m) = (m + 1)%nat.
-intros m; elim m; simpl; auto.
-Qed.
-
-Theorem mkZp_aux_in: forall m p, 0 <= p <= Z_of_nat m -> In p (mkZp_aux m).
-intros m; elim m.
-simpl; auto with zarith.
-intros n1 Rec p (H1, H2); case Zle_lt_or_eq with (1 := H2); clear H2; intro H2.
-rewrite inj_S in H2.
-simpl; right; apply Rec; split; auto with zarith.
-rewrite H2; simpl; auto.
-Qed.
-
-Theorem in_mkZp_aux: forall m p, In p (mkZp_aux m) -> 0 <= p <= Z_of_nat m.
-intros m; elim m; clear m.
-simpl; intros p H1; case H1; clear H1; intros H1; subst; auto with zarith.
-intros m1; generalize (inj_S m1); simpl.
-intros H Rec p [H1 | H1].
-rewrite <- H1; rewrite H; auto with zarith.
-rewrite H; case (Rec p); auto with zarith.
-Qed.
-
-Theorem mkZp_aux_ulist: forall m, ulist (mkZp_aux m).
-intros m; elim m; simpl; auto.
-intros m1 H; apply ulist_cons; auto.
-change (~ In (Z_of_nat (S m1)) (mkZp_aux m1)).
-rewrite inj_S; intros H1.
-case in_mkZp_aux with (1 := H1); auto with zarith.
-Qed.
-
-(**************************************
- mkZp creates {n - 1, ..., 1, 0}
- **************************************)
-
-Definition mkZp := mkZp_aux (Zabs_nat (n - 1)).
-
-(**************************************
- Some properties of mkZp
- **************************************)
-
-Theorem mkZp_length: length mkZp = Zabs_nat n.
-unfold mkZp; rewrite mkZp_aux_length.
-apply inj_eq_rev.
-rewrite inj_plus.
-simpl; repeat rewrite inj_Zabs_nat; auto with zarith.
-repeat rewrite Zabs_eq; auto with zarith.
-Qed.
-
-Theorem mkZp_in: forall p, 0 <= p < n -> In p mkZp.
-intros p (H1, H2); unfold mkZp; apply mkZp_aux_in.
-rewrite inj_Zabs_nat; auto with zarith.
-repeat rewrite Zabs_eq; auto with zarith.
-Qed.
-
-Theorem in_mkZp: forall p, In p mkZp -> 0 <= p < n.
-intros p H; case (in_mkZp_aux (Zabs_nat (n - 1)) p); auto with zarith.
-rewrite inj_Zabs_nat; auto with zarith.
-repeat rewrite Zabs_eq; auto with zarith.
-Qed.
-
-Theorem mkZp_ulist: ulist mkZp.
-unfold mkZp; apply mkZp_aux_ulist; auto.
-Qed.
-
-(**************************************
- Multiplication of two pairs
- **************************************)
-
-Definition pmult (p q: Z) := (p * q) mod n.
-
-(**************************************
- Properties of multiplication
- **************************************)
-
-Theorem pmult_assoc: forall p q r, (pmult p (pmult q r)) = (pmult (pmult p q) r).
-assert (Hu: 0 < n); try apply Zlt_trans with 1; auto with zarith.
-generalize Zmod_mod; intros H.
-intros p q r; unfold pmult.
-rewrite (Zmult_mod p); auto.
-repeat rewrite Zmod_mod; auto.
-rewrite (Zmult_mod q); auto.
-rewrite <- Zmult_mod; auto.
-rewrite Zmult_assoc.
-rewrite (Zmult_mod (p * (q mod n))); auto.
-rewrite (Zmult_mod ((p * q) mod n)); auto.
-eq_tac; auto.
-eq_tac; auto.
-rewrite (Zmult_mod p); sauto.
-rewrite Zmod_mod; auto.
-rewrite <- Zmult_mod; sauto.
-Qed.
-
-Theorem pmult_1_l: forall p, In p mkZp -> pmult 1 p = p.
-intros p H; unfold pmult; rewrite Zmult_1_l.
-apply Zmod_small.
-case (in_mkZp p); auto with zarith.
-Qed.
-
-Theorem pmult_1_r: forall p, In p mkZp -> pmult p 1 = p.
-intros p H; unfold pmult; rewrite Zmult_1_r.
-apply Zmod_small.
-case (in_mkZp p); auto with zarith.
-Qed.
-
-Theorem pmult_comm: forall p q, pmult p q = pmult q p.
-intros p q; unfold pmult; rewrite Zmult_comm; auto.
-Qed.
-
-Definition Lrel := isupport_aux _ pmult mkZp 1 Z_eq_dec (progression Zsucc 0 (Zabs_nat n)).
-
-Theorem rel_prime_is_inv:
- forall a, is_inv Z pmult mkZp 1 Z_eq_dec a = if (rel_prime_dec a n) then true else false.
-assert (Hu: 0 < n); try apply Zlt_trans with 1; auto with zarith.
-intros a; case (rel_prime_dec a n); intros H.
-assert (H1: Bezout a n 1); try apply rel_prime_bezout; auto.
-inversion H1 as [c d Hcd]; clear H1.
-assert (pmult (c mod n) a = 1).
-unfold pmult; rewrite Zmult_mod; try rewrite Zmod_mod; auto.
-rewrite <- Zmult_mod; auto.
-replace (c * a) with (1 + (-d) * n).
-rewrite Z_mod_plus; auto with zarith.
-rewrite Zmod_small; auto with zarith.
-rewrite <- Hcd; ring.
-apply is_inv_true with (a := (c mod n)); auto.
-apply mkZp_in; auto with zarith.
-exact pmult_1_l.
-exact pmult_1_r.
-rewrite pmult_comm; auto.
-apply mkZp_in; auto with zarith.
-apply Z_mod_lt; auto with zarith.
-apply is_inv_false.
-intros c H1; left; intros H2; contradict H.
-apply bezout_rel_prime.
-apply Bezout_intro with c (- (Zdiv (c * a) n)).
-pattern (c * a) at 1; rewrite (Z_div_mod_eq (c * a) n); auto with zarith.
-unfold pmult in H2; rewrite (Zmult_comm c); try rewrite H2.
-ring.
-Qed.
-
-(**************************************
- We are now ready to build our group
- **************************************)
-
-Definition ZPGroup : (FGroup pmult).
-apply IGroup with (support := mkZp) (e:= 1).
-exact Z_eq_dec.
-apply mkZp_ulist.
-apply mkZp_in; auto with zarith.
-intros a b H1 H2; apply mkZp_in.
-unfold pmult; apply Z_mod_lt; auto with zarith.
-intros; apply pmult_assoc.
-exact pmult_1_l.
-exact pmult_1_r.
-Defined.
-
-Theorem in_ZPGroup: forall p, rel_prime p n -> 0 <= p < n -> In p ZPGroup.(s).
-intros p H (H1, H2); unfold ZPGroup; simpl.
-apply isupport_is_in.
-generalize (rel_prime_is_inv p); case (rel_prime_dec p); auto.
-apply mkZp_in; auto with zarith.
-Qed.
-
-
-Theorem phi_is_length: phi n = Z_of_nat (length Lrel).
-assert (Hu: 0 < n); try apply Zlt_trans with 1; auto with zarith.
-rewrite phi_def_with_0; auto.
-unfold Zsum, Lrel; rewrite Zle_imp_le_bool; auto with zarith.
-replace (1 + (n - 1) - 0) with n; auto with zarith.
-elim (progression Zsucc 0 (Zabs_nat n)); simpl; auto.
-intros a l1 Rec.
-rewrite Rec.
-rewrite rel_prime_is_inv.
-case (rel_prime_dec a n); auto with zarith.
-simpl length; rewrite inj_S; auto with zarith.
-Qed.
-
-Theorem phi_is_order: phi n = g_order ZPGroup.
-unfold g_order; rewrite phi_is_length.
-eq_tac; apply permutation_length.
-apply ulist_incl2_permutation.
-unfold Lrel; apply isupport_aux_ulist.
-apply ulist_Zprogression; auto.
-apply ZPGroup.(unique_s).
-intros a H; unfold ZPGroup; simpl.
-apply isupport_is_in.
-unfold Lrel in H; apply isupport_aux_is_inv_true with (1 := H).
-apply mkZp_in; auto.
-assert (In a (progression Zsucc 0 (Zabs_nat n))).
-apply (isupport_aux_incl _ pmult mkZp 1 Z_eq_dec); auto.
-split.
-apply Zprogression_le_init with (1 := H0).
-replace n with (0 + Z_of_nat (Zabs_nat n)).
-apply Zprogression_le_end with (1 := H0).
-rewrite inj_Zabs_nat; auto with zarith.
-rewrite Zabs_eq; auto with zarith.
-intros a H; unfold Lrel; simpl.
-apply isupport_aux_is_in.
-simpl in H; apply isupport_is_inv_true with (1 := H).
-apply in_Zprogression.
-rewrite Zplus_0_l; rewrite inj_Zabs_nat; auto with zarith.
-rewrite Zabs_eq; auto with zarith.
-assert (In a mkZp).
-apply (isupport_aux_incl _ pmult mkZp 1 Z_eq_dec); auto.
-apply in_mkZp; auto.
-Qed.
-
-Theorem Zp_cyclic: prime n -> cyclic Z_eq_dec ZPGroup.
-intros H1.
-unfold ZPGroup, pmult;
-generalize (cyclic_field _ (fun x y => (x + y) mod n) (fun x y => (x * y) mod n) (fun x => (-x) mod n) 0);
-unfold IA; intros tmp; apply tmp; clear tmp; auto.
-intros; discriminate.
-apply mkZp_in; auto with zarith.
-intros; apply mkZp_in; auto with zarith.
-apply Z_mod_lt; auto with zarith.
-intros; rewrite Zplus_0_l; auto.
-apply Zmod_small; auto.
-apply in_mkZp; auto.
-intros; rewrite Zplus_comm; auto.
-intros a b c Ha Hb Hc.
-pattern a at 1; rewrite <- (Zmod_small a n); auto with zarith.
-pattern c at 2; rewrite <- (Zmod_small c n); auto with zarith.
-repeat rewrite <- Zplus_mod; auto with zarith.
-eq_tac; auto with zarith.
-apply in_mkZp; auto.
-apply in_mkZp; auto.
-intros; eq_tac; auto with zarith.
-intros a b c Ha Hb Hc.
-pattern a at 1; rewrite <- (Zmod_small a n); auto with zarith.
-repeat rewrite <- Zmult_mod; auto with zarith.
-repeat rewrite <- Zplus_mod; auto with zarith.
-eq_tac; auto with zarith.
-apply in_mkZp; auto.
-intros; apply mkZp_in; apply Z_mod_lt; auto with zarith.
-intros a Ha.
-pattern a at 1; rewrite <- (Zmod_small a n); auto with zarith.
-repeat rewrite <- Zplus_mod; auto with zarith.
-rewrite <- (Zmod_small 0 n); auto with zarith.
-eq_tac; auto with zarith.
-apply in_mkZp; auto.
-intros a b Ha Hb H; case (prime_mult n H1 a b).
-apply Zmod_divide; auto with zarith.
-intros H2; left.
-case (Zle_lt_or_eq 0 a); auto.
-case (in_mkZp a); auto.
-intros H3; absurd (n <= a).
-apply Zlt_not_le.
-case (in_mkZp a); auto.
-apply Zdivide_le; auto with zarith.
-intros H2; right.
-case (Zle_lt_or_eq 0 b); auto.
-case (in_mkZp b); auto.
-intros H3; absurd (n <= b).
-apply Zlt_not_le.
-case (in_mkZp b); auto.
-apply Zdivide_le; auto with zarith.
-Qed.
-
-End Zp.
-
-(* Definition of the order (0 for q < 1) *)
-
-Definition Zorder: Z -> Z -> Z.
-intros p q; case (Z_le_dec q 1); intros H.
-exact 0.
-refine (e_order Z_eq_dec (p mod q) (ZPGroup q _)); auto with zarith.
-Defined.
-
-Theorem Zorder_pos: forall p n, 0 <= Zorder p n.
-intros p n; unfold Zorder.
-case (Z_le_dec n 1); auto with zarith.
-intros n1.
-apply Zlt_le_weak; apply e_order_pos.
-Qed.
-
-Theorem in_mod_ZPGroup
- : forall (n : Z) (n_pos : 1 < n) (p : Z),
- rel_prime p n -> In (p mod n) (s (ZPGroup n n_pos)).
-intros n H p H1.
-apply in_ZPGroup; auto.
-apply rel_prime_mod; auto with zarith.
-apply Z_mod_lt; auto with zarith.
-Qed.
-
-
-Theorem Zpower_mod_is_gpow:
- forall p q n (Hn: 1 < n), rel_prime p n -> 0 <= q -> p ^ q mod n = gpow (p mod n) (ZPGroup n Hn) q.
-intros p q n H Hp H1; generalize H1; pattern q; apply natlike_ind; simpl; auto.
-intros _; apply Zmod_small; auto with zarith.
-intros n1 Hn1 Rec _; simpl.
-generalize (in_mod_ZPGroup _ H _ Hp); intros Hu.
-unfold Zsucc; rewrite Zpower_exp; try rewrite Zpower_1_r; auto with zarith.
-rewrite gpow_add; auto with zarith.
-rewrite gpow_1; auto; rewrite <- Rec; auto.
-rewrite Zmult_mod; auto.
-Qed.
-
-
-Theorem Zorder_div_power: forall p q n, 1 < n -> rel_prime p n -> p ^ q mod n = 1 -> (Zorder p n | q).
-intros p q n H H1 H2.
-assert (Hq: 0 <= q).
-generalize H2; case q; simpl; auto with zarith.
-intros p1 H3; contradict H3; rewrite Zmod_small; auto with zarith.
-unfold Zorder; case (Z_le_dec n 1).
-intros H3; contradict H; auto with zarith.
-intros H3; apply e_order_divide_gpow; auto.
-apply in_mod_ZPGroup; auto.
-rewrite <- Zpower_mod_is_gpow; auto with zarith.
-Qed.
-
-Theorem Zorder_div: forall p n, prime n -> ~(n | p) -> (Zorder p n | n - 1).
-intros p n H; unfold Zorder.
-case (Z_le_dec n 1); intros H1 H2.
-contradict H1; generalize (prime_ge_2 n H); auto with zarith.
-rewrite <- prime_phi_n_minus_1; auto.
-match goal with |- context[ZPGroup _ ?H2] => rewrite phi_is_order with (n_pos := H2) end.
-apply e_order_divide_g_order; auto.
-apply in_mod_ZPGroup; auto.
-apply rel_prime_sym; apply prime_rel_prime; auto.
-Qed.
-
-
-Theorem Zorder_power_is_1: forall p n, 1 < n -> rel_prime p n -> p ^ (Zorder p n) mod n = 1.
-intros p n H H1; unfold Zorder.
-case (Z_le_dec n 1); intros H2.
-contradict H; auto with zarith.
-let x := match goal with |- context[ZPGroup _ ?X] => X end in rewrite Zpower_mod_is_gpow with (Hn := x); auto with zarith.
-rewrite gpow_e_order_is_e.
-reflexivity.
-apply in_mod_ZPGroup; auto.
-apply Zlt_le_weak; apply e_order_pos.
-Qed.
-
-Theorem Zorder_power_pos: forall p n, 1 < n -> rel_prime p n -> 0 < Zorder p n.
-intros p n H H1; unfold Zorder.
-case (Z_le_dec n 1); intros H2.
-contradict H; auto with zarith.
-apply e_order_pos.
-Qed.
-
-Theorem phi_power_is_1: forall p n, 1 < n -> rel_prime p n -> p ^ (phi n) mod n = 1.
-intros p n H H1.
-assert (V1:= Zorder_power_pos p n H H1).
-assert (H2: (Zorder p n | phi n)).
-unfold Zorder.
-case (Z_le_dec n 1); intros H2.
-contradict H; auto with zarith.
-match goal with |- context[ZPGroup n ?H] =>
-rewrite phi_is_order with (n_pos := H)
-end.
-apply e_order_divide_g_order.
-apply in_mod_ZPGroup; auto.
-case H2; clear H2; intros q H2; rewrite H2.
-rewrite Zmult_comm.
-assert (V2 := (phi_pos _ H)).
-assert (V3: 0 <= q).
-rewrite H2 in V2.
-apply Zlt_le_weak; apply Zmult_lt_0_reg_r with (2 := V2); auto with zarith.
-rewrite Zpower_mult; auto with zarith.
-rewrite Zpower_mod; auto with zarith.
-rewrite Zorder_power_is_1; auto.
-rewrite Zpower_1_l; auto with zarith.
-apply Zmod_small; auto with zarith.
-Qed.
diff --git a/coqprime/Makefile b/coqprime/Makefile
deleted file mode 100644
index 2b995982e..000000000
--- a/coqprime/Makefile
+++ /dev/null
@@ -1,318 +0,0 @@
-#############################################################################
-## v # The Coq Proof Assistant ##
-## <O___,, # INRIA - CNRS - LIX - LRI - PPS ##
-## \VV/ # ##
-## // # Makefile automagically generated by coq_makefile V8.5pl1 ##
-#############################################################################
-
-# WARNING
-#
-# This Makefile has been automagically generated
-# Edit at your own risks !
-#
-# END OF WARNING
-
-#
-# This Makefile was generated by the command line :
-# coq_makefile -f _CoqProject -o Makefile
-#
-
-.DEFAULT_GOAL := all
-
-# This Makefile may take arguments passed as environment variables:
-# COQBIN to specify the directory where Coq binaries resides;
-# TIMECMD set a command to log .v compilation time;
-# TIMED if non empty, use the default time command as TIMECMD;
-# ZDEBUG/COQDEBUG to specify debug flags for ocamlc&ocamlopt/coqc;
-# DSTROOT to specify a prefix to install path.
-
-# Here is a hack to make $(eval $(shell works:
-define donewline
-
-
-endef
-includecmdwithout@ = $(eval $(subst @,$(donewline),$(shell { $(1) | tr -d '\r' | tr '\n' '@'; })))
-$(call includecmdwithout@,$(COQBIN)coqtop -config)
-
-TIMED=
-TIMECMD=
-STDTIME?=/usr/bin/time -f "$* (user: %U mem: %M ko)"
-TIMER=$(if $(TIMED), $(STDTIME), $(TIMECMD))
-
-vo_to_obj = $(addsuffix .o,\
- $(filter-out Warning: Error:,\
- $(shell $(COQBIN)coqtop -q -noinit -batch -quiet -print-mod-uid $(1))))
-
-##########################
-# #
-# Libraries definitions. #
-# #
-##########################
-
-COQLIBS?=\
- -R "Coqprime" Coqprime
-COQDOCLIBS?=\
- -R "Coqprime" Coqprime
-
-##########################
-# #
-# Variables definitions. #
-# #
-##########################
-
-
-OPT?=
-COQDEP?="$(COQBIN)coqdep" -c
-COQFLAGS?=-q $(OPT) $(COQLIBS) $(OTHERFLAGS) $(COQ_XML)
-COQCHKFLAGS?=-silent -o
-COQDOCFLAGS?=-interpolate -utf8
-COQC?=$(TIMER) "$(COQBIN)coqc"
-GALLINA?="$(COQBIN)gallina"
-COQDOC?="$(COQBIN)coqdoc"
-COQCHK?="$(COQBIN)coqchk"
-COQMKTOP?="$(COQBIN)coqmktop"
-
-##################
-# #
-# Install Paths. #
-# #
-##################
-
-ifdef USERINSTALL
-XDG_DATA_HOME?="$(HOME)/.local/share"
-COQLIBINSTALL=$(XDG_DATA_HOME)/coq
-COQDOCINSTALL=$(XDG_DATA_HOME)/doc/coq
-else
-COQLIBINSTALL="${COQLIB}user-contrib"
-COQDOCINSTALL="${DOCDIR}user-contrib"
-COQTOPINSTALL="${COQLIB}toploop"
-endif
-
-######################
-# #
-# Files dispatching. #
-# #
-######################
-
-VFILES:=Coqprime/Cyclic.v\
- Coqprime/EGroup.v\
- Coqprime/Euler.v\
- Coqprime/FGroup.v\
- Coqprime/IGroup.v\
- Coqprime/Iterator.v\
- Coqprime/Lagrange.v\
- Coqprime/ListAux.v\
- Coqprime/LucasLehmer.v\
- Coqprime/NatAux.v\
- Coqprime/PGroup.v\
- Coqprime/Permutation.v\
- Coqprime/Pmod.v\
- Coqprime/Pocklington.v\
- Coqprime/PocklingtonCertificat.v\
- Coqprime/Root.v\
- Coqprime/Tactic.v\
- Coqprime/UList.v\
- Coqprime/ZCAux.v\
- Coqprime/ZCmisc.v\
- Coqprime/ZProgression.v\
- Coqprime/ZSum.v\
- Coqprime/Zp.v
-
-ifneq ($(filter-out archclean clean cleanall printenv,$(MAKECMDGOALS)),)
--include $(addsuffix .d,$(VFILES))
-else
-ifeq ($(MAKECMDGOALS),)
--include $(addsuffix .d,$(VFILES))
-endif
-endif
-
-.SECONDARY: $(addsuffix .d,$(VFILES))
-
-VO=vo
-VOFILES:=$(VFILES:.v=.$(VO))
-VOFILES1=$(patsubst Coqprime/%,%,$(filter Coqprime/%,$(VOFILES)))
-GLOBFILES:=$(VFILES:.v=.glob)
-GFILES:=$(VFILES:.v=.g)
-HTMLFILES:=$(VFILES:.v=.html)
-GHTMLFILES:=$(VFILES:.v=.g.html)
-OBJFILES=$(call vo_to_obj,$(VOFILES))
-ALLNATIVEFILES=$(OBJFILES:.o=.cmi) $(OBJFILES:.o=.cmo) $(OBJFILES:.o=.cmx) $(OBJFILES:.o=.cmxs)
-NATIVEFILES=$(foreach f, $(ALLNATIVEFILES), $(wildcard $f))
-NATIVEFILES1=$(patsubst Coqprime/%,%,$(filter Coqprime/%,$(NATIVEFILES)))
-ifeq '$(HASNATDYNLINK)' 'true'
-HASNATDYNLINK_OR_EMPTY := yes
-else
-HASNATDYNLINK_OR_EMPTY :=
-endif
-
-#######################################
-# #
-# Definition of the toplevel targets. #
-# #
-#######################################
-
-all: $(VOFILES)
-
-quick: $(VOFILES:.vo=.vio)
-
-vio2vo:
- $(COQC) $(COQDEBUG) $(COQFLAGS) -schedule-vio2vo $(J) $(VOFILES:%.vo=%.vio)
-checkproofs:
- $(COQC) $(COQDEBUG) $(COQFLAGS) -schedule-vio-checking $(J) $(VOFILES:%.vo=%.vio)
-gallina: $(GFILES)
-
-html: $(GLOBFILES) $(VFILES)
- - mkdir -p html
- $(COQDOC) -toc $(COQDOCFLAGS) -html $(COQDOCLIBS) -d html $(VFILES)
-
-gallinahtml: $(GLOBFILES) $(VFILES)
- - mkdir -p html
- $(COQDOC) -toc $(COQDOCFLAGS) -html -g $(COQDOCLIBS) -d html $(VFILES)
-
-all.ps: $(VFILES)
- $(COQDOC) -toc $(COQDOCFLAGS) -ps $(COQDOCLIBS) -o $@ `$(COQDEP) -sort -suffix .v $^`
-
-all-gal.ps: $(VFILES)
- $(COQDOC) -toc $(COQDOCFLAGS) -ps -g $(COQDOCLIBS) -o $@ `$(COQDEP) -sort -suffix .v $^`
-
-all.pdf: $(VFILES)
- $(COQDOC) -toc $(COQDOCFLAGS) -pdf $(COQDOCLIBS) -o $@ `$(COQDEP) -sort -suffix .v $^`
-
-all-gal.pdf: $(VFILES)
- $(COQDOC) -toc $(COQDOCFLAGS) -pdf -g $(COQDOCLIBS) -o $@ `$(COQDEP) -sort -suffix .v $^`
-
-validate: $(VOFILES)
- $(COQCHK) $(COQCHKFLAGS) $(COQLIBS) $(notdir $(^:.vo=))
-
-beautify: $(VFILES:=.beautified)
- for file in $^; do mv $${file%.beautified} $${file%beautified}old && mv $${file} $${file%.beautified}; done
- @echo 'Do not do "make clean" until you are sure that everything went well!'
- @echo 'If there were a problem, execute "for file in $$(find . -name \*.v.old -print); do mv $${file} $${file%.old}; done" in your shell/'
-
-.PHONY: all archclean beautify byte clean cleanall gallina gallinahtml html install install-doc install-natdynlink install-toploop opt printenv quick uninstall userinstall validate vio2vo
-
-####################
-# #
-# Special targets. #
-# #
-####################
-
-byte:
- $(MAKE) all "OPT:=-byte"
-
-opt:
- $(MAKE) all "OPT:=-opt"
-
-userinstall:
- +$(MAKE) USERINSTALL=true install
-
-install:
- cd "Coqprime" && for i in $(NATIVEFILES1) $(GLOBFILES1) $(VFILES1) $(VOFILES1); do \
- install -d "`dirname "$(DSTROOT)"$(COQLIBINSTALL)/Coqprime/$$i`"; \
- install -m 0644 $$i "$(DSTROOT)"$(COQLIBINSTALL)/Coqprime/$$i; \
- done
-
-install-doc:
- install -d "$(DSTROOT)"$(COQDOCINSTALL)/Coqprime/html
- for i in html/*; do \
- install -m 0644 $$i "$(DSTROOT)"$(COQDOCINSTALL)/Coqprime/$$i;\
- done
-
-uninstall_me.sh: Makefile
- echo '#!/bin/sh' > $@
- printf 'cd "$${DSTROOT}"$(COQLIBINSTALL)/Coqprime && rm -f $(NATIVEFILES1) $(GLOBFILES1) $(VFILES1) $(VOFILES1) && find . -type d -and -empty -delete\ncd "$${DSTROOT}"$(COQLIBINSTALL) && find "Coqprime" -maxdepth 0 -and -empty -exec rmdir -p \{\} \;\n' >> "$@"
- printf 'cd "$${DSTROOT}"$(COQDOCINSTALL)/Coqprime \\\n' >> "$@"
- printf '&& rm -f $(shell find "html" -maxdepth 1 -and -type f -print)\n' >> "$@"
- printf 'cd "$${DSTROOT}"$(COQDOCINSTALL) && find Coqprime/html -maxdepth 0 -and -empty -exec rmdir -p \{\} \;\n' >> "$@"
- chmod +x $@
-
-uninstall: uninstall_me.sh
- sh $<
-
-.merlin:
- @echo 'FLG -rectypes' > .merlin
- @echo "B $(COQLIB) kernel" >> .merlin
- @echo "B $(COQLIB) lib" >> .merlin
- @echo "B $(COQLIB) library" >> .merlin
- @echo "B $(COQLIB) parsing" >> .merlin
- @echo "B $(COQLIB) pretyping" >> .merlin
- @echo "B $(COQLIB) interp" >> .merlin
- @echo "B $(COQLIB) printing" >> .merlin
- @echo "B $(COQLIB) intf" >> .merlin
- @echo "B $(COQLIB) proofs" >> .merlin
- @echo "B $(COQLIB) tactics" >> .merlin
- @echo "B $(COQLIB) tools" >> .merlin
- @echo "B $(COQLIB) toplevel" >> .merlin
- @echo "B $(COQLIB) stm" >> .merlin
- @echo "B $(COQLIB) grammar" >> .merlin
- @echo "B $(COQLIB) config" >> .merlin
-
-clean::
- rm -f $(OBJFILES) $(OBJFILES:.o=.native) $(NATIVEFILES)
- find . -name .coq-native -type d -empty -delete
- rm -f $(VOFILES) $(VOFILES:.vo=.vio) $(GFILES) $(VFILES:.v=.v.d) $(VFILES:=.beautified) $(VFILES:=.old)
- rm -f all.ps all-gal.ps all.pdf all-gal.pdf all.glob $(VFILES:.v=.glob) $(VFILES:.v=.tex) $(VFILES:.v=.g.tex) all-mli.tex
- - rm -rf html mlihtml uninstall_me.sh
-
-cleanall:: clean
- rm -f $(patsubst %.v,.%.aux,$(VFILES))
-
-archclean::
- rm -f *.cmx *.o
-
-printenv:
- @"$(COQBIN)coqtop" -config
- @echo 'CAMLC = $(CAMLC)'
- @echo 'CAMLOPTC = $(CAMLOPTC)'
- @echo 'PP = $(PP)'
- @echo 'COQFLAGS = $(COQFLAGS)'
- @echo 'COQLIBINSTALL = $(COQLIBINSTALL)'
- @echo 'COQDOCINSTALL = $(COQDOCINSTALL)'
-
-Makefile: _CoqProject
- mv -f $@ $@.bak
- "$(COQBIN)coq_makefile" -f $< -o $@
-
-
-###################
-# #
-# Implicit rules. #
-# #
-###################
-
-$(VOFILES): %.vo: %.v
- $(COQC) $(COQDEBUG) $(COQFLAGS) $*
-
-$(GLOBFILES): %.glob: %.v
- $(COQC) $(COQDEBUG) $(COQFLAGS) $*
-
-$(VFILES:.v=.vio): %.vio: %.v
- $(COQC) -quick $(COQDEBUG) $(COQFLAGS) $*
-
-$(GFILES): %.g: %.v
- $(GALLINA) $<
-
-$(VFILES:.v=.tex): %.tex: %.v
- $(COQDOC) $(COQDOCFLAGS) -latex $< -o $@
-
-$(HTMLFILES): %.html: %.v %.glob
- $(COQDOC) $(COQDOCFLAGS) -html $< -o $@
-
-$(VFILES:.v=.g.tex): %.g.tex: %.v
- $(COQDOC) $(COQDOCFLAGS) -latex -g $< -o $@
-
-$(GHTMLFILES): %.g.html: %.v %.glob
- $(COQDOC) $(COQDOCFLAGS) -html -g $< -o $@
-
-$(addsuffix .d,$(VFILES)): %.v.d: %.v
- $(COQDEP) $(COQLIBS) "$<" > "$@" || ( RV=$$?; rm -f "$@"; exit $${RV} )
-
-$(addsuffix .beautified,$(VFILES)): %.v.beautified:
- $(COQC) $(COQDEBUG) $(COQFLAGS) -beautify $*
-
-# WARNING
-#
-# This Makefile has been automagically generated
-# Edit at your own risks !
-#
-# END OF WARNING
diff --git a/coqprime/README.md b/coqprime/README.md
deleted file mode 100644
index 9c317fb00..000000000
--- a/coqprime/README.md
+++ /dev/null
@@ -1,9 +0,0 @@
-# Coqprime (LGPL subset)
-
-This is a mirror of the LGPL-licensed and autogenerated files from [Coqprime](http://coqprime.gforge.inria.fr/) for Coq 8.5. It was generated from [coqprime_8.5b.zip](https://gforge.inria.fr/frs/download.php/file/35520/coqprime_8.5b.zip). Due to the removal of files that are missing license headers in the upstream source, `make` no longer completes successfully. However, a large part of the codebase does build and contains theorems useful to us. Fixing the build system would be nice, but is not a priority for us.
-
-## Usage
-
- make PrimalityTest/Zp.vo PrimalityTest/PocklingtonCertificat.vo
- cd ..
- coqide -R coqprime/Tactic Coqprime -R coqprime/N Coqprime -R coqprime/Z Coqprime -R coqprime/List Coqprime -R coqprime/PrimalityTest Coqprime YOUR_FILE.v # these are the dependencies for PrimalityTest/Zp, other modules can be added in a similar fashion
diff --git a/coqprime/_CoqProject b/coqprime/_CoqProject
deleted file mode 100644
index 95b224864..000000000
--- a/coqprime/_CoqProject
+++ /dev/null
@@ -1,24 +0,0 @@
--R Coqprime Coqprime
-Coqprime/Cyclic.v
-Coqprime/EGroup.v
-Coqprime/Euler.v
-Coqprime/FGroup.v
-Coqprime/IGroup.v
-Coqprime/Iterator.v
-Coqprime/Lagrange.v
-Coqprime/ListAux.v
-Coqprime/LucasLehmer.v
-Coqprime/NatAux.v
-Coqprime/PGroup.v
-Coqprime/Permutation.v
-Coqprime/Pmod.v
-Coqprime/Pocklington.v
-Coqprime/PocklingtonCertificat.v
-Coqprime/Root.v
-Coqprime/Tactic.v
-Coqprime/UList.v
-Coqprime/ZCAux.v
-Coqprime/ZCmisc.v
-Coqprime/ZProgression.v
-Coqprime/ZSum.v
-Coqprime/Zp.v