aboutsummaryrefslogtreecommitdiff
path: root/coqprime/Coqprime/PGroup.v
diff options
context:
space:
mode:
Diffstat (limited to 'coqprime/Coqprime/PGroup.v')
-rw-r--r--coqprime/Coqprime/PGroup.v347
1 files changed, 0 insertions, 347 deletions
diff --git a/coqprime/Coqprime/PGroup.v b/coqprime/Coqprime/PGroup.v
deleted file mode 100644
index 5d8dc5d35..000000000
--- a/coqprime/Coqprime/PGroup.v
+++ /dev/null
@@ -1,347 +0,0 @@
-
-(*************************************************************)
-(* This file is distributed under the terms of the *)
-(* GNU Lesser General Public License Version 2.1 *)
-(*************************************************************)
-(* Benjamin.Gregoire@inria.fr Laurent.Thery@inria.fr *)
-(*************************************************************)
-
-(**********************************************************************
- PGroup.v
-
- Build the group of pairs modulo needed for the theorem of
- lucas lehmer
-
- Definition: PGroup
- **********************************************************************)
-Require Import ZArith.
-Require Import Znumtheory.
-Require Import Tactic.
-Require Import Wf_nat.
-Require Import ListAux.
-Require Import UList.
-Require Import FGroup.
-Require Import EGroup.
-Require Import IGroup.
-
-Open Scope Z_scope.
-
-Definition base := 3.
-
-
-(**************************************
- Equality is decidable on pairs
- **************************************)
-
-Definition P_dec: forall p q: Z * Z, {p = q} + {p <> q}.
-intros p1 q1; case p1; case q1; intros z t x y; case (Z_eq_dec x z); intros H1.
-case (Z_eq_dec y t); intros H2.
-left; eq_tac; auto.
-right; contradict H2; injection H2; auto.
-right; contradict H1; injection H1; auto.
-Defined.
-
-
-(**************************************
- Addition of two pairs
- **************************************)
-
-Definition pplus (p q: Z * Z) := let (x ,y) := p in let (z,t) := q in (x + z, y + t).
-
-(**************************************
- Properties of addition
- **************************************)
-
-Theorem pplus_assoc: forall p q r, (pplus p (pplus q r)) = (pplus (pplus p q) r).
-intros p q r; case p; case q; case r; intros r1 r2 q1 q2 p1 p2; unfold pplus.
-eq_tac; ring.
-Qed.
-
-Theorem pplus_comm: forall p q, (pplus p q) = (pplus q p).
-intros p q; case p; case q; intros q1 q2 p1 p2; unfold pplus.
-eq_tac; ring.
-Qed.
-
-(**************************************
- Multiplication of two pairs
- **************************************)
-
-Definition pmult (p q: Z * Z) := let (x ,y) := p in let (z,t) := q in (x * z + base * y * t, x * t + y * z).
-
-(**************************************
- Properties of multiplication
- **************************************)
-
-Theorem pmult_assoc: forall p q r, (pmult p (pmult q r)) = (pmult (pmult p q) r).
-intros p q r; case p; case q; case r; intros r1 r2 q1 q2 p1 p2; unfold pmult.
-eq_tac; ring.
-Qed.
-
-Theorem pmult_0_l: forall p, (pmult (0, 0) p) = (0, 0).
-intros p; case p; intros x y; unfold pmult; eq_tac; ring.
-Qed.
-
-Theorem pmult_0_r: forall p, (pmult p (0, 0)) = (0, 0).
-intros p; case p; intros x y; unfold pmult; eq_tac; ring.
-Qed.
-
-Theorem pmult_1_l: forall p, (pmult (1, 0) p) = p.
-intros p; case p; intros x y; unfold pmult; eq_tac; ring.
-Qed.
-
-Theorem pmult_1_r: forall p, (pmult p (1, 0)) = p.
-intros p; case p; intros x y; unfold pmult; eq_tac; ring.
-Qed.
-
-Theorem pmult_comm: forall p q, (pmult p q) = (pmult q p).
-intros p q; case p; case q; intros q1 q2 p1 p2; unfold pmult.
-eq_tac; ring.
-Qed.
-
-Theorem pplus_pmult_dist_l: forall p q r, (pmult p (pplus q r)) = (pplus (pmult p q) (pmult p r)).
-intros p q r; case p; case q; case r; intros r1 r2 q1 q2 p1 p2; unfold pplus, pmult.
-eq_tac; ring.
-Qed.
-
-
-Theorem pplus_pmult_dist_r: forall p q r, (pmult (pplus q r) p) = (pplus (pmult q p) (pmult r p)).
-intros p q r; case p; case q; case r; intros r1 r2 q1 q2 p1 p2; unfold pplus, pmult.
-eq_tac; ring.
-Qed.
-
-(**************************************
- In this section we create the group PGroup of inversible elements {(p, q) | 0 <= p < m /\ 0 <= q < m}
- **************************************)
-Section Mod.
-
-Variable m : Z.
-
-Hypothesis m_pos: 1 < m.
-
-(**************************************
- mkLine creates {(a, p) | 0 <= p < n}
- **************************************)
-
-Fixpoint mkLine (a: Z) (n: nat) {struct n} : list (Z * Z) :=
- (a, Z_of_nat n) :: match n with O => nil | (S n1) => mkLine a n1 end.
-
-(**************************************
- Some properties of mkLine
- **************************************)
-
-Theorem mkLine_length: forall a n, length (mkLine a n) = (n + 1)%nat.
-intros a n; elim n; simpl; auto.
-Qed.
-
-Theorem mkLine_in: forall a n p, 0 <= p <= Z_of_nat n -> (In (a, p) (mkLine a n)).
-intros a n; elim n.
-simpl; auto with zarith.
-intros p (H1, H2); replace p with 0; auto with zarith.
-intros n1 Rec p (H1, H2).
-case (Zle_lt_or_eq p (Z_of_nat (S n1))); auto with zarith.
-rewrite inj_S in H2; auto with zarith.
-rewrite inj_S; auto with zarith.
-intros H3; right; apply Rec; auto with zarith.
-intros H3; subst; simpl; auto.
-Qed.
-
-Theorem in_mkLine: forall a n p, In p (mkLine a n) -> exists q, 0 <= q <= Z_of_nat n /\ p = (a, q).
-intros a n p; elim n; clear n.
-simpl; intros [H1 | H1]; exists 0; auto with zarith; case H1.
-simpl; intros n Rec [H1 | H1]; auto.
-exists (Z_of_nat (S n)); auto with zarith.
-case Rec; auto; intros q ((H2, H3), H4); exists q; repeat split; auto with zarith.
-change (q <= Z_of_nat (S n)).
-rewrite inj_S; auto with zarith.
-Qed.
-
-Theorem mkLine_ulist: forall a n, ulist (mkLine a n).
-intros a n; elim n; simpl; auto.
-intros n1 H; apply ulist_cons; auto.
-change (~ In (a, Z_of_nat (S n1)) (mkLine a n1)).
-rewrite inj_S; intros H1.
-case in_mkLine with (1 := H1); auto with zarith.
-intros x ((H2, H3), H4); injection H4.
-intros H5; subst; auto with zarith.
-Qed.
-
-(**************************************
- mkRect creates the list {(p, q) | 0 <= p < n /\ 0 <= q < m}
- **************************************)
-
-Fixpoint mkRect (n m: nat) {struct n} : list (Z * Z) :=
- (mkLine (Z_of_nat n) m) ++ match n with O => nil | (S n1) => mkRect n1 m end.
-
-(**************************************
- Some properties of mkRect
- **************************************)
-
-Theorem mkRect_length: forall n m, length (mkRect n m) = ((n + 1) * (m + 1))%nat.
-intros n; elim n; simpl; auto.
-intros n1; rewrite <- app_nil_end; rewrite mkLine_length; rewrite plus_0_r; auto.
-intros n1 Rec m1; rewrite length_app; rewrite Rec; rewrite mkLine_length; auto.
-Qed.
-
-Theorem mkRect_in: forall n m p q, 0 <= p <= Z_of_nat n -> 0 <= q <= Z_of_nat m -> (In (p, q) (mkRect n m)).
-intros n m1; elim n; simpl.
-intros p q (H1, H2) (H3, H4); replace p with 0; auto with zarith.
-rewrite <- app_nil_end; apply mkLine_in; auto.
-intros n1 Rec p q (H1, H2) (H3, H4).
-case (Zle_lt_or_eq p (Z_of_nat (S n1))); auto with zarith; intros H5.
-rewrite inj_S in H5; apply in_or_app; auto with zarith.
-apply in_or_app; left; subst; apply mkLine_in; auto with zarith.
-Qed.
-
-Theorem in_mkRect: forall n m p, In p (mkRect n m) -> exists p1, exists p2, 0 <= p1 <= Z_of_nat n /\ 0 <= p2 <= Z_of_nat m /\ p = (p1, p2).
-intros n m1 p; elim n; clear n; simpl.
-rewrite <- app_nil_end; intros H1.
-case in_mkLine with (1 := H1).
-intros p2 (H2, H3); exists 0; exists p2; auto with zarith.
-intros n Rec H1.
-case in_app_or with (1 := H1); intros H2.
-case in_mkLine with (1 := H2).
-intros p2 (H3, H4); exists (Z_of_nat (S n)); exists p2; subst; simpl; auto with zarith.
-case Rec with (1 := H2); auto.
-intros p1 (p2, (H3, (H4, H5))); exists p1; exists p2; repeat split; auto with zarith.
-change (p1 <= Z_of_nat (S n)).
-rewrite inj_S; auto with zarith.
-Qed.
-
-Theorem mkRect_ulist: forall n m, ulist (mkRect n m).
-intros n; elim n; simpl; auto.
-intros n1; rewrite <- app_nil_end; apply mkLine_ulist; auto.
-intros n1 Rec m1; apply ulist_app; auto.
-apply mkLine_ulist.
-intros a H1 H2.
-case in_mkLine with (1 := H1); intros p1 ((H3, H4), H5).
-case in_mkRect with (1 := H2); intros p2 (p3, ((H6, H7), ((H8, H9), H10))).
-subst; injection H10; clear H10; intros; subst.
-contradict H7.
-change (~ Z_of_nat (S n1) <= Z_of_nat n1).
-rewrite inj_S; auto with zarith.
-Qed.
-
-(**************************************
- mL is the list {(p, q) | 0 <= p < m-1 /\ 0 <= q < m - 1}
- **************************************)
-Definition mL := mkRect (Zabs_nat (m - 1)) (Zabs_nat (m -1)).
-
-(**************************************
- Some properties of mL
- **************************************)
-
-Theorem mL_length : length mL = Zabs_nat (m * m).
-unfold mL; rewrite mkRect_length; simpl; apply inj_eq_rev.
-repeat (rewrite inj_mult || rewrite inj_plus || rewrite inj_Zabs_nat || rewrite Zabs_eq); simpl; auto with zarith.
-eq_tac; auto with zarith.
-Qed.
-
-Theorem mL_in: forall p q, 0 <= p < m -> 0 <= q < m -> (In (p, q) mL).
-intros p q (H1, H2) (H3, H4); unfold mL; apply mkRect_in; rewrite inj_Zabs_nat;
- rewrite Zabs_eq; auto with zarith.
-Qed.
-
-Theorem in_mL: forall p, In p mL-> exists p1, exists p2, 0 <= p1 < m /\ 0 <= p2 < m /\ p = (p1, p2).
-unfold mL; intros p H1; case in_mkRect with (1 := H1).
-repeat (rewrite inj_Zabs_nat || rewrite Zabs_eq); auto with zarith.
-intros p1 (p2, ((H2, H3), ((H4, H5), H6))); exists p1; exists p2; repeat split; auto with zarith.
-Qed.
-
-Theorem mL_ulist: ulist mL.
-unfold mL; apply mkRect_ulist; auto.
-Qed.
-
-(**************************************
- We define zpmult the multiplication of pairs module m
- **************************************)
-
-Definition zpmult (p q: Z * Z) := let (x ,y) := pmult p q in (Zmod x m, Zmod y m).
-
-(**************************************
- Some properties of zpmult
- **************************************)
-
-Theorem zpmult_internal: forall p q, (In (zpmult p q) mL).
-intros p q; unfold zpmult; case (pmult p q); intros z y; apply mL_in; auto with zarith.
-apply Z_mod_lt; auto with zarith.
-apply Z_mod_lt; auto with zarith.
-Qed.
-
-Theorem zpmult_assoc: forall p q r, (zpmult p (zpmult q r)) = (zpmult (zpmult p q) r).
-assert (U: 0 < m); auto with zarith.
-intros p q r; unfold zpmult.
-generalize (pmult_assoc p q r).
-case (pmult p q); intros x1 x2.
-case (pmult q r); intros y1 y2.
-case p; case r; unfold pmult.
-intros z1 z2 t1 t2 H.
-match goal with
- H: (?X, ?Y) = (?Z, ?T) |- _ =>
- assert (H1: X = Z); assert (H2: Y = T); try (injection H; simpl; auto; fail); clear H
-end.
-eq_tac.
-generalize (f_equal (fun x => x mod m) H1).
-repeat rewrite <- Zmult_assoc.
-repeat (rewrite (fun x => Zplus_mod (t1 * x))); auto.
-repeat (rewrite (fun x => Zplus_mod (x1 * x))); auto.
-repeat (rewrite (fun x => Zplus_mod (x1 mod m * x))); auto.
-repeat (rewrite (Zmult_mod t1)); auto.
-repeat (rewrite (Zmult_mod x1)); auto.
-repeat (rewrite (Zmult_mod base)); auto.
-repeat (rewrite (Zmult_mod t2)); auto.
-repeat (rewrite (Zmult_mod x2)); auto.
-repeat (rewrite (Zmult_mod (t2 mod m))); auto.
-repeat (rewrite (Zmult_mod (x1 mod m))); auto.
-repeat (rewrite (Zmult_mod (x2 mod m))); auto.
-repeat (rewrite Zmod_mod); auto.
-generalize (f_equal (fun x => x mod m) H2).
-repeat (rewrite (fun x => Zplus_mod (t1 * x))); auto.
-repeat (rewrite (fun x => Zplus_mod (x1 * x))); auto.
-repeat (rewrite (fun x => Zplus_mod (x1 mod m * x))); auto.
-repeat (rewrite (Zmult_mod t1)); auto.
-repeat (rewrite (Zmult_mod x1)); auto.
-repeat (rewrite (Zmult_mod t2)); auto.
-repeat (rewrite (Zmult_mod x2)); auto.
-repeat (rewrite (Zmult_mod (t2 mod m))); auto.
-repeat (rewrite (Zmult_mod (x1 mod m))); auto.
-repeat (rewrite (Zmult_mod (x2 mod m))); auto.
-repeat (rewrite Zmod_mod); auto.
-Qed.
-
-Theorem zpmult_0_l: forall p, (zpmult (0, 0) p) = (0, 0).
-intros p; case p; intros x y; unfold zpmult, pmult; simpl.
-rewrite Zmod_small; auto with zarith.
-Qed.
-
-Theorem zpmult_1_l: forall p, In p mL -> zpmult (1, 0) p = p.
-intros p H; case in_mL with (1 := H); clear H; intros p1 (p2, ((H1, H2), (H3, H4))); subst.
-unfold zpmult; rewrite pmult_1_l.
-repeat rewrite Zmod_small; auto with zarith.
-Qed.
-
-Theorem zpmult_1_r: forall p, In p mL -> zpmult p (1, 0) = p.
-intros p H; case in_mL with (1 := H); clear H; intros p1 (p2, ((H1, H2), (H3, H4))); subst.
-unfold zpmult; rewrite pmult_1_r.
-repeat rewrite Zmod_small; auto with zarith.
-Qed.
-
-Theorem zpmult_comm: forall p q, zpmult p q = zpmult q p.
-intros p q; unfold zpmult; rewrite pmult_comm; auto.
-Qed.
-
-(**************************************
- We are now ready to build our group
- **************************************)
-
-Definition PGroup : (FGroup zpmult).
-apply IGroup with (support := mL) (e:= (1, 0)).
-exact P_dec.
-apply mL_ulist.
-apply mL_in; auto with zarith.
-intros; apply zpmult_internal.
-intros; apply zpmult_assoc.
-exact zpmult_1_l.
-exact zpmult_1_r.
-Defined.
-
-End Mod.