aboutsummaryrefslogtreecommitdiff
path: root/coqprime/Coqprime/Permutation.v
diff options
context:
space:
mode:
Diffstat (limited to 'coqprime/Coqprime/Permutation.v')
-rw-r--r--coqprime/Coqprime/Permutation.v506
1 files changed, 0 insertions, 506 deletions
diff --git a/coqprime/Coqprime/Permutation.v b/coqprime/Coqprime/Permutation.v
deleted file mode 100644
index eb6969882..000000000
--- a/coqprime/Coqprime/Permutation.v
+++ /dev/null
@@ -1,506 +0,0 @@
-
-(*************************************************************)
-(* This file is distributed under the terms of the *)
-(* GNU Lesser General Public License Version 2.1 *)
-(*************************************************************)
-(* Benjamin.Gregoire@inria.fr Laurent.Thery@inria.fr *)
-(*************************************************************)
-
-(**********************************************************************
- Permutation.v
-
- Defintion and properties of permutations
- **********************************************************************)
-Require Export List.
-Require Export ListAux.
-
-Section permutation.
-Variable A : Set.
-
-(**************************************
- Definition of permutations as sequences of adjacent transpositions
- **************************************)
-
-Inductive permutation : list A -> list A -> Prop :=
- | permutation_nil : permutation nil nil
- | permutation_skip :
- forall (a : A) (l1 l2 : list A),
- permutation l2 l1 -> permutation (a :: l2) (a :: l1)
- | permutation_swap :
- forall (a b : A) (l : list A), permutation (a :: b :: l) (b :: a :: l)
- | permutation_trans :
- forall l1 l2 l3 : list A,
- permutation l1 l2 -> permutation l2 l3 -> permutation l1 l3.
-Hint Constructors permutation.
-
-(**************************************
- Reflexivity
- **************************************)
-
-Theorem permutation_refl : forall l : list A, permutation l l.
-simple induction l.
-apply permutation_nil.
-intros a l1 H.
-apply permutation_skip with (1 := H).
-Qed.
-Hint Resolve permutation_refl.
-
-(**************************************
- Symmetry
- **************************************)
-
-Theorem permutation_sym :
- forall l m : list A, permutation l m -> permutation m l.
-intros l1 l2 H'; elim H'.
-apply permutation_nil.
-intros a l1' l2' H1 H2.
-apply permutation_skip with (1 := H2).
-intros a b l1'.
-apply permutation_swap.
-intros l1' l2' l3' H1 H2 H3 H4.
-apply permutation_trans with (1 := H4) (2 := H2).
-Qed.
-
-(**************************************
- Compatibility with list length
- **************************************)
-
-Theorem permutation_length :
- forall l m : list A, permutation l m -> length l = length m.
-intros l m H'; elim H'; simpl in |- *; auto.
-intros l1 l2 l3 H'0 H'1 H'2 H'3.
-rewrite <- H'3; auto.
-Qed.
-
-(**************************************
- A permutation of the nil list is the nil list
- **************************************)
-
-Theorem permutation_nil_inv : forall l : list A, permutation l nil -> l = nil.
-intros l H; generalize (permutation_length _ _ H); case l; simpl in |- *;
- auto.
-intros; discriminate.
-Qed.
-
-(**************************************
- A permutation of the singleton list is the singleton list
- **************************************)
-
-Let permutation_one_inv_aux :
- forall l1 l2 : list A,
- permutation l1 l2 -> forall a : A, l1 = a :: nil -> l2 = a :: nil.
-intros l1 l2 H; elim H; clear H l1 l2; auto.
-intros a l3 l4 H0 H1 b H2.
-injection H2; intros; subst; auto.
-rewrite (permutation_nil_inv _ (permutation_sym _ _ H0)); auto.
-intros; discriminate.
-Qed.
-
-Theorem permutation_one_inv :
- forall (a : A) (l : list A), permutation (a :: nil) l -> l = a :: nil.
-intros a l H; apply permutation_one_inv_aux with (l1 := a :: nil); auto.
-Qed.
-
-(**************************************
- Compatibility with the belonging
- **************************************)
-
-Theorem permutation_in :
- forall (a : A) (l m : list A), permutation l m -> In a l -> In a m.
-intros a l m H; elim H; simpl in |- *; auto; intuition.
-Qed.
-
-(**************************************
- Compatibility with the append function
- **************************************)
-
-Theorem permutation_app_comp :
- forall l1 l2 l3 l4,
- permutation l1 l2 -> permutation l3 l4 -> permutation (l1 ++ l3) (l2 ++ l4).
-intros l1 l2 l3 l4 H1; generalize l3 l4; elim H1; clear H1 l1 l2 l3 l4;
- simpl in |- *; auto.
-intros a b l l3 l4 H.
-cut (permutation (l ++ l3) (l ++ l4)); auto.
-intros; apply permutation_trans with (a :: b :: l ++ l4); auto.
-elim l; simpl in |- *; auto.
-intros l1 l2 l3 H H0 H1 H2 l4 l5 H3.
-apply permutation_trans with (l2 ++ l4); auto.
-Qed.
-Hint Resolve permutation_app_comp.
-
-(**************************************
- Swap two sublists
- **************************************)
-
-Theorem permutation_app_swap :
- forall l1 l2, permutation (l1 ++ l2) (l2 ++ l1).
-intros l1; elim l1; auto.
-intros; rewrite <- app_nil_end; auto.
-intros a l H l2.
-replace (l2 ++ a :: l) with ((l2 ++ a :: nil) ++ l).
-apply permutation_trans with (l ++ l2 ++ a :: nil); auto.
-apply permutation_trans with (((a :: nil) ++ l2) ++ l); auto.
-simpl in |- *; auto.
-apply permutation_trans with (l ++ (a :: nil) ++ l2); auto.
-apply permutation_sym; auto.
-replace (l2 ++ a :: l) with ((l2 ++ a :: nil) ++ l).
-apply permutation_app_comp; auto.
-elim l2; simpl in |- *; auto.
-intros a0 l0 H0.
-apply permutation_trans with (a0 :: a :: l0); auto.
-apply (app_ass l2 (a :: nil) l).
-apply (app_ass l2 (a :: nil) l).
-Qed.
-
-(**************************************
- A transposition is a permutation
- **************************************)
-
-Theorem permutation_transposition :
- forall a b l1 l2 l3,
- permutation (l1 ++ a :: l2 ++ b :: l3) (l1 ++ b :: l2 ++ a :: l3).
-intros a b l1 l2 l3.
-apply permutation_app_comp; auto.
-change
- (permutation ((a :: nil) ++ l2 ++ (b :: nil) ++ l3)
- ((b :: nil) ++ l2 ++ (a :: nil) ++ l3)) in |- *.
-repeat rewrite <- app_ass.
-apply permutation_app_comp; auto.
-apply permutation_trans with ((b :: nil) ++ (a :: nil) ++ l2); auto.
-apply permutation_app_swap; auto.
-repeat rewrite app_ass.
-apply permutation_app_comp; auto.
-apply permutation_app_swap; auto.
-Qed.
-
-(**************************************
- An element of a list can be put on top of the list to get a permutation
- **************************************)
-
-Theorem in_permutation_ex :
- forall a l, In a l -> exists l1 : list A, permutation (a :: l1) l.
-intros a l; elim l; simpl in |- *; auto.
-intros H; case H; auto.
-intros a0 l0 H [H0| H0].
-exists l0; rewrite H0; auto.
-case H; auto; intros l1 Hl1; exists (a0 :: l1).
-apply permutation_trans with (a0 :: a :: l1); auto.
-Qed.
-
-(**************************************
- A permutation of a cons can be inverted
- **************************************)
-
-Let permutation_cons_ex_aux :
- forall (a : A) (l1 l2 : list A),
- permutation l1 l2 ->
- forall l11 l12 : list A,
- l1 = l11 ++ a :: l12 ->
- exists l3 : list A,
- (exists l4 : list A,
- l2 = l3 ++ a :: l4 /\ permutation (l11 ++ l12) (l3 ++ l4)).
-intros a l1 l2 H; elim H; clear H l1 l2.
-intros l11 l12; case l11; simpl in |- *; intros; discriminate.
-intros a0 l1 l2 H H0 l11 l12; case l11; simpl in |- *.
-exists (nil (A:=A)); exists l1; simpl in |- *; split; auto.
-injection H1; intros; subst; auto.
-injection H1; intros H2 H3; rewrite <- H2; auto.
-intros a1 l111 H1.
-case (H0 l111 l12); auto.
-injection H1; auto.
-intros l3 (l4, (Hl1, Hl2)).
-exists (a0 :: l3); exists l4; split; simpl in |- *; auto.
-injection H1; intros; subst; auto.
-injection H1; intros H2 H3; rewrite H3; auto.
-intros a0 b l l11 l12; case l11; simpl in |- *.
-case l12; try (intros; discriminate).
-intros a1 l0 H; exists (b :: nil); exists l0; simpl in |- *; split; auto.
-injection H; intros; subst; auto.
-injection H; intros H1 H2 H3; rewrite H2; auto.
-intros a1 l111; case l111; simpl in |- *.
-intros H; exists (nil (A:=A)); exists (a0 :: l12); simpl in |- *; split; auto.
-injection H; intros; subst; auto.
-injection H; intros H1 H2 H3; rewrite H3; auto.
-intros a2 H1111 H; exists (a2 :: a1 :: H1111); exists l12; simpl in |- *;
- split; auto.
-injection H; intros; subst; auto.
-intros l1 l2 l3 H H0 H1 H2 l11 l12 H3.
-case H0 with (1 := H3).
-intros l4 (l5, (Hl1, Hl2)).
-case H2 with (1 := Hl1).
-intros l6 (l7, (Hl3, Hl4)).
-exists l6; exists l7; split; auto.
-apply permutation_trans with (1 := Hl2); auto.
-Qed.
-
-Theorem permutation_cons_ex :
- forall (a : A) (l1 l2 : list A),
- permutation (a :: l1) l2 ->
- exists l3 : list A,
- (exists l4 : list A, l2 = l3 ++ a :: l4 /\ permutation l1 (l3 ++ l4)).
-intros a l1 l2 H.
-apply (permutation_cons_ex_aux a (a :: l1) l2 H nil l1); simpl in |- *; auto.
-Qed.
-
-(**************************************
- A permutation can be simply inverted if the two list starts with a cons
- **************************************)
-
-Theorem permutation_inv :
- forall (a : A) (l1 l2 : list A),
- permutation (a :: l1) (a :: l2) -> permutation l1 l2.
-intros a l1 l2 H; case permutation_cons_ex with (1 := H).
-intros l3 (l4, (Hl1, Hl2)).
-apply permutation_trans with (1 := Hl2).
-generalize Hl1; case l3; simpl in |- *; auto.
-intros H1; injection H1; intros H2; rewrite H2; auto.
-intros a0 l5 H1; injection H1; intros H2 H3; rewrite H2; rewrite H3; auto.
-apply permutation_trans with (a0 :: l4 ++ l5); auto.
-apply permutation_skip; apply permutation_app_swap.
-apply (permutation_app_swap (a0 :: l4) l5).
-Qed.
-
-(**************************************
- Take a list and return tle list of all pairs of an element of the
- list and the remaining list
- **************************************)
-
-Fixpoint split_one (l : list A) : list (A * list A) :=
- match l with
- | nil => nil (A:=A * list A)
- | a :: l1 =>
- (a, l1)
- :: map (fun p : A * list A => (fst p, a :: snd p)) (split_one l1)
- end.
-
-(**************************************
- The pairs of the list are a permutation
- **************************************)
-
-Theorem split_one_permutation :
- forall (a : A) (l1 l2 : list A),
- In (a, l1) (split_one l2) -> permutation (a :: l1) l2.
-intros a l1 l2; generalize a l1; elim l2; clear a l1 l2; simpl in |- *; auto.
-intros a l1 H1; case H1.
-intros a l H a0 l1 [H0| H0].
-injection H0; intros H1 H2; rewrite H2; rewrite H1; auto.
-generalize H H0; elim (split_one l); simpl in |- *; auto.
-intros H1 H2; case H2.
-intros a1 l0 H1 H2 [H3| H3]; auto.
-injection H3; intros H4 H5; (rewrite <- H4; rewrite <- H5).
-apply permutation_trans with (a :: fst a1 :: snd a1); auto.
-apply permutation_skip.
-apply H2; auto.
-case a1; simpl in |- *; auto.
-Qed.
-
-(**************************************
- All elements of the list are there
- **************************************)
-
-Theorem split_one_in_ex :
- forall (a : A) (l1 : list A),
- In a l1 -> exists l2 : list A, In (a, l2) (split_one l1).
-intros a l1; elim l1; simpl in |- *; auto.
-intros H; case H.
-intros a0 l H [H0| H0]; auto.
-exists l; left; subst; auto.
-case H; auto.
-intros x H1; exists (a0 :: x); right; auto.
-apply
- (in_map (fun p : A * list A => (fst p, a0 :: snd p)) (split_one l) (a, x));
- auto.
-Qed.
-
-(**************************************
- An auxillary function to generate all permutations
- **************************************)
-
-Fixpoint all_permutations_aux (l : list A) (n : nat) {struct n} :
- list (list A) :=
- match n with
- | O => nil :: nil
- | S n1 =>
- flat_map
- (fun p : A * list A =>
- map (cons (fst p)) (all_permutations_aux (snd p) n1)) (
- split_one l)
- end.
-(**************************************
- Generate all the permutations
- **************************************)
-
-Definition all_permutations (l : list A) := all_permutations_aux l (length l).
-
-(**************************************
- All the elements of the list are permutations
- **************************************)
-
-Let all_permutations_aux_permutation :
- forall (n : nat) (l1 l2 : list A),
- n = length l2 -> In l1 (all_permutations_aux l2 n) -> permutation l1 l2.
-intros n; elim n; simpl in |- *; auto.
-intros l1 l2; case l2.
-simpl in |- *; intros H0 [H1| H1].
-rewrite <- H1; auto.
-case H1.
-simpl in |- *; intros; discriminate.
-intros n0 H l1 l2 H0 H1.
-case in_flat_map_ex with (1 := H1).
-clear H1; intros x; case x; clear x; intros a1 l3 (H1, H2).
-case in_map_inv with (1 := H2).
-simpl in |- *; intros y (H3, H4).
-rewrite H4; auto.
-apply permutation_trans with (a1 :: l3); auto.
-apply permutation_skip; auto.
-apply H with (2 := H3).
-apply eq_add_S.
-apply trans_equal with (1 := H0).
-change (length l2 = length (a1 :: l3)) in |- *.
-apply permutation_length; auto.
-apply permutation_sym; apply split_one_permutation; auto.
-apply split_one_permutation; auto.
-Qed.
-
-Theorem all_permutations_permutation :
- forall l1 l2 : list A, In l1 (all_permutations l2) -> permutation l1 l2.
-intros l1 l2 H; apply all_permutations_aux_permutation with (n := length l2);
- auto.
-Qed.
-
-(**************************************
- A permutation is in the list
- **************************************)
-
-Let permutation_all_permutations_aux :
- forall (n : nat) (l1 l2 : list A),
- n = length l2 -> permutation l1 l2 -> In l1 (all_permutations_aux l2 n).
-intros n; elim n; simpl in |- *; auto.
-intros l1 l2; case l2.
-intros H H0; rewrite permutation_nil_inv with (1 := H0); auto with datatypes.
-simpl in |- *; intros; discriminate.
-intros n0 H l1; case l1.
-intros l2 H0 H1;
- rewrite permutation_nil_inv with (1 := permutation_sym _ _ H1) in H0;
- discriminate.
-clear l1; intros a1 l1 l2 H1 H2.
-case (split_one_in_ex a1 l2); auto.
-apply permutation_in with (1 := H2); auto with datatypes.
-intros x H0.
-apply in_flat_map with (b := (a1, x)); auto.
-apply in_map; simpl in |- *.
-apply H; auto.
-apply eq_add_S.
-apply trans_equal with (1 := H1).
-change (length l2 = length (a1 :: x)) in |- *.
-apply permutation_length; auto.
-apply permutation_sym; apply split_one_permutation; auto.
-apply permutation_inv with (a := a1).
-apply permutation_trans with (1 := H2).
-apply permutation_sym; apply split_one_permutation; auto.
-Qed.
-
-Theorem permutation_all_permutations :
- forall l1 l2 : list A, permutation l1 l2 -> In l1 (all_permutations l2).
-intros l1 l2 H; unfold all_permutations in |- *;
- apply permutation_all_permutations_aux; auto.
-Qed.
-
-(**************************************
- Permutation is decidable
- **************************************)
-
-Definition permutation_dec :
- (forall a b : A, {a = b} + {a <> b}) ->
- forall l1 l2 : list A, {permutation l1 l2} + {~ permutation l1 l2}.
-intros H l1 l2.
-case (In_dec (list_eq_dec H) l1 (all_permutations l2)).
-intros i; left; apply all_permutations_permutation; auto.
-intros i; right; contradict i; apply permutation_all_permutations; auto.
-Defined.
-
-End permutation.
-
-(**************************************
- Hints
- **************************************)
-
-Hint Constructors permutation.
-Hint Resolve permutation_refl.
-Hint Resolve permutation_app_comp.
-Hint Resolve permutation_app_swap.
-
-(**************************************
- Implicits
- **************************************)
-
-Arguments permutation [A] _ _.
-Arguments split_one [A] _.
-Arguments all_permutations [A] _.
-Arguments permutation_dec [A].
-
-(**************************************
- Permutation is compatible with map
- **************************************)
-
-Theorem permutation_map :
- forall (A B : Set) (f : A -> B) l1 l2,
- permutation l1 l2 -> permutation (map f l1) (map f l2).
-intros A B f l1 l2 H; elim H; simpl in |- *; auto.
-intros l0 l3 l4 H0 H1 H2 H3; apply permutation_trans with (2 := H3); auto.
-Qed.
-Hint Resolve permutation_map.
-
-(**************************************
- Permutation of a map can be inverted
- *************************************)
-
-Let permutation_map_ex_aux :
- forall (A B : Set) (f : A -> B) l1 l2 l3,
- permutation l1 l2 ->
- l1 = map f l3 -> exists l4, permutation l4 l3 /\ l2 = map f l4.
-intros A1 B1 f l1 l2 l3 H; generalize l3; elim H; clear H l1 l2 l3.
-intros l3; case l3; simpl in |- *; auto.
-intros H; exists (nil (A:=A1)); auto.
-intros; discriminate.
-intros a0 l1 l2 H H0 l3; case l3; simpl in |- *; auto.
-intros; discriminate.
-intros a1 l H1; case (H0 l); auto.
-injection H1; auto.
-intros l5 (H2, H3); exists (a1 :: l5); split; simpl in |- *; auto.
-injection H1; intros; subst; auto.
-intros a0 b l l3; case l3.
-intros; discriminate.
-intros a1 l0; case l0; simpl in |- *.
-intros; discriminate.
-intros a2 l1 H; exists (a2 :: a1 :: l1); split; simpl in |- *; auto.
-injection H; intros; subst; auto.
-intros l1 l2 l3 H H0 H1 H2 l0 H3.
-case H0 with (1 := H3); auto.
-intros l4 (HH1, HH2).
-case H2 with (1 := HH2); auto.
-intros l5 (HH3, HH4); exists l5; split; auto.
-apply permutation_trans with (1 := HH3); auto.
-Qed.
-
-Theorem permutation_map_ex :
- forall (A B : Set) (f : A -> B) l1 l2,
- permutation (map f l1) l2 ->
- exists l3, permutation l3 l1 /\ l2 = map f l3.
-intros A0 B f l1 l2 H; apply permutation_map_ex_aux with (l1 := map f l1);
- auto.
-Qed.
-
-(**************************************
- Permutation is compatible with flat_map
- **************************************)
-
-Theorem permutation_flat_map :
- forall (A B : Set) (f : A -> list B) l1 l2,
- permutation l1 l2 -> permutation (flat_map f l1) (flat_map f l2).
-intros A B f l1 l2 H; elim H; simpl in |- *; auto.
-intros a b l; auto.
-repeat rewrite <- app_ass.
-apply permutation_app_comp; auto.
-intros k3 l4 l5 H0 H1 H2 H3; apply permutation_trans with (1 := H1); auto.
-Qed.