aboutsummaryrefslogtreecommitdiff
path: root/coqprime/Coqprime/ListAux.v
diff options
context:
space:
mode:
Diffstat (limited to 'coqprime/Coqprime/ListAux.v')
-rw-r--r--coqprime/Coqprime/ListAux.v271
1 files changed, 0 insertions, 271 deletions
diff --git a/coqprime/Coqprime/ListAux.v b/coqprime/Coqprime/ListAux.v
deleted file mode 100644
index 2443faf52..000000000
--- a/coqprime/Coqprime/ListAux.v
+++ /dev/null
@@ -1,271 +0,0 @@
-
-(*************************************************************)
-(* This file is distributed under the terms of the *)
-(* GNU Lesser General Public License Version 2.1 *)
-(*************************************************************)
-(* Benjamin.Gregoire@inria.fr Laurent.Thery@inria.fr *)
-(*************************************************************)
-
-(**********************************************************************
- Aux.v
-
- Auxillary functions & Theorems
- **********************************************************************)
-Require Export List.
-Require Export Arith.
-Require Export Tactic.
-Require Import Inverse_Image.
-Require Import Wf_nat.
-
-(**************************************
- Some properties on list operators: app, map,...
-**************************************)
-
-Section List.
-Variables (A : Set) (B : Set) (C : Set).
-Variable f : A -> B.
-
-(**************************************
- An induction theorem for list based on length
-**************************************)
-
-Theorem list_length_ind:
- forall (P : list A -> Prop),
- (forall (l1 : list A),
- (forall (l2 : list A), length l2 < length l1 -> P l2) -> P l1) ->
- forall (l : list A), P l.
-intros P H l;
- apply well_founded_ind with ( R := fun (x y : list A) => length x < length y );
- auto.
-apply wf_inverse_image with ( R := lt ); auto.
-apply lt_wf.
-Qed.
-
-Definition list_length_induction:
- forall (P : list A -> Set),
- (forall (l1 : list A),
- (forall (l2 : list A), length l2 < length l1 -> P l2) -> P l1) ->
- forall (l : list A), P l.
-intros P H l;
- apply well_founded_induction
- with ( R := fun (x y : list A) => length x < length y ); auto.
-apply wf_inverse_image with ( R := lt ); auto.
-apply lt_wf.
-Qed.
-
-Theorem in_ex_app:
- forall (a : A) (l : list A),
- In a l -> (exists l1 : list A , exists l2 : list A , l = l1 ++ (a :: l2) ).
-intros a l; elim l; clear l; simpl; auto.
-intros H; case H.
-intros a1 l H [H1|H1]; auto.
-exists (nil (A:=A)); exists l; simpl; auto.
-rewrite H1; auto.
-case H; auto; intros l1 [l2 Hl2]; exists (a1 :: l1); exists l2; simpl; auto.
-rewrite Hl2; auto.
-Qed.
-
-(**************************************
- Properties on app
-**************************************)
-
-Theorem length_app:
- forall (l1 l2 : list A), length (l1 ++ l2) = length l1 + length l2.
-intros l1; elim l1; simpl; auto.
-Qed.
-
-Theorem app_inv_head:
- forall (l1 l2 l3 : list A), l1 ++ l2 = l1 ++ l3 -> l2 = l3.
-intros l1; elim l1; simpl; auto.
-intros a l H l2 l3 H0; apply H; injection H0; auto.
-Qed.
-
-Theorem app_inv_tail:
- forall (l1 l2 l3 : list A), l2 ++ l1 = l3 ++ l1 -> l2 = l3.
-intros l1 l2; generalize l1; elim l2; clear l1 l2; simpl; auto.
-intros l1 l3; case l3; auto.
-intros b l H; absurd (length ((b :: l) ++ l1) <= length l1).
-simpl; rewrite length_app; auto with arith.
-rewrite <- H; auto with arith.
-intros a l H l1 l3; case l3.
-simpl; intros H1; absurd (length (a :: (l ++ l1)) <= length l1).
-simpl; rewrite length_app; auto with arith.
-rewrite H1; auto with arith.
-simpl; intros b l0 H0; injection H0.
-intros H1 H2; rewrite H2, (H _ _ H1); auto.
-Qed.
-
-Theorem app_inv_app:
- forall l1 l2 l3 l4 a,
- l1 ++ l2 = l3 ++ (a :: l4) ->
- (exists l5 : list A , l1 = l3 ++ (a :: l5) ) \/
- (exists l5 , l2 = l5 ++ (a :: l4) ).
-intros l1; elim l1; simpl; auto.
-intros l2 l3 l4 a H; right; exists l3; auto.
-intros a l H l2 l3 l4 a0; case l3; simpl.
-intros H0; left; exists l; injection H0; intros; subst; auto.
-intros b l0 H0; case (H l2 l0 l4 a0); auto.
-injection H0; auto.
-intros [l5 H1].
-left; exists l5; injection H0; intros; subst; auto.
-Qed.
-
-Theorem app_inv_app2:
- forall l1 l2 l3 l4 a b,
- l1 ++ l2 = l3 ++ (a :: (b :: l4)) ->
- (exists l5 : list A , l1 = l3 ++ (a :: (b :: l5)) ) \/
- ((exists l5 , l2 = l5 ++ (a :: (b :: l4)) ) \/
- l1 = l3 ++ (a :: nil) /\ l2 = b :: l4).
-intros l1; elim l1; simpl; auto.
-intros l2 l3 l4 a b H; right; left; exists l3; auto.
-intros a l H l2 l3 l4 a0 b; case l3; simpl.
-case l; simpl.
-intros H0; right; right; injection H0; split; auto.
-rewrite H2; auto.
-intros b0 l0 H0; left; exists l0; injection H0; intros; subst; auto.
-intros b0 l0 H0; case (H l2 l0 l4 a0 b); auto.
-injection H0; auto.
-intros [l5 HH1]; left; exists l5; injection H0; intros; subst; auto.
-intros [H1|[H1 H2]]; auto.
-right; right; split; auto; injection H0; intros; subst; auto.
-Qed.
-
-Theorem same_length_ex:
- forall (a : A) l1 l2 l3,
- length (l1 ++ (a :: l2)) = length l3 ->
- (exists l4 ,
- exists l5 ,
- exists b : B ,
- length l1 = length l4 /\ (length l2 = length l5 /\ l3 = l4 ++ (b :: l5)) ).
-intros a l1; elim l1; simpl; auto.
-intros l2 l3; case l3; simpl; (try (intros; discriminate)).
-intros b l H; exists (nil (A:=B)); exists l; exists b; (repeat (split; auto)).
-intros a0 l H l2 l3; case l3; simpl; (try (intros; discriminate)).
-intros b l0 H0.
-case (H l2 l0); auto.
-intros l4 [l5 [b1 [HH1 [HH2 HH3]]]].
-exists (b :: l4); exists l5; exists b1; (repeat (simpl; split; auto)).
-rewrite HH3; auto.
-Qed.
-
-(**************************************
- Properties on map
-**************************************)
-
-Theorem in_map_inv:
- forall (b : B) (l : list A),
- In b (map f l) -> (exists a : A , In a l /\ b = f a ).
-intros b l; elim l; simpl; auto.
-intros tmp; case tmp.
-intros a0 l0 H [H1|H1]; auto.
-exists a0; auto.
-case (H H1); intros a1 [H2 H3]; exists a1; auto.
-Qed.
-
-Theorem in_map_fst_inv:
- forall a (l : list (B * C)),
- In a (map (fst (B:=_)) l) -> (exists c , In (a, c) l ).
-intros a l; elim l; simpl; auto.
-intros H; case H.
-intros a0 l0 H [H0|H0]; auto.
-exists (snd a0); left; rewrite <- H0; case a0; simpl; auto.
-case H; auto; intros l1 Hl1; exists l1; auto.
-Qed.
-
-Theorem length_map: forall l, length (map f l) = length l.
-intros l; elim l; simpl; auto.
-Qed.
-
-Theorem map_app: forall l1 l2, map f (l1 ++ l2) = map f l1 ++ map f l2.
-intros l; elim l; simpl; auto.
-intros a l0 H l2; rewrite H; auto.
-Qed.
-
-Theorem map_length_decompose:
- forall l1 l2 l3 l4,
- length l1 = length l2 ->
- map f (app l1 l3) = app l2 l4 -> map f l1 = l2 /\ map f l3 = l4.
-intros l1; elim l1; simpl; auto; clear l1.
-intros l2; case l2; simpl; auto.
-intros; discriminate.
-intros a l1 Rec l2; case l2; simpl; clear l2; auto.
-intros; discriminate.
-intros b l2 l3 l4 H1 H2.
-injection H2; clear H2; intros H2 H3.
-case (Rec l2 l3 l4); auto.
-intros H4 H5; split; auto.
-subst; auto.
-Qed.
-
-(**************************************
- Properties of flat_map
-**************************************)
-
-Theorem in_flat_map:
- forall (l : list B) (f : B -> list C) a b,
- In a (f b) -> In b l -> In a (flat_map f l).
-intros l g; elim l; simpl; auto.
-intros a l0 H a0 b H0 [H1|H1]; apply in_or_app; auto.
-left; rewrite H1; auto.
-right; apply H with ( b := b ); auto.
-Qed.
-
-Theorem in_flat_map_ex:
- forall (l : list B) (f : B -> list C) a,
- In a (flat_map f l) -> (exists b , In b l /\ In a (f b) ).
-intros l g; elim l; simpl; auto.
-intros a H; case H.
-intros a l0 H a0 H0; case in_app_or with ( 1 := H0 ); simpl; auto.
-intros H1; exists a; auto.
-intros H1; case H with ( 1 := H1 ).
-intros b [H2 H3]; exists b; simpl; auto.
-Qed.
-
-(**************************************
- Properties of fold_left
-**************************************)
-
-Theorem fold_left_invol:
- forall (f: A -> B -> A) (P: A -> Prop) l a,
- P a -> (forall x y, P x -> P (f x y)) -> P (fold_left f l a).
-intros f1 P l; elim l; simpl; auto.
-Qed.
-
-Theorem fold_left_invol_in:
- forall (f: A -> B -> A) (P: A -> Prop) l a b,
- In b l -> (forall x, P (f x b)) -> (forall x y, P x -> P (f x y)) ->
- P (fold_left f l a).
-intros f1 P l; elim l; simpl; auto.
-intros a1 b HH; case HH.
-intros a1 l1 Rec a2 b [V|V] V1 V2; subst; auto.
-apply fold_left_invol; auto.
-apply Rec with (b := b); auto.
-Qed.
-
-End List.
-
-
-(**************************************
- Propertie of list_prod
-**************************************)
-
-Theorem length_list_prod:
- forall (A : Set) (l1 l2 : list A),
- length (list_prod l1 l2) = length l1 * length l2.
-intros A l1 l2; elim l1; simpl; auto.
-intros a l H; rewrite length_app; rewrite length_map; rewrite H; auto.
-Qed.
-
-Theorem in_list_prod_inv:
- forall (A B : Set) a l1 l2,
- In a (list_prod l1 l2) ->
- (exists b : A , exists c : B , a = (b, c) /\ (In b l1 /\ In c l2) ).
-intros A B a l1 l2; elim l1; simpl; auto; clear l1.
-intros H; case H.
-intros a1 l1 H1 H2.
-case in_app_or with ( 1 := H2 ); intros H3; auto.
-case in_map_inv with ( 1 := H3 ); intros b1 [Hb1 Hb2]; auto.
-exists a1; exists b1; split; auto.
-case H1; auto; intros b1 [c1 [Hb1 [Hb2 Hb3]]].
-exists b1; exists c1; split; auto.
-Qed.