aboutsummaryrefslogtreecommitdiff
path: root/coqprime/Coqprime/Pocklington.v
diff options
context:
space:
mode:
Diffstat (limited to 'coqprime/Coqprime/Pocklington.v')
-rw-r--r--coqprime/Coqprime/Pocklington.v261
1 files changed, 0 insertions, 261 deletions
diff --git a/coqprime/Coqprime/Pocklington.v b/coqprime/Coqprime/Pocklington.v
deleted file mode 100644
index 09c0b901c..000000000
--- a/coqprime/Coqprime/Pocklington.v
+++ /dev/null
@@ -1,261 +0,0 @@
-
-(*************************************************************)
-(* This file is distributed under the terms of the *)
-(* GNU Lesser General Public License Version 2.1 *)
-(*************************************************************)
-(* Benjamin.Gregoire@inria.fr Laurent.Thery@inria.fr *)
-(*************************************************************)
-
-Require Import ZArith.
-Require Export Znumtheory.
-Require Import Tactic.
-Require Import ZCAux.
-Require Import Zp.
-Require Import FGroup.
-Require Import EGroup.
-Require Import Euler.
-
-Open Scope Z_scope.
-
-Theorem Pocklington:
-forall N F1 R1, 1 < F1 -> 0 < R1 -> N - 1 = F1 * R1 ->
- (forall p, prime p -> (p | F1) -> exists a, 1 < a /\ a^(N - 1) mod N = 1 /\ Zgcd (a ^ ((N - 1)/ p) - 1) N = 1) ->
- forall n, prime n -> (n | N) -> n mod F1 = 1.
-intros N F1 R1 HF1 HR1 Neq Rec n Hn H.
-assert (HN: 1 < N).
-assert (0 < N - 1); auto with zarith.
-rewrite Neq; auto with zarith.
-apply Zlt_le_trans with (1* R1); auto with zarith.
-assert (Hn1: 1 < n); auto with zarith.
-apply Zlt_le_trans with 2; try apply prime_ge_2; auto with zarith.
-assert (H1: (F1 | n - 1)).
-2: rewrite <- (Zmod_small 1 F1); auto with zarith.
-2: case H1; intros k H1'.
-2: replace n with (1 + (n - 1)); auto with zarith.
-2: rewrite H1'; apply Z_mod_plus; auto with zarith.
-apply Zdivide_Zpower; auto with zarith.
-intros p i Hp Hi HiF1.
-case (Rec p); auto.
-apply Zdivide_trans with (2 := HiF1).
-apply Zpower_divide; auto with zarith.
-intros a (Ha1, (Ha2, Ha3)).
-assert (HNn: a ^ (N - 1) mod n = 1).
-apply Zdivide_mod_minus; auto with zarith.
-apply Zdivide_trans with (1 := H).
-apply Zmod_divide_minus; auto with zarith.
-assert (~(n | a)).
-intros H1; absurd (0 = 1); auto with zarith.
-rewrite <- HNn; auto.
-apply sym_equal; apply Zdivide_mod; auto with zarith.
-apply Zdivide_trans with (1 := H1); apply Zpower_divide; auto with zarith.
-assert (Hr: rel_prime a n).
-apply rel_prime_sym; apply prime_rel_prime; auto.
-assert (Hz: 0 < Zorder a n).
-apply Zorder_power_pos; auto.
-apply Zdivide_trans with (Zorder a n).
-apply prime_divide_Zpower_Zdiv with (N - 1); auto with zarith.
-apply Zorder_div_power; auto with zarith.
-intros H1; absurd (1 < n); auto; apply Zle_not_lt; apply Zdivide_le; auto with zarith.
-rewrite <- Ha3; apply Zdivide_Zgcd; auto with zarith.
-apply Zmod_divide_minus; auto with zarith.
-case H1; intros t Ht; rewrite Ht.
-assert (Ht1: 0 <= t).
-apply Zmult_le_reg_r with (Zorder a n); auto with zarith.
-rewrite Zmult_0_l; rewrite <- Ht.
-apply Zge_le; apply Z_div_ge0; auto with zarith.
-apply Zlt_gt; apply Zlt_le_trans with 2; try apply prime_ge_2; auto with zarith.
-rewrite Zmult_comm; rewrite Zpower_mult; auto with zarith.
-rewrite Zpower_mod; auto with zarith.
-rewrite Zorder_power_is_1; auto with zarith.
-rewrite Zpower_1_l; auto with zarith.
-apply Zmod_small; auto with zarith.
-apply Zdivide_trans with (1:= HiF1); rewrite Neq; apply Zdivide_factor_r.
-apply Zorder_div; auto.
-Qed.
-
-Theorem PocklingtonCorollary1:
-forall N F1 R1, 1 < F1 -> 0 < R1 -> N - 1 = F1 * R1 -> N < F1 * F1 ->
- (forall p, prime p -> (p | F1) -> exists a, 1 < a /\ a^(N - 1) mod N = 1 /\ Zgcd (a ^ ((N - 1)/ p) - 1) N = 1) ->
- prime N.
-intros N F1 R1 H H1 H2 H3 H4; case (prime_dec N); intros H5; auto.
-assert (HN: 1 < N).
-assert (0 < N - 1); auto with zarith.
-rewrite H2; auto with zarith.
-apply Zlt_le_trans with (1* R1); auto with zarith.
-case Zdivide_div_prime_le_square with (2:= H5); auto with zarith.
-intros n (Hn, (Hn1, Hn2)).
-assert (Hn3: 0 <= n).
-apply Zle_trans with 2; try apply prime_ge_2; auto with zarith.
-absurd (n = 1).
-intros H6; contradict Hn; subst; apply not_prime_1.
-rewrite <- (Zmod_small n F1); try split; auto.
-apply Pocklington with (R1 := R1) (4 := H4); auto.
-apply Zlt_square_mult_inv; auto with zarith.
-Qed.
-
-Theorem PocklingtonCorollary2:
-forall N F1 R1, 1 < F1 -> 0 < R1 -> N - 1 = F1 * R1 ->
- (forall p, prime p -> (p | F1) -> exists a, 1 < a /\ a^(N - 1) mod N = 1 /\ Zgcd (a ^ ((N - 1)/ p) - 1) N = 1) ->
- forall n, 0 <= n -> (n | N) -> n mod F1 = 1.
-intros N F1 R1 H1 H2 H3 H4 n H5; pattern n; apply prime_induction; auto.
-assert (HN: 1 < N).
-assert (0 < N - 1); auto with zarith.
-rewrite H3; auto with zarith.
-apply Zlt_le_trans with (1* R1); auto with zarith.
-intros (u, Hu); contradict HN; subst; rewrite Zmult_0_r; auto with zarith.
-intro H6; rewrite Zmod_small; auto with zarith.
-intros p q Hp Hp1 Hp2; rewrite Zmult_mod; auto with zarith.
-rewrite Pocklington with (n := p) (R1 := R1) (4 := H4); auto.
-rewrite Hp1.
-rewrite Zmult_1_r; rewrite Zmod_small; auto with zarith.
-apply Zdivide_trans with (2 := Hp2); apply Zdivide_factor_l.
-apply Zdivide_trans with (2 := Hp2); apply Zdivide_factor_r; auto.
-Qed.
-
-Definition isSquare x := exists y, x = y * y.
-
-Theorem PocklingtonExtra:
-forall N F1 R1, 1 < F1 -> 0 < R1 -> N - 1 = F1 * R1 -> Zeven F1 -> Zodd R1 ->
- (forall p, prime p -> (p | F1) -> exists a, 1 < a /\ a^(N - 1) mod N = 1 /\ Zgcd (a ^ ((N - 1)/ p) - 1) N = 1) ->
- forall m, 1 <= m -> (forall l, 1 <= l < m -> ~((l * F1 + 1) | N)) ->
- let s := (R1 / (2 * F1)) in
- let r := (R1 mod (2 * F1)) in
- N < (m * F1 + 1) * (2 * F1 * F1 + (r - m) * F1 + 1) ->
- (s = 0 \/ ~ isSquare (r * r - 8 * s)) -> prime N.
-intros N F1 R1 H1 H2 H3 OF1 ER1 H4 m H5 H6 s r H7 H8.
-case (prime_dec N); auto; intros H9.
-assert (HN: 1 < N).
-assert (0 < N - 1); auto with zarith.
-rewrite H3; auto with zarith.
-apply Zlt_le_trans with (1* R1); auto with zarith.
-case Zdivide_div_prime_le_square with N; auto.
-intros X (Hx1, (Hx2, Hx3)).
-assert (Hx0: 1 < X).
-apply Zlt_le_trans with 2; try apply prime_ge_2; auto with zarith.
-pose (c := (X / F1)).
-assert(Hc1: 0 <= c); auto with zarith.
-apply Zge_le; unfold c; apply Z_div_ge0; auto with zarith.
-assert (Hc2: X = c * F1 + 1).
-rewrite (Z_div_mod_eq X F1); auto with zarith.
-eq_tac; auto.
-rewrite (Zmult_comm F1); auto.
-apply PocklingtonCorollary2 with (R1 := R1) (4 := H4); auto with zarith.
-case Zle_lt_or_eq with (1 := Hc1); clear Hc1; intros Hc1.
-2: contradict Hx0; rewrite Hc2; try rewrite <- Hc1; auto with zarith.
-case (Zle_or_lt m c); intros Hc3.
-2: case Zle_lt_or_eq with (1 := H5); clear H5; intros H5; auto with zarith.
-2: case (H6 c); auto with zarith; rewrite <- Hc2; auto.
-2: contradict Hc3; rewrite <- H5; auto with zarith.
-pose (d := ((N / X) / F1)).
-assert(Hd0: 0 <= N / X); try apply Z_div_pos; auto with zarith.
-(*
-apply Zge_le; unfold d; repeat apply Z_div_ge0; auto with zarith.
-*)
-assert(Hd1: 0 <= d); auto with zarith.
-apply Zge_le; unfold d; repeat apply Z_div_ge0; auto with zarith.
-assert (Hd2: N / X = d * F1 + 1).
-rewrite (Z_div_mod_eq (N / X) F1); auto with zarith.
-eq_tac; auto.
-rewrite (Zmult_comm F1); auto.
-apply PocklingtonCorollary2 with (R1 := R1) (4 := H4); auto with zarith.
-exists X; auto with zarith.
-apply Zdivide_Zdiv_eq; auto with zarith.
-case Zle_lt_or_eq with (1 := Hd0); clear Hd0; intros Hd0.
-2: contradict HN; rewrite (Zdivide_Zdiv_eq X N); auto with zarith.
-2: rewrite <- Hd0; auto with zarith.
-case (Zle_lt_or_eq 1 (N / X)); auto with zarith; clear Hd0; intros Hd0.
-2: contradict H9; rewrite (Zdivide_Zdiv_eq X N); auto with zarith.
-2: rewrite <- Hd0; rewrite Zmult_1_r; auto with zarith.
-case Zle_lt_or_eq with (1 := Hd1); clear Hd1; intros Hd1.
-2: contradict Hd0; rewrite Hd2; try rewrite <- Hd1; auto with zarith.
-case (Zle_or_lt m d); intros Hd3.
-2: case Zle_lt_or_eq with (1 := H5); clear H5; intros H5; auto with zarith.
-2: case (H6 d); auto with zarith; rewrite <- Hd2; auto.
-2: exists X; auto with zarith.
-2: apply Zdivide_Zdiv_eq; auto with zarith.
-2: contradict Hd3; rewrite <- H5; auto with zarith.
-assert (L5: N = (c * F1 + 1) * (d * F1 + 1)).
-rewrite <- Hc2; rewrite <- Hd2; apply Zdivide_Zdiv_eq; auto with zarith.
-assert (L6: R1 = c * d * F1 + c + d).
-apply trans_equal with ((N - 1) / F1).
-rewrite H3; rewrite Zmult_comm; apply sym_equal; apply Z_div_mult; auto with zarith.
-rewrite L5.
-match goal with |- (?X / ?Y = ?Z) => replace X with (Z * Y) end; try ring; apply Z_div_mult; auto with zarith.
-assert (L6_1: Zodd (c + d)).
-case (Zeven_odd_dec (c + d)); auto; intros O1.
-contradict ER1; apply Zeven_not_Zodd; rewrite L6; rewrite <- Zplus_assoc; apply Zeven_plus_Zeven; auto.
-apply Zeven_mult_Zeven_r; auto.
-assert (L6_2: Zeven (c * d)).
-case (Zeven_odd_dec c); intros HH1.
-apply Zeven_mult_Zeven_l; auto.
-case (Zeven_odd_dec d); intros HH2.
-apply Zeven_mult_Zeven_r; auto.
-contradict L6_1; apply Zeven_not_Zodd; apply Zodd_plus_Zodd; auto.
-assert ((c + d) mod (2 * F1) = r).
-rewrite <- Z_mod_plus with (b := Zdiv2 (c * d)); auto with zarith.
-match goal with |- ?X mod _ = _ => replace X with R1 end; auto.
-rewrite L6; pattern (c * d) at 1.
-rewrite Zeven_div2 with (1 := L6_2); ring.
-assert (L9: c + d - r < 2 * F1).
-apply Zplus_lt_reg_r with (r - m).
-apply Zmult_lt_reg_r with (F1); auto with zarith.
-apply Zplus_lt_reg_r with 1.
-match goal with |- ?X < ?Y =>
- replace Y with (2 * F1 * F1 + (r - m) * F1 + 1); try ring;
- replace X with ((((c + d) - m) * F1) + 1); try ring
-end.
-apply Zmult_lt_reg_r with (m * F1 + 1); auto with zarith.
-apply Zlt_trans with (m * F1 + 0); auto with zarith.
-rewrite Zplus_0_r; apply Zmult_lt_O_compat; auto with zarith.
-repeat rewrite (fun x => Zmult_comm x (m * F1 + 1)).
-apply Zle_lt_trans with (2 := H7).
-rewrite L5.
-match goal with |- ?X <= ?Y =>
- replace X with ((m * (c + d) - m * m ) * F1 * F1 + (c + d) * F1 + 1); try ring;
- replace Y with ((c * d) * F1 * F1 + (c + d) * F1 + 1); try ring
-end.
-repeat apply Zplus_le_compat_r.
-repeat apply Zmult_le_compat_r; auto with zarith.
-assert (tmp: forall p q, 0 <= p - q -> q <= p); auto with zarith; try apply tmp.
-match goal with |- _ <= ?X =>
- replace X with ((c - m) * (d - m)); try ring; auto with zarith
-end.
-assert (L10: c + d = r).
-apply Zmod_closeby_eq with (2 * F1); auto with zarith.
-unfold r; apply Z_mod_lt; auto with zarith.
-assert (L11: 2 * s = c * d).
-apply Zmult_reg_r with F1; auto with zarith.
-apply trans_equal with (R1 - (c + d)).
-rewrite L10; rewrite (Z_div_mod_eq R1 (2 * F1)); auto with zarith.
-unfold s, r; ring.
-rewrite L6; ring.
-case H8; intro H10.
-absurd (0 < c * d); auto with zarith.
-apply Zmult_lt_O_compat; auto with zarith.
-case H10; exists (c - d); auto with zarith.
-rewrite <- L10.
-replace (8 * s) with (4 * (2 * s)); auto with zarith; try rewrite L11; ring.
-Qed.
-
-Theorem PocklingtonExtraCorollary:
-forall N F1 R1, 1 < F1 -> 0 < R1 -> N - 1 = F1 * R1 -> Zeven F1 -> Zodd R1 ->
- (forall p, prime p -> (p | F1) -> exists a, 1 < a /\ a^(N - 1) mod N = 1 /\ Zgcd (a ^ ((N - 1)/ p) - 1) N = 1) ->
- let s := (R1 / (2 * F1)) in
- let r := (R1 mod (2 * F1)) in
- N < 2 * F1 * F1 * F1 -> (s = 0 \/ ~ isSquare (r * r - 8 * s)) -> prime N.
-intros N F1 R1 H1 H2 H3 OF1 ER1 H4 s r H5 H6.
-apply PocklingtonExtra with (6 := H4) (R1 := R1) (m := 1); auto with zarith.
-apply Zlt_le_trans with (1 := H5).
-match goal with |- ?X <= ?K * ((?Y + ?Z) + ?T) =>
- rewrite <- (Zplus_0_l X);
- replace (K * ((Y + Z) + T)) with ((F1 * (Z + T) + Y + Z + T) + X);[idtac | ring]
-end.
-apply Zplus_le_compat_r.
-case (Zle_lt_or_eq 0 r); unfold r; auto with zarith.
-case (Z_mod_lt R1 (2 * F1)); auto with zarith.
-intros HH; repeat ((rewrite <- (Zplus_0_r 0); apply Zplus_le_compat)); auto with zarith.
-intros HH; contradict ER1; apply Zeven_not_Zodd.
-rewrite (Z_div_mod_eq R1 (2 * F1)); auto with zarith.
-rewrite <- HH; rewrite Zplus_0_r.
-rewrite <- Zmult_assoc; apply Zeven_2p.
-Qed.