aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen
diff options
context:
space:
mode:
authorGravatar Benoit Steiner <benoit.steiner.goog@gmail.com>2014-08-13 22:25:29 -0700
committerGravatar Benoit Steiner <benoit.steiner.goog@gmail.com>2014-08-13 22:25:29 -0700
commit16047c8d4a916baa200036c4d5501707b3552720 (patch)
treee8dc65e4de304a16247f71ca5f40c5194b1aad5e /Eigen
parent916ef48846b40f690f41583d288eb1c3c40db0a3 (diff)
parente51da9c3a8b448bc06110f1a7376211dcd32cc0e (diff)
Pulled in the latest changes from the Eigen trunk
Diffstat (limited to 'Eigen')
-rw-r--r--Eigen/Array11
-rw-r--r--Eigen/Core53
-rw-r--r--Eigen/Eigen2Support82
-rw-r--r--Eigen/Geometry40
-rw-r--r--Eigen/LU4
-rw-r--r--Eigen/LeastSquares32
-rw-r--r--Eigen/QR8
-rw-r--r--Eigen/SVD4
-rw-r--r--Eigen/src/Cholesky/LDLT.h62
-rw-r--r--Eigen/src/Cholesky/LLT.h11
-rw-r--r--Eigen/src/Core/Array.h38
-rw-r--r--Eigen/src/Core/Assign_MKL.h1
-rw-r--r--Eigen/src/Core/DenseBase.h11
-rw-r--r--Eigen/src/Core/DenseCoeffsBase.h4
-rw-r--r--Eigen/src/Core/DiagonalMatrix.h15
-rw-r--r--Eigen/src/Core/Dot.h28
-rw-r--r--Eigen/src/Core/GeneralProduct.h4
-rw-r--r--[-rwxr-xr-x]Eigen/src/Core/GenericPacketMath.h8
-rw-r--r--Eigen/src/Core/GlobalFunctions.h1
-rw-r--r--Eigen/src/Core/Map.h18
-rw-r--r--Eigen/src/Core/Matrix.h57
-rw-r--r--Eigen/src/Core/MatrixBase.h78
-rw-r--r--Eigen/src/Core/NumTraits.h7
-rw-r--r--Eigen/src/Core/PermutationMatrix.h60
-rw-r--r--Eigen/src/Core/PlainObjectBase.h77
-rw-r--r--Eigen/src/Core/ProductBase.h6
-rw-r--r--Eigen/src/Core/Ref.h18
-rw-r--r--Eigen/src/Core/SelfAdjointView.h25
-rw-r--r--Eigen/src/Core/Transpositions.h77
-rw-r--r--Eigen/src/Core/TriangularMatrix.h72
-rw-r--r--Eigen/src/Core/VectorwiseOp.h2
-rw-r--r--Eigen/src/Core/Visitor.h2
-rw-r--r--Eigen/src/Core/arch/AVX/Complex.h8
-rw-r--r--Eigen/src/Core/arch/AVX/PacketMath.h8
-rw-r--r--Eigen/src/Core/arch/AltiVec/Complex.h15
-rwxr-xr-xEigen/src/Core/arch/AltiVec/PacketMath.h34
-rw-r--r--Eigen/src/Core/arch/NEON/Complex.h4
-rw-r--r--Eigen/src/Core/arch/NEON/PacketMath.h8
-rw-r--r--Eigen/src/Core/arch/SSE/Complex.h4
-rwxr-xr-xEigen/src/Core/arch/SSE/PacketMath.h12
-rw-r--r--Eigen/src/Core/functors/NullaryFunctors.h4
-rw-r--r--Eigen/src/Core/functors/UnaryFunctors.h20
-rw-r--r--Eigen/src/Core/products/SelfadjointMatrixVector.h4
-rw-r--r--Eigen/src/Core/products/TriangularMatrixVector.h2
-rw-r--r--Eigen/src/Core/products/TriangularMatrixVector_MKL.h2
-rw-r--r--Eigen/src/Core/util/ForwardDeclarations.h35
-rw-r--r--Eigen/src/Core/util/Macros.h12
-rw-r--r--Eigen/src/Core/util/Memory.h111
-rw-r--r--Eigen/src/Core/util/Meta.h28
-rw-r--r--Eigen/src/Core/util/StaticAssert.h11
-rw-r--r--Eigen/src/Eigen2Support/Block.h126
-rw-r--r--Eigen/src/Eigen2Support/CMakeLists.txt8
-rw-r--r--Eigen/src/Eigen2Support/Cwise.h192
-rw-r--r--Eigen/src/Eigen2Support/CwiseOperators.h298
-rw-r--r--Eigen/src/Eigen2Support/Geometry/AlignedBox.h159
-rw-r--r--Eigen/src/Eigen2Support/Geometry/All.h115
-rw-r--r--Eigen/src/Eigen2Support/Geometry/AngleAxis.h228
-rw-r--r--Eigen/src/Eigen2Support/Geometry/CMakeLists.txt6
-rw-r--r--Eigen/src/Eigen2Support/Geometry/Hyperplane.h254
-rw-r--r--Eigen/src/Eigen2Support/Geometry/ParametrizedLine.h141
-rw-r--r--Eigen/src/Eigen2Support/Geometry/Quaternion.h495
-rw-r--r--Eigen/src/Eigen2Support/Geometry/Rotation2D.h145
-rw-r--r--Eigen/src/Eigen2Support/Geometry/RotationBase.h123
-rw-r--r--Eigen/src/Eigen2Support/Geometry/Scaling.h167
-rw-r--r--Eigen/src/Eigen2Support/Geometry/Transform.h786
-rw-r--r--Eigen/src/Eigen2Support/Geometry/Translation.h184
-rw-r--r--Eigen/src/Eigen2Support/LU.h120
-rw-r--r--Eigen/src/Eigen2Support/Lazy.h71
-rw-r--r--Eigen/src/Eigen2Support/LeastSquares.h170
-rw-r--r--Eigen/src/Eigen2Support/Macros.h20
-rw-r--r--Eigen/src/Eigen2Support/MathFunctions.h57
-rw-r--r--Eigen/src/Eigen2Support/Memory.h45
-rw-r--r--Eigen/src/Eigen2Support/Meta.h75
-rw-r--r--Eigen/src/Eigen2Support/Minor.h117
-rw-r--r--Eigen/src/Eigen2Support/QR.h67
-rw-r--r--Eigen/src/Eigen2Support/SVD.h637
-rw-r--r--Eigen/src/Eigen2Support/TriangularSolver.h42
-rw-r--r--Eigen/src/Eigen2Support/VectorBlock.h94
-rw-r--r--Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h36
-rw-r--r--Eigen/src/Geometry/AngleAxis.h28
-rw-r--r--Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h4
-rw-r--r--Eigen/src/IterativeLinearSolvers/BiCGSTAB.h3
-rw-r--r--Eigen/src/Jacobi/Jacobi.h2
-rw-r--r--Eigen/src/LU/PartialPivLU.h9
-rw-r--r--Eigen/src/OrderingMethods/Ordering.h12
-rw-r--r--Eigen/src/SVD/JacobiSVD.h12
-rw-r--r--Eigen/src/SparseCholesky/SimplicialCholesky.h42
-rw-r--r--Eigen/src/SparseCore/CompressedStorage.h4
-rw-r--r--Eigen/src/SparseCore/SparseBlock.h41
-rw-r--r--Eigen/src/SparseCore/SparseCwiseBinaryOp.h11
-rw-r--r--Eigen/src/SparseCore/SparseDenseProduct.h39
-rw-r--r--Eigen/src/SparseCore/SparseDiagonalProduct.h14
-rw-r--r--Eigen/src/SparseCore/SparseMatrix.h16
-rw-r--r--Eigen/src/SparseCore/SparseMatrixBase.h29
-rw-r--r--Eigen/src/SparseCore/SparseSelfAdjointView.h2
-rw-r--r--Eigen/src/SparseCore/SparseUtil.h7
-rw-r--r--Eigen/src/SparseCore/TriangularSolver.h54
-rw-r--r--Eigen/src/SparseQR/SparseQR.h131
-rw-r--r--Eigen/src/plugins/ArrayCwiseUnaryOps.h12
99 files changed, 738 insertions, 5950 deletions
diff --git a/Eigen/Array b/Eigen/Array
deleted file mode 100644
index 3d004fb69..000000000
--- a/Eigen/Array
+++ /dev/null
@@ -1,11 +0,0 @@
-#ifndef EIGEN_ARRAY_MODULE_H
-#define EIGEN_ARRAY_MODULE_H
-
-// include Core first to handle Eigen2 support macros
-#include "Core"
-
-#ifndef EIGEN2_SUPPORT
- #error The Eigen/Array header does no longer exist in Eigen3. All that functionality has moved to Eigen/Core.
-#endif
-
-#endif // EIGEN_ARRAY_MODULE_H
diff --git a/Eigen/Core b/Eigen/Core
index 661c7812e..9a73fe37b 100644
--- a/Eigen/Core
+++ b/Eigen/Core
@@ -42,6 +42,14 @@
#define EIGEN_USING_STD_MATH(FUNC) using std::FUNC;
#endif
+#if (defined(_CPPUNWIND) || defined(__EXCEPTIONS)) && !defined(__CUDA_ARCH__)
+ #define EIGEN_EXCEPTIONS
+#endif
+
+#ifdef EIGEN_EXCEPTIONS
+ #include <new>
+#endif
+
// then include this file where all our macros are defined. It's really important to do it first because
// it's where we do all the alignment settings (platform detection and honoring the user's will if he
// defined e.g. EIGEN_DONT_ALIGN) so it needs to be done before we do anything with vectorization.
@@ -205,18 +213,10 @@
#endif
// required for __cpuid, needs to be included after cmath
-#if defined(_MSC_VER) && (defined(_M_IX86)||defined(_M_X64))
+#if defined(_MSC_VER) && (defined(_M_IX86)||defined(_M_X64)) && (!defined(_WIN32_WCE))
#include <intrin.h>
#endif
-#if (defined(_CPPUNWIND) || defined(__EXCEPTIONS)) && !defined(__CUDA_ARCH__)
- #define EIGEN_EXCEPTIONS
-#endif
-
-#ifdef EIGEN_EXCEPTIONS
- #include <new>
-#endif
-
/** \brief Namespace containing all symbols from the %Eigen library. */
namespace Eigen {
@@ -244,34 +244,9 @@ inline static const char *SimdInstructionSetsInUse(void) {
} // end namespace Eigen
-#define STAGE10_FULL_EIGEN2_API 10
-#define STAGE20_RESOLVE_API_CONFLICTS 20
-#define STAGE30_FULL_EIGEN3_API 30
-#define STAGE40_FULL_EIGEN3_STRICTNESS 40
-#define STAGE99_NO_EIGEN2_SUPPORT 99
-
-#if defined EIGEN2_SUPPORT_STAGE40_FULL_EIGEN3_STRICTNESS
- #define EIGEN2_SUPPORT
- #define EIGEN2_SUPPORT_STAGE STAGE40_FULL_EIGEN3_STRICTNESS
-#elif defined EIGEN2_SUPPORT_STAGE30_FULL_EIGEN3_API
- #define EIGEN2_SUPPORT
- #define EIGEN2_SUPPORT_STAGE STAGE30_FULL_EIGEN3_API
-#elif defined EIGEN2_SUPPORT_STAGE20_RESOLVE_API_CONFLICTS
- #define EIGEN2_SUPPORT
- #define EIGEN2_SUPPORT_STAGE STAGE20_RESOLVE_API_CONFLICTS
-#elif defined EIGEN2_SUPPORT_STAGE10_FULL_EIGEN2_API
- #define EIGEN2_SUPPORT
- #define EIGEN2_SUPPORT_STAGE STAGE10_FULL_EIGEN2_API
-#elif defined EIGEN2_SUPPORT
- // default to stage 3, that's what it's always meant
- #define EIGEN2_SUPPORT_STAGE30_FULL_EIGEN3_API
- #define EIGEN2_SUPPORT_STAGE STAGE30_FULL_EIGEN3_API
-#else
- #define EIGEN2_SUPPORT_STAGE STAGE99_NO_EIGEN2_SUPPORT
-#endif
-
-#ifdef EIGEN2_SUPPORT
-#undef minor
+#if defined EIGEN2_SUPPORT_STAGE40_FULL_EIGEN3_STRICTNESS || defined EIGEN2_SUPPORT_STAGE30_FULL_EIGEN3_API || defined EIGEN2_SUPPORT_STAGE20_RESOLVE_API_CONFLICTS || defined EIGEN2_SUPPORT_STAGE10_FULL_EIGEN2_API || defined EIGEN2_SUPPORT
+// This will generate an error message:
+#error Eigen2-support is only available up to version 3.2. Please go to "http://eigen.tuxfamily.org/index.php?title=Eigen2" for further information
#endif
// we use size_t frequently and we'll never remember to prepend it with std:: everytime just to
@@ -429,8 +404,4 @@ using std::ptrdiff_t;
#include "src/Core/util/ReenableStupidWarnings.h"
-#ifdef EIGEN2_SUPPORT
-#include "Eigen2Support"
-#endif
-
#endif // EIGEN_CORE_H
diff --git a/Eigen/Eigen2Support b/Eigen/Eigen2Support
deleted file mode 100644
index 36156d29a..000000000
--- a/Eigen/Eigen2Support
+++ /dev/null
@@ -1,82 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN2SUPPORT_H
-#define EIGEN2SUPPORT_H
-
-#if (!defined(EIGEN2_SUPPORT)) || (!defined(EIGEN_CORE_H))
-#error Eigen2 support must be enabled by defining EIGEN2_SUPPORT before including any Eigen header
-#endif
-
-#include "src/Core/util/DisableStupidWarnings.h"
-
-/** \ingroup Support_modules
- * \defgroup Eigen2Support_Module Eigen2 support module
- * This module provides a couple of deprecated functions improving the compatibility with Eigen2.
- *
- * To use it, define EIGEN2_SUPPORT before including any Eigen header
- * \code
- * #define EIGEN2_SUPPORT
- * \endcode
- *
- */
-
-#include "src/Eigen2Support/Macros.h"
-#include "src/Eigen2Support/Memory.h"
-#include "src/Eigen2Support/Meta.h"
-#include "src/Eigen2Support/Lazy.h"
-#include "src/Eigen2Support/Cwise.h"
-#include "src/Eigen2Support/CwiseOperators.h"
-#include "src/Eigen2Support/TriangularSolver.h"
-#include "src/Eigen2Support/Block.h"
-#include "src/Eigen2Support/VectorBlock.h"
-#include "src/Eigen2Support/Minor.h"
-#include "src/Eigen2Support/MathFunctions.h"
-
-
-#include "src/Core/util/ReenableStupidWarnings.h"
-
-// Eigen2 used to include iostream
-#include<iostream>
-
-#define EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, SizeSuffix) \
-using Eigen::Matrix##SizeSuffix##TypeSuffix; \
-using Eigen::Vector##SizeSuffix##TypeSuffix; \
-using Eigen::RowVector##SizeSuffix##TypeSuffix;
-
-#define EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(TypeSuffix) \
-EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 2) \
-EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 3) \
-EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 4) \
-EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, X) \
-
-#define EIGEN_USING_MATRIX_TYPEDEFS \
-EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(i) \
-EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(f) \
-EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(d) \
-EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(cf) \
-EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(cd)
-
-#define USING_PART_OF_NAMESPACE_EIGEN \
-EIGEN_USING_MATRIX_TYPEDEFS \
-using Eigen::Matrix; \
-using Eigen::MatrixBase; \
-using Eigen::ei_random; \
-using Eigen::ei_real; \
-using Eigen::ei_imag; \
-using Eigen::ei_conj; \
-using Eigen::ei_abs; \
-using Eigen::ei_abs2; \
-using Eigen::ei_sqrt; \
-using Eigen::ei_exp; \
-using Eigen::ei_log; \
-using Eigen::ei_sin; \
-using Eigen::ei_cos;
-
-#endif // EIGEN2SUPPORT_H
diff --git a/Eigen/Geometry b/Eigen/Geometry
index f9bc6fc57..1c642b7ee 100644
--- a/Eigen/Geometry
+++ b/Eigen/Geometry
@@ -33,29 +33,23 @@
#include "src/Geometry/OrthoMethods.h"
#include "src/Geometry/EulerAngles.h"
-#if EIGEN2_SUPPORT_STAGE > STAGE20_RESOLVE_API_CONFLICTS
- #include "src/Geometry/Homogeneous.h"
- #include "src/Geometry/RotationBase.h"
- #include "src/Geometry/Rotation2D.h"
- #include "src/Geometry/Quaternion.h"
- #include "src/Geometry/AngleAxis.h"
- #include "src/Geometry/Transform.h"
- #include "src/Geometry/Translation.h"
- #include "src/Geometry/Scaling.h"
- #include "src/Geometry/Hyperplane.h"
- #include "src/Geometry/ParametrizedLine.h"
- #include "src/Geometry/AlignedBox.h"
- #include "src/Geometry/Umeyama.h"
-
- // Use the SSE optimized version whenever possible. At the moment the
- // SSE version doesn't compile when AVX is enabled
- #if defined EIGEN_VECTORIZE_SSE && !defined EIGEN_VECTORIZE_AVX
- #include "src/Geometry/arch/Geometry_SSE.h"
- #endif
-#endif
-
-#ifdef EIGEN2_SUPPORT
-#include "src/Eigen2Support/Geometry/All.h"
+#include "src/Geometry/Homogeneous.h"
+#include "src/Geometry/RotationBase.h"
+#include "src/Geometry/Rotation2D.h"
+#include "src/Geometry/Quaternion.h"
+#include "src/Geometry/AngleAxis.h"
+#include "src/Geometry/Transform.h"
+#include "src/Geometry/Translation.h"
+#include "src/Geometry/Scaling.h"
+#include "src/Geometry/Hyperplane.h"
+#include "src/Geometry/ParametrizedLine.h"
+#include "src/Geometry/AlignedBox.h"
+#include "src/Geometry/Umeyama.h"
+
+// Use the SSE optimized version whenever possible. At the moment the
+// SSE version doesn't compile when AVX is enabled
+#if defined EIGEN_VECTORIZE_SSE && !defined EIGEN_VECTORIZE_AVX
+#include "src/Geometry/arch/Geometry_SSE.h"
#endif
#include "src/Core/util/ReenableStupidWarnings.h"
diff --git a/Eigen/LU b/Eigen/LU
index e5c3f32f7..29a98cb9a 100644
--- a/Eigen/LU
+++ b/Eigen/LU
@@ -33,10 +33,6 @@
#include "src/LU/arch/Inverse_SSE.h"
#endif
-#ifdef EIGEN2_SUPPORT
- #include "src/Eigen2Support/LU.h"
-#endif
-
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_LU_MODULE_H
diff --git a/Eigen/LeastSquares b/Eigen/LeastSquares
deleted file mode 100644
index 35137c25d..000000000
--- a/Eigen/LeastSquares
+++ /dev/null
@@ -1,32 +0,0 @@
-#ifndef EIGEN_REGRESSION_MODULE_H
-#define EIGEN_REGRESSION_MODULE_H
-
-#ifndef EIGEN2_SUPPORT
-#error LeastSquares is only available in Eigen2 support mode (define EIGEN2_SUPPORT)
-#endif
-
-// exclude from normal eigen3-only documentation
-#ifdef EIGEN2_SUPPORT
-
-#include "Core"
-
-#include "src/Core/util/DisableStupidWarnings.h"
-
-#include "Eigenvalues"
-#include "Geometry"
-
-/** \defgroup LeastSquares_Module LeastSquares module
- * This module provides linear regression and related features.
- *
- * \code
- * #include <Eigen/LeastSquares>
- * \endcode
- */
-
-#include "src/Eigen2Support/LeastSquares.h"
-
-#include "src/Core/util/ReenableStupidWarnings.h"
-
-#endif // EIGEN2_SUPPORT
-
-#endif // EIGEN_REGRESSION_MODULE_H
diff --git a/Eigen/QR b/Eigen/QR
index 8c7c6162e..4c2533610 100644
--- a/Eigen/QR
+++ b/Eigen/QR
@@ -33,15 +33,7 @@
#include "src/QR/ColPivHouseholderQR_MKL.h"
#endif
-#ifdef EIGEN2_SUPPORT
-#include "src/Eigen2Support/QR.h"
-#endif
-
#include "src/Core/util/ReenableStupidWarnings.h"
-#ifdef EIGEN2_SUPPORT
-#include "Eigenvalues"
-#endif
-
#endif // EIGEN_QR_MODULE_H
/* vim: set filetype=cpp et sw=2 ts=2 ai: */
diff --git a/Eigen/SVD b/Eigen/SVD
index fd310017a..5eee46df5 100644
--- a/Eigen/SVD
+++ b/Eigen/SVD
@@ -27,10 +27,6 @@
#endif
#include "src/SVD/UpperBidiagonalization.h"
-#ifdef EIGEN2_SUPPORT
-#include "src/Eigen2Support/SVD.h"
-#endif
-
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_SVD_MODULE_H
diff --git a/Eigen/src/Cholesky/LDLT.h b/Eigen/src/Cholesky/LDLT.h
index efac7fe40..aa9784e54 100644
--- a/Eigen/src/Cholesky/LDLT.h
+++ b/Eigen/src/Cholesky/LDLT.h
@@ -151,13 +151,6 @@ template<typename _MatrixType, int _UpLo> class LDLT
eigen_assert(m_isInitialized && "LDLT is not initialized.");
return m_sign == internal::PositiveSemiDef || m_sign == internal::ZeroSign;
}
-
- #ifdef EIGEN2_SUPPORT
- inline bool isPositiveDefinite() const
- {
- return isPositive();
- }
- #endif
/** \returns true if the matrix is negative (semidefinite) */
inline bool isNegative(void) const
@@ -191,15 +184,6 @@ template<typename _MatrixType, int _UpLo> class LDLT
return internal::solve_retval<LDLT, Rhs>(*this, b.derived());
}
- #ifdef EIGEN2_SUPPORT
- template<typename OtherDerived, typename ResultType>
- bool solve(const MatrixBase<OtherDerived>& b, ResultType *result) const
- {
- *result = this->solve(b);
- return true;
- }
- #endif
-
template<typename Derived>
bool solveInPlace(MatrixBase<Derived> &bAndX) const;
@@ -262,6 +246,7 @@ template<> struct ldlt_inplace<Lower>
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::Index Index;
+ typedef typename TranspositionType::StorageIndexType IndexType;
eigen_assert(mat.rows()==mat.cols());
const Index size = mat.rows();
@@ -274,24 +259,14 @@ template<> struct ldlt_inplace<Lower>
return true;
}
- RealScalar cutoff(0), biggest_in_corner;
-
for (Index k = 0; k < size; ++k)
{
// Find largest diagonal element
Index index_of_biggest_in_corner;
- biggest_in_corner = mat.diagonal().tail(size-k).cwiseAbs().maxCoeff(&index_of_biggest_in_corner);
+ mat.diagonal().tail(size-k).cwiseAbs().maxCoeff(&index_of_biggest_in_corner);
index_of_biggest_in_corner += k;
- if(k == 0)
- {
- // The biggest overall is the point of reference to which further diagonals
- // are compared; if any diagonal is negligible compared
- // to the largest overall, the algorithm bails.
- cutoff = abs(NumTraits<Scalar>::epsilon() * biggest_in_corner);
- }
-
- transpositions.coeffRef(k) = index_of_biggest_in_corner;
+ transpositions.coeffRef(k) = IndexType(index_of_biggest_in_corner);
if(k != index_of_biggest_in_corner)
{
// apply the transposition while taking care to consider only
@@ -300,7 +275,7 @@ template<> struct ldlt_inplace<Lower>
mat.row(k).head(k).swap(mat.row(index_of_biggest_in_corner).head(k));
mat.col(k).tail(s).swap(mat.col(index_of_biggest_in_corner).tail(s));
std::swap(mat.coeffRef(k,k),mat.coeffRef(index_of_biggest_in_corner,index_of_biggest_in_corner));
- for(int i=k+1;i<index_of_biggest_in_corner;++i)
+ for(Index i=k+1;i<index_of_biggest_in_corner;++i)
{
Scalar tmp = mat.coeffRef(i,k);
mat.coeffRef(i,k) = numext::conj(mat.coeffRef(index_of_biggest_in_corner,i));
@@ -321,16 +296,20 @@ template<> struct ldlt_inplace<Lower>
if(k>0)
{
- temp.head(k) = mat.diagonal().head(k).asDiagonal() * A10.adjoint();
+ temp.head(k) = mat.diagonal().real().head(k).asDiagonal() * A10.adjoint();
mat.coeffRef(k,k) -= (A10 * temp.head(k)).value();
if(rs>0)
A21.noalias() -= A20 * temp.head(k);
}
- if((rs>0) && (abs(mat.coeffRef(k,k)) > cutoff))
- A21 /= mat.coeffRef(k,k);
-
+ // In some previous versions of Eigen (e.g., 3.2.1), the scaling was omitted if the pivot
+ // was smaller than the cutoff value. However, soince LDLT is not rank-revealing
+ // we should only make sure we do not introduce INF or NaN values.
+ // LAPACK also uses 0 as the cutoff value.
RealScalar realAkk = numext::real(mat.coeffRef(k,k));
+ if((rs>0) && (abs(realAkk) > RealScalar(0)))
+ A21 /= realAkk;
+
if (sign == PositiveSemiDef) {
if (realAkk < 0) sign = Indefinite;
} else if (sign == NegativeSemiDef) {
@@ -464,6 +443,7 @@ template<typename MatrixType, int _UpLo>
template<typename Derived>
LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::rankUpdate(const MatrixBase<Derived>& w, const typename NumTraits<typename MatrixType::Scalar>::Real& sigma)
{
+ typedef typename TranspositionType::StorageIndexType IndexType;
const Index size = w.rows();
if (m_isInitialized)
{
@@ -475,7 +455,7 @@ LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::rankUpdate(const MatrixBase<Deri
m_matrix.setZero();
m_transpositions.resize(size);
for (Index i = 0; i < size; i++)
- m_transpositions.coeffRef(i) = i;
+ m_transpositions.coeffRef(i) = IndexType(i);
m_temporary.resize(size);
m_sign = sigma>=0 ? internal::PositiveSemiDef : internal::NegativeSemiDef;
m_isInitialized = true;
@@ -508,11 +488,15 @@ struct solve_retval<LDLT<_MatrixType,_UpLo>, Rhs>
using std::abs;
EIGEN_USING_STD_MATH(max);
typedef typename LDLTType::MatrixType MatrixType;
- typedef typename LDLTType::Scalar Scalar;
typedef typename LDLTType::RealScalar RealScalar;
- const Diagonal<const MatrixType> vectorD = dec().vectorD();
- RealScalar tolerance = (max)(vectorD.array().abs().maxCoeff() * NumTraits<Scalar>::epsilon(),
- RealScalar(1) / NumTraits<RealScalar>::highest()); // motivated by LAPACK's xGELSS
+ const typename Diagonal<const MatrixType>::RealReturnType vectorD(dec().vectorD());
+ // In some previous versions, tolerance was set to the max of 1/highest and the maximal diagonal entry * epsilon
+ // as motivated by LAPACK's xGELSS:
+ // RealScalar tolerance = (max)(vectorD.array().abs().maxCoeff() *NumTraits<RealScalar>::epsilon(),RealScalar(1) / NumTraits<RealScalar>::highest());
+ // However, LDLT is not rank revealing, and so adjusting the tolerance wrt to the highest
+ // diagonal element is not well justified and to numerical issues in some cases.
+ // Moreover, Lapack's xSYTRS routines use 0 for the tolerance.
+ RealScalar tolerance = RealScalar(1) / NumTraits<RealScalar>::highest();
for (Index i = 0; i < vectorD.size(); ++i) {
if(abs(vectorD(i)) > tolerance)
dst.row(i) /= vectorD(i);
@@ -570,7 +554,7 @@ MatrixType LDLT<MatrixType,_UpLo>::reconstructedMatrix() const
// L^* P
res = matrixU() * res;
// D(L^*P)
- res = vectorD().asDiagonal() * res;
+ res = vectorD().real().asDiagonal() * res;
// L(DL^*P)
res = matrixL() * res;
// P^T (LDL^*P)
diff --git a/Eigen/src/Cholesky/LLT.h b/Eigen/src/Cholesky/LLT.h
index 45ed8438f..38e820165 100644
--- a/Eigen/src/Cholesky/LLT.h
+++ b/Eigen/src/Cholesky/LLT.h
@@ -127,17 +127,6 @@ template<typename _MatrixType, int _UpLo> class LLT
return internal::solve_retval<LLT, Rhs>(*this, b.derived());
}
- #ifdef EIGEN2_SUPPORT
- template<typename OtherDerived, typename ResultType>
- bool solve(const MatrixBase<OtherDerived>& b, ResultType *result) const
- {
- *result = this->solve(b);
- return true;
- }
-
- bool isPositiveDefinite() const { return true; }
- #endif
-
template<typename Derived>
void solveInPlace(MatrixBase<Derived> &bAndX) const;
diff --git a/Eigen/src/Core/Array.h b/Eigen/src/Core/Array.h
index 8d2906a10..28d6f1443 100644
--- a/Eigen/src/Core/Array.h
+++ b/Eigen/src/Core/Array.h
@@ -144,24 +144,16 @@ class Array
}
#endif
- /** Constructs a vector or row-vector with given dimension. \only_for_vectors
- *
- * Note that this is only useful for dynamic-size vectors. For fixed-size vectors,
- * it is redundant to pass the dimension here, so it makes more sense to use the default
- * constructor Matrix() instead.
- */
+
+ #ifndef EIGEN_PARSED_BY_DOXYGEN
+ template<typename T>
EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE explicit Array(Index dim)
- : Base(dim, RowsAtCompileTime == 1 ? 1 : dim, ColsAtCompileTime == 1 ? 1 : dim)
+ EIGEN_STRONG_INLINE explicit Array(const T& x)
{
Base::_check_template_params();
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(Array)
- eigen_assert(dim >= 0);
- eigen_assert(SizeAtCompileTime == Dynamic || SizeAtCompileTime == dim);
- EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
+ Base::template _init1<T>(x);
}
- #ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename T0, typename T1>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Array(const T0& val0, const T1& val1)
@@ -170,11 +162,23 @@ class Array
this->template _init2<T0,T1>(val0, val1);
}
#else
- /** constructs an uninitialized matrix with \a rows rows and \a cols columns.
+ /** \brief Constructs a fixed-sized array initialized with coefficients starting at \a data */
+ EIGEN_DEVICE_FUNC explicit Array(const Scalar *data);
+ /** Constructs a vector or row-vector with given dimension. \only_for_vectors
*
- * This is useful for dynamic-size matrices. For fixed-size matrices,
+ * Note that this is only useful for dynamic-size vectors. For fixed-size vectors,
+ * it is redundant to pass the dimension here, so it makes more sense to use the default
+ * constructor Array() instead.
+ */
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE explicit Array(Index dim);
+ /** constructs an initialized 1x1 Array with the given coefficient */
+ Array(const Scalar& value);
+ /** constructs an uninitialized array with \a rows rows and \a cols columns.
+ *
+ * This is useful for dynamic-size arrays. For fixed-size arrays,
* it is redundant to pass these parameters, so one should use the default constructor
- * Matrix() instead. */
+ * Array() instead. */
Array(Index rows, Index cols);
/** constructs an initialized 2D vector with given coefficients */
Array(const Scalar& val0, const Scalar& val1);
@@ -202,8 +206,6 @@ class Array
m_storage.data()[3] = val3;
}
- EIGEN_DEVICE_FUNC explicit Array(const Scalar *data);
-
/** Constructor copying the value of the expression \a other */
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
diff --git a/Eigen/src/Core/Assign_MKL.h b/Eigen/src/Core/Assign_MKL.h
index 7772951b9..97134ffd7 100644
--- a/Eigen/src/Core/Assign_MKL.h
+++ b/Eigen/src/Core/Assign_MKL.h
@@ -202,6 +202,7 @@ EIGEN_MKL_VML_DECLARE_UNARY_CALLS_LA(asin, Asin)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_LA(cos, Cos)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_LA(acos, Acos)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_LA(tan, Tan)
+EIGEN_MKL_VML_DECLARE_UNARY_CALLS_LA(atan, Atan)
//EIGEN_MKL_VML_DECLARE_UNARY_CALLS(abs, Abs)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_LA(exp, Exp)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_LA(log, Ln)
diff --git a/Eigen/src/Core/DenseBase.h b/Eigen/src/Core/DenseBase.h
index 4794c2f13..bd5dd14ed 100644
--- a/Eigen/src/Core/DenseBase.h
+++ b/Eigen/src/Core/DenseBase.h
@@ -506,17 +506,6 @@ template<typename Derived> class DenseBase
# endif
#undef EIGEN_CURRENT_STORAGE_BASE_CLASS
-#ifdef EIGEN2_SUPPORT
-
- Block<Derived> corner(CornerType type, Index cRows, Index cCols);
- const Block<Derived> corner(CornerType type, Index cRows, Index cCols) const;
- template<int CRows, int CCols>
- Block<Derived, CRows, CCols> corner(CornerType type);
- template<int CRows, int CCols>
- const Block<Derived, CRows, CCols> corner(CornerType type) const;
-
-#endif // EIGEN2_SUPPORT
-
// disable the use of evalTo for dense objects with a nice compilation error
template<typename Dest>
diff --git a/Eigen/src/Core/DenseCoeffsBase.h b/Eigen/src/Core/DenseCoeffsBase.h
index efabb5e67..4e986e875 100644
--- a/Eigen/src/Core/DenseCoeffsBase.h
+++ b/Eigen/src/Core/DenseCoeffsBase.h
@@ -156,10 +156,8 @@ class DenseCoeffsBase<Derived,ReadOnlyAccessors> : public EigenBase<Derived>
EIGEN_STRONG_INLINE CoeffReturnType
operator[](Index index) const
{
- #ifndef EIGEN2_SUPPORT
EIGEN_STATIC_ASSERT(Derived::IsVectorAtCompileTime,
THE_BRACKET_OPERATOR_IS_ONLY_FOR_VECTORS__USE_THE_PARENTHESIS_OPERATOR_INSTEAD)
- #endif
eigen_assert(index >= 0 && index < size());
return derived().coeff(index);
}
@@ -388,10 +386,8 @@ class DenseCoeffsBase<Derived, WriteAccessors> : public DenseCoeffsBase<Derived,
EIGEN_STRONG_INLINE Scalar&
operator[](Index index)
{
- #ifndef EIGEN2_SUPPORT
EIGEN_STATIC_ASSERT(Derived::IsVectorAtCompileTime,
THE_BRACKET_OPERATOR_IS_ONLY_FOR_VECTORS__USE_THE_PARENTHESIS_OPERATOR_INSTEAD)
- #endif
eigen_assert(index >= 0 && index < size());
return derived().coeffRef(index);
}
diff --git a/Eigen/src/Core/DiagonalMatrix.h b/Eigen/src/Core/DiagonalMatrix.h
index f7ac22f8b..96b65483d 100644
--- a/Eigen/src/Core/DiagonalMatrix.h
+++ b/Eigen/src/Core/DiagonalMatrix.h
@@ -95,21 +95,6 @@ class DiagonalBase : public EigenBase<Derived>
{
return other.diagonal() * scalar;
}
-
- #ifdef EIGEN2_SUPPORT
- template<typename OtherDerived>
- EIGEN_DEVICE_FUNC
- bool isApprox(const DiagonalBase<OtherDerived>& other, typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision()) const
- {
- return diagonal().isApprox(other.diagonal(), precision);
- }
- template<typename OtherDerived>
- EIGEN_DEVICE_FUNC
- bool isApprox(const MatrixBase<OtherDerived>& other, typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision()) const
- {
- return toDenseMatrix().isApprox(other, precision);
- }
- #endif
};
template<typename Derived>
diff --git a/Eigen/src/Core/Dot.h b/Eigen/src/Core/Dot.h
index 718de5d1a..db16e4acc 100644
--- a/Eigen/src/Core/Dot.h
+++ b/Eigen/src/Core/Dot.h
@@ -76,34 +76,6 @@ MatrixBase<Derived>::dot(const MatrixBase<OtherDerived>& other) const
return internal::dot_nocheck<Derived,OtherDerived>::run(*this, other);
}
-#ifdef EIGEN2_SUPPORT
-/** \returns the dot product of *this with other, with the Eigen2 convention that the dot product is linear in the first variable
- * (conjugating the second variable). Of course this only makes a difference in the complex case.
- *
- * This method is only available in EIGEN2_SUPPORT mode.
- *
- * \only_for_vectors
- *
- * \sa dot()
- */
-template<typename Derived>
-template<typename OtherDerived>
-typename internal::traits<Derived>::Scalar
-MatrixBase<Derived>::eigen2_dot(const MatrixBase<OtherDerived>& other) const
-{
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
- EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived)
- EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
- YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
-
- eigen_assert(size() == other.size());
-
- return internal::dot_nocheck<OtherDerived,Derived>::run(other,*this);
-}
-#endif
-
-
//---------- implementation of L2 norm and related functions ----------
/** \returns, for vectors, the squared \em l2 norm of \c *this, and for matrices the Frobenius norm.
diff --git a/Eigen/src/Core/GeneralProduct.h b/Eigen/src/Core/GeneralProduct.h
index 229d12c3f..624b8b6e8 100644
--- a/Eigen/src/Core/GeneralProduct.h
+++ b/Eigen/src/Core/GeneralProduct.h
@@ -445,7 +445,7 @@ template<> struct gemv_selector<OnTheRight,ColMajor,true>
if(!evalToDest)
{
#ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
- int size = dest.size();
+ Index size = dest.size();
EIGEN_DENSE_STORAGE_CTOR_PLUGIN
#endif
if(!alphaIsCompatible)
@@ -510,7 +510,7 @@ template<> struct gemv_selector<OnTheRight,RowMajor,true>
if(!DirectlyUseRhs)
{
#ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
- int size = actualRhs.size();
+ Index size = actualRhs.size();
EIGEN_DENSE_STORAGE_CTOR_PLUGIN
#endif
Map<typename _ActualRhsType::PlainObject>(actualRhsPtr, actualRhs.size()) = actualRhs;
diff --git a/Eigen/src/Core/GenericPacketMath.h b/Eigen/src/Core/GenericPacketMath.h
index 0869dd49f..6ec29d0fd 100755..100644
--- a/Eigen/src/Core/GenericPacketMath.h
+++ b/Eigen/src/Core/GenericPacketMath.h
@@ -234,10 +234,10 @@ template<typename Scalar, typename Packet> EIGEN_DEVICE_FUNC inline void pstore(
template<typename Scalar, typename Packet> EIGEN_DEVICE_FUNC inline void pstoreu(Scalar* to, const Packet& from)
{ (*to) = from; }
- template<typename Scalar, typename Packet> EIGEN_DEVICE_FUNC inline Packet pgather(const Scalar* from, int /*stride*/)
+ template<typename Scalar, typename Packet> EIGEN_DEVICE_FUNC inline Packet pgather(const Scalar* from, DenseIndex /*stride*/)
{ return ploadu<Packet>(from); }
- template<typename Scalar, typename Packet> EIGEN_DEVICE_FUNC inline void pscatter(Scalar* to, const Packet& from, int /*stride*/)
+ template<typename Scalar, typename Packet> EIGEN_DEVICE_FUNC inline void pscatter(Scalar* to, const Packet& from, DenseIndex /*stride*/)
{ pstore(to, from); }
/** \internal tries to do cache prefetching of \a addr */
@@ -319,6 +319,10 @@ Packet pasin(const Packet& a) { using std::asin; return asin(a); }
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet pacos(const Packet& a) { using std::acos; return acos(a); }
+/** \internal \returns the atan of \a a (coeff-wise) */
+template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
+Packet patan(const Packet& a) { using std::atan; return atan(a); }
+
/** \internal \returns the exp of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet pexp(const Packet& a) { using std::exp; return exp(a); }
diff --git a/Eigen/src/Core/GlobalFunctions.h b/Eigen/src/Core/GlobalFunctions.h
index 2acf97723..2067a2a6e 100644
--- a/Eigen/src/Core/GlobalFunctions.h
+++ b/Eigen/src/Core/GlobalFunctions.h
@@ -45,6 +45,7 @@ namespace Eigen
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(asin,scalar_asin_op)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(acos,scalar_acos_op)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(tan,scalar_tan_op)
+ EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(atan,scalar_atan_op)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(exp,scalar_exp_op)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(log,scalar_log_op)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(abs,scalar_abs_op)
diff --git a/Eigen/src/Core/Map.h b/Eigen/src/Core/Map.h
index c75a5e95f..ced1b76ba 100644
--- a/Eigen/src/Core/Map.h
+++ b/Eigen/src/Core/Map.h
@@ -110,14 +110,9 @@ template<typename PlainObjectType, int MapOptions, typename StrideType> class Ma
EIGEN_DENSE_PUBLIC_INTERFACE(Map)
typedef typename Base::PointerType PointerType;
-#if EIGEN2_SUPPORT_STAGE <= STAGE30_FULL_EIGEN3_API
- typedef const Scalar* PointerArgType;
- inline PointerType cast_to_pointer_type(PointerArgType ptr) { return const_cast<PointerType>(ptr); }
-#else
typedef PointerType PointerArgType;
EIGEN_DEVICE_FUNC
inline PointerType cast_to_pointer_type(PointerArgType ptr) { return ptr; }
-#endif
EIGEN_DEVICE_FUNC
inline Index innerStride() const
@@ -179,19 +174,6 @@ template<typename PlainObjectType, int MapOptions, typename StrideType> class Ma
StrideType m_stride;
};
-template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
-inline Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>
- ::Array(const Scalar *data)
-{
- this->_set_noalias(Eigen::Map<const Array>(data));
-}
-
-template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
-inline Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>
- ::Matrix(const Scalar *data)
-{
- this->_set_noalias(Eigen::Map<const Matrix>(data));
-}
} // end namespace Eigen
diff --git a/Eigen/src/Core/Matrix.h b/Eigen/src/Core/Matrix.h
index c2cedbf6a..8c95ee3ca 100644
--- a/Eigen/src/Core/Matrix.h
+++ b/Eigen/src/Core/Matrix.h
@@ -232,24 +232,17 @@ class Matrix
}
#endif
- /** \brief Constructs a vector or row-vector with given dimension. \only_for_vectors
- *
- * Note that this is only useful for dynamic-size vectors. For fixed-size vectors,
- * it is redundant to pass the dimension here, so it makes more sense to use the default
- * constructor Matrix() instead.
- */
+ #ifndef EIGEN_PARSED_BY_DOXYGEN
+
+ // This constructor is for both 1x1 matrices and dynamic vectors
+ template<typename T>
EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE explicit Matrix(Index dim)
- : Base(dim, RowsAtCompileTime == 1 ? 1 : dim, ColsAtCompileTime == 1 ? 1 : dim)
+ EIGEN_STRONG_INLINE explicit Matrix(const T& x)
{
Base::_check_template_params();
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(Matrix)
- eigen_assert(dim >= 0);
- eigen_assert(SizeAtCompileTime == Dynamic || SizeAtCompileTime == dim);
- EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
+ Base::template _init1<T>(x);
}
- #ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename T0, typename T1>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Matrix(const T0& x, const T1& y)
@@ -258,13 +251,40 @@ class Matrix
Base::template _init2<T0,T1>(x, y);
}
#else
+ /** \brief Constructs a fixed-sized matrix initialized with coefficients starting at \a data */
+ EIGEN_DEVICE_FUNC
+ explicit Matrix(const Scalar *data);
+
+ /** \brief Constructs a vector or row-vector with given dimension. \only_for_vectors
+ *
+ * This is useful for dynamic-size vectors. For fixed-size vectors,
+ * it is redundant to pass these parameters, so one should use the default constructor
+ * Matrix() instead.
+ *
+ * \warning This constructor is disabled for fixed-size \c 1x1 matrices. For instance,
+ * calling Matrix<double,1,1>(1) will call the initialization constructor: Matrix(const Scalar&).
+ * For fixed-size \c 1x1 matrices it is thefore recommended to use the default
+ * constructor Matrix() instead, especilly when using one of the non standard
+ * \c EIGEN_INITIALIZE_MATRICES_BY_{ZERO,\c NAN} macros (see \ref TopicPreprocessorDirectives).
+ */
+ EIGEN_STRONG_INLINE explicit Matrix(Index dim);
+ /** \brief Constructs an initialized 1x1 matrix with the given coefficient */
+ Matrix(const Scalar& x);
/** \brief Constructs an uninitialized matrix with \a rows rows and \a cols columns.
*
* This is useful for dynamic-size matrices. For fixed-size matrices,
* it is redundant to pass these parameters, so one should use the default constructor
- * Matrix() instead. */
+ * Matrix() instead.
+ *
+ * \warning This constructor is disabled for fixed-size \c 1x2 and \c 2x1 vectors. For instance,
+ * calling Matrix2f(2,1) will call the initialization constructor: Matrix(const Scalar& x, const Scalar& y).
+ * For fixed-size \c 1x2 or \c 2x1 vectors it is thefore recommended to use the default
+ * constructor Matrix() instead, especilly when using one of the non standard
+ * \c EIGEN_INITIALIZE_MATRICES_BY_{ZERO,\c NAN} macros (see \ref TopicPreprocessorDirectives).
+ */
EIGEN_DEVICE_FUNC
Matrix(Index rows, Index cols);
+
/** \brief Constructs an initialized 2D vector with given coefficients */
Matrix(const Scalar& x, const Scalar& y);
#endif
@@ -291,8 +311,6 @@ class Matrix
m_storage.data()[3] = w;
}
- EIGEN_DEVICE_FUNC
- explicit Matrix(const Scalar *data);
/** \brief Constructor copying the value of the expression \a other */
template<typename OtherDerived>
@@ -362,13 +380,6 @@ class Matrix
EIGEN_DEVICE_FUNC
Matrix& operator=(const RotationBase<OtherDerived,ColsAtCompileTime>& r);
- #ifdef EIGEN2_SUPPORT
- template<typename OtherDerived>
- explicit Matrix(const eigen2_RotationBase<OtherDerived,ColsAtCompileTime>& r);
- template<typename OtherDerived>
- Matrix& operator=(const eigen2_RotationBase<OtherDerived,ColsAtCompileTime>& r);
- #endif
-
// allow to extend Matrix outside Eigen
#ifdef EIGEN_MATRIX_PLUGIN
#include EIGEN_MATRIX_PLUGIN
diff --git a/Eigen/src/Core/MatrixBase.h b/Eigen/src/Core/MatrixBase.h
index 172929562..f5987d194 100644
--- a/Eigen/src/Core/MatrixBase.h
+++ b/Eigen/src/Core/MatrixBase.h
@@ -221,11 +221,6 @@ template<typename Derived> class MatrixBase
typename internal::scalar_product_traits<typename internal::traits<Derived>::Scalar,typename internal::traits<OtherDerived>::Scalar>::ReturnType
dot(const MatrixBase<OtherDerived>& other) const;
- #ifdef EIGEN2_SUPPORT
- template<typename OtherDerived>
- Scalar eigen2_dot(const MatrixBase<OtherDerived>& other) const;
- #endif
-
EIGEN_DEVICE_FUNC RealScalar squaredNorm() const;
EIGEN_DEVICE_FUNC RealScalar norm() const;
RealScalar stableNorm() const;
@@ -269,17 +264,6 @@ template<typename Derived> class MatrixBase
typename ConstDiagonalIndexReturnType<DynamicIndex>::Type diagonal(Index index) const;
#endif
- #ifdef EIGEN2_SUPPORT
- template<unsigned int Mode> typename internal::eigen2_part_return_type<Derived, Mode>::type part();
- template<unsigned int Mode> const typename internal::eigen2_part_return_type<Derived, Mode>::type part() const;
-
- // huuuge hack. make Eigen2's matrix.part<Diagonal>() work in eigen3. Problem: Diagonal is now a class template instead
- // of an integer constant. Solution: overload the part() method template wrt template parameters list.
- template<template<typename T, int N> class U>
- const DiagonalWrapper<ConstDiagonalReturnType> part() const
- { return diagonal().asDiagonal(); }
- #endif // EIGEN2_SUPPORT
-
template<unsigned int Mode> struct TriangularViewReturnType { typedef TriangularView<Derived, Mode> Type; };
template<unsigned int Mode> struct ConstTriangularViewReturnType { typedef const TriangularView<const Derived, Mode> Type; };
@@ -373,24 +357,7 @@ template<typename Derived> class MatrixBase
EIGEN_DEVICE_FUNC const FullPivLU<PlainObject> fullPivLu() const;
EIGEN_DEVICE_FUNC const PartialPivLU<PlainObject> partialPivLu() const;
- #if EIGEN2_SUPPORT_STAGE < STAGE20_RESOLVE_API_CONFLICTS
- const LU<PlainObject> lu() const;
- #endif
-
- #ifdef EIGEN2_SUPPORT
- const LU<PlainObject> eigen2_lu() const;
- #endif
-
- #if EIGEN2_SUPPORT_STAGE > STAGE20_RESOLVE_API_CONFLICTS
const PartialPivLU<PlainObject> lu() const;
- #endif
-
- #ifdef EIGEN2_SUPPORT
- template<typename ResultType>
- void computeInverse(MatrixBase<ResultType> *result) const {
- *result = this->inverse();
- }
- #endif
EIGEN_DEVICE_FUNC
const internal::inverse_impl<Derived> inverse() const;
@@ -419,10 +386,6 @@ template<typename Derived> class MatrixBase
const HouseholderQR<PlainObject> householderQr() const;
const ColPivHouseholderQR<PlainObject> colPivHouseholderQr() const;
const FullPivHouseholderQR<PlainObject> fullPivHouseholderQr() const;
-
- #ifdef EIGEN2_SUPPORT
- const QR<PlainObject> qr() const;
- #endif
EigenvaluesReturnType eigenvalues() const;
RealScalar operatorNorm() const;
@@ -431,10 +394,6 @@ template<typename Derived> class MatrixBase
JacobiSVD<PlainObject> jacobiSvd(unsigned int computationOptions = 0) const;
- #ifdef EIGEN2_SUPPORT
- SVD<PlainObject> svd() const;
- #endif
-
/////////// Geometry module ///////////
#ifndef EIGEN_PARSED_BY_DOXYGEN
@@ -458,13 +417,11 @@ template<typename Derived> class MatrixBase
Matrix<Scalar,3,1> eulerAngles(Index a0, Index a1, Index a2) const;
- #if EIGEN2_SUPPORT_STAGE > STAGE20_RESOLVE_API_CONFLICTS
ScalarMultipleReturnType operator*(const UniformScaling<Scalar>& s) const;
// put this as separate enum value to work around possible GCC 4.3 bug (?)
enum { HomogeneousReturnTypeDirection = ColsAtCompileTime==1?Vertical:Horizontal };
typedef Homogeneous<Derived, HomogeneousReturnTypeDirection> HomogeneousReturnType;
HomogeneousReturnType homogeneous() const;
- #endif
enum {
SizeMinusOne = SizeAtCompileTime==Dynamic ? Dynamic : SizeAtCompileTime-1
@@ -513,41 +470,6 @@ template<typename Derived> class MatrixBase
const MatrixPowerReturnValue<Derived> pow(const RealScalar& p) const;
const MatrixComplexPowerReturnValue<Derived> pow(const std::complex<RealScalar>& p) const;
-#ifdef EIGEN2_SUPPORT
- template<typename ProductDerived, typename Lhs, typename Rhs>
- Derived& operator+=(const Flagged<ProductBase<ProductDerived, Lhs,Rhs>, 0,
- EvalBeforeAssigningBit>& other);
-
- template<typename ProductDerived, typename Lhs, typename Rhs>
- Derived& operator-=(const Flagged<ProductBase<ProductDerived, Lhs,Rhs>, 0,
- EvalBeforeAssigningBit>& other);
-
- /** \deprecated because .lazy() is deprecated
- * Overloaded for cache friendly product evaluation */
- template<typename OtherDerived>
- Derived& lazyAssign(const Flagged<OtherDerived, 0, EvalBeforeAssigningBit>& other)
- { return lazyAssign(other._expression()); }
-
- template<unsigned int Added>
- const Flagged<Derived, Added, 0> marked() const;
- const Flagged<Derived, 0, EvalBeforeAssigningBit> lazy() const;
-
- inline const Cwise<Derived> cwise() const;
- inline Cwise<Derived> cwise();
-
- VectorBlock<Derived> start(Index size);
- const VectorBlock<const Derived> start(Index size) const;
- VectorBlock<Derived> end(Index size);
- const VectorBlock<const Derived> end(Index size) const;
- template<int Size> VectorBlock<Derived,Size> start();
- template<int Size> const VectorBlock<const Derived,Size> start() const;
- template<int Size> VectorBlock<Derived,Size> end();
- template<int Size> const VectorBlock<const Derived,Size> end() const;
-
- Minor<Derived> minor(Index row, Index col);
- const Minor<Derived> minor(Index row, Index col) const;
-#endif
-
protected:
EIGEN_DEVICE_FUNC MatrixBase() : Base() {}
diff --git a/Eigen/src/Core/NumTraits.h b/Eigen/src/Core/NumTraits.h
index 2b6633c9c..a04227f57 100644
--- a/Eigen/src/Core/NumTraits.h
+++ b/Eigen/src/Core/NumTraits.h
@@ -85,13 +85,6 @@ template<typename T> struct GenericNumTraits
}
static inline T highest() { return (std::numeric_limits<T>::max)(); }
static inline T lowest() { return IsInteger ? (std::numeric_limits<T>::min)() : (-(std::numeric_limits<T>::max)()); }
-
-#ifdef EIGEN2_SUPPORT
- enum {
- HasFloatingPoint = !IsInteger
- };
- typedef NonInteger FloatingPoint;
-#endif
};
template<typename T> struct NumTraits : GenericNumTraits<T>
diff --git a/Eigen/src/Core/PermutationMatrix.h b/Eigen/src/Core/PermutationMatrix.h
index 1297b8413..8aa4c8bc5 100644
--- a/Eigen/src/Core/PermutationMatrix.h
+++ b/Eigen/src/Core/PermutationMatrix.h
@@ -66,11 +66,11 @@ class PermutationBase : public EigenBase<Derived>
MaxRowsAtCompileTime = Traits::MaxRowsAtCompileTime,
MaxColsAtCompileTime = Traits::MaxColsAtCompileTime
};
- typedef typename Traits::Scalar Scalar;
+ typedef typename Traits::StorageIndexType StorageIndexType;
typedef typename Traits::Index Index;
- typedef Matrix<Scalar,RowsAtCompileTime,ColsAtCompileTime,0,MaxRowsAtCompileTime,MaxColsAtCompileTime>
+ typedef Matrix<StorageIndexType,RowsAtCompileTime,ColsAtCompileTime,0,MaxRowsAtCompileTime,MaxColsAtCompileTime>
DenseMatrixType;
- typedef PermutationMatrix<IndicesType::SizeAtCompileTime,IndicesType::MaxSizeAtCompileTime,Index>
+ typedef PermutationMatrix<IndicesType::SizeAtCompileTime,IndicesType::MaxSizeAtCompileTime,StorageIndexType>
PlainPermutationType;
using Base::derived;
#endif
@@ -147,7 +147,7 @@ class PermutationBase : public EigenBase<Derived>
/** Sets *this to be the identity permutation matrix */
void setIdentity()
{
- for(Index i = 0; i < size(); ++i)
+ for(StorageIndexType i = 0; i < size(); ++i)
indices().coeffRef(i) = i;
}
@@ -173,8 +173,8 @@ class PermutationBase : public EigenBase<Derived>
eigen_assert(i>=0 && j>=0 && i<size() && j<size());
for(Index k = 0; k < size(); ++k)
{
- if(indices().coeff(k) == i) indices().coeffRef(k) = j;
- else if(indices().coeff(k) == j) indices().coeffRef(k) = i;
+ if(indices().coeff(k) == i) indices().coeffRef(k) = StorageIndexType(j);
+ else if(indices().coeff(k) == j) indices().coeffRef(k) = StorageIndexType(i);
}
return derived();
}
@@ -262,7 +262,7 @@ class PermutationBase : public EigenBase<Derived>
*
* \param SizeAtCompileTime the number of rows/cols, or Dynamic
* \param MaxSizeAtCompileTime the maximum number of rows/cols, or Dynamic. This optional parameter defaults to SizeAtCompileTime. Most of the time, you should not have to specify it.
- * \param IndexType the interger type of the indices
+ * \param StorageIndexType the integer type of the indices
*
* This class represents a permutation matrix, internally stored as a vector of integers.
*
@@ -270,17 +270,18 @@ class PermutationBase : public EigenBase<Derived>
*/
namespace internal {
-template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType>
-struct traits<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, IndexType> >
- : traits<Matrix<IndexType,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> >
+template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndexType>
+struct traits<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, _StorageIndexType> >
+ : traits<Matrix<_StorageIndexType,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> >
{
- typedef IndexType Index;
- typedef Matrix<IndexType, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1> IndicesType;
+ typedef Matrix<_StorageIndexType, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1> IndicesType;
+ typedef typename IndicesType::Index Index;
+ typedef _StorageIndexType StorageIndexType;
};
}
-template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType>
-class PermutationMatrix : public PermutationBase<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, IndexType> >
+template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndexType>
+class PermutationMatrix : public PermutationBase<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, _StorageIndexType> >
{
typedef PermutationBase<PermutationMatrix> Base;
typedef internal::traits<PermutationMatrix> Traits;
@@ -288,6 +289,8 @@ class PermutationMatrix : public PermutationBase<PermutationMatrix<SizeAtCompile
#ifndef EIGEN_PARSED_BY_DOXYGEN
typedef typename Traits::IndicesType IndicesType;
+ typedef typename Traits::StorageIndexType StorageIndexType;
+ typedef typename Traits::Index Index;
#endif
inline PermutationMatrix()
@@ -295,7 +298,7 @@ class PermutationMatrix : public PermutationBase<PermutationMatrix<SizeAtCompile
/** Constructs an uninitialized permutation matrix of given size.
*/
- inline PermutationMatrix(int size) : m_indices(size)
+ inline PermutationMatrix(Index size) : m_indices(size)
{}
/** Copy constructor. */
@@ -384,18 +387,19 @@ class PermutationMatrix : public PermutationBase<PermutationMatrix<SizeAtCompile
namespace internal {
-template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType, int _PacketAccess>
-struct traits<Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, IndexType>,_PacketAccess> >
- : traits<Matrix<IndexType,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> >
+template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndexType, int _PacketAccess>
+struct traits<Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, _StorageIndexType>,_PacketAccess> >
+ : traits<Matrix<_StorageIndexType,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> >
{
- typedef IndexType Index;
- typedef Map<const Matrix<IndexType, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1>, _PacketAccess> IndicesType;
+ typedef Map<const Matrix<_StorageIndexType, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1>, _PacketAccess> IndicesType;
+ typedef typename IndicesType::Index Index;
+ typedef _StorageIndexType StorageIndexType;
};
}
-template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType, int _PacketAccess>
-class Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, IndexType>,_PacketAccess>
- : public PermutationBase<Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, IndexType>,_PacketAccess> >
+template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndexType, int _PacketAccess>
+class Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, _StorageIndexType>,_PacketAccess>
+ : public PermutationBase<Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, _StorageIndexType>,_PacketAccess> >
{
typedef PermutationBase<Map> Base;
typedef internal::traits<Map> Traits;
@@ -403,14 +407,15 @@ class Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, IndexType>,
#ifndef EIGEN_PARSED_BY_DOXYGEN
typedef typename Traits::IndicesType IndicesType;
- typedef typename IndicesType::Scalar Index;
+ typedef typename IndicesType::Scalar StorageIndexType;
+ typedef typename IndicesType::Index Index;
#endif
- inline Map(const Index* indicesPtr)
+ inline Map(const StorageIndexType* indicesPtr)
: m_indices(indicesPtr)
{}
- inline Map(const Index* indicesPtr, Index size)
+ inline Map(const StorageIndexType* indicesPtr, Index size)
: m_indices(indicesPtr,size)
{}
@@ -466,7 +471,8 @@ struct traits<PermutationWrapper<_IndicesType> >
{
typedef PermutationStorage StorageKind;
typedef typename _IndicesType::Scalar Scalar;
- typedef typename _IndicesType::Scalar Index;
+ typedef typename _IndicesType::Scalar StorageIndexType;
+ typedef typename _IndicesType::Index Index;
typedef _IndicesType IndicesType;
enum {
RowsAtCompileTime = _IndicesType::SizeAtCompileTime,
diff --git a/Eigen/src/Core/PlainObjectBase.h b/Eigen/src/Core/PlainObjectBase.h
index 0305066ba..69f34bd3e 100644
--- a/Eigen/src/Core/PlainObjectBase.h
+++ b/Eigen/src/Core/PlainObjectBase.h
@@ -681,6 +681,7 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
FLOATING_POINT_ARGUMENT_PASSED__INTEGER_WAS_EXPECTED)
resize(nbRows,nbCols);
}
+
template<typename T0, typename T1>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE void _init2(const Scalar& val0, const Scalar& val1, typename internal::enable_if<Base::SizeAtCompileTime==2,T0>::type* = 0)
@@ -689,6 +690,82 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
m_storage.data()[0] = val0;
m_storage.data()[1] = val1;
}
+
+ template<typename T0, typename T1>
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE void _init2(const Index& val0, const Index& val1,
+ typename internal::enable_if< (!internal::is_same<Index,Scalar>::value)
+ && (internal::is_same<T0,Index>::value)
+ && (internal::is_same<T1,Index>::value)
+ && Base::SizeAtCompileTime==2,T1>::type* = 0)
+ {
+ EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(PlainObjectBase, 2)
+ m_storage.data()[0] = Scalar(val0);
+ m_storage.data()[1] = Scalar(val1);
+ }
+
+ template<typename T>
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE void _init1(Index size, typename internal::enable_if<Base::SizeAtCompileTime!=1 || !internal::is_convertible<T, Scalar>::value,T>::type* = 0)
+ {
+ // NOTE MSVC 2008 complains if we directly put bool(NumTraits<T>::IsInteger) as the EIGEN_STATIC_ASSERT argument.
+ const bool is_integer = NumTraits<T>::IsInteger;
+ EIGEN_STATIC_ASSERT(is_integer,
+ FLOATING_POINT_ARGUMENT_PASSED__INTEGER_WAS_EXPECTED)
+ resize(size);
+ }
+ template<typename T>
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE void _init1(const Scalar& val0, typename internal::enable_if<Base::SizeAtCompileTime==1 && internal::is_convertible<T, Scalar>::value,T>::type* = 0)
+ {
+ EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(PlainObjectBase, 1)
+ m_storage.data()[0] = val0;
+ }
+
+ template<typename T>
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE void _init1(const Index& val0,
+ typename internal::enable_if< (!internal::is_same<Index,Scalar>::value)
+ && (internal::is_same<Index,T>::value)
+ && Base::SizeAtCompileTime==1
+ && internal::is_convertible<T, Scalar>::value,T*>::type* = 0)
+ {
+ EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(PlainObjectBase, 1)
+ m_storage.data()[0] = Scalar(val0);
+ }
+
+ template<typename T>
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE void _init1(const Scalar* data){
+ this->_set_noalias(ConstMapType(data));
+ }
+
+ template<typename T, typename OtherDerived>
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE void _init1(const DenseBase<OtherDerived>& other){
+ this->_set_noalias(other);
+ }
+
+ template<typename T, typename OtherDerived>
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE void _init1(const EigenBase<OtherDerived>& other){
+ this->derived() = other;
+ }
+
+ template<typename T, typename OtherDerived>
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE void _init1(const ReturnByValue<OtherDerived>& other)
+ {
+ resize(other.rows(), other.cols());
+ other.evalTo(this->derived());
+ }
+
+ template<typename T, typename OtherDerived, int ColsAtCompileTime>
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE void _init1(const RotationBase<OtherDerived,ColsAtCompileTime>& r)
+ {
+ this->derived() = r;
+ }
template<typename MatrixTypeA, typename MatrixTypeB, bool SwapPointers>
friend struct internal::matrix_swap_impl;
diff --git a/Eigen/src/Core/ProductBase.h b/Eigen/src/Core/ProductBase.h
index a494b5f87..483914a9b 100644
--- a/Eigen/src/Core/ProductBase.h
+++ b/Eigen/src/Core/ProductBase.h
@@ -131,17 +131,13 @@ class ProductBase : public MatrixBase<Derived>
const Diagonal<FullyLazyCoeffBaseProductType,Dynamic> diagonal(Index index) const
{ return FullyLazyCoeffBaseProductType(m_lhs, m_rhs).diagonal(index); }
- // restrict coeff accessors to 1x1 expressions. No need to care about mutators here since this isnt a Lvalue expression
+ // restrict coeff accessors to 1x1 expressions. No need to care about mutators here since this isn't an Lvalue expression
typename Base::CoeffReturnType coeff(Index row, Index col) const
{
-#ifdef EIGEN2_SUPPORT
- return lhs().row(row).cwiseProduct(rhs().col(col).transpose()).sum();
-#else
EIGEN_STATIC_ASSERT_SIZE_1x1(Derived)
eigen_assert(this->rows() == 1 && this->cols() == 1);
Matrix<Scalar,1,1> result = *this;
return result.coeff(row,col);
-#endif
}
typename Base::CoeffReturnType coeff(Index i) const
diff --git a/Eigen/src/Core/Ref.h b/Eigen/src/Core/Ref.h
index cd6d949c4..92614c6e2 100644
--- a/Eigen/src/Core/Ref.h
+++ b/Eigen/src/Core/Ref.h
@@ -19,17 +19,17 @@ template<typename PlainObjectType, int Options = 0,
/** \class Ref
* \ingroup Core_Module
*
- * \brief A matrix or vector expression mapping an existing expressions
+ * \brief A matrix or vector expression mapping an existing expression
*
* \tparam PlainObjectType the equivalent matrix type of the mapped data
* \tparam Options specifies whether the pointer is \c #Aligned, or \c #Unaligned.
* The default is \c #Unaligned.
* \tparam StrideType optionally specifies strides. By default, Ref implies a contiguous storage along the inner dimension (inner stride==1),
- * but accept a variable outer stride (leading dimension).
+ * but accepts a variable outer stride (leading dimension).
* This can be overridden by specifying strides.
* The type passed here must be a specialization of the Stride template, see examples below.
*
- * This class permits to write non template functions taking Eigen's object as parameters while limiting the number of copies.
+ * This class provides a way to write non-template functions taking Eigen objects as parameters while limiting the number of copies.
* A Ref<> object can represent either a const expression or a l-value:
* \code
* // in-out argument:
@@ -39,10 +39,10 @@ template<typename PlainObjectType, int Options = 0,
* void foo2(const Ref<const VectorXf>& x);
* \endcode
*
- * In the in-out case, the input argument must satisfies the constraints of the actual Ref<> type, otherwise a compilation issue will be triggered.
+ * In the in-out case, the input argument must satisfy the constraints of the actual Ref<> type, otherwise a compilation issue will be triggered.
* By default, a Ref<VectorXf> can reference any dense vector expression of float having a contiguous memory layout.
- * Likewise, a Ref<MatrixXf> can reference any column major dense matrix expression of float whose column's elements are contiguously stored with
- * the possibility to have a constant space inbetween each column, i.e.: the inner stride mmust be equal to 1, but the outer-stride (or leading dimension),
+ * Likewise, a Ref<MatrixXf> can reference any column-major dense matrix expression of float whose column's elements are contiguously stored with
+ * the possibility to have a constant space in-between each column, i.e. the inner stride must be equal to 1, but the outer stride (or leading dimension)
* can be greater than the number of rows.
*
* In the const case, if the input expression does not match the above requirement, then it is evaluated into a temporary before being passed to the function.
@@ -58,15 +58,15 @@ template<typename PlainObjectType, int Options = 0,
* foo2(A.col().segment(2,4)); // No temporary
* \endcode
*
- * The range of inputs that can be referenced without temporary can be enlarged using the last two template parameter.
+ * The range of inputs that can be referenced without temporary can be enlarged using the last two template parameters.
* Here is an example accepting an innerstride!=1:
* \code
* // in-out argument:
* void foo3(Ref<VectorXf,0,InnerStride<> > x);
* foo3(A.row()); // OK
* \endcode
- * The downside here is that the function foo3 might be significantly slower than foo1 because it won't be able to exploit vectorization, and will involved more
- * expensive address computations even if the input is contiguously stored in memory. To overcome this issue, one might propose to overloads internally calling a
+ * The downside here is that the function foo3 might be significantly slower than foo1 because it won't be able to exploit vectorization, and will involve more
+ * expensive address computations even if the input is contiguously stored in memory. To overcome this issue, one might propose to overload internally calling a
* template function, e.g.:
* \code
* // in the .h:
diff --git a/Eigen/src/Core/SelfAdjointView.h b/Eigen/src/Core/SelfAdjointView.h
index 8231e3f5c..6c2733650 100644
--- a/Eigen/src/Core/SelfAdjointView.h
+++ b/Eigen/src/Core/SelfAdjointView.h
@@ -177,31 +177,6 @@ template<typename MatrixType, unsigned int UpLo> class SelfAdjointView
EigenvaluesReturnType eigenvalues() const;
EIGEN_DEVICE_FUNC
RealScalar operatorNorm() const;
-
- #ifdef EIGEN2_SUPPORT
- template<typename OtherDerived>
- EIGEN_DEVICE_FUNC
- SelfAdjointView& operator=(const MatrixBase<OtherDerived>& other)
- {
- enum {
- OtherPart = UpLo == Upper ? StrictlyLower : StrictlyUpper
- };
- m_matrix.const_cast_derived().template triangularView<UpLo>() = other;
- m_matrix.const_cast_derived().template triangularView<OtherPart>() = other.adjoint();
- return *this;
- }
- template<typename OtherMatrixType, unsigned int OtherMode>
- EIGEN_DEVICE_FUNC
- SelfAdjointView& operator=(const TriangularView<OtherMatrixType, OtherMode>& other)
- {
- enum {
- OtherPart = UpLo == Upper ? StrictlyLower : StrictlyUpper
- };
- m_matrix.const_cast_derived().template triangularView<UpLo>() = other.toDenseMatrix();
- m_matrix.const_cast_derived().template triangularView<OtherPart>() = other.toDenseMatrix().adjoint();
- return *this;
- }
- #endif
protected:
MatrixTypeNested m_matrix;
diff --git a/Eigen/src/Core/Transpositions.h b/Eigen/src/Core/Transpositions.h
index e4ba0756f..92261118f 100644
--- a/Eigen/src/Core/Transpositions.h
+++ b/Eigen/src/Core/Transpositions.h
@@ -53,7 +53,8 @@ class TranspositionsBase
public:
typedef typename Traits::IndicesType IndicesType;
- typedef typename IndicesType::Scalar Index;
+ typedef typename IndicesType::Scalar StorageIndexType;
+ typedef typename IndicesType::Index Index;
Derived& derived() { return *static_cast<Derived*>(this); }
const Derived& derived() const { return *static_cast<const Derived*>(this); }
@@ -81,17 +82,17 @@ class TranspositionsBase
inline Index size() const { return indices().size(); }
/** Direct access to the underlying index vector */
- inline const Index& coeff(Index i) const { return indices().coeff(i); }
+ inline const StorageIndexType& coeff(Index i) const { return indices().coeff(i); }
/** Direct access to the underlying index vector */
- inline Index& coeffRef(Index i) { return indices().coeffRef(i); }
+ inline StorageIndexType& coeffRef(Index i) { return indices().coeffRef(i); }
/** Direct access to the underlying index vector */
- inline const Index& operator()(Index i) const { return indices()(i); }
+ inline const StorageIndexType& operator()(Index i) const { return indices()(i); }
/** Direct access to the underlying index vector */
- inline Index& operator()(Index i) { return indices()(i); }
+ inline StorageIndexType& operator()(Index i) { return indices()(i); }
/** Direct access to the underlying index vector */
- inline const Index& operator[](Index i) const { return indices()(i); }
+ inline const StorageIndexType& operator[](Index i) const { return indices()(i); }
/** Direct access to the underlying index vector */
- inline Index& operator[](Index i) { return indices()(i); }
+ inline StorageIndexType& operator[](Index i) { return indices()(i); }
/** const version of indices(). */
const IndicesType& indices() const { return derived().indices(); }
@@ -99,7 +100,7 @@ class TranspositionsBase
IndicesType& indices() { return derived().indices(); }
/** Resizes to given size. */
- inline void resize(int newSize)
+ inline void resize(Index newSize)
{
indices().resize(newSize);
}
@@ -107,7 +108,7 @@ class TranspositionsBase
/** Sets \c *this to represents an identity transformation */
void setIdentity()
{
- for(int i = 0; i < indices().size(); ++i)
+ for(StorageIndexType i = 0; i < indices().size(); ++i)
coeffRef(i) = i;
}
@@ -144,23 +145,26 @@ class TranspositionsBase
};
namespace internal {
-template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType>
-struct traits<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,IndexType> >
+template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndexType>
+struct traits<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,_StorageIndexType> >
{
- typedef IndexType Index;
- typedef Matrix<Index, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1> IndicesType;
+ typedef Matrix<_StorageIndexType, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1> IndicesType;
+ typedef typename IndicesType::Index Index;
+ typedef _StorageIndexType StorageIndexType;
};
}
-template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType>
-class Transpositions : public TranspositionsBase<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,IndexType> >
+template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndexType>
+class Transpositions : public TranspositionsBase<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,_StorageIndexType> >
{
typedef internal::traits<Transpositions> Traits;
public:
typedef TranspositionsBase<Transpositions> Base;
typedef typename Traits::IndicesType IndicesType;
- typedef typename IndicesType::Scalar Index;
+ typedef typename IndicesType::Scalar StorageIndexType;
+ typedef typename IndicesType::Index Index;
+
inline Transpositions() {}
@@ -215,30 +219,32 @@ class Transpositions : public TranspositionsBase<Transpositions<SizeAtCompileTim
namespace internal {
-template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType, int _PacketAccess>
-struct traits<Map<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,IndexType>,_PacketAccess> >
+template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndexType, int _PacketAccess>
+struct traits<Map<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,_StorageIndexType>,_PacketAccess> >
{
- typedef IndexType Index;
- typedef Map<const Matrix<Index,SizeAtCompileTime,1,0,MaxSizeAtCompileTime,1>, _PacketAccess> IndicesType;
+ typedef Map<const Matrix<_StorageIndexType,SizeAtCompileTime,1,0,MaxSizeAtCompileTime,1>, _PacketAccess> IndicesType;
+ typedef typename IndicesType::Index Index;
+ typedef _StorageIndexType StorageIndexType;
};
}
-template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType, int PacketAccess>
-class Map<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,IndexType>,PacketAccess>
- : public TranspositionsBase<Map<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,IndexType>,PacketAccess> >
+template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndexType, int PacketAccess>
+class Map<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,_StorageIndexType>,PacketAccess>
+ : public TranspositionsBase<Map<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,_StorageIndexType>,PacketAccess> >
{
typedef internal::traits<Map> Traits;
public:
typedef TranspositionsBase<Map> Base;
typedef typename Traits::IndicesType IndicesType;
- typedef typename IndicesType::Scalar Index;
+ typedef typename IndicesType::Scalar StorageIndexType;
+ typedef typename IndicesType::Index Index;
- inline Map(const Index* indicesPtr)
+ inline Map(const StorageIndexType* indicesPtr)
: m_indices(indicesPtr)
{}
- inline Map(const Index* indicesPtr, Index size)
+ inline Map(const StorageIndexType* indicesPtr, Index size)
: m_indices(indicesPtr,size)
{}
@@ -275,7 +281,8 @@ namespace internal {
template<typename _IndicesType>
struct traits<TranspositionsWrapper<_IndicesType> >
{
- typedef typename _IndicesType::Scalar Index;
+ typedef typename _IndicesType::Scalar StorageIndexType;
+ typedef typename _IndicesType::Index Index;
typedef _IndicesType IndicesType;
};
}
@@ -289,7 +296,8 @@ class TranspositionsWrapper
typedef TranspositionsBase<TranspositionsWrapper> Base;
typedef typename Traits::IndicesType IndicesType;
- typedef typename IndicesType::Scalar Index;
+ typedef typename IndicesType::Scalar StorageIndexType;
+ typedef typename IndicesType::Index Index;
inline TranspositionsWrapper(IndicesType& a_indices)
: m_indices(a_indices)
@@ -363,24 +371,25 @@ struct transposition_matrix_product_retval
{
typedef typename remove_all<typename MatrixType::Nested>::type MatrixTypeNestedCleaned;
typedef typename TranspositionType::Index Index;
+ typedef typename TranspositionType::StorageIndexType StorageIndexType;
transposition_matrix_product_retval(const TranspositionType& tr, const MatrixType& matrix)
: m_transpositions(tr), m_matrix(matrix)
{}
- inline int rows() const { return m_matrix.rows(); }
- inline int cols() const { return m_matrix.cols(); }
+ inline Index rows() const { return m_matrix.rows(); }
+ inline Index cols() const { return m_matrix.cols(); }
template<typename Dest> inline void evalTo(Dest& dst) const
{
- const int size = m_transpositions.size();
- Index j = 0;
+ const Index size = m_transpositions.size();
+ StorageIndexType j = 0;
if(!(is_same<MatrixTypeNestedCleaned,Dest>::value && extract_data(dst) == extract_data(m_matrix)))
dst = m_matrix;
- for(int k=(Transposed?size-1:0) ; Transposed?k>=0:k<size ; Transposed?--k:++k)
- if((j=m_transpositions.coeff(k))!=k)
+ for(Index k=(Transposed?size-1:0) ; Transposed?k>=0:k<size ; Transposed?--k:++k)
+ if(Index(j=m_transpositions.coeff(k))!=k)
{
if(Side==OnTheLeft)
dst.row(k).swap(dst.row(j));
diff --git a/Eigen/src/Core/TriangularMatrix.h b/Eigen/src/Core/TriangularMatrix.h
index 1d6e34650..72792d21b 100644
--- a/Eigen/src/Core/TriangularMatrix.h
+++ b/Eigen/src/Core/TriangularMatrix.h
@@ -323,54 +323,25 @@ template<typename _MatrixType, unsigned int _Mode> class TriangularView
/** Efficient triangular matrix times vector/matrix product */
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
- TriangularProduct<Mode,true,MatrixType,false,OtherDerived, OtherDerived::IsVectorAtCompileTime>
+ TriangularProduct<Mode, true, MatrixType, false, OtherDerived, OtherDerived::ColsAtCompileTime==1>
operator*(const MatrixBase<OtherDerived>& rhs) const
{
return TriangularProduct
- <Mode,true,MatrixType,false,OtherDerived,OtherDerived::IsVectorAtCompileTime>
+ <Mode, true, MatrixType, false, OtherDerived, OtherDerived::ColsAtCompileTime==1>
(m_matrix, rhs.derived());
}
/** Efficient vector/matrix times triangular matrix product */
template<typename OtherDerived> friend
EIGEN_DEVICE_FUNC
- TriangularProduct<Mode,false,OtherDerived,OtherDerived::IsVectorAtCompileTime,MatrixType,false>
+ TriangularProduct<Mode, false, OtherDerived, OtherDerived::RowsAtCompileTime==1, MatrixType, false>
operator*(const MatrixBase<OtherDerived>& lhs, const TriangularView& rhs)
{
return TriangularProduct
- <Mode,false,OtherDerived,OtherDerived::IsVectorAtCompileTime,MatrixType,false>
+ <Mode, false, OtherDerived, OtherDerived::RowsAtCompileTime==1, MatrixType, false>
(lhs.derived(),rhs.m_matrix);
}
- #ifdef EIGEN2_SUPPORT
- template<typename OtherDerived>
- struct eigen2_product_return_type
- {
- typedef typename TriangularView<MatrixType,Mode>::DenseMatrixType DenseMatrixType;
- typedef typename OtherDerived::PlainObject::DenseType OtherPlainObject;
- typedef typename ProductReturnType<DenseMatrixType, OtherPlainObject>::Type ProdRetType;
- typedef typename ProdRetType::PlainObject type;
- };
- template<typename OtherDerived>
- const typename eigen2_product_return_type<OtherDerived>::type
- operator*(const EigenBase<OtherDerived>& rhs) const
- {
- typename OtherDerived::PlainObject::DenseType rhsPlainObject;
- rhs.evalTo(rhsPlainObject);
- return this->toDenseMatrix() * rhsPlainObject;
- }
- template<typename OtherMatrixType>
- bool isApprox(const TriangularView<OtherMatrixType, Mode>& other, typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision()) const
- {
- return this->toDenseMatrix().isApprox(other.toDenseMatrix(), precision);
- }
- template<typename OtherDerived>
- bool isApprox(const MatrixBase<OtherDerived>& other, typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision()) const
- {
- return this->toDenseMatrix().isApprox(other, precision);
- }
- #endif // EIGEN2_SUPPORT
-
template<int Side, typename Other>
EIGEN_DEVICE_FUNC
inline const internal::triangular_solve_retval<Side,TriangularView, Other>
@@ -780,41 +751,6 @@ void TriangularBase<Derived>::evalToLazy(MatrixBase<DenseDerived> &other) const
* Implementation of MatrixBase methods
***************************************************************************/
-#ifdef EIGEN2_SUPPORT
-
-// implementation of part<>(), including the SelfAdjoint case.
-
-namespace internal {
-template<typename MatrixType, unsigned int Mode>
-struct eigen2_part_return_type
-{
- typedef TriangularView<MatrixType, Mode> type;
-};
-
-template<typename MatrixType>
-struct eigen2_part_return_type<MatrixType, SelfAdjoint>
-{
- typedef SelfAdjointView<MatrixType, Upper> type;
-};
-}
-
-/** \deprecated use MatrixBase::triangularView() */
-template<typename Derived>
-template<unsigned int Mode>
-const typename internal::eigen2_part_return_type<Derived, Mode>::type MatrixBase<Derived>::part() const
-{
- return derived();
-}
-
-/** \deprecated use MatrixBase::triangularView() */
-template<typename Derived>
-template<unsigned int Mode>
-typename internal::eigen2_part_return_type<Derived, Mode>::type MatrixBase<Derived>::part()
-{
- return derived();
-}
-#endif
-
/**
* \returns an expression of a triangular view extracted from the current matrix
*
diff --git a/Eigen/src/Core/VectorwiseOp.h b/Eigen/src/Core/VectorwiseOp.h
index f25ddca17..52eb4f604 100644
--- a/Eigen/src/Core/VectorwiseOp.h
+++ b/Eigen/src/Core/VectorwiseOp.h
@@ -560,9 +560,7 @@ template<typename ExpressionType, int Direction> class VectorwiseOp
/////////// Geometry module ///////////
- #if EIGEN2_SUPPORT_STAGE > STAGE20_RESOLVE_API_CONFLICTS
Homogeneous<ExpressionType,Direction> homogeneous() const;
- #endif
typedef typename ExpressionType::PlainObject CrossReturnType;
template<typename OtherDerived>
diff --git a/Eigen/src/Core/Visitor.h b/Eigen/src/Core/Visitor.h
index 64867b7a2..6f4b9ec35 100644
--- a/Eigen/src/Core/Visitor.h
+++ b/Eigen/src/Core/Visitor.h
@@ -194,7 +194,7 @@ DenseBase<Derived>::minCoeff(IndexType* index) const
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
internal::min_coeff_visitor<Derived> minVisitor;
this->visit(minVisitor);
- *index = (RowsAtCompileTime==1) ? minVisitor.col : minVisitor.row;
+ *index = IndexType((RowsAtCompileTime==1) ? minVisitor.col : minVisitor.row);
return minVisitor.res;
}
diff --git a/Eigen/src/Core/arch/AVX/Complex.h b/Eigen/src/Core/arch/AVX/Complex.h
index 9ced85132..aa5aa1e34 100644
--- a/Eigen/src/Core/arch/AVX/Complex.h
+++ b/Eigen/src/Core/arch/AVX/Complex.h
@@ -92,7 +92,7 @@ template<> EIGEN_STRONG_INLINE Packet4cf ploaddup<Packet4cf>(const std::complex<
template<> EIGEN_STRONG_INLINE void pstore <std::complex<float> >(std::complex<float>* to, const Packet4cf& from) { EIGEN_DEBUG_ALIGNED_STORE pstore(&numext::real_ref(*to), from.v); }
template<> EIGEN_STRONG_INLINE void pstoreu<std::complex<float> >(std::complex<float>* to, const Packet4cf& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu(&numext::real_ref(*to), from.v); }
-template<> EIGEN_DEVICE_FUNC inline Packet4cf pgather<std::complex<float>, Packet4cf>(const std::complex<float>* from, int stride)
+template<> EIGEN_DEVICE_FUNC inline Packet4cf pgather<std::complex<float>, Packet4cf>(const std::complex<float>* from, DenseIndex stride)
{
return Packet4cf(_mm256_set_ps(std::imag(from[3*stride]), std::real(from[3*stride]),
std::imag(from[2*stride]), std::real(from[2*stride]),
@@ -100,7 +100,7 @@ template<> EIGEN_DEVICE_FUNC inline Packet4cf pgather<std::complex<float>, Packe
std::imag(from[0*stride]), std::real(from[0*stride])));
}
-template<> EIGEN_DEVICE_FUNC inline void pscatter<std::complex<float>, Packet4cf>(std::complex<float>* to, const Packet4cf& from, int stride)
+template<> EIGEN_DEVICE_FUNC inline void pscatter<std::complex<float>, Packet4cf>(std::complex<float>* to, const Packet4cf& from, DenseIndex stride)
{
__m128 low = _mm256_extractf128_ps(from.v, 0);
to[stride*0] = std::complex<float>(_mm_cvtss_f32(_mm_shuffle_ps(low, low, 0)),
@@ -310,13 +310,13 @@ template<> EIGEN_STRONG_INLINE Packet2cd ploaddup<Packet2cd>(const std::complex<
template<> EIGEN_STRONG_INLINE void pstore <std::complex<double> >(std::complex<double> * to, const Packet2cd& from) { EIGEN_DEBUG_ALIGNED_STORE pstore((double*)to, from.v); }
template<> EIGEN_STRONG_INLINE void pstoreu<std::complex<double> >(std::complex<double> * to, const Packet2cd& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu((double*)to, from.v); }
-template<> EIGEN_DEVICE_FUNC inline Packet2cd pgather<std::complex<double>, Packet2cd>(const std::complex<double>* from, int stride)
+template<> EIGEN_DEVICE_FUNC inline Packet2cd pgather<std::complex<double>, Packet2cd>(const std::complex<double>* from, DenseIndex stride)
{
return Packet2cd(_mm256_set_pd(std::imag(from[1*stride]), std::real(from[1*stride]),
std::imag(from[0*stride]), std::real(from[0*stride])));
}
-template<> EIGEN_DEVICE_FUNC inline void pscatter<std::complex<double>, Packet2cd>(std::complex<double>* to, const Packet2cd& from, int stride)
+template<> EIGEN_DEVICE_FUNC inline void pscatter<std::complex<double>, Packet2cd>(std::complex<double>* to, const Packet2cd& from, DenseIndex stride)
{
__m128d low = _mm256_extractf128_pd(from.v, 0);
to[stride*0] = std::complex<double>(_mm_cvtsd_f64(low), _mm_cvtsd_f64(_mm_shuffle_pd(low, low, 1)));
diff --git a/Eigen/src/Core/arch/AVX/PacketMath.h b/Eigen/src/Core/arch/AVX/PacketMath.h
index 74d3746d9..170302f7f 100644
--- a/Eigen/src/Core/arch/AVX/PacketMath.h
+++ b/Eigen/src/Core/arch/AVX/PacketMath.h
@@ -226,17 +226,17 @@ template<> EIGEN_STRONG_INLINE void pstoreu<int>(int* to, const Packet8i&
// NOTE: leverage _mm256_i32gather_ps and _mm256_i32gather_pd if AVX2 instructions are available
// NOTE: for the record the following seems to be slower: return _mm256_i32gather_ps(from, _mm256_set1_epi32(stride), 4);
-template<> EIGEN_DEVICE_FUNC inline Packet8f pgather<float, Packet8f>(const float* from, int stride)
+template<> EIGEN_DEVICE_FUNC inline Packet8f pgather<float, Packet8f>(const float* from, DenseIndex stride)
{
return _mm256_set_ps(from[7*stride], from[6*stride], from[5*stride], from[4*stride],
from[3*stride], from[2*stride], from[1*stride], from[0*stride]);
}
-template<> EIGEN_DEVICE_FUNC inline Packet4d pgather<double, Packet4d>(const double* from, int stride)
+template<> EIGEN_DEVICE_FUNC inline Packet4d pgather<double, Packet4d>(const double* from, DenseIndex stride)
{
return _mm256_set_pd(from[3*stride], from[2*stride], from[1*stride], from[0*stride]);
}
-template<> EIGEN_DEVICE_FUNC inline void pscatter<float, Packet8f>(float* to, const Packet8f& from, int stride)
+template<> EIGEN_DEVICE_FUNC inline void pscatter<float, Packet8f>(float* to, const Packet8f& from, DenseIndex stride)
{
__m128 low = _mm256_extractf128_ps(from, 0);
to[stride*0] = _mm_cvtss_f32(low);
@@ -250,7 +250,7 @@ template<> EIGEN_DEVICE_FUNC inline void pscatter<float, Packet8f>(float* to, co
to[stride*6] = _mm_cvtss_f32(_mm_shuffle_ps(high, high, 2));
to[stride*7] = _mm_cvtss_f32(_mm_shuffle_ps(high, high, 3));
}
-template<> EIGEN_DEVICE_FUNC inline void pscatter<double, Packet4d>(double* to, const Packet4d& from, int stride)
+template<> EIGEN_DEVICE_FUNC inline void pscatter<double, Packet4d>(double* to, const Packet4d& from, DenseIndex stride)
{
__m128d low = _mm256_extractf128_pd(from, 0);
to[stride*0] = _mm_cvtsd_f64(low);
diff --git a/Eigen/src/Core/arch/AltiVec/Complex.h b/Eigen/src/Core/arch/AltiVec/Complex.h
index 5409ddedd..13b874d0c 100644
--- a/Eigen/src/Core/arch/AltiVec/Complex.h
+++ b/Eigen/src/Core/arch/AltiVec/Complex.h
@@ -16,13 +16,14 @@ namespace internal {
static Packet4ui p4ui_CONJ_XOR = vec_mergeh((Packet4ui)p4i_ZERO, (Packet4ui)p4f_ZERO_);//{ 0x00000000, 0x80000000, 0x00000000, 0x80000000 };
static Packet16uc p16uc_COMPLEX_RE = vec_sld((Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 0), (Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 2), 8);//{ 0,1,2,3, 0,1,2,3, 8,9,10,11, 8,9,10,11 };
-static Packet16uc p16uc_COMPLEX_IM = vec_sld((Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 1), (Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 3), 8);//{ 4,5,6,7, 4,5,6,7, 12,13,14,15, 12,13,14,15 };
+static Packet16uc p16uc_COMPLEX_IM = vec_sld(p16uc_DUPLICATE, (Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 3), 8);//{ 4,5,6,7, 4,5,6,7, 12,13,14,15, 12,13,14,15 };
static Packet16uc p16uc_COMPLEX_REV = vec_sld(p16uc_REVERSE, p16uc_REVERSE, 8);//{ 4,5,6,7, 0,1,2,3, 12,13,14,15, 8,9,10,11 };
static Packet16uc p16uc_COMPLEX_REV2 = vec_sld(p16uc_FORWARD, p16uc_FORWARD, 8);//{ 8,9,10,11, 12,13,14,15, 0,1,2,3, 4,5,6,7 };
-static Packet16uc p16uc_PSET_HI = (Packet16uc) vec_mergeh((Packet4ui) vec_splat((Packet4ui)p16uc_FORWARD, 0), (Packet4ui) vec_splat((Packet4ui)p16uc_FORWARD, 1));//{ 0,1,2,3, 4,5,6,7, 0,1,2,3, 4,5,6,7 };
-static Packet16uc p16uc_PSET_LO = (Packet16uc) vec_mergeh((Packet4ui) vec_splat((Packet4ui)p16uc_FORWARD, 2), (Packet4ui) vec_splat((Packet4ui)p16uc_FORWARD, 3));//{ 8,9,10,11, 12,13,14,15, 8,9,10,11, 12,13,14,15 };
-static Packet16uc p16uc_COMPLEX_TRANSPOSE_0 = { 0,1,2,3, 4,5,6,7, 16,17,18,19, 20,21,22,23};
-static Packet16uc p16uc_COMPLEX_TRANSPOSE_1 = { 8,9,10,11, 12,13,14,15, 24,25,26,27, 28,29,30,31};
+static Packet16uc p16uc_PSET_HI = (Packet16uc) vec_mergeh((Packet4ui)p16uc_COMPLEX_RE, (Packet4ui)p16uc_COMPLEX_IM);//{ 0,1,2,3, 4,5,6,7, 0,1,2,3, 4,5,6,7 };
+static Packet16uc p16uc_PSET_LO = (Packet16uc) vec_mergel((Packet4ui)p16uc_COMPLEX_RE, (Packet4ui)p16uc_COMPLEX_IM);//{ 8,9,10,11, 12,13,14,15, 8,9,10,11, 12,13,14,15 };
+static Packet16uc p16uc_COMPLEX_MASK16 = vec_sld((Packet16uc)p4i_ZERO, vec_splat((Packet16uc) vec_abs(p4i_MINUS16), 3), 8);//{ 0,0,0,0, 0,0,0,0, 16,16,16,16, 16,16,16,16};
+static Packet16uc p16uc_COMPLEX_TRANSPOSE_0 = vec_add(p16uc_PSET_HI, p16uc_COMPLEX_MASK16);//{ 0,1,2,3, 4,5,6,7, 16,17,18,19, 20,21,22,23};
+static Packet16uc p16uc_COMPLEX_TRANSPOSE_1 = vec_add(p16uc_PSET_LO, p16uc_COMPLEX_MASK16);//{ 8,9,10,11, 12,13,14,15, 24,25,26,27, 28,29,30,31};
//---------- float ----------
struct Packet2cf
@@ -68,14 +69,14 @@ template<> EIGEN_STRONG_INLINE Packet2cf pset1<Packet2cf>(const std::complex<flo
return res;
}
-template<> EIGEN_DEVICE_FUNC inline Packet2cf pgather<std::complex<float>, Packet2cf>(const std::complex<float>* from, int stride)
+template<> EIGEN_DEVICE_FUNC inline Packet2cf pgather<std::complex<float>, Packet2cf>(const std::complex<float>* from, DenseIndex stride)
{
std::complex<float> EIGEN_ALIGN16 af[2];
af[0] = from[0*stride];
af[1] = from[1*stride];
return Packet2cf(vec_ld(0, (const float*)af));
}
-template<> EIGEN_DEVICE_FUNC inline void pscatter<std::complex<float>, Packet2cf>(std::complex<float>* to, const Packet2cf& from, int stride)
+template<> EIGEN_DEVICE_FUNC inline void pscatter<std::complex<float>, Packet2cf>(std::complex<float>* to, const Packet2cf& from, DenseIndex stride)
{
std::complex<float> EIGEN_ALIGN16 af[2];
vec_st(from.v, 0, (float*)af);
diff --git a/Eigen/src/Core/arch/AltiVec/PacketMath.h b/Eigen/src/Core/arch/AltiVec/PacketMath.h
index 0e9adf450..b43e8ace3 100755
--- a/Eigen/src/Core/arch/AltiVec/PacketMath.h
+++ b/Eigen/src/Core/arch/AltiVec/PacketMath.h
@@ -1,7 +1,7 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
-// Copyright (C) 2008 Konstantinos Margaritis <markos@codex.gr>
+// Copyright (C) 2008-2014 Konstantinos Margaritis <markos@freevec.org>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
@@ -62,17 +62,17 @@ typedef __vector unsigned char Packet16uc;
// Define global static constants:
static Packet4f p4f_COUNTDOWN = { 0.0, 1.0, 2.0, 3.0 };
static Packet4i p4i_COUNTDOWN = { 0, 1, 2, 3 };
-static Packet16uc p16uc_REVERSE = {12,13,14,15, 8,9,10,11, 4,5,6,7, 0,1,2,3};
-static Packet16uc p16uc_FORWARD = vec_lvsl(0, (float*)0);
-static Packet16uc p16uc_DUPLICATE = {0,1,2,3, 0,1,2,3, 4,5,6,7, 4,5,6,7};
-
-static _EIGEN_DECLARE_CONST_FAST_Packet4f(ZERO, 0);
-static _EIGEN_DECLARE_CONST_FAST_Packet4i(ZERO, 0);
-static _EIGEN_DECLARE_CONST_FAST_Packet4i(ONE,1);
-static _EIGEN_DECLARE_CONST_FAST_Packet4i(MINUS16,-16);
-static _EIGEN_DECLARE_CONST_FAST_Packet4i(MINUS1,-1);
-static Packet4f p4f_ONE = vec_ctf(p4i_ONE, 0);
-static Packet4f p4f_ZERO_ = (Packet4f) vec_sl((Packet4ui)p4i_MINUS1, (Packet4ui)p4i_MINUS1);
+static Packet16uc p16uc_REVERSE = { 12,13,14,15, 8,9,10,11, 4,5,6,7, 0,1,2,3};
+static Packet16uc p16uc_FORWARD = vec_lvsl(0, (float*)0); //{ 0,1,2,3, 4,5,6,7, 8,9,10,11, 12,13,14,15}
+static Packet16uc p16uc_DUPLICATE = { 0,1,2,3, 0,1,2,3, 4,5,6,7, 4,5,6,7};
+
+static _EIGEN_DECLARE_CONST_FAST_Packet4f(ZERO, 0); //{ 0.0, 0.0, 0.0, 0.0}
+static _EIGEN_DECLARE_CONST_FAST_Packet4i(ZERO, 0); //{ 0, 0, 0, 0,}
+static _EIGEN_DECLARE_CONST_FAST_Packet4i(ONE,1); //{ 1, 1, 1, 1}
+static _EIGEN_DECLARE_CONST_FAST_Packet4i(MINUS16,-16); //{ -16, -16, -16, -16}
+static _EIGEN_DECLARE_CONST_FAST_Packet4i(MINUS1,-1); //{ -1, -1, -1, -1}
+static Packet4f p4f_ONE = vec_ctf(p4i_ONE, 0); //{ 1.0, 1.0, 1.0, 1.0}
+static Packet4f p4f_ZERO_ = (Packet4f) vec_sl((Packet4ui)p4i_MINUS1, (Packet4ui)p4i_MINUS1); //{ 0x80000000, 0x80000000, 0x80000000, 0x80000000}
template<> struct packet_traits<float> : default_packet_traits
{
@@ -82,8 +82,10 @@ template<> struct packet_traits<float> : default_packet_traits
Vectorizable = 1,
AlignedOnScalar = 1,
size=4,
+ HasHalfPacket=0,
// FIXME check the Has*
+ HasDiv = 1,
HasSin = 0,
HasCos = 0,
HasLog = 0,
@@ -190,7 +192,7 @@ pbroadcast4<Packet4i>(const int *a,
a3 = vec_splat(a3, 3);
}
-template<> EIGEN_DEVICE_FUNC inline Packet4f pgather<float, Packet4f>(const float* from, int stride)
+template<> EIGEN_DEVICE_FUNC inline Packet4f pgather<float, Packet4f>(const float* from, DenseIndex stride)
{
float EIGEN_ALIGN16 af[4];
af[0] = from[0*stride];
@@ -199,7 +201,7 @@ template<> EIGEN_DEVICE_FUNC inline Packet4f pgather<float, Packet4f>(const floa
af[3] = from[3*stride];
return vec_ld(0, af);
}
-template<> EIGEN_DEVICE_FUNC inline Packet4i pgather<int, Packet4i>(const int* from, int stride)
+template<> EIGEN_DEVICE_FUNC inline Packet4i pgather<int, Packet4i>(const int* from, DenseIndex stride)
{
int EIGEN_ALIGN16 ai[4];
ai[0] = from[0*stride];
@@ -208,7 +210,7 @@ template<> EIGEN_DEVICE_FUNC inline Packet4i pgather<int, Packet4i>(const int* f
ai[3] = from[3*stride];
return vec_ld(0, ai);
}
-template<> EIGEN_DEVICE_FUNC inline void pscatter<float, Packet4f>(float* to, const Packet4f& from, int stride)
+template<> EIGEN_DEVICE_FUNC inline void pscatter<float, Packet4f>(float* to, const Packet4f& from, DenseIndex stride)
{
float EIGEN_ALIGN16 af[4];
vec_st(from, 0, af);
@@ -217,7 +219,7 @@ template<> EIGEN_DEVICE_FUNC inline void pscatter<float, Packet4f>(float* to, co
to[2*stride] = af[2];
to[3*stride] = af[3];
}
-template<> EIGEN_DEVICE_FUNC inline void pscatter<int, Packet4i>(int* to, const Packet4i& from, int stride)
+template<> EIGEN_DEVICE_FUNC inline void pscatter<int, Packet4i>(int* to, const Packet4i& from, DenseIndex stride)
{
int EIGEN_ALIGN16 ai[4];
vec_st(from, 0, ai);
diff --git a/Eigen/src/Core/arch/NEON/Complex.h b/Eigen/src/Core/arch/NEON/Complex.h
index 259f2e7b8..42e7733d7 100644
--- a/Eigen/src/Core/arch/NEON/Complex.h
+++ b/Eigen/src/Core/arch/NEON/Complex.h
@@ -111,7 +111,7 @@ template<> EIGEN_STRONG_INLINE Packet2cf ploaddup<Packet2cf>(const std::complex<
template<> EIGEN_STRONG_INLINE void pstore <std::complex<float> >(std::complex<float> * to, const Packet2cf& from) { EIGEN_DEBUG_ALIGNED_STORE pstore((float*)to, from.v); }
template<> EIGEN_STRONG_INLINE void pstoreu<std::complex<float> >(std::complex<float> * to, const Packet2cf& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu((float*)to, from.v); }
-template<> EIGEN_DEVICE_FUNC inline Packet2cf pgather<std::complex<float>, Packet2cf>(const std::complex<float>* from, int stride)
+template<> EIGEN_DEVICE_FUNC inline Packet2cf pgather<std::complex<float>, Packet2cf>(const std::complex<float>* from, DenseIndex stride)
{
Packet4f res;
res = vsetq_lane_f32(std::real(from[0*stride]), res, 0);
@@ -121,7 +121,7 @@ template<> EIGEN_DEVICE_FUNC inline Packet2cf pgather<std::complex<float>, Packe
return Packet2cf(res);
}
-template<> EIGEN_DEVICE_FUNC inline void pscatter<std::complex<float>, Packet2cf>(std::complex<float>* to, const Packet2cf& from, int stride)
+template<> EIGEN_DEVICE_FUNC inline void pscatter<std::complex<float>, Packet2cf>(std::complex<float>* to, const Packet2cf& from, DenseIndex stride)
{
to[stride*0] = std::complex<float>(vgetq_lane_f32(from.v, 0), vgetq_lane_f32(from.v, 1));
to[stride*1] = std::complex<float>(vgetq_lane_f32(from.v, 2), vgetq_lane_f32(from.v, 3));
diff --git a/Eigen/src/Core/arch/NEON/PacketMath.h b/Eigen/src/Core/arch/NEON/PacketMath.h
index e5eb06f36..380b76ae9 100644
--- a/Eigen/src/Core/arch/NEON/PacketMath.h
+++ b/Eigen/src/Core/arch/NEON/PacketMath.h
@@ -222,7 +222,7 @@ template<> EIGEN_STRONG_INLINE void pstore<int>(int* to, const Packet4i& f
template<> EIGEN_STRONG_INLINE void pstoreu<float>(float* to, const Packet4f& from) { EIGEN_DEBUG_UNALIGNED_STORE vst1q_f32(to, from); }
template<> EIGEN_STRONG_INLINE void pstoreu<int>(int* to, const Packet4i& from) { EIGEN_DEBUG_UNALIGNED_STORE vst1q_s32(to, from); }
-template<> EIGEN_DEVICE_FUNC inline Packet4f pgather<float, Packet4f>(const float* from, int stride)
+template<> EIGEN_DEVICE_FUNC inline Packet4f pgather<float, Packet4f>(const float* from, DenseIndex stride)
{
Packet4f res;
res = vsetq_lane_f32(from[0*stride], res, 0);
@@ -231,7 +231,7 @@ template<> EIGEN_DEVICE_FUNC inline Packet4f pgather<float, Packet4f>(const floa
res = vsetq_lane_f32(from[3*stride], res, 3);
return res;
}
-template<> EIGEN_DEVICE_FUNC inline Packet4i pgather<int, Packet4i>(const int* from, int stride)
+template<> EIGEN_DEVICE_FUNC inline Packet4i pgather<int, Packet4i>(const int* from, DenseIndex stride)
{
Packet4i res;
res = vsetq_lane_s32(from[0*stride], res, 0);
@@ -241,14 +241,14 @@ template<> EIGEN_DEVICE_FUNC inline Packet4i pgather<int, Packet4i>(const int* f
return res;
}
-template<> EIGEN_DEVICE_FUNC inline void pscatter<float, Packet4f>(float* to, const Packet4f& from, int stride)
+template<> EIGEN_DEVICE_FUNC inline void pscatter<float, Packet4f>(float* to, const Packet4f& from, DenseIndex stride)
{
to[stride*0] = vgetq_lane_f32(from, 0);
to[stride*1] = vgetq_lane_f32(from, 1);
to[stride*2] = vgetq_lane_f32(from, 2);
to[stride*3] = vgetq_lane_f32(from, 3);
}
-template<> EIGEN_DEVICE_FUNC inline void pscatter<int, Packet4i>(int* to, const Packet4i& from, int stride)
+template<> EIGEN_DEVICE_FUNC inline void pscatter<int, Packet4i>(int* to, const Packet4i& from, DenseIndex stride)
{
to[stride*0] = vgetq_lane_s32(from, 0);
to[stride*1] = vgetq_lane_s32(from, 1);
diff --git a/Eigen/src/Core/arch/SSE/Complex.h b/Eigen/src/Core/arch/SSE/Complex.h
index 0bc03cf9e..565e448fe 100644
--- a/Eigen/src/Core/arch/SSE/Complex.h
+++ b/Eigen/src/Core/arch/SSE/Complex.h
@@ -115,13 +115,13 @@ template<> EIGEN_STRONG_INLINE void pstore <std::complex<float> >(std::complex<f
template<> EIGEN_STRONG_INLINE void pstoreu<std::complex<float> >(std::complex<float> * to, const Packet2cf& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu(&numext::real_ref(*to), Packet4f(from.v)); }
-template<> EIGEN_DEVICE_FUNC inline Packet2cf pgather<std::complex<float>, Packet2cf>(const std::complex<float>* from, int stride)
+template<> EIGEN_DEVICE_FUNC inline Packet2cf pgather<std::complex<float>, Packet2cf>(const std::complex<float>* from, DenseIndex stride)
{
return Packet2cf(_mm_set_ps(std::imag(from[1*stride]), std::real(from[1*stride]),
std::imag(from[0*stride]), std::real(from[0*stride])));
}
-template<> EIGEN_DEVICE_FUNC inline void pscatter<std::complex<float>, Packet2cf>(std::complex<float>* to, const Packet2cf& from, int stride)
+template<> EIGEN_DEVICE_FUNC inline void pscatter<std::complex<float>, Packet2cf>(std::complex<float>* to, const Packet2cf& from, DenseIndex stride)
{
to[stride*0] = std::complex<float>(_mm_cvtss_f32(_mm_shuffle_ps(from.v, from.v, 0)),
_mm_cvtss_f32(_mm_shuffle_ps(from.v, from.v, 1)));
diff --git a/Eigen/src/Core/arch/SSE/PacketMath.h b/Eigen/src/Core/arch/SSE/PacketMath.h
index 1124b24df..6923c88ec 100755
--- a/Eigen/src/Core/arch/SSE/PacketMath.h
+++ b/Eigen/src/Core/arch/SSE/PacketMath.h
@@ -387,32 +387,32 @@ template<> EIGEN_STRONG_INLINE void pstoreu<double>(double* to, const Packet2d&
template<> EIGEN_STRONG_INLINE void pstoreu<float>(float* to, const Packet4f& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu(reinterpret_cast<double*>(to), Packet2d(_mm_castps_pd(from))); }
template<> EIGEN_STRONG_INLINE void pstoreu<int>(int* to, const Packet4i& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu(reinterpret_cast<double*>(to), Packet2d(_mm_castsi128_pd(from))); }
-template<> EIGEN_DEVICE_FUNC inline Packet4f pgather<float, Packet4f>(const float* from, int stride)
+template<> EIGEN_DEVICE_FUNC inline Packet4f pgather<float, Packet4f>(const float* from, DenseIndex stride)
{
return _mm_set_ps(from[3*stride], from[2*stride], from[1*stride], from[0*stride]);
}
-template<> EIGEN_DEVICE_FUNC inline Packet2d pgather<double, Packet2d>(const double* from, int stride)
+template<> EIGEN_DEVICE_FUNC inline Packet2d pgather<double, Packet2d>(const double* from, DenseIndex stride)
{
return _mm_set_pd(from[1*stride], from[0*stride]);
}
-template<> EIGEN_DEVICE_FUNC inline Packet4i pgather<int, Packet4i>(const int* from, int stride)
+template<> EIGEN_DEVICE_FUNC inline Packet4i pgather<int, Packet4i>(const int* from, DenseIndex stride)
{
return _mm_set_epi32(from[3*stride], from[2*stride], from[1*stride], from[0*stride]);
}
-template<> EIGEN_DEVICE_FUNC inline void pscatter<float, Packet4f>(float* to, const Packet4f& from, int stride)
+template<> EIGEN_DEVICE_FUNC inline void pscatter<float, Packet4f>(float* to, const Packet4f& from, DenseIndex stride)
{
to[stride*0] = _mm_cvtss_f32(from);
to[stride*1] = _mm_cvtss_f32(_mm_shuffle_ps(from, from, 1));
to[stride*2] = _mm_cvtss_f32(_mm_shuffle_ps(from, from, 2));
to[stride*3] = _mm_cvtss_f32(_mm_shuffle_ps(from, from, 3));
}
-template<> EIGEN_DEVICE_FUNC inline void pscatter<double, Packet2d>(double* to, const Packet2d& from, int stride)
+template<> EIGEN_DEVICE_FUNC inline void pscatter<double, Packet2d>(double* to, const Packet2d& from, DenseIndex stride)
{
to[stride*0] = _mm_cvtsd_f64(from);
to[stride*1] = _mm_cvtsd_f64(_mm_shuffle_pd(from, from, 1));
}
-template<> EIGEN_DEVICE_FUNC inline void pscatter<int, Packet4i>(int* to, const Packet4i& from, int stride)
+template<> EIGEN_DEVICE_FUNC inline void pscatter<int, Packet4i>(int* to, const Packet4i& from, DenseIndex stride)
{
to[stride*0] = _mm_cvtsi128_si32(from);
to[stride*1] = _mm_cvtsi128_si32(_mm_shuffle_epi32(from, 1));
diff --git a/Eigen/src/Core/functors/NullaryFunctors.h b/Eigen/src/Core/functors/NullaryFunctors.h
index 950acd93b..be03fbf52 100644
--- a/Eigen/src/Core/functors/NullaryFunctors.h
+++ b/Eigen/src/Core/functors/NullaryFunctors.h
@@ -92,7 +92,7 @@ struct linspaced_op_impl<Scalar,true>
template<typename Index>
EIGEN_STRONG_INLINE const Packet packetOp(Index i) const
- { return internal::padd(m_lowPacket, pmul(m_stepPacket, padd(pset1<Packet>(i),m_interPacket))); }
+ { return internal::padd(m_lowPacket, pmul(m_stepPacket, padd(pset1<Packet>(Scalar(i)),m_interPacket))); }
const Scalar m_low;
const Scalar m_step;
@@ -112,7 +112,7 @@ template <typename Scalar, bool RandomAccess> struct functor_traits< linspaced_o
template <typename Scalar, bool RandomAccess> struct linspaced_op
{
typedef typename packet_traits<Scalar>::type Packet;
- linspaced_op(const Scalar& low, const Scalar& high, DenseIndex num_steps) : impl((num_steps==1 ? high : low), (num_steps==1 ? Scalar() : (high-low)/(num_steps-1))) {}
+ linspaced_op(const Scalar& low, const Scalar& high, DenseIndex num_steps) : impl((num_steps==1 ? high : low), (num_steps==1 ? Scalar() : (high-low)/Scalar(num_steps-1))) {}
template<typename Index>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (Index i) const { return impl(i); }
diff --git a/Eigen/src/Core/functors/UnaryFunctors.h b/Eigen/src/Core/functors/UnaryFunctors.h
index a0fcea3f9..ec42e6850 100644
--- a/Eigen/src/Core/functors/UnaryFunctors.h
+++ b/Eigen/src/Core/functors/UnaryFunctors.h
@@ -320,6 +320,26 @@ struct functor_traits<scalar_asin_op<Scalar> >
};
};
+
+/** \internal
+ * \brief Template functor to compute the atan of a scalar
+ * \sa class CwiseUnaryOp, ArrayBase::atan()
+ */
+template<typename Scalar> struct scalar_atan_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_atan_op)
+ inline const Scalar operator() (const Scalar& a) const { using std::atan; return atan(a); }
+ typedef typename packet_traits<Scalar>::type Packet;
+ inline Packet packetOp(const Packet& a) const { return internal::patan(a); }
+};
+template<typename Scalar>
+struct functor_traits<scalar_atan_op<Scalar> >
+{
+ enum {
+ Cost = 5 * NumTraits<Scalar>::MulCost,
+ PacketAccess = packet_traits<Scalar>::HasATan
+ };
+};
+
/** \internal
* \brief Template functor to compute the inverse of a scalar
* \sa class CwiseUnaryOp, Cwise::inverse()
diff --git a/Eigen/src/Core/products/SelfadjointMatrixVector.h b/Eigen/src/Core/products/SelfadjointMatrixVector.h
index fdc81205a..26e787949 100644
--- a/Eigen/src/Core/products/SelfadjointMatrixVector.h
+++ b/Eigen/src/Core/products/SelfadjointMatrixVector.h
@@ -218,7 +218,7 @@ struct SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,0,true>
if(!EvalToDest)
{
#ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
- int size = dest.size();
+ Index size = dest.size();
EIGEN_DENSE_STORAGE_CTOR_PLUGIN
#endif
MappedDest(actualDestPtr, dest.size()) = dest;
@@ -227,7 +227,7 @@ struct SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,0,true>
if(!UseRhs)
{
#ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
- int size = rhs.size();
+ Index size = rhs.size();
EIGEN_DENSE_STORAGE_CTOR_PLUGIN
#endif
Map<typename _ActualRhsType::PlainObject>(actualRhsPtr, rhs.size()) = rhs;
diff --git a/Eigen/src/Core/products/TriangularMatrixVector.h b/Eigen/src/Core/products/TriangularMatrixVector.h
index 6117d5a82..817768481 100644
--- a/Eigen/src/Core/products/TriangularMatrixVector.h
+++ b/Eigen/src/Core/products/TriangularMatrixVector.h
@@ -322,7 +322,7 @@ template<> struct trmv_selector<RowMajor>
if(!DirectlyUseRhs)
{
#ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
- int size = actualRhs.size();
+ Index size = actualRhs.size();
EIGEN_DENSE_STORAGE_CTOR_PLUGIN
#endif
Map<typename _ActualRhsType::PlainObject>(actualRhsPtr, actualRhs.size()) = actualRhs;
diff --git a/Eigen/src/Core/products/TriangularMatrixVector_MKL.h b/Eigen/src/Core/products/TriangularMatrixVector_MKL.h
index 09f110da7..3672b1240 100644
--- a/Eigen/src/Core/products/TriangularMatrixVector_MKL.h
+++ b/Eigen/src/Core/products/TriangularMatrixVector_MKL.h
@@ -129,7 +129,6 @@ struct triangular_matrix_vector_product_trmv<Index,Mode,EIGTYPE,ConjLhs,EIGTYPE,
MKLPREFIX##axpy(&n, &alpha_,(const MKLTYPE*)x, &incx, (MKLTYPE*)_res, &incy); \
/* Non-square case - doesn't fit to MKL ?TRMV. Fall to default triangular product*/ \
if (size<(std::max)(rows,cols)) { \
- typedef Matrix<EIGTYPE, Dynamic, Dynamic> MatrixLhs; \
if (ConjRhs) x_tmp = rhs.conjugate(); else x_tmp = rhs; \
x = x_tmp.data(); \
if (size<rows) { \
@@ -214,7 +213,6 @@ struct triangular_matrix_vector_product_trmv<Index,Mode,EIGTYPE,ConjLhs,EIGTYPE,
MKLPREFIX##axpy(&n, &alpha_,(const MKLTYPE*)x, &incx, (MKLTYPE*)_res, &incy); \
/* Non-square case - doesn't fit to MKL ?TRMV. Fall to default triangular product*/ \
if (size<(std::max)(rows,cols)) { \
- typedef Matrix<EIGTYPE, Dynamic, Dynamic> MatrixLhs; \
if (ConjRhs) x_tmp = rhs.conjugate(); else x_tmp = rhs; \
x = x_tmp.data(); \
if (size<rows) { \
diff --git a/Eigen/src/Core/util/ForwardDeclarations.h b/Eigen/src/Core/util/ForwardDeclarations.h
index 0a2144c69..33deb88ec 100644
--- a/Eigen/src/Core/util/ForwardDeclarations.h
+++ b/Eigen/src/Core/util/ForwardDeclarations.h
@@ -236,35 +236,12 @@ template<typename Scalar> class Rotation2D;
template<typename Scalar> class AngleAxis;
template<typename Scalar,int Dim> class Translation;
-#ifdef EIGEN2_SUPPORT
-template<typename Derived, int _Dim> class eigen2_RotationBase;
-template<typename Lhs, typename Rhs> class eigen2_Cross;
-template<typename Scalar> class eigen2_Quaternion;
-template<typename Scalar> class eigen2_Rotation2D;
-template<typename Scalar> class eigen2_AngleAxis;
-template<typename Scalar,int Dim> class eigen2_Transform;
-template <typename _Scalar, int _AmbientDim> class eigen2_ParametrizedLine;
-template <typename _Scalar, int _AmbientDim> class eigen2_Hyperplane;
-template<typename Scalar,int Dim> class eigen2_Translation;
-template<typename Scalar,int Dim> class eigen2_Scaling;
-#endif
-
-#if EIGEN2_SUPPORT_STAGE < STAGE20_RESOLVE_API_CONFLICTS
-template<typename Scalar> class Quaternion;
-template<typename Scalar,int Dim> class Transform;
-template <typename _Scalar, int _AmbientDim> class ParametrizedLine;
-template <typename _Scalar, int _AmbientDim> class Hyperplane;
-template<typename Scalar,int Dim> class Scaling;
-#endif
-
-#if EIGEN2_SUPPORT_STAGE > STAGE20_RESOLVE_API_CONFLICTS
template<typename Scalar, int Options = AutoAlign> class Quaternion;
template<typename Scalar,int Dim,int Mode,int _Options=AutoAlign> class Transform;
template <typename _Scalar, int _AmbientDim, int Options=AutoAlign> class ParametrizedLine;
template <typename _Scalar, int _AmbientDim, int Options=AutoAlign> class Hyperplane;
template<typename Scalar> class UniformScaling;
template<typename MatrixType,int Direction> class Homogeneous;
-#endif
// MatrixFunctions module
template<typename Derived> struct MatrixExponentialReturnValue;
@@ -283,18 +260,6 @@ struct stem_function
};
}
-
-#ifdef EIGEN2_SUPPORT
-template<typename ExpressionType> class Cwise;
-template<typename MatrixType> class Minor;
-template<typename MatrixType> class LU;
-template<typename MatrixType> class QR;
-template<typename MatrixType> class SVD;
-namespace internal {
-template<typename MatrixType, unsigned int Mode> struct eigen2_part_return_type;
-}
-#endif
-
} // end namespace Eigen
#endif // EIGEN_FORWARDDECLARATIONS_H
diff --git a/Eigen/src/Core/util/Macros.h b/Eigen/src/Core/util/Macros.h
index b1c01c02a..c80aa5129 100644
--- a/Eigen/src/Core/util/Macros.h
+++ b/Eigen/src/Core/util/Macros.h
@@ -457,4 +457,16 @@ namespace Eigen {
const RHS \
>
+#ifdef EIGEN_EXCEPTIONS
+# define EIGEN_THROW_X(X) throw X
+# define EIGEN_THROW throw
+# define EIGEN_TRY try
+# define EIGEN_CATCH(X) catch (X)
+#else
+# define EIGEN_THROW_X(X) std::abort()
+# define EIGEN_THROW std::abort()
+# define EIGEN_TRY if (true)
+# define EIGEN_CATCH(X) else
+#endif
+
#endif // EIGEN_MACROS_H
diff --git a/Eigen/src/Core/util/Memory.h b/Eigen/src/Core/util/Memory.h
index 390b60c74..810ee786b 100644
--- a/Eigen/src/Core/util/Memory.h
+++ b/Eigen/src/Core/util/Memory.h
@@ -338,15 +338,6 @@ template<> inline void* conditional_aligned_realloc<false>(void* ptr, size_t new
*** Construction/destruction of array elements ***
*****************************************************************************/
-/** \internal Constructs the elements of an array.
- * The \a size parameter tells on how many objects to call the constructor of T.
- */
-template<typename T> inline T* construct_elements_of_array(T *ptr, size_t size)
-{
- for (size_t i=0; i < size; ++i) ::new (ptr + i) T;
- return ptr;
-}
-
/** \internal Destructs the elements of an array.
* The \a size parameters tells on how many objects to call the destructor of T.
*/
@@ -357,6 +348,24 @@ template<typename T> inline void destruct_elements_of_array(T *ptr, size_t size)
while(size) ptr[--size].~T();
}
+/** \internal Constructs the elements of an array.
+ * The \a size parameter tells on how many objects to call the constructor of T.
+ */
+template<typename T> inline T* construct_elements_of_array(T *ptr, size_t size)
+{
+ size_t i;
+ EIGEN_TRY
+ {
+ for (i = 0; i < size; ++i) ::new (ptr + i) T;
+ return ptr;
+ }
+ EIGEN_CATCH(...)
+ {
+ destruct_elements_of_array(ptr, i);
+ EIGEN_THROW;
+ }
+}
+
/*****************************************************************************
*** Implementation of aligned new/delete-like functions ***
*****************************************************************************/
@@ -376,14 +385,30 @@ template<typename T> inline T* aligned_new(size_t size)
{
check_size_for_overflow<T>(size);
T *result = reinterpret_cast<T*>(aligned_malloc(sizeof(T)*size));
- return construct_elements_of_array(result, size);
+ EIGEN_TRY
+ {
+ return construct_elements_of_array(result, size);
+ }
+ EIGEN_CATCH(...)
+ {
+ aligned_free(result);
+ EIGEN_THROW;
+ }
}
template<typename T, bool Align> inline T* conditional_aligned_new(size_t size)
{
check_size_for_overflow<T>(size);
T *result = reinterpret_cast<T*>(conditional_aligned_malloc<Align>(sizeof(T)*size));
- return construct_elements_of_array(result, size);
+ EIGEN_TRY
+ {
+ return construct_elements_of_array(result, size);
+ }
+ EIGEN_CATCH(...)
+ {
+ conditional_aligned_free<Align>(result);
+ EIGEN_THROW;
+ }
}
/** \internal Deletes objects constructed with aligned_new
@@ -412,7 +437,17 @@ template<typename T, bool Align> inline T* conditional_aligned_realloc_new(T* pt
destruct_elements_of_array(pts+new_size, old_size-new_size);
T *result = reinterpret_cast<T*>(conditional_aligned_realloc<Align>(reinterpret_cast<void*>(pts), sizeof(T)*new_size, sizeof(T)*old_size));
if(new_size > old_size)
- construct_elements_of_array(result+old_size, new_size-old_size);
+ {
+ EIGEN_TRY
+ {
+ construct_elements_of_array(result+old_size, new_size-old_size);
+ }
+ EIGEN_CATCH(...)
+ {
+ conditional_aligned_free<Align>(result);
+ EIGEN_THROW;
+ }
+ }
return result;
}
@@ -422,7 +457,17 @@ template<typename T, bool Align> inline T* conditional_aligned_new_auto(size_t s
check_size_for_overflow<T>(size);
T *result = reinterpret_cast<T*>(conditional_aligned_malloc<Align>(sizeof(T)*size));
if(NumTraits<T>::RequireInitialization)
- construct_elements_of_array(result, size);
+ {
+ EIGEN_TRY
+ {
+ construct_elements_of_array(result, size);
+ }
+ EIGEN_CATCH(...)
+ {
+ conditional_aligned_free<Align>(result);
+ EIGEN_THROW;
+ }
+ }
return result;
}
@@ -434,7 +479,17 @@ template<typename T, bool Align> inline T* conditional_aligned_realloc_new_auto(
destruct_elements_of_array(pts+new_size, old_size-new_size);
T *result = reinterpret_cast<T*>(conditional_aligned_realloc<Align>(reinterpret_cast<void*>(pts), sizeof(T)*new_size, sizeof(T)*old_size));
if(NumTraits<T>::RequireInitialization && (new_size > old_size))
- construct_elements_of_array(result+old_size, new_size-old_size);
+ {
+ EIGEN_TRY
+ {
+ construct_elements_of_array(result+old_size, new_size-old_size);
+ }
+ EIGEN_CATCH(...)
+ {
+ conditional_aligned_free<Align>(result);
+ EIGEN_THROW;
+ }
+ }
return result;
}
@@ -552,7 +607,7 @@ template<typename T> struct smart_memmove_helper<T,false> {
// you can overwrite Eigen's default behavior regarding alloca by defining EIGEN_ALLOCA
// to the appropriate stack allocation function
#ifndef EIGEN_ALLOCA
- #if (defined __linux__) || (defined __APPLE__)
+ #if (defined __linux__) || (defined __APPLE__) || (defined alloca)
#define EIGEN_ALLOCA alloca
#elif defined(_MSC_VER)
#define EIGEN_ALLOCA _alloca
@@ -607,12 +662,9 @@ template<typename T> class aligned_stack_memory_handler
* The underlying stack allocation function can controlled with the EIGEN_ALLOCA preprocessor token.
*/
#ifdef EIGEN_ALLOCA
- // The native alloca() that comes with llvm aligns buffer on 16 bytes even when AVX is enabled.
-#if defined(__arm__) || defined(_WIN32) || EIGEN_ALIGN_BYTES > 16
- #define EIGEN_ALIGNED_ALLOCA(SIZE) reinterpret_cast<void*>((reinterpret_cast<size_t>(EIGEN_ALLOCA(SIZE+EIGEN_ALIGN_BYTES)) & ~(size_t(EIGEN_ALIGN_BYTES-1))) + EIGEN_ALIGN_BYTES)
- #else
- #define EIGEN_ALIGNED_ALLOCA EIGEN_ALLOCA
- #endif
+ // We always manually re-align the result of EIGEN_ALLOCA.
+ // If alloca is already aligned, the compiler should be smart enough to optimize away the re-alignment.
+ #define EIGEN_ALIGNED_ALLOCA(SIZE) reinterpret_cast<void*>((reinterpret_cast<size_t>(EIGEN_ALLOCA(SIZE+EIGEN_ALIGN_BYTES-1)) + EIGEN_ALIGN_BYTES-1) & ~(size_t(EIGEN_ALIGN_BYTES-1)))
#define ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) \
Eigen::internal::check_size_for_overflow<TYPE>(SIZE); \
@@ -637,20 +689,11 @@ template<typename T> class aligned_stack_memory_handler
*****************************************************************************/
#if EIGEN_ALIGN
- #ifdef EIGEN_EXCEPTIONS
- #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
+ #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
void* operator new(size_t size, const std::nothrow_t&) throw() { \
- try { return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); } \
- catch (...) { return 0; } \
- return 0; \
+ EIGEN_TRY { return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); } \
+ EIGEN_CATCH (...) { return 0; } \
}
- #else
- #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
- void* operator new(size_t size, const std::nothrow_t&) throw() { \
- return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \
- }
- #endif
-
#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) \
void *operator new(size_t size) { \
return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \
@@ -660,6 +703,8 @@ template<typename T> class aligned_stack_memory_handler
} \
void operator delete(void * ptr) throw() { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
void operator delete[](void * ptr) throw() { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
+ void operator delete(void * ptr, std::size_t /* sz */) throw() { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
+ void operator delete[](void * ptr, std::size_t /* sz */) throw() { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
/* in-place new and delete. since (at least afaik) there is no actual */ \
/* memory allocated we can safely let the default implementation handle */ \
/* this particular case. */ \
diff --git a/Eigen/src/Core/util/Meta.h b/Eigen/src/Core/util/Meta.h
index e4e4d4a87..b99b8849e 100644
--- a/Eigen/src/Core/util/Meta.h
+++ b/Eigen/src/Core/util/Meta.h
@@ -80,6 +80,34 @@ template<typename T> struct add_const_on_value_type<T*> { typedef T const
template<typename T> struct add_const_on_value_type<T* const> { typedef T const* const type; };
template<typename T> struct add_const_on_value_type<T const* const> { typedef T const* const type; };
+
+template<typename From, typename To>
+struct is_convertible_impl
+{
+private:
+ struct any_conversion
+ {
+ template <typename T> any_conversion(const volatile T&);
+ template <typename T> any_conversion(T&);
+ };
+ struct yes {int a[1];};
+ struct no {int a[2];};
+
+ static yes test(const To&, int);
+ static no test(any_conversion, ...);
+
+public:
+ static From ms_from;
+ enum { value = sizeof(test(ms_from, 0))==sizeof(yes) };
+};
+
+template<typename From, typename To>
+struct is_convertible
+{
+ enum { value = is_convertible_impl<typename remove_all<From>::type,
+ typename remove_all<To >::type>::value };
+};
+
/** \internal Allows to enable/disable an overload
* according to a compile time condition.
*/
diff --git a/Eigen/src/Core/util/StaticAssert.h b/Eigen/src/Core/util/StaticAssert.h
index 8872c5b64..59aa0811c 100644
--- a/Eigen/src/Core/util/StaticAssert.h
+++ b/Eigen/src/Core/util/StaticAssert.h
@@ -107,9 +107,9 @@
{Eigen::internal::static_assertion<bool(CONDITION)>::MSG;}
#else
-
+ // In some cases clang interprets bool(CONDITION) as function declaration
#define EIGEN_STATIC_ASSERT(CONDITION,MSG) \
- if (Eigen::internal::static_assertion<bool(CONDITION)>::MSG) {}
+ if (Eigen::internal::static_assertion<static_cast<bool>(CONDITION)>::MSG) {}
#endif
@@ -168,13 +168,8 @@
) \
)
-#ifdef EIGEN2_SUPPORT
- #define EIGEN_STATIC_ASSERT_NON_INTEGER(TYPE) \
- eigen_assert(!NumTraits<Scalar>::IsInteger);
-#else
- #define EIGEN_STATIC_ASSERT_NON_INTEGER(TYPE) \
+#define EIGEN_STATIC_ASSERT_NON_INTEGER(TYPE) \
EIGEN_STATIC_ASSERT(!NumTraits<TYPE>::IsInteger, THIS_FUNCTION_IS_NOT_FOR_INTEGER_NUMERIC_TYPES)
-#endif
// static assertion failing if it is guaranteed at compile-time that the two matrix expression types have different sizes
diff --git a/Eigen/src/Eigen2Support/Block.h b/Eigen/src/Eigen2Support/Block.h
deleted file mode 100644
index 604456f40..000000000
--- a/Eigen/src/Eigen2Support/Block.h
+++ /dev/null
@@ -1,126 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_BLOCK2_H
-#define EIGEN_BLOCK2_H
-
-namespace Eigen {
-
-/** \returns a dynamic-size expression of a corner of *this.
- *
- * \param type the type of corner. Can be \a Eigen::TopLeft, \a Eigen::TopRight,
- * \a Eigen::BottomLeft, \a Eigen::BottomRight.
- * \param cRows the number of rows in the corner
- * \param cCols the number of columns in the corner
- *
- * Example: \include MatrixBase_corner_enum_int_int.cpp
- * Output: \verbinclude MatrixBase_corner_enum_int_int.out
- *
- * \note Even though the returned expression has dynamic size, in the case
- * when it is applied to a fixed-size matrix, it inherits a fixed maximal size,
- * which means that evaluating it does not cause a dynamic memory allocation.
- *
- * \sa class Block, block(Index,Index,Index,Index)
- */
-template<typename Derived>
-inline Block<Derived> DenseBase<Derived>
- ::corner(CornerType type, Index cRows, Index cCols)
-{
- switch(type)
- {
- default:
- eigen_assert(false && "Bad corner type.");
- case TopLeft:
- return Block<Derived>(derived(), 0, 0, cRows, cCols);
- case TopRight:
- return Block<Derived>(derived(), 0, cols() - cCols, cRows, cCols);
- case BottomLeft:
- return Block<Derived>(derived(), rows() - cRows, 0, cRows, cCols);
- case BottomRight:
- return Block<Derived>(derived(), rows() - cRows, cols() - cCols, cRows, cCols);
- }
-}
-
-/** This is the const version of corner(CornerType, Index, Index).*/
-template<typename Derived>
-inline const Block<Derived>
-DenseBase<Derived>::corner(CornerType type, Index cRows, Index cCols) const
-{
- switch(type)
- {
- default:
- eigen_assert(false && "Bad corner type.");
- case TopLeft:
- return Block<Derived>(derived(), 0, 0, cRows, cCols);
- case TopRight:
- return Block<Derived>(derived(), 0, cols() - cCols, cRows, cCols);
- case BottomLeft:
- return Block<Derived>(derived(), rows() - cRows, 0, cRows, cCols);
- case BottomRight:
- return Block<Derived>(derived(), rows() - cRows, cols() - cCols, cRows, cCols);
- }
-}
-
-/** \returns a fixed-size expression of a corner of *this.
- *
- * \param type the type of corner. Can be \a Eigen::TopLeft, \a Eigen::TopRight,
- * \a Eigen::BottomLeft, \a Eigen::BottomRight.
- *
- * The template parameters CRows and CCols arethe number of rows and columns in the corner.
- *
- * Example: \include MatrixBase_template_int_int_corner_enum.cpp
- * Output: \verbinclude MatrixBase_template_int_int_corner_enum.out
- *
- * \sa class Block, block(Index,Index,Index,Index)
- */
-template<typename Derived>
-template<int CRows, int CCols>
-inline Block<Derived, CRows, CCols>
-DenseBase<Derived>::corner(CornerType type)
-{
- switch(type)
- {
- default:
- eigen_assert(false && "Bad corner type.");
- case TopLeft:
- return Block<Derived, CRows, CCols>(derived(), 0, 0);
- case TopRight:
- return Block<Derived, CRows, CCols>(derived(), 0, cols() - CCols);
- case BottomLeft:
- return Block<Derived, CRows, CCols>(derived(), rows() - CRows, 0);
- case BottomRight:
- return Block<Derived, CRows, CCols>(derived(), rows() - CRows, cols() - CCols);
- }
-}
-
-/** This is the const version of corner<int, int>(CornerType).*/
-template<typename Derived>
-template<int CRows, int CCols>
-inline const Block<Derived, CRows, CCols>
-DenseBase<Derived>::corner(CornerType type) const
-{
- switch(type)
- {
- default:
- eigen_assert(false && "Bad corner type.");
- case TopLeft:
- return Block<Derived, CRows, CCols>(derived(), 0, 0);
- case TopRight:
- return Block<Derived, CRows, CCols>(derived(), 0, cols() - CCols);
- case BottomLeft:
- return Block<Derived, CRows, CCols>(derived(), rows() - CRows, 0);
- case BottomRight:
- return Block<Derived, CRows, CCols>(derived(), rows() - CRows, cols() - CCols);
- }
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_BLOCK2_H
diff --git a/Eigen/src/Eigen2Support/CMakeLists.txt b/Eigen/src/Eigen2Support/CMakeLists.txt
deleted file mode 100644
index 7ae41b3cb..000000000
--- a/Eigen/src/Eigen2Support/CMakeLists.txt
+++ /dev/null
@@ -1,8 +0,0 @@
-FILE(GLOB Eigen_Eigen2Support_SRCS "*.h")
-
-INSTALL(FILES
- ${Eigen_Eigen2Support_SRCS}
- DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/Eigen2Support COMPONENT Devel
- )
-
-ADD_SUBDIRECTORY(Geometry) \ No newline at end of file
diff --git a/Eigen/src/Eigen2Support/Cwise.h b/Eigen/src/Eigen2Support/Cwise.h
deleted file mode 100644
index d95009b6e..000000000
--- a/Eigen/src/Eigen2Support/Cwise.h
+++ /dev/null
@@ -1,192 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CWISE_H
-#define EIGEN_CWISE_H
-
-namespace Eigen {
-
-/** \internal
- * convenient macro to defined the return type of a cwise binary operation */
-#define EIGEN_CWISE_BINOP_RETURN_TYPE(OP) \
- CwiseBinaryOp<OP<typename internal::traits<ExpressionType>::Scalar>, ExpressionType, OtherDerived>
-
-/** \internal
- * convenient macro to defined the return type of a cwise unary operation */
-#define EIGEN_CWISE_UNOP_RETURN_TYPE(OP) \
- CwiseUnaryOp<OP<typename internal::traits<ExpressionType>::Scalar>, ExpressionType>
-
-/** \internal
- * convenient macro to defined the return type of a cwise comparison to a scalar */
-#define EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(OP) \
- CwiseBinaryOp<OP<typename internal::traits<ExpressionType>::Scalar>, ExpressionType, \
- typename ExpressionType::ConstantReturnType >
-
-/** \class Cwise
- *
- * \brief Pseudo expression providing additional coefficient-wise operations
- *
- * \param ExpressionType the type of the object on which to do coefficient-wise operations
- *
- * This class represents an expression with additional coefficient-wise features.
- * It is the return type of MatrixBase::cwise()
- * and most of the time this is the only way it is used.
- *
- * Example: \include MatrixBase_cwise_const.cpp
- * Output: \verbinclude MatrixBase_cwise_const.out
- *
- * This class can be extended with the help of the plugin mechanism described on the page
- * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_CWISE_PLUGIN.
- *
- * \sa MatrixBase::cwise() const, MatrixBase::cwise()
- */
-template<typename ExpressionType> class Cwise
-{
- public:
-
- typedef typename internal::traits<ExpressionType>::Scalar Scalar;
- typedef typename internal::conditional<internal::must_nest_by_value<ExpressionType>::ret,
- ExpressionType, const ExpressionType&>::type ExpressionTypeNested;
- typedef CwiseUnaryOp<internal::scalar_add_op<Scalar>, ExpressionType> ScalarAddReturnType;
-
- inline Cwise(const ExpressionType& matrix) : m_matrix(matrix) {}
-
- /** \internal */
- inline const ExpressionType& _expression() const { return m_matrix; }
-
- template<typename OtherDerived>
- const EIGEN_CWISE_PRODUCT_RETURN_TYPE(ExpressionType,OtherDerived)
- operator*(const MatrixBase<OtherDerived> &other) const;
-
- template<typename OtherDerived>
- const EIGEN_CWISE_BINOP_RETURN_TYPE(internal::scalar_quotient_op)
- operator/(const MatrixBase<OtherDerived> &other) const;
-
- /** \deprecated ArrayBase::min() */
- template<typename OtherDerived>
- const EIGEN_CWISE_BINOP_RETURN_TYPE(internal::scalar_min_op)
- (min)(const MatrixBase<OtherDerived> &other) const
- { return EIGEN_CWISE_BINOP_RETURN_TYPE(internal::scalar_min_op)(_expression(), other.derived()); }
-
- /** \deprecated ArrayBase::max() */
- template<typename OtherDerived>
- const EIGEN_CWISE_BINOP_RETURN_TYPE(internal::scalar_max_op)
- (max)(const MatrixBase<OtherDerived> &other) const
- { return EIGEN_CWISE_BINOP_RETURN_TYPE(internal::scalar_max_op)(_expression(), other.derived()); }
-
- const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_abs_op) abs() const;
- const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_abs2_op) abs2() const;
- const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_square_op) square() const;
- const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_cube_op) cube() const;
- const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_inverse_op) inverse() const;
- const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_sqrt_op) sqrt() const;
- const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_exp_op) exp() const;
- const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_log_op) log() const;
- const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_cos_op) cos() const;
- const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_sin_op) sin() const;
- const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_pow_op) pow(const Scalar& exponent) const;
-
- const ScalarAddReturnType
- operator+(const Scalar& scalar) const;
-
- /** \relates Cwise */
- friend const ScalarAddReturnType
- operator+(const Scalar& scalar, const Cwise& mat)
- { return mat + scalar; }
-
- ExpressionType& operator+=(const Scalar& scalar);
-
- const ScalarAddReturnType
- operator-(const Scalar& scalar) const;
-
- ExpressionType& operator-=(const Scalar& scalar);
-
- template<typename OtherDerived>
- inline ExpressionType& operator*=(const MatrixBase<OtherDerived> &other);
-
- template<typename OtherDerived>
- inline ExpressionType& operator/=(const MatrixBase<OtherDerived> &other);
-
- template<typename OtherDerived> const EIGEN_CWISE_BINOP_RETURN_TYPE(std::less)
- operator<(const MatrixBase<OtherDerived>& other) const;
-
- template<typename OtherDerived> const EIGEN_CWISE_BINOP_RETURN_TYPE(std::less_equal)
- operator<=(const MatrixBase<OtherDerived>& other) const;
-
- template<typename OtherDerived> const EIGEN_CWISE_BINOP_RETURN_TYPE(std::greater)
- operator>(const MatrixBase<OtherDerived>& other) const;
-
- template<typename OtherDerived> const EIGEN_CWISE_BINOP_RETURN_TYPE(std::greater_equal)
- operator>=(const MatrixBase<OtherDerived>& other) const;
-
- template<typename OtherDerived> const EIGEN_CWISE_BINOP_RETURN_TYPE(std::equal_to)
- operator==(const MatrixBase<OtherDerived>& other) const;
-
- template<typename OtherDerived> const EIGEN_CWISE_BINOP_RETURN_TYPE(std::not_equal_to)
- operator!=(const MatrixBase<OtherDerived>& other) const;
-
- // comparisons to a scalar value
- const EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::less)
- operator<(Scalar s) const;
-
- const EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::less_equal)
- operator<=(Scalar s) const;
-
- const EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::greater)
- operator>(Scalar s) const;
-
- const EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::greater_equal)
- operator>=(Scalar s) const;
-
- const EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::equal_to)
- operator==(Scalar s) const;
-
- const EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::not_equal_to)
- operator!=(Scalar s) const;
-
- // allow to extend Cwise outside Eigen
- #ifdef EIGEN_CWISE_PLUGIN
- #include EIGEN_CWISE_PLUGIN
- #endif
-
- protected:
- ExpressionTypeNested m_matrix;
-};
-
-
-/** \returns a Cwise wrapper of *this providing additional coefficient-wise operations
- *
- * Example: \include MatrixBase_cwise_const.cpp
- * Output: \verbinclude MatrixBase_cwise_const.out
- *
- * \sa class Cwise, cwise()
- */
-template<typename Derived>
-inline const Cwise<Derived> MatrixBase<Derived>::cwise() const
-{
- return derived();
-}
-
-/** \returns a Cwise wrapper of *this providing additional coefficient-wise operations
- *
- * Example: \include MatrixBase_cwise.cpp
- * Output: \verbinclude MatrixBase_cwise.out
- *
- * \sa class Cwise, cwise() const
- */
-template<typename Derived>
-inline Cwise<Derived> MatrixBase<Derived>::cwise()
-{
- return derived();
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_CWISE_H
diff --git a/Eigen/src/Eigen2Support/CwiseOperators.h b/Eigen/src/Eigen2Support/CwiseOperators.h
deleted file mode 100644
index 482f30648..000000000
--- a/Eigen/src/Eigen2Support/CwiseOperators.h
+++ /dev/null
@@ -1,298 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_ARRAY_CWISE_OPERATORS_H
-#define EIGEN_ARRAY_CWISE_OPERATORS_H
-
-namespace Eigen {
-
-/***************************************************************************
-* The following functions were defined in Core
-***************************************************************************/
-
-
-/** \deprecated ArrayBase::abs() */
-template<typename ExpressionType>
-EIGEN_STRONG_INLINE const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_abs_op)
-Cwise<ExpressionType>::abs() const
-{
- return _expression();
-}
-
-/** \deprecated ArrayBase::abs2() */
-template<typename ExpressionType>
-EIGEN_STRONG_INLINE const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_abs2_op)
-Cwise<ExpressionType>::abs2() const
-{
- return _expression();
-}
-
-/** \deprecated ArrayBase::exp() */
-template<typename ExpressionType>
-inline const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_exp_op)
-Cwise<ExpressionType>::exp() const
-{
- return _expression();
-}
-
-/** \deprecated ArrayBase::log() */
-template<typename ExpressionType>
-inline const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_log_op)
-Cwise<ExpressionType>::log() const
-{
- return _expression();
-}
-
-/** \deprecated ArrayBase::operator*() */
-template<typename ExpressionType>
-template<typename OtherDerived>
-EIGEN_STRONG_INLINE const EIGEN_CWISE_PRODUCT_RETURN_TYPE(ExpressionType,OtherDerived)
-Cwise<ExpressionType>::operator*(const MatrixBase<OtherDerived> &other) const
-{
- return EIGEN_CWISE_PRODUCT_RETURN_TYPE(ExpressionType,OtherDerived)(_expression(), other.derived());
-}
-
-/** \deprecated ArrayBase::operator/() */
-template<typename ExpressionType>
-template<typename OtherDerived>
-EIGEN_STRONG_INLINE const EIGEN_CWISE_BINOP_RETURN_TYPE(internal::scalar_quotient_op)
-Cwise<ExpressionType>::operator/(const MatrixBase<OtherDerived> &other) const
-{
- return EIGEN_CWISE_BINOP_RETURN_TYPE(internal::scalar_quotient_op)(_expression(), other.derived());
-}
-
-/** \deprecated ArrayBase::operator*=() */
-template<typename ExpressionType>
-template<typename OtherDerived>
-inline ExpressionType& Cwise<ExpressionType>::operator*=(const MatrixBase<OtherDerived> &other)
-{
- return m_matrix.const_cast_derived() = *this * other;
-}
-
-/** \deprecated ArrayBase::operator/=() */
-template<typename ExpressionType>
-template<typename OtherDerived>
-inline ExpressionType& Cwise<ExpressionType>::operator/=(const MatrixBase<OtherDerived> &other)
-{
- return m_matrix.const_cast_derived() = *this / other;
-}
-
-/***************************************************************************
-* The following functions were defined in Array
-***************************************************************************/
-
-// -- unary operators --
-
-/** \deprecated ArrayBase::sqrt() */
-template<typename ExpressionType>
-inline const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_sqrt_op)
-Cwise<ExpressionType>::sqrt() const
-{
- return _expression();
-}
-
-/** \deprecated ArrayBase::cos() */
-template<typename ExpressionType>
-inline const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_cos_op)
-Cwise<ExpressionType>::cos() const
-{
- return _expression();
-}
-
-
-/** \deprecated ArrayBase::sin() */
-template<typename ExpressionType>
-inline const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_sin_op)
-Cwise<ExpressionType>::sin() const
-{
- return _expression();
-}
-
-
-/** \deprecated ArrayBase::log() */
-template<typename ExpressionType>
-inline const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_pow_op)
-Cwise<ExpressionType>::pow(const Scalar& exponent) const
-{
- return EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_pow_op)(_expression(), internal::scalar_pow_op<Scalar>(exponent));
-}
-
-
-/** \deprecated ArrayBase::inverse() */
-template<typename ExpressionType>
-inline const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_inverse_op)
-Cwise<ExpressionType>::inverse() const
-{
- return _expression();
-}
-
-/** \deprecated ArrayBase::square() */
-template<typename ExpressionType>
-inline const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_square_op)
-Cwise<ExpressionType>::square() const
-{
- return _expression();
-}
-
-/** \deprecated ArrayBase::cube() */
-template<typename ExpressionType>
-inline const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_cube_op)
-Cwise<ExpressionType>::cube() const
-{
- return _expression();
-}
-
-
-// -- binary operators --
-
-/** \deprecated ArrayBase::operator<() */
-template<typename ExpressionType>
-template<typename OtherDerived>
-inline const EIGEN_CWISE_BINOP_RETURN_TYPE(std::less)
-Cwise<ExpressionType>::operator<(const MatrixBase<OtherDerived> &other) const
-{
- return EIGEN_CWISE_BINOP_RETURN_TYPE(std::less)(_expression(), other.derived());
-}
-
-/** \deprecated ArrayBase::<=() */
-template<typename ExpressionType>
-template<typename OtherDerived>
-inline const EIGEN_CWISE_BINOP_RETURN_TYPE(std::less_equal)
-Cwise<ExpressionType>::operator<=(const MatrixBase<OtherDerived> &other) const
-{
- return EIGEN_CWISE_BINOP_RETURN_TYPE(std::less_equal)(_expression(), other.derived());
-}
-
-/** \deprecated ArrayBase::operator>() */
-template<typename ExpressionType>
-template<typename OtherDerived>
-inline const EIGEN_CWISE_BINOP_RETURN_TYPE(std::greater)
-Cwise<ExpressionType>::operator>(const MatrixBase<OtherDerived> &other) const
-{
- return EIGEN_CWISE_BINOP_RETURN_TYPE(std::greater)(_expression(), other.derived());
-}
-
-/** \deprecated ArrayBase::operator>=() */
-template<typename ExpressionType>
-template<typename OtherDerived>
-inline const EIGEN_CWISE_BINOP_RETURN_TYPE(std::greater_equal)
-Cwise<ExpressionType>::operator>=(const MatrixBase<OtherDerived> &other) const
-{
- return EIGEN_CWISE_BINOP_RETURN_TYPE(std::greater_equal)(_expression(), other.derived());
-}
-
-/** \deprecated ArrayBase::operator==() */
-template<typename ExpressionType>
-template<typename OtherDerived>
-inline const EIGEN_CWISE_BINOP_RETURN_TYPE(std::equal_to)
-Cwise<ExpressionType>::operator==(const MatrixBase<OtherDerived> &other) const
-{
- return EIGEN_CWISE_BINOP_RETURN_TYPE(std::equal_to)(_expression(), other.derived());
-}
-
-/** \deprecated ArrayBase::operator!=() */
-template<typename ExpressionType>
-template<typename OtherDerived>
-inline const EIGEN_CWISE_BINOP_RETURN_TYPE(std::not_equal_to)
-Cwise<ExpressionType>::operator!=(const MatrixBase<OtherDerived> &other) const
-{
- return EIGEN_CWISE_BINOP_RETURN_TYPE(std::not_equal_to)(_expression(), other.derived());
-}
-
-// comparisons to scalar value
-
-/** \deprecated ArrayBase::operator<(Scalar) */
-template<typename ExpressionType>
-inline const EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::less)
-Cwise<ExpressionType>::operator<(Scalar s) const
-{
- return EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::less)(_expression(),
- typename ExpressionType::ConstantReturnType(_expression().rows(), _expression().cols(), s));
-}
-
-/** \deprecated ArrayBase::operator<=(Scalar) */
-template<typename ExpressionType>
-inline const EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::less_equal)
-Cwise<ExpressionType>::operator<=(Scalar s) const
-{
- return EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::less_equal)(_expression(),
- typename ExpressionType::ConstantReturnType(_expression().rows(), _expression().cols(), s));
-}
-
-/** \deprecated ArrayBase::operator>(Scalar) */
-template<typename ExpressionType>
-inline const EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::greater)
-Cwise<ExpressionType>::operator>(Scalar s) const
-{
- return EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::greater)(_expression(),
- typename ExpressionType::ConstantReturnType(_expression().rows(), _expression().cols(), s));
-}
-
-/** \deprecated ArrayBase::operator>=(Scalar) */
-template<typename ExpressionType>
-inline const EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::greater_equal)
-Cwise<ExpressionType>::operator>=(Scalar s) const
-{
- return EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::greater_equal)(_expression(),
- typename ExpressionType::ConstantReturnType(_expression().rows(), _expression().cols(), s));
-}
-
-/** \deprecated ArrayBase::operator==(Scalar) */
-template<typename ExpressionType>
-inline const EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::equal_to)
-Cwise<ExpressionType>::operator==(Scalar s) const
-{
- return EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::equal_to)(_expression(),
- typename ExpressionType::ConstantReturnType(_expression().rows(), _expression().cols(), s));
-}
-
-/** \deprecated ArrayBase::operator!=(Scalar) */
-template<typename ExpressionType>
-inline const EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::not_equal_to)
-Cwise<ExpressionType>::operator!=(Scalar s) const
-{
- return EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::not_equal_to)(_expression(),
- typename ExpressionType::ConstantReturnType(_expression().rows(), _expression().cols(), s));
-}
-
-// scalar addition
-
-/** \deprecated ArrayBase::operator+(Scalar) */
-template<typename ExpressionType>
-inline const typename Cwise<ExpressionType>::ScalarAddReturnType
-Cwise<ExpressionType>::operator+(const Scalar& scalar) const
-{
- return typename Cwise<ExpressionType>::ScalarAddReturnType(m_matrix, internal::scalar_add_op<Scalar>(scalar));
-}
-
-/** \deprecated ArrayBase::operator+=(Scalar) */
-template<typename ExpressionType>
-inline ExpressionType& Cwise<ExpressionType>::operator+=(const Scalar& scalar)
-{
- return m_matrix.const_cast_derived() = *this + scalar;
-}
-
-/** \deprecated ArrayBase::operator-(Scalar) */
-template<typename ExpressionType>
-inline const typename Cwise<ExpressionType>::ScalarAddReturnType
-Cwise<ExpressionType>::operator-(const Scalar& scalar) const
-{
- return *this + (-scalar);
-}
-
-/** \deprecated ArrayBase::operator-=(Scalar) */
-template<typename ExpressionType>
-inline ExpressionType& Cwise<ExpressionType>::operator-=(const Scalar& scalar)
-{
- return m_matrix.const_cast_derived() = *this - scalar;
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_ARRAY_CWISE_OPERATORS_H
diff --git a/Eigen/src/Eigen2Support/Geometry/AlignedBox.h b/Eigen/src/Eigen2Support/Geometry/AlignedBox.h
deleted file mode 100644
index 2e4309dd9..000000000
--- a/Eigen/src/Eigen2Support/Geometry/AlignedBox.h
+++ /dev/null
@@ -1,159 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
-
-namespace Eigen {
-
-/** \geometry_module \ingroup Geometry_Module
- * \nonstableyet
- *
- * \class AlignedBox
- *
- * \brief An axis aligned box
- *
- * \param _Scalar the type of the scalar coefficients
- * \param _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic.
- *
- * This class represents an axis aligned box as a pair of the minimal and maximal corners.
- */
-template <typename _Scalar, int _AmbientDim>
-class AlignedBox
-{
-public:
-EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim==Dynamic ? Dynamic : _AmbientDim+1)
- enum { AmbientDimAtCompileTime = _AmbientDim };
- typedef _Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef Matrix<Scalar,AmbientDimAtCompileTime,1> VectorType;
-
- /** Default constructor initializing a null box. */
- inline AlignedBox()
- { if (AmbientDimAtCompileTime!=Dynamic) setNull(); }
-
- /** Constructs a null box with \a _dim the dimension of the ambient space. */
- inline explicit AlignedBox(int _dim) : m_min(_dim), m_max(_dim)
- { setNull(); }
-
- /** Constructs a box with extremities \a _min and \a _max. */
- inline AlignedBox(const VectorType& _min, const VectorType& _max) : m_min(_min), m_max(_max) {}
-
- /** Constructs a box containing a single point \a p. */
- inline explicit AlignedBox(const VectorType& p) : m_min(p), m_max(p) {}
-
- ~AlignedBox() {}
-
- /** \returns the dimension in which the box holds */
- inline int dim() const { return AmbientDimAtCompileTime==Dynamic ? m_min.size()-1 : AmbientDimAtCompileTime; }
-
- /** \returns true if the box is null, i.e, empty. */
- inline bool isNull() const { return (m_min.cwise() > m_max).any(); }
-
- /** Makes \c *this a null/empty box. */
- inline void setNull()
- {
- m_min.setConstant( (std::numeric_limits<Scalar>::max)());
- m_max.setConstant(-(std::numeric_limits<Scalar>::max)());
- }
-
- /** \returns the minimal corner */
- inline const VectorType& (min)() const { return m_min; }
- /** \returns a non const reference to the minimal corner */
- inline VectorType& (min)() { return m_min; }
- /** \returns the maximal corner */
- inline const VectorType& (max)() const { return m_max; }
- /** \returns a non const reference to the maximal corner */
- inline VectorType& (max)() { return m_max; }
-
- /** \returns true if the point \a p is inside the box \c *this. */
- inline bool contains(const VectorType& p) const
- { return (m_min.cwise()<=p).all() && (p.cwise()<=m_max).all(); }
-
- /** \returns true if the box \a b is entirely inside the box \c *this. */
- inline bool contains(const AlignedBox& b) const
- { return (m_min.cwise()<=(b.min)()).all() && ((b.max)().cwise()<=m_max).all(); }
-
- /** Extends \c *this such that it contains the point \a p and returns a reference to \c *this. */
- inline AlignedBox& extend(const VectorType& p)
- { m_min = (m_min.cwise().min)(p); m_max = (m_max.cwise().max)(p); return *this; }
-
- /** Extends \c *this such that it contains the box \a b and returns a reference to \c *this. */
- inline AlignedBox& extend(const AlignedBox& b)
- { m_min = (m_min.cwise().min)(b.m_min); m_max = (m_max.cwise().max)(b.m_max); return *this; }
-
- /** Clamps \c *this by the box \a b and returns a reference to \c *this. */
- inline AlignedBox& clamp(const AlignedBox& b)
- { m_min = (m_min.cwise().max)(b.m_min); m_max = (m_max.cwise().min)(b.m_max); return *this; }
-
- /** Translate \c *this by the vector \a t and returns a reference to \c *this. */
- inline AlignedBox& translate(const VectorType& t)
- { m_min += t; m_max += t; return *this; }
-
- /** \returns the squared distance between the point \a p and the box \c *this,
- * and zero if \a p is inside the box.
- * \sa exteriorDistance()
- */
- inline Scalar squaredExteriorDistance(const VectorType& p) const;
-
- /** \returns the distance between the point \a p and the box \c *this,
- * and zero if \a p is inside the box.
- * \sa squaredExteriorDistance()
- */
- inline Scalar exteriorDistance(const VectorType& p) const
- { return ei_sqrt(squaredExteriorDistance(p)); }
-
- /** \returns \c *this with scalar type casted to \a NewScalarType
- *
- * Note that if \a NewScalarType is equal to the current scalar type of \c *this
- * then this function smartly returns a const reference to \c *this.
- */
- template<typename NewScalarType>
- inline typename internal::cast_return_type<AlignedBox,
- AlignedBox<NewScalarType,AmbientDimAtCompileTime> >::type cast() const
- {
- return typename internal::cast_return_type<AlignedBox,
- AlignedBox<NewScalarType,AmbientDimAtCompileTime> >::type(*this);
- }
-
- /** Copy constructor with scalar type conversion */
- template<typename OtherScalarType>
- inline explicit AlignedBox(const AlignedBox<OtherScalarType,AmbientDimAtCompileTime>& other)
- {
- m_min = (other.min)().template cast<Scalar>();
- m_max = (other.max)().template cast<Scalar>();
- }
-
- /** \returns \c true if \c *this is approximately equal to \a other, within the precision
- * determined by \a prec.
- *
- * \sa MatrixBase::isApprox() */
- bool isApprox(const AlignedBox& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
- { return m_min.isApprox(other.m_min, prec) && m_max.isApprox(other.m_max, prec); }
-
-protected:
-
- VectorType m_min, m_max;
-};
-
-template<typename Scalar,int AmbiantDim>
-inline Scalar AlignedBox<Scalar,AmbiantDim>::squaredExteriorDistance(const VectorType& p) const
-{
- Scalar dist2(0);
- Scalar aux;
- for (int k=0; k<dim(); ++k)
- {
- if ((aux = (p[k]-m_min[k]))<Scalar(0))
- dist2 += aux*aux;
- else if ( (aux = (m_max[k]-p[k]))<Scalar(0))
- dist2 += aux*aux;
- }
- return dist2;
-}
-
-} // end namespace Eigen
diff --git a/Eigen/src/Eigen2Support/Geometry/All.h b/Eigen/src/Eigen2Support/Geometry/All.h
deleted file mode 100644
index e0b00fccc..000000000
--- a/Eigen/src/Eigen2Support/Geometry/All.h
+++ /dev/null
@@ -1,115 +0,0 @@
-#ifndef EIGEN2_GEOMETRY_MODULE_H
-#define EIGEN2_GEOMETRY_MODULE_H
-
-#include <limits>
-
-#ifndef M_PI
-#define M_PI 3.14159265358979323846
-#endif
-
-#if EIGEN2_SUPPORT_STAGE < STAGE20_RESOLVE_API_CONFLICTS
-#include "RotationBase.h"
-#include "Rotation2D.h"
-#include "Quaternion.h"
-#include "AngleAxis.h"
-#include "Transform.h"
-#include "Translation.h"
-#include "Scaling.h"
-#include "AlignedBox.h"
-#include "Hyperplane.h"
-#include "ParametrizedLine.h"
-#endif
-
-
-#define RotationBase eigen2_RotationBase
-#define Rotation2D eigen2_Rotation2D
-#define Rotation2Df eigen2_Rotation2Df
-#define Rotation2Dd eigen2_Rotation2Dd
-
-#define Quaternion eigen2_Quaternion
-#define Quaternionf eigen2_Quaternionf
-#define Quaterniond eigen2_Quaterniond
-
-#define AngleAxis eigen2_AngleAxis
-#define AngleAxisf eigen2_AngleAxisf
-#define AngleAxisd eigen2_AngleAxisd
-
-#define Transform eigen2_Transform
-#define Transform2f eigen2_Transform2f
-#define Transform2d eigen2_Transform2d
-#define Transform3f eigen2_Transform3f
-#define Transform3d eigen2_Transform3d
-
-#define Translation eigen2_Translation
-#define Translation2f eigen2_Translation2f
-#define Translation2d eigen2_Translation2d
-#define Translation3f eigen2_Translation3f
-#define Translation3d eigen2_Translation3d
-
-#define Scaling eigen2_Scaling
-#define Scaling2f eigen2_Scaling2f
-#define Scaling2d eigen2_Scaling2d
-#define Scaling3f eigen2_Scaling3f
-#define Scaling3d eigen2_Scaling3d
-
-#define AlignedBox eigen2_AlignedBox
-
-#define Hyperplane eigen2_Hyperplane
-#define ParametrizedLine eigen2_ParametrizedLine
-
-#define ei_toRotationMatrix eigen2_ei_toRotationMatrix
-#define ei_quaternion_assign_impl eigen2_ei_quaternion_assign_impl
-#define ei_transform_product_impl eigen2_ei_transform_product_impl
-
-#include "RotationBase.h"
-#include "Rotation2D.h"
-#include "Quaternion.h"
-#include "AngleAxis.h"
-#include "Transform.h"
-#include "Translation.h"
-#include "Scaling.h"
-#include "AlignedBox.h"
-#include "Hyperplane.h"
-#include "ParametrizedLine.h"
-
-#undef ei_toRotationMatrix
-#undef ei_quaternion_assign_impl
-#undef ei_transform_product_impl
-
-#undef RotationBase
-#undef Rotation2D
-#undef Rotation2Df
-#undef Rotation2Dd
-
-#undef Quaternion
-#undef Quaternionf
-#undef Quaterniond
-
-#undef AngleAxis
-#undef AngleAxisf
-#undef AngleAxisd
-
-#undef Transform
-#undef Transform2f
-#undef Transform2d
-#undef Transform3f
-#undef Transform3d
-
-#undef Translation
-#undef Translation2f
-#undef Translation2d
-#undef Translation3f
-#undef Translation3d
-
-#undef Scaling
-#undef Scaling2f
-#undef Scaling2d
-#undef Scaling3f
-#undef Scaling3d
-
-#undef AlignedBox
-
-#undef Hyperplane
-#undef ParametrizedLine
-
-#endif // EIGEN2_GEOMETRY_MODULE_H
diff --git a/Eigen/src/Eigen2Support/Geometry/AngleAxis.h b/Eigen/src/Eigen2Support/Geometry/AngleAxis.h
deleted file mode 100644
index a0b4ac44e..000000000
--- a/Eigen/src/Eigen2Support/Geometry/AngleAxis.h
+++ /dev/null
@@ -1,228 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
-
-namespace Eigen {
-
-/** \geometry_module \ingroup Geometry_Module
- *
- * \class AngleAxis
- *
- * \brief Represents a 3D rotation as a rotation angle around an arbitrary 3D axis
- *
- * \param _Scalar the scalar type, i.e., the type of the coefficients.
- *
- * The following two typedefs are provided for convenience:
- * \li \c AngleAxisf for \c float
- * \li \c AngleAxisd for \c double
- *
- * \addexample AngleAxisForEuler \label How to define a rotation from Euler-angles
- *
- * Combined with MatrixBase::Unit{X,Y,Z}, AngleAxis can be used to easily
- * mimic Euler-angles. Here is an example:
- * \include AngleAxis_mimic_euler.cpp
- * Output: \verbinclude AngleAxis_mimic_euler.out
- *
- * \note This class is not aimed to be used to store a rotation transformation,
- * but rather to make easier the creation of other rotation (Quaternion, rotation Matrix)
- * and transformation objects.
- *
- * \sa class Quaternion, class Transform, MatrixBase::UnitX()
- */
-
-template<typename _Scalar> struct ei_traits<AngleAxis<_Scalar> >
-{
- typedef _Scalar Scalar;
-};
-
-template<typename _Scalar>
-class AngleAxis : public RotationBase<AngleAxis<_Scalar>,3>
-{
- typedef RotationBase<AngleAxis<_Scalar>,3> Base;
-
-public:
-
- using Base::operator*;
-
- enum { Dim = 3 };
- /** the scalar type of the coefficients */
- typedef _Scalar Scalar;
- typedef Matrix<Scalar,3,3> Matrix3;
- typedef Matrix<Scalar,3,1> Vector3;
- typedef Quaternion<Scalar> QuaternionType;
-
-protected:
-
- Vector3 m_axis;
- Scalar m_angle;
-
-public:
-
- /** Default constructor without initialization. */
- AngleAxis() {}
-
- /** Constructs and initialize the angle-axis rotation from an \a angle in radian
- * and an \a axis which must be normalized. */
- template<typename Derived>
- inline AngleAxis(Scalar angle, const MatrixBase<Derived>& axis) : m_axis(axis), m_angle(angle)
- {
- using std::sqrt;
- using std::abs;
- // since we compare against 1, this is equal to computing the relative error
- eigen_assert( abs(m_axis.derived().squaredNorm() - 1) < sqrt( NumTraits<Scalar>::dummy_precision() ) );
- }
-
- /** Constructs and initialize the angle-axis rotation from a quaternion \a q. */
- inline AngleAxis(const QuaternionType& q) { *this = q; }
-
- /** Constructs and initialize the angle-axis rotation from a 3x3 rotation matrix. */
- template<typename Derived>
- inline explicit AngleAxis(const MatrixBase<Derived>& m) { *this = m; }
-
- Scalar angle() const { return m_angle; }
- Scalar& angle() { return m_angle; }
-
- const Vector3& axis() const { return m_axis; }
- Vector3& axis() { return m_axis; }
-
- /** Concatenates two rotations */
- inline QuaternionType operator* (const AngleAxis& other) const
- { return QuaternionType(*this) * QuaternionType(other); }
-
- /** Concatenates two rotations */
- inline QuaternionType operator* (const QuaternionType& other) const
- { return QuaternionType(*this) * other; }
-
- /** Concatenates two rotations */
- friend inline QuaternionType operator* (const QuaternionType& a, const AngleAxis& b)
- { return a * QuaternionType(b); }
-
- /** Concatenates two rotations */
- inline Matrix3 operator* (const Matrix3& other) const
- { return toRotationMatrix() * other; }
-
- /** Concatenates two rotations */
- inline friend Matrix3 operator* (const Matrix3& a, const AngleAxis& b)
- { return a * b.toRotationMatrix(); }
-
- /** Applies rotation to vector */
- inline Vector3 operator* (const Vector3& other) const
- { return toRotationMatrix() * other; }
-
- /** \returns the inverse rotation, i.e., an angle-axis with opposite rotation angle */
- AngleAxis inverse() const
- { return AngleAxis(-m_angle, m_axis); }
-
- AngleAxis& operator=(const QuaternionType& q);
- template<typename Derived>
- AngleAxis& operator=(const MatrixBase<Derived>& m);
-
- template<typename Derived>
- AngleAxis& fromRotationMatrix(const MatrixBase<Derived>& m);
- Matrix3 toRotationMatrix(void) const;
-
- /** \returns \c *this with scalar type casted to \a NewScalarType
- *
- * Note that if \a NewScalarType is equal to the current scalar type of \c *this
- * then this function smartly returns a const reference to \c *this.
- */
- template<typename NewScalarType>
- inline typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type cast() const
- { return typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type(*this); }
-
- /** Copy constructor with scalar type conversion */
- template<typename OtherScalarType>
- inline explicit AngleAxis(const AngleAxis<OtherScalarType>& other)
- {
- m_axis = other.axis().template cast<Scalar>();
- m_angle = Scalar(other.angle());
- }
-
- /** \returns \c true if \c *this is approximately equal to \a other, within the precision
- * determined by \a prec.
- *
- * \sa MatrixBase::isApprox() */
- bool isApprox(const AngleAxis& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
- { return m_axis.isApprox(other.m_axis, prec) && ei_isApprox(m_angle,other.m_angle, prec); }
-};
-
-/** \ingroup Geometry_Module
- * single precision angle-axis type */
-typedef AngleAxis<float> AngleAxisf;
-/** \ingroup Geometry_Module
- * double precision angle-axis type */
-typedef AngleAxis<double> AngleAxisd;
-
-/** Set \c *this from a quaternion.
- * The axis is normalized.
- */
-template<typename Scalar>
-AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const QuaternionType& q)
-{
- Scalar n2 = q.vec().squaredNorm();
- if (n2 < precision<Scalar>()*precision<Scalar>())
- {
- m_angle = 0;
- m_axis << 1, 0, 0;
- }
- else
- {
- m_angle = 2*std::acos(q.w());
- m_axis = q.vec() / ei_sqrt(n2);
-
- using std::sqrt;
- using std::abs;
- // since we compare against 1, this is equal to computing the relative error
- eigen_assert( abs(m_axis.derived().squaredNorm() - 1) < sqrt( NumTraits<Scalar>::dummy_precision() ) );
- }
- return *this;
-}
-
-/** Set \c *this from a 3x3 rotation matrix \a mat.
- */
-template<typename Scalar>
-template<typename Derived>
-AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const MatrixBase<Derived>& mat)
-{
- // Since a direct conversion would not be really faster,
- // let's use the robust Quaternion implementation:
- return *this = QuaternionType(mat);
-}
-
-/** Constructs and \returns an equivalent 3x3 rotation matrix.
- */
-template<typename Scalar>
-typename AngleAxis<Scalar>::Matrix3
-AngleAxis<Scalar>::toRotationMatrix(void) const
-{
- Matrix3 res;
- Vector3 sin_axis = ei_sin(m_angle) * m_axis;
- Scalar c = ei_cos(m_angle);
- Vector3 cos1_axis = (Scalar(1)-c) * m_axis;
-
- Scalar tmp;
- tmp = cos1_axis.x() * m_axis.y();
- res.coeffRef(0,1) = tmp - sin_axis.z();
- res.coeffRef(1,0) = tmp + sin_axis.z();
-
- tmp = cos1_axis.x() * m_axis.z();
- res.coeffRef(0,2) = tmp + sin_axis.y();
- res.coeffRef(2,0) = tmp - sin_axis.y();
-
- tmp = cos1_axis.y() * m_axis.z();
- res.coeffRef(1,2) = tmp - sin_axis.x();
- res.coeffRef(2,1) = tmp + sin_axis.x();
-
- res.diagonal() = (cos1_axis.cwise() * m_axis).cwise() + c;
-
- return res;
-}
-
-} // end namespace Eigen
diff --git a/Eigen/src/Eigen2Support/Geometry/CMakeLists.txt b/Eigen/src/Eigen2Support/Geometry/CMakeLists.txt
deleted file mode 100644
index c347a8f26..000000000
--- a/Eigen/src/Eigen2Support/Geometry/CMakeLists.txt
+++ /dev/null
@@ -1,6 +0,0 @@
-FILE(GLOB Eigen_Eigen2Support_Geometry_SRCS "*.h")
-
-INSTALL(FILES
- ${Eigen_Eigen2Support_Geometry_SRCS}
- DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/Eigen2Support/Geometry
- )
diff --git a/Eigen/src/Eigen2Support/Geometry/Hyperplane.h b/Eigen/src/Eigen2Support/Geometry/Hyperplane.h
deleted file mode 100644
index b95bf00ec..000000000
--- a/Eigen/src/Eigen2Support/Geometry/Hyperplane.h
+++ /dev/null
@@ -1,254 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
-// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
-
-namespace Eigen {
-
-/** \geometry_module \ingroup Geometry_Module
- *
- * \class Hyperplane
- *
- * \brief A hyperplane
- *
- * A hyperplane is an affine subspace of dimension n-1 in a space of dimension n.
- * For example, a hyperplane in a plane is a line; a hyperplane in 3-space is a plane.
- *
- * \param _Scalar the scalar type, i.e., the type of the coefficients
- * \param _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic.
- * Notice that the dimension of the hyperplane is _AmbientDim-1.
- *
- * This class represents an hyperplane as the zero set of the implicit equation
- * \f$ n \cdot x + d = 0 \f$ where \f$ n \f$ is a unit normal vector of the plane (linear part)
- * and \f$ d \f$ is the distance (offset) to the origin.
- */
-template <typename _Scalar, int _AmbientDim>
-class Hyperplane
-{
-public:
- EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim==Dynamic ? Dynamic : _AmbientDim+1)
- enum { AmbientDimAtCompileTime = _AmbientDim };
- typedef _Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef Matrix<Scalar,AmbientDimAtCompileTime,1> VectorType;
- typedef Matrix<Scalar,int(AmbientDimAtCompileTime)==Dynamic
- ? Dynamic
- : int(AmbientDimAtCompileTime)+1,1> Coefficients;
- typedef Block<Coefficients,AmbientDimAtCompileTime,1> NormalReturnType;
-
- /** Default constructor without initialization */
- inline Hyperplane() {}
-
- /** Constructs a dynamic-size hyperplane with \a _dim the dimension
- * of the ambient space */
- inline explicit Hyperplane(int _dim) : m_coeffs(_dim+1) {}
-
- /** Construct a plane from its normal \a n and a point \a e onto the plane.
- * \warning the vector normal is assumed to be normalized.
- */
- inline Hyperplane(const VectorType& n, const VectorType& e)
- : m_coeffs(n.size()+1)
- {
- normal() = n;
- offset() = -e.eigen2_dot(n);
- }
-
- /** Constructs a plane from its normal \a n and distance to the origin \a d
- * such that the algebraic equation of the plane is \f$ n \cdot x + d = 0 \f$.
- * \warning the vector normal is assumed to be normalized.
- */
- inline Hyperplane(const VectorType& n, Scalar d)
- : m_coeffs(n.size()+1)
- {
- normal() = n;
- offset() = d;
- }
-
- /** Constructs a hyperplane passing through the two points. If the dimension of the ambient space
- * is greater than 2, then there isn't uniqueness, so an arbitrary choice is made.
- */
- static inline Hyperplane Through(const VectorType& p0, const VectorType& p1)
- {
- Hyperplane result(p0.size());
- result.normal() = (p1 - p0).unitOrthogonal();
- result.offset() = -result.normal().eigen2_dot(p0);
- return result;
- }
-
- /** Constructs a hyperplane passing through the three points. The dimension of the ambient space
- * is required to be exactly 3.
- */
- static inline Hyperplane Through(const VectorType& p0, const VectorType& p1, const VectorType& p2)
- {
- EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 3)
- Hyperplane result(p0.size());
- result.normal() = (p2 - p0).cross(p1 - p0).normalized();
- result.offset() = -result.normal().eigen2_dot(p0);
- return result;
- }
-
- /** Constructs a hyperplane passing through the parametrized line \a parametrized.
- * If the dimension of the ambient space is greater than 2, then there isn't uniqueness,
- * so an arbitrary choice is made.
- */
- // FIXME to be consitent with the rest this could be implemented as a static Through function ??
- explicit Hyperplane(const ParametrizedLine<Scalar, AmbientDimAtCompileTime>& parametrized)
- {
- normal() = parametrized.direction().unitOrthogonal();
- offset() = -normal().eigen2_dot(parametrized.origin());
- }
-
- ~Hyperplane() {}
-
- /** \returns the dimension in which the plane holds */
- inline int dim() const { return int(AmbientDimAtCompileTime)==Dynamic ? m_coeffs.size()-1 : int(AmbientDimAtCompileTime); }
-
- /** normalizes \c *this */
- void normalize(void)
- {
- m_coeffs /= normal().norm();
- }
-
- /** \returns the signed distance between the plane \c *this and a point \a p.
- * \sa absDistance()
- */
- inline Scalar signedDistance(const VectorType& p) const { return p.eigen2_dot(normal()) + offset(); }
-
- /** \returns the absolute distance between the plane \c *this and a point \a p.
- * \sa signedDistance()
- */
- inline Scalar absDistance(const VectorType& p) const { return ei_abs(signedDistance(p)); }
-
- /** \returns the projection of a point \a p onto the plane \c *this.
- */
- inline VectorType projection(const VectorType& p) const { return p - signedDistance(p) * normal(); }
-
- /** \returns a constant reference to the unit normal vector of the plane, which corresponds
- * to the linear part of the implicit equation.
- */
- inline const NormalReturnType normal() const { return NormalReturnType(*const_cast<Coefficients*>(&m_coeffs),0,0,dim(),1); }
-
- /** \returns a non-constant reference to the unit normal vector of the plane, which corresponds
- * to the linear part of the implicit equation.
- */
- inline NormalReturnType normal() { return NormalReturnType(m_coeffs,0,0,dim(),1); }
-
- /** \returns the distance to the origin, which is also the "constant term" of the implicit equation
- * \warning the vector normal is assumed to be normalized.
- */
- inline const Scalar& offset() const { return m_coeffs.coeff(dim()); }
-
- /** \returns a non-constant reference to the distance to the origin, which is also the constant part
- * of the implicit equation */
- inline Scalar& offset() { return m_coeffs(dim()); }
-
- /** \returns a constant reference to the coefficients c_i of the plane equation:
- * \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$
- */
- inline const Coefficients& coeffs() const { return m_coeffs; }
-
- /** \returns a non-constant reference to the coefficients c_i of the plane equation:
- * \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$
- */
- inline Coefficients& coeffs() { return m_coeffs; }
-
- /** \returns the intersection of *this with \a other.
- *
- * \warning The ambient space must be a plane, i.e. have dimension 2, so that \c *this and \a other are lines.
- *
- * \note If \a other is approximately parallel to *this, this method will return any point on *this.
- */
- VectorType intersection(const Hyperplane& other)
- {
- EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 2)
- Scalar det = coeffs().coeff(0) * other.coeffs().coeff(1) - coeffs().coeff(1) * other.coeffs().coeff(0);
- // since the line equations ax+by=c are normalized with a^2+b^2=1, the following tests
- // whether the two lines are approximately parallel.
- if(ei_isMuchSmallerThan(det, Scalar(1)))
- { // special case where the two lines are approximately parallel. Pick any point on the first line.
- if(ei_abs(coeffs().coeff(1))>ei_abs(coeffs().coeff(0)))
- return VectorType(coeffs().coeff(1), -coeffs().coeff(2)/coeffs().coeff(1)-coeffs().coeff(0));
- else
- return VectorType(-coeffs().coeff(2)/coeffs().coeff(0)-coeffs().coeff(1), coeffs().coeff(0));
- }
- else
- { // general case
- Scalar invdet = Scalar(1) / det;
- return VectorType(invdet*(coeffs().coeff(1)*other.coeffs().coeff(2)-other.coeffs().coeff(1)*coeffs().coeff(2)),
- invdet*(other.coeffs().coeff(0)*coeffs().coeff(2)-coeffs().coeff(0)*other.coeffs().coeff(2)));
- }
- }
-
- /** Applies the transformation matrix \a mat to \c *this and returns a reference to \c *this.
- *
- * \param mat the Dim x Dim transformation matrix
- * \param traits specifies whether the matrix \a mat represents an Isometry
- * or a more generic Affine transformation. The default is Affine.
- */
- template<typename XprType>
- inline Hyperplane& transform(const MatrixBase<XprType>& mat, TransformTraits traits = Affine)
- {
- if (traits==Affine)
- normal() = mat.inverse().transpose() * normal();
- else if (traits==Isometry)
- normal() = mat * normal();
- else
- {
- ei_assert("invalid traits value in Hyperplane::transform()");
- }
- return *this;
- }
-
- /** Applies the transformation \a t to \c *this and returns a reference to \c *this.
- *
- * \param t the transformation of dimension Dim
- * \param traits specifies whether the transformation \a t represents an Isometry
- * or a more generic Affine transformation. The default is Affine.
- * Other kind of transformations are not supported.
- */
- inline Hyperplane& transform(const Transform<Scalar,AmbientDimAtCompileTime>& t,
- TransformTraits traits = Affine)
- {
- transform(t.linear(), traits);
- offset() -= t.translation().eigen2_dot(normal());
- return *this;
- }
-
- /** \returns \c *this with scalar type casted to \a NewScalarType
- *
- * Note that if \a NewScalarType is equal to the current scalar type of \c *this
- * then this function smartly returns a const reference to \c *this.
- */
- template<typename NewScalarType>
- inline typename internal::cast_return_type<Hyperplane,
- Hyperplane<NewScalarType,AmbientDimAtCompileTime> >::type cast() const
- {
- return typename internal::cast_return_type<Hyperplane,
- Hyperplane<NewScalarType,AmbientDimAtCompileTime> >::type(*this);
- }
-
- /** Copy constructor with scalar type conversion */
- template<typename OtherScalarType>
- inline explicit Hyperplane(const Hyperplane<OtherScalarType,AmbientDimAtCompileTime>& other)
- { m_coeffs = other.coeffs().template cast<Scalar>(); }
-
- /** \returns \c true if \c *this is approximately equal to \a other, within the precision
- * determined by \a prec.
- *
- * \sa MatrixBase::isApprox() */
- bool isApprox(const Hyperplane& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
- { return m_coeffs.isApprox(other.m_coeffs, prec); }
-
-protected:
-
- Coefficients m_coeffs;
-};
-
-} // end namespace Eigen
diff --git a/Eigen/src/Eigen2Support/Geometry/ParametrizedLine.h b/Eigen/src/Eigen2Support/Geometry/ParametrizedLine.h
deleted file mode 100644
index 9b57b7e0b..000000000
--- a/Eigen/src/Eigen2Support/Geometry/ParametrizedLine.h
+++ /dev/null
@@ -1,141 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
-// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
-
-namespace Eigen {
-
-/** \geometry_module \ingroup Geometry_Module
- *
- * \class ParametrizedLine
- *
- * \brief A parametrized line
- *
- * A parametrized line is defined by an origin point \f$ \mathbf{o} \f$ and a unit
- * direction vector \f$ \mathbf{d} \f$ such that the line corresponds to
- * the set \f$ l(t) = \mathbf{o} + t \mathbf{d} \f$, \f$ l \in \mathbf{R} \f$.
- *
- * \param _Scalar the scalar type, i.e., the type of the coefficients
- * \param _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic.
- */
-template <typename _Scalar, int _AmbientDim>
-class ParametrizedLine
-{
-public:
- EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim)
- enum { AmbientDimAtCompileTime = _AmbientDim };
- typedef _Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef Matrix<Scalar,AmbientDimAtCompileTime,1> VectorType;
-
- /** Default constructor without initialization */
- inline ParametrizedLine() {}
-
- /** Constructs a dynamic-size line with \a _dim the dimension
- * of the ambient space */
- inline explicit ParametrizedLine(int _dim) : m_origin(_dim), m_direction(_dim) {}
-
- /** Initializes a parametrized line of direction \a direction and origin \a origin.
- * \warning the vector direction is assumed to be normalized.
- */
- ParametrizedLine(const VectorType& origin, const VectorType& direction)
- : m_origin(origin), m_direction(direction) {}
-
- explicit ParametrizedLine(const Hyperplane<_Scalar, _AmbientDim>& hyperplane);
-
- /** Constructs a parametrized line going from \a p0 to \a p1. */
- static inline ParametrizedLine Through(const VectorType& p0, const VectorType& p1)
- { return ParametrizedLine(p0, (p1-p0).normalized()); }
-
- ~ParametrizedLine() {}
-
- /** \returns the dimension in which the line holds */
- inline int dim() const { return m_direction.size(); }
-
- const VectorType& origin() const { return m_origin; }
- VectorType& origin() { return m_origin; }
-
- const VectorType& direction() const { return m_direction; }
- VectorType& direction() { return m_direction; }
-
- /** \returns the squared distance of a point \a p to its projection onto the line \c *this.
- * \sa distance()
- */
- RealScalar squaredDistance(const VectorType& p) const
- {
- VectorType diff = p-origin();
- return (diff - diff.eigen2_dot(direction())* direction()).squaredNorm();
- }
- /** \returns the distance of a point \a p to its projection onto the line \c *this.
- * \sa squaredDistance()
- */
- RealScalar distance(const VectorType& p) const { return ei_sqrt(squaredDistance(p)); }
-
- /** \returns the projection of a point \a p onto the line \c *this. */
- VectorType projection(const VectorType& p) const
- { return origin() + (p-origin()).eigen2_dot(direction()) * direction(); }
-
- Scalar intersection(const Hyperplane<_Scalar, _AmbientDim>& hyperplane);
-
- /** \returns \c *this with scalar type casted to \a NewScalarType
- *
- * Note that if \a NewScalarType is equal to the current scalar type of \c *this
- * then this function smartly returns a const reference to \c *this.
- */
- template<typename NewScalarType>
- inline typename internal::cast_return_type<ParametrizedLine,
- ParametrizedLine<NewScalarType,AmbientDimAtCompileTime> >::type cast() const
- {
- return typename internal::cast_return_type<ParametrizedLine,
- ParametrizedLine<NewScalarType,AmbientDimAtCompileTime> >::type(*this);
- }
-
- /** Copy constructor with scalar type conversion */
- template<typename OtherScalarType>
- inline explicit ParametrizedLine(const ParametrizedLine<OtherScalarType,AmbientDimAtCompileTime>& other)
- {
- m_origin = other.origin().template cast<Scalar>();
- m_direction = other.direction().template cast<Scalar>();
- }
-
- /** \returns \c true if \c *this is approximately equal to \a other, within the precision
- * determined by \a prec.
- *
- * \sa MatrixBase::isApprox() */
- bool isApprox(const ParametrizedLine& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
- { return m_origin.isApprox(other.m_origin, prec) && m_direction.isApprox(other.m_direction, prec); }
-
-protected:
-
- VectorType m_origin, m_direction;
-};
-
-/** Constructs a parametrized line from a 2D hyperplane
- *
- * \warning the ambient space must have dimension 2 such that the hyperplane actually describes a line
- */
-template <typename _Scalar, int _AmbientDim>
-inline ParametrizedLine<_Scalar, _AmbientDim>::ParametrizedLine(const Hyperplane<_Scalar, _AmbientDim>& hyperplane)
-{
- EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 2)
- direction() = hyperplane.normal().unitOrthogonal();
- origin() = -hyperplane.normal()*hyperplane.offset();
-}
-
-/** \returns the parameter value of the intersection between \c *this and the given hyperplane
- */
-template <typename _Scalar, int _AmbientDim>
-inline _Scalar ParametrizedLine<_Scalar, _AmbientDim>::intersection(const Hyperplane<_Scalar, _AmbientDim>& hyperplane)
-{
- return -(hyperplane.offset()+origin().eigen2_dot(hyperplane.normal()))
- /(direction().eigen2_dot(hyperplane.normal()));
-}
-
-} // end namespace Eigen
diff --git a/Eigen/src/Eigen2Support/Geometry/Quaternion.h b/Eigen/src/Eigen2Support/Geometry/Quaternion.h
deleted file mode 100644
index 4b6390cf1..000000000
--- a/Eigen/src/Eigen2Support/Geometry/Quaternion.h
+++ /dev/null
@@ -1,495 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
-
-namespace Eigen {
-
-template<typename Other,
- int OtherRows=Other::RowsAtCompileTime,
- int OtherCols=Other::ColsAtCompileTime>
-struct ei_quaternion_assign_impl;
-
-/** \geometry_module \ingroup Geometry_Module
- *
- * \class Quaternion
- *
- * \brief The quaternion class used to represent 3D orientations and rotations
- *
- * \param _Scalar the scalar type, i.e., the type of the coefficients
- *
- * This class represents a quaternion \f$ w+xi+yj+zk \f$ that is a convenient representation of
- * orientations and rotations of objects in three dimensions. Compared to other representations
- * like Euler angles or 3x3 matrices, quatertions offer the following advantages:
- * \li \b compact storage (4 scalars)
- * \li \b efficient to compose (28 flops),
- * \li \b stable spherical interpolation
- *
- * The following two typedefs are provided for convenience:
- * \li \c Quaternionf for \c float
- * \li \c Quaterniond for \c double
- *
- * \sa class AngleAxis, class Transform
- */
-
-template<typename _Scalar> struct ei_traits<Quaternion<_Scalar> >
-{
- typedef _Scalar Scalar;
-};
-
-template<typename _Scalar>
-class Quaternion : public RotationBase<Quaternion<_Scalar>,3>
-{
- typedef RotationBase<Quaternion<_Scalar>,3> Base;
-
-public:
- EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,4)
-
- using Base::operator*;
-
- /** the scalar type of the coefficients */
- typedef _Scalar Scalar;
-
- /** the type of the Coefficients 4-vector */
- typedef Matrix<Scalar, 4, 1> Coefficients;
- /** the type of a 3D vector */
- typedef Matrix<Scalar,3,1> Vector3;
- /** the equivalent rotation matrix type */
- typedef Matrix<Scalar,3,3> Matrix3;
- /** the equivalent angle-axis type */
- typedef AngleAxis<Scalar> AngleAxisType;
-
- /** \returns the \c x coefficient */
- inline Scalar x() const { return m_coeffs.coeff(0); }
- /** \returns the \c y coefficient */
- inline Scalar y() const { return m_coeffs.coeff(1); }
- /** \returns the \c z coefficient */
- inline Scalar z() const { return m_coeffs.coeff(2); }
- /** \returns the \c w coefficient */
- inline Scalar w() const { return m_coeffs.coeff(3); }
-
- /** \returns a reference to the \c x coefficient */
- inline Scalar& x() { return m_coeffs.coeffRef(0); }
- /** \returns a reference to the \c y coefficient */
- inline Scalar& y() { return m_coeffs.coeffRef(1); }
- /** \returns a reference to the \c z coefficient */
- inline Scalar& z() { return m_coeffs.coeffRef(2); }
- /** \returns a reference to the \c w coefficient */
- inline Scalar& w() { return m_coeffs.coeffRef(3); }
-
- /** \returns a read-only vector expression of the imaginary part (x,y,z) */
- inline const Block<const Coefficients,3,1> vec() const { return m_coeffs.template start<3>(); }
-
- /** \returns a vector expression of the imaginary part (x,y,z) */
- inline Block<Coefficients,3,1> vec() { return m_coeffs.template start<3>(); }
-
- /** \returns a read-only vector expression of the coefficients (x,y,z,w) */
- inline const Coefficients& coeffs() const { return m_coeffs; }
-
- /** \returns a vector expression of the coefficients (x,y,z,w) */
- inline Coefficients& coeffs() { return m_coeffs; }
-
- /** Default constructor leaving the quaternion uninitialized. */
- inline Quaternion() {}
-
- /** Constructs and initializes the quaternion \f$ w+xi+yj+zk \f$ from
- * its four coefficients \a w, \a x, \a y and \a z.
- *
- * \warning Note the order of the arguments: the real \a w coefficient first,
- * while internally the coefficients are stored in the following order:
- * [\c x, \c y, \c z, \c w]
- */
- inline Quaternion(Scalar w, Scalar x, Scalar y, Scalar z)
- { m_coeffs << x, y, z, w; }
-
- /** Copy constructor */
- inline Quaternion(const Quaternion& other) { m_coeffs = other.m_coeffs; }
-
- /** Constructs and initializes a quaternion from the angle-axis \a aa */
- explicit inline Quaternion(const AngleAxisType& aa) { *this = aa; }
-
- /** Constructs and initializes a quaternion from either:
- * - a rotation matrix expression,
- * - a 4D vector expression representing quaternion coefficients.
- * \sa operator=(MatrixBase<Derived>)
- */
- template<typename Derived>
- explicit inline Quaternion(const MatrixBase<Derived>& other) { *this = other; }
-
- Quaternion& operator=(const Quaternion& other);
- Quaternion& operator=(const AngleAxisType& aa);
- template<typename Derived>
- Quaternion& operator=(const MatrixBase<Derived>& m);
-
- /** \returns a quaternion representing an identity rotation
- * \sa MatrixBase::Identity()
- */
- static inline Quaternion Identity() { return Quaternion(1, 0, 0, 0); }
-
- /** \sa Quaternion::Identity(), MatrixBase::setIdentity()
- */
- inline Quaternion& setIdentity() { m_coeffs << 0, 0, 0, 1; return *this; }
-
- /** \returns the squared norm of the quaternion's coefficients
- * \sa Quaternion::norm(), MatrixBase::squaredNorm()
- */
- inline Scalar squaredNorm() const { return m_coeffs.squaredNorm(); }
-
- /** \returns the norm of the quaternion's coefficients
- * \sa Quaternion::squaredNorm(), MatrixBase::norm()
- */
- inline Scalar norm() const { return m_coeffs.norm(); }
-
- /** Normalizes the quaternion \c *this
- * \sa normalized(), MatrixBase::normalize() */
- inline void normalize() { m_coeffs.normalize(); }
- /** \returns a normalized version of \c *this
- * \sa normalize(), MatrixBase::normalized() */
- inline Quaternion normalized() const { return Quaternion(m_coeffs.normalized()); }
-
- /** \returns the dot product of \c *this and \a other
- * Geometrically speaking, the dot product of two unit quaternions
- * corresponds to the cosine of half the angle between the two rotations.
- * \sa angularDistance()
- */
- inline Scalar eigen2_dot(const Quaternion& other) const { return m_coeffs.eigen2_dot(other.m_coeffs); }
-
- inline Scalar angularDistance(const Quaternion& other) const;
-
- Matrix3 toRotationMatrix(void) const;
-
- template<typename Derived1, typename Derived2>
- Quaternion& setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
-
- inline Quaternion operator* (const Quaternion& q) const;
- inline Quaternion& operator*= (const Quaternion& q);
-
- Quaternion inverse(void) const;
- Quaternion conjugate(void) const;
-
- Quaternion slerp(Scalar t, const Quaternion& other) const;
-
- template<typename Derived>
- Vector3 operator* (const MatrixBase<Derived>& vec) const;
-
- /** \returns \c *this with scalar type casted to \a NewScalarType
- *
- * Note that if \a NewScalarType is equal to the current scalar type of \c *this
- * then this function smartly returns a const reference to \c *this.
- */
- template<typename NewScalarType>
- inline typename internal::cast_return_type<Quaternion,Quaternion<NewScalarType> >::type cast() const
- { return typename internal::cast_return_type<Quaternion,Quaternion<NewScalarType> >::type(*this); }
-
- /** Copy constructor with scalar type conversion */
- template<typename OtherScalarType>
- inline explicit Quaternion(const Quaternion<OtherScalarType>& other)
- { m_coeffs = other.coeffs().template cast<Scalar>(); }
-
- /** \returns \c true if \c *this is approximately equal to \a other, within the precision
- * determined by \a prec.
- *
- * \sa MatrixBase::isApprox() */
- bool isApprox(const Quaternion& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
- { return m_coeffs.isApprox(other.m_coeffs, prec); }
-
-protected:
- Coefficients m_coeffs;
-};
-
-/** \ingroup Geometry_Module
- * single precision quaternion type */
-typedef Quaternion<float> Quaternionf;
-/** \ingroup Geometry_Module
- * double precision quaternion type */
-typedef Quaternion<double> Quaterniond;
-
-// Generic Quaternion * Quaternion product
-template<typename Scalar> inline Quaternion<Scalar>
-ei_quaternion_product(const Quaternion<Scalar>& a, const Quaternion<Scalar>& b)
-{
- return Quaternion<Scalar>
- (
- a.w() * b.w() - a.x() * b.x() - a.y() * b.y() - a.z() * b.z(),
- a.w() * b.x() + a.x() * b.w() + a.y() * b.z() - a.z() * b.y(),
- a.w() * b.y() + a.y() * b.w() + a.z() * b.x() - a.x() * b.z(),
- a.w() * b.z() + a.z() * b.w() + a.x() * b.y() - a.y() * b.x()
- );
-}
-
-/** \returns the concatenation of two rotations as a quaternion-quaternion product */
-template <typename Scalar>
-inline Quaternion<Scalar> Quaternion<Scalar>::operator* (const Quaternion& other) const
-{
- return ei_quaternion_product(*this,other);
-}
-
-/** \sa operator*(Quaternion) */
-template <typename Scalar>
-inline Quaternion<Scalar>& Quaternion<Scalar>::operator*= (const Quaternion& other)
-{
- return (*this = *this * other);
-}
-
-/** Rotation of a vector by a quaternion.
- * \remarks If the quaternion is used to rotate several points (>1)
- * then it is much more efficient to first convert it to a 3x3 Matrix.
- * Comparison of the operation cost for n transformations:
- * - Quaternion: 30n
- * - Via a Matrix3: 24 + 15n
- */
-template <typename Scalar>
-template<typename Derived>
-inline typename Quaternion<Scalar>::Vector3
-Quaternion<Scalar>::operator* (const MatrixBase<Derived>& v) const
-{
- // Note that this algorithm comes from the optimization by hand
- // of the conversion to a Matrix followed by a Matrix/Vector product.
- // It appears to be much faster than the common algorithm found
- // in the litterature (30 versus 39 flops). It also requires two
- // Vector3 as temporaries.
- Vector3 uv;
- uv = 2 * this->vec().cross(v);
- return v + this->w() * uv + this->vec().cross(uv);
-}
-
-template<typename Scalar>
-inline Quaternion<Scalar>& Quaternion<Scalar>::operator=(const Quaternion& other)
-{
- m_coeffs = other.m_coeffs;
- return *this;
-}
-
-/** Set \c *this from an angle-axis \a aa and returns a reference to \c *this
- */
-template<typename Scalar>
-inline Quaternion<Scalar>& Quaternion<Scalar>::operator=(const AngleAxisType& aa)
-{
- Scalar ha = Scalar(0.5)*aa.angle(); // Scalar(0.5) to suppress precision loss warnings
- this->w() = ei_cos(ha);
- this->vec() = ei_sin(ha) * aa.axis();
- return *this;
-}
-
-/** Set \c *this from the expression \a xpr:
- * - if \a xpr is a 4x1 vector, then \a xpr is assumed to be a quaternion
- * - if \a xpr is a 3x3 matrix, then \a xpr is assumed to be rotation matrix
- * and \a xpr is converted to a quaternion
- */
-template<typename Scalar>
-template<typename Derived>
-inline Quaternion<Scalar>& Quaternion<Scalar>::operator=(const MatrixBase<Derived>& xpr)
-{
- ei_quaternion_assign_impl<Derived>::run(*this, xpr.derived());
- return *this;
-}
-
-/** Convert the quaternion to a 3x3 rotation matrix */
-template<typename Scalar>
-inline typename Quaternion<Scalar>::Matrix3
-Quaternion<Scalar>::toRotationMatrix(void) const
-{
- // NOTE if inlined, then gcc 4.2 and 4.4 get rid of the temporary (not gcc 4.3 !!)
- // if not inlined then the cost of the return by value is huge ~ +35%,
- // however, not inlining this function is an order of magnitude slower, so
- // it has to be inlined, and so the return by value is not an issue
- Matrix3 res;
-
- const Scalar tx = Scalar(2)*this->x();
- const Scalar ty = Scalar(2)*this->y();
- const Scalar tz = Scalar(2)*this->z();
- const Scalar twx = tx*this->w();
- const Scalar twy = ty*this->w();
- const Scalar twz = tz*this->w();
- const Scalar txx = tx*this->x();
- const Scalar txy = ty*this->x();
- const Scalar txz = tz*this->x();
- const Scalar tyy = ty*this->y();
- const Scalar tyz = tz*this->y();
- const Scalar tzz = tz*this->z();
-
- res.coeffRef(0,0) = Scalar(1)-(tyy+tzz);
- res.coeffRef(0,1) = txy-twz;
- res.coeffRef(0,2) = txz+twy;
- res.coeffRef(1,0) = txy+twz;
- res.coeffRef(1,1) = Scalar(1)-(txx+tzz);
- res.coeffRef(1,2) = tyz-twx;
- res.coeffRef(2,0) = txz-twy;
- res.coeffRef(2,1) = tyz+twx;
- res.coeffRef(2,2) = Scalar(1)-(txx+tyy);
-
- return res;
-}
-
-/** Sets *this to be a quaternion representing a rotation sending the vector \a a to the vector \a b.
- *
- * \returns a reference to *this.
- *
- * Note that the two input vectors do \b not have to be normalized.
- */
-template<typename Scalar>
-template<typename Derived1, typename Derived2>
-inline Quaternion<Scalar>& Quaternion<Scalar>::setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b)
-{
- Vector3 v0 = a.normalized();
- Vector3 v1 = b.normalized();
- Scalar c = v0.eigen2_dot(v1);
-
- // if dot == 1, vectors are the same
- if (ei_isApprox(c,Scalar(1)))
- {
- // set to identity
- this->w() = 1; this->vec().setZero();
- return *this;
- }
- // if dot == -1, vectors are opposites
- if (ei_isApprox(c,Scalar(-1)))
- {
- this->vec() = v0.unitOrthogonal();
- this->w() = 0;
- return *this;
- }
-
- Vector3 axis = v0.cross(v1);
- Scalar s = ei_sqrt((Scalar(1)+c)*Scalar(2));
- Scalar invs = Scalar(1)/s;
- this->vec() = axis * invs;
- this->w() = s * Scalar(0.5);
-
- return *this;
-}
-
-/** \returns the multiplicative inverse of \c *this
- * Note that in most cases, i.e., if you simply want the opposite rotation,
- * and/or the quaternion is normalized, then it is enough to use the conjugate.
- *
- * \sa Quaternion::conjugate()
- */
-template <typename Scalar>
-inline Quaternion<Scalar> Quaternion<Scalar>::inverse() const
-{
- // FIXME should this function be called multiplicativeInverse and conjugate() be called inverse() or opposite() ??
- Scalar n2 = this->squaredNorm();
- if (n2 > 0)
- return Quaternion(conjugate().coeffs() / n2);
- else
- {
- // return an invalid result to flag the error
- return Quaternion(Coefficients::Zero());
- }
-}
-
-/** \returns the conjugate of the \c *this which is equal to the multiplicative inverse
- * if the quaternion is normalized.
- * The conjugate of a quaternion represents the opposite rotation.
- *
- * \sa Quaternion::inverse()
- */
-template <typename Scalar>
-inline Quaternion<Scalar> Quaternion<Scalar>::conjugate() const
-{
- return Quaternion(this->w(),-this->x(),-this->y(),-this->z());
-}
-
-/** \returns the angle (in radian) between two rotations
- * \sa eigen2_dot()
- */
-template <typename Scalar>
-inline Scalar Quaternion<Scalar>::angularDistance(const Quaternion& other) const
-{
- double d = ei_abs(this->eigen2_dot(other));
- if (d>=1.0)
- return 0;
- return Scalar(2) * std::acos(d);
-}
-
-/** \returns the spherical linear interpolation between the two quaternions
- * \c *this and \a other at the parameter \a t
- */
-template <typename Scalar>
-Quaternion<Scalar> Quaternion<Scalar>::slerp(Scalar t, const Quaternion& other) const
-{
- static const Scalar one = Scalar(1) - machine_epsilon<Scalar>();
- Scalar d = this->eigen2_dot(other);
- Scalar absD = ei_abs(d);
-
- Scalar scale0;
- Scalar scale1;
-
- if (absD>=one)
- {
- scale0 = Scalar(1) - t;
- scale1 = t;
- }
- else
- {
- // theta is the angle between the 2 quaternions
- Scalar theta = std::acos(absD);
- Scalar sinTheta = ei_sin(theta);
-
- scale0 = ei_sin( ( Scalar(1) - t ) * theta) / sinTheta;
- scale1 = ei_sin( ( t * theta) ) / sinTheta;
- if (d<0)
- scale1 = -scale1;
- }
-
- return Quaternion<Scalar>(scale0 * coeffs() + scale1 * other.coeffs());
-}
-
-// set from a rotation matrix
-template<typename Other>
-struct ei_quaternion_assign_impl<Other,3,3>
-{
- typedef typename Other::Scalar Scalar;
- static inline void run(Quaternion<Scalar>& q, const Other& mat)
- {
- // This algorithm comes from "Quaternion Calculus and Fast Animation",
- // Ken Shoemake, 1987 SIGGRAPH course notes
- Scalar t = mat.trace();
- if (t > 0)
- {
- t = ei_sqrt(t + Scalar(1.0));
- q.w() = Scalar(0.5)*t;
- t = Scalar(0.5)/t;
- q.x() = (mat.coeff(2,1) - mat.coeff(1,2)) * t;
- q.y() = (mat.coeff(0,2) - mat.coeff(2,0)) * t;
- q.z() = (mat.coeff(1,0) - mat.coeff(0,1)) * t;
- }
- else
- {
- int i = 0;
- if (mat.coeff(1,1) > mat.coeff(0,0))
- i = 1;
- if (mat.coeff(2,2) > mat.coeff(i,i))
- i = 2;
- int j = (i+1)%3;
- int k = (j+1)%3;
-
- t = ei_sqrt(mat.coeff(i,i)-mat.coeff(j,j)-mat.coeff(k,k) + Scalar(1.0));
- q.coeffs().coeffRef(i) = Scalar(0.5) * t;
- t = Scalar(0.5)/t;
- q.w() = (mat.coeff(k,j)-mat.coeff(j,k))*t;
- q.coeffs().coeffRef(j) = (mat.coeff(j,i)+mat.coeff(i,j))*t;
- q.coeffs().coeffRef(k) = (mat.coeff(k,i)+mat.coeff(i,k))*t;
- }
- }
-};
-
-// set from a vector of coefficients assumed to be a quaternion
-template<typename Other>
-struct ei_quaternion_assign_impl<Other,4,1>
-{
- typedef typename Other::Scalar Scalar;
- static inline void run(Quaternion<Scalar>& q, const Other& vec)
- {
- q.coeffs() = vec;
- }
-};
-
-} // end namespace Eigen
diff --git a/Eigen/src/Eigen2Support/Geometry/Rotation2D.h b/Eigen/src/Eigen2Support/Geometry/Rotation2D.h
deleted file mode 100644
index 19b8582a1..000000000
--- a/Eigen/src/Eigen2Support/Geometry/Rotation2D.h
+++ /dev/null
@@ -1,145 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
-
-namespace Eigen {
-
-/** \geometry_module \ingroup Geometry_Module
- *
- * \class Rotation2D
- *
- * \brief Represents a rotation/orientation in a 2 dimensional space.
- *
- * \param _Scalar the scalar type, i.e., the type of the coefficients
- *
- * This class is equivalent to a single scalar representing a counter clock wise rotation
- * as a single angle in radian. It provides some additional features such as the automatic
- * conversion from/to a 2x2 rotation matrix. Moreover this class aims to provide a similar
- * interface to Quaternion in order to facilitate the writing of generic algorithms
- * dealing with rotations.
- *
- * \sa class Quaternion, class Transform
- */
-template<typename _Scalar> struct ei_traits<Rotation2D<_Scalar> >
-{
- typedef _Scalar Scalar;
-};
-
-template<typename _Scalar>
-class Rotation2D : public RotationBase<Rotation2D<_Scalar>,2>
-{
- typedef RotationBase<Rotation2D<_Scalar>,2> Base;
-
-public:
-
- using Base::operator*;
-
- enum { Dim = 2 };
- /** the scalar type of the coefficients */
- typedef _Scalar Scalar;
- typedef Matrix<Scalar,2,1> Vector2;
- typedef Matrix<Scalar,2,2> Matrix2;
-
-protected:
-
- Scalar m_angle;
-
-public:
-
- /** Construct a 2D counter clock wise rotation from the angle \a a in radian. */
- inline Rotation2D(Scalar a) : m_angle(a) {}
-
- /** \returns the rotation angle */
- inline Scalar angle() const { return m_angle; }
-
- /** \returns a read-write reference to the rotation angle */
- inline Scalar& angle() { return m_angle; }
-
- /** \returns the inverse rotation */
- inline Rotation2D inverse() const { return -m_angle; }
-
- /** Concatenates two rotations */
- inline Rotation2D operator*(const Rotation2D& other) const
- { return m_angle + other.m_angle; }
-
- /** Concatenates two rotations */
- inline Rotation2D& operator*=(const Rotation2D& other)
- { return m_angle += other.m_angle; return *this; }
-
- /** Applies the rotation to a 2D vector */
- Vector2 operator* (const Vector2& vec) const
- { return toRotationMatrix() * vec; }
-
- template<typename Derived>
- Rotation2D& fromRotationMatrix(const MatrixBase<Derived>& m);
- Matrix2 toRotationMatrix(void) const;
-
- /** \returns the spherical interpolation between \c *this and \a other using
- * parameter \a t. It is in fact equivalent to a linear interpolation.
- */
- inline Rotation2D slerp(Scalar t, const Rotation2D& other) const
- { return m_angle * (1-t) + other.angle() * t; }
-
- /** \returns \c *this with scalar type casted to \a NewScalarType
- *
- * Note that if \a NewScalarType is equal to the current scalar type of \c *this
- * then this function smartly returns a const reference to \c *this.
- */
- template<typename NewScalarType>
- inline typename internal::cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type cast() const
- { return typename internal::cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type(*this); }
-
- /** Copy constructor with scalar type conversion */
- template<typename OtherScalarType>
- inline explicit Rotation2D(const Rotation2D<OtherScalarType>& other)
- {
- m_angle = Scalar(other.angle());
- }
-
- /** \returns \c true if \c *this is approximately equal to \a other, within the precision
- * determined by \a prec.
- *
- * \sa MatrixBase::isApprox() */
- bool isApprox(const Rotation2D& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
- { return ei_isApprox(m_angle,other.m_angle, prec); }
-};
-
-/** \ingroup Geometry_Module
- * single precision 2D rotation type */
-typedef Rotation2D<float> Rotation2Df;
-/** \ingroup Geometry_Module
- * double precision 2D rotation type */
-typedef Rotation2D<double> Rotation2Dd;
-
-/** Set \c *this from a 2x2 rotation matrix \a mat.
- * In other words, this function extract the rotation angle
- * from the rotation matrix.
- */
-template<typename Scalar>
-template<typename Derived>
-Rotation2D<Scalar>& Rotation2D<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat)
-{
- EIGEN_STATIC_ASSERT(Derived::RowsAtCompileTime==2 && Derived::ColsAtCompileTime==2,YOU_MADE_A_PROGRAMMING_MISTAKE)
- m_angle = ei_atan2(mat.coeff(1,0), mat.coeff(0,0));
- return *this;
-}
-
-/** Constructs and \returns an equivalent 2x2 rotation matrix.
- */
-template<typename Scalar>
-typename Rotation2D<Scalar>::Matrix2
-Rotation2D<Scalar>::toRotationMatrix(void) const
-{
- Scalar sinA = ei_sin(m_angle);
- Scalar cosA = ei_cos(m_angle);
- return (Matrix2() << cosA, -sinA, sinA, cosA).finished();
-}
-
-} // end namespace Eigen
diff --git a/Eigen/src/Eigen2Support/Geometry/RotationBase.h b/Eigen/src/Eigen2Support/Geometry/RotationBase.h
deleted file mode 100644
index b1c8f38da..000000000
--- a/Eigen/src/Eigen2Support/Geometry/RotationBase.h
+++ /dev/null
@@ -1,123 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
-
-namespace Eigen {
-
-// this file aims to contains the various representations of rotation/orientation
-// in 2D and 3D space excepted Matrix and Quaternion.
-
-/** \class RotationBase
- *
- * \brief Common base class for compact rotation representations
- *
- * \param Derived is the derived type, i.e., a rotation type
- * \param _Dim the dimension of the space
- */
-template<typename Derived, int _Dim>
-class RotationBase
-{
- public:
- enum { Dim = _Dim };
- /** the scalar type of the coefficients */
- typedef typename ei_traits<Derived>::Scalar Scalar;
-
- /** corresponding linear transformation matrix type */
- typedef Matrix<Scalar,Dim,Dim> RotationMatrixType;
-
- inline const Derived& derived() const { return *static_cast<const Derived*>(this); }
- inline Derived& derived() { return *static_cast<Derived*>(this); }
-
- /** \returns an equivalent rotation matrix */
- inline RotationMatrixType toRotationMatrix() const { return derived().toRotationMatrix(); }
-
- /** \returns the inverse rotation */
- inline Derived inverse() const { return derived().inverse(); }
-
- /** \returns the concatenation of the rotation \c *this with a translation \a t */
- inline Transform<Scalar,Dim> operator*(const Translation<Scalar,Dim>& t) const
- { return toRotationMatrix() * t; }
-
- /** \returns the concatenation of the rotation \c *this with a scaling \a s */
- inline RotationMatrixType operator*(const Scaling<Scalar,Dim>& s) const
- { return toRotationMatrix() * s; }
-
- /** \returns the concatenation of the rotation \c *this with an affine transformation \a t */
- inline Transform<Scalar,Dim> operator*(const Transform<Scalar,Dim>& t) const
- { return toRotationMatrix() * t; }
-};
-
-/** \geometry_module
- *
- * Constructs a Dim x Dim rotation matrix from the rotation \a r
- */
-template<typename _Scalar, int _Rows, int _Cols, int _Storage, int _MaxRows, int _MaxCols>
-template<typename OtherDerived>
-Matrix<_Scalar, _Rows, _Cols, _Storage, _MaxRows, _MaxCols>
-::Matrix(const RotationBase<OtherDerived,ColsAtCompileTime>& r)
-{
- EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Matrix,int(OtherDerived::Dim),int(OtherDerived::Dim))
- *this = r.toRotationMatrix();
-}
-
-/** \geometry_module
- *
- * Set a Dim x Dim rotation matrix from the rotation \a r
- */
-template<typename _Scalar, int _Rows, int _Cols, int _Storage, int _MaxRows, int _MaxCols>
-template<typename OtherDerived>
-Matrix<_Scalar, _Rows, _Cols, _Storage, _MaxRows, _MaxCols>&
-Matrix<_Scalar, _Rows, _Cols, _Storage, _MaxRows, _MaxCols>
-::operator=(const RotationBase<OtherDerived,ColsAtCompileTime>& r)
-{
- EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Matrix,int(OtherDerived::Dim),int(OtherDerived::Dim))
- return *this = r.toRotationMatrix();
-}
-
-/** \internal
- *
- * Helper function to return an arbitrary rotation object to a rotation matrix.
- *
- * \param Scalar the numeric type of the matrix coefficients
- * \param Dim the dimension of the current space
- *
- * It returns a Dim x Dim fixed size matrix.
- *
- * Default specializations are provided for:
- * - any scalar type (2D),
- * - any matrix expression,
- * - any type based on RotationBase (e.g., Quaternion, AngleAxis, Rotation2D)
- *
- * Currently ei_toRotationMatrix is only used by Transform.
- *
- * \sa class Transform, class Rotation2D, class Quaternion, class AngleAxis
- */
-template<typename Scalar, int Dim>
-static inline Matrix<Scalar,2,2> ei_toRotationMatrix(const Scalar& s)
-{
- EIGEN_STATIC_ASSERT(Dim==2,YOU_MADE_A_PROGRAMMING_MISTAKE)
- return Rotation2D<Scalar>(s).toRotationMatrix();
-}
-
-template<typename Scalar, int Dim, typename OtherDerived>
-static inline Matrix<Scalar,Dim,Dim> ei_toRotationMatrix(const RotationBase<OtherDerived,Dim>& r)
-{
- return r.toRotationMatrix();
-}
-
-template<typename Scalar, int Dim, typename OtherDerived>
-static inline const MatrixBase<OtherDerived>& ei_toRotationMatrix(const MatrixBase<OtherDerived>& mat)
-{
- EIGEN_STATIC_ASSERT(OtherDerived::RowsAtCompileTime==Dim && OtherDerived::ColsAtCompileTime==Dim,
- YOU_MADE_A_PROGRAMMING_MISTAKE)
- return mat;
-}
-
-} // end namespace Eigen
diff --git a/Eigen/src/Eigen2Support/Geometry/Scaling.h b/Eigen/src/Eigen2Support/Geometry/Scaling.h
deleted file mode 100644
index b8fa6cd3f..000000000
--- a/Eigen/src/Eigen2Support/Geometry/Scaling.h
+++ /dev/null
@@ -1,167 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
-
-namespace Eigen {
-
-/** \geometry_module \ingroup Geometry_Module
- *
- * \class Scaling
- *
- * \brief Represents a possibly non uniform scaling transformation
- *
- * \param _Scalar the scalar type, i.e., the type of the coefficients.
- * \param _Dim the dimension of the space, can be a compile time value or Dynamic
- *
- * \note This class is not aimed to be used to store a scaling transformation,
- * but rather to make easier the constructions and updates of Transform objects.
- *
- * \sa class Translation, class Transform
- */
-template<typename _Scalar, int _Dim>
-class Scaling
-{
-public:
- EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim)
- /** dimension of the space */
- enum { Dim = _Dim };
- /** the scalar type of the coefficients */
- typedef _Scalar Scalar;
- /** corresponding vector type */
- typedef Matrix<Scalar,Dim,1> VectorType;
- /** corresponding linear transformation matrix type */
- typedef Matrix<Scalar,Dim,Dim> LinearMatrixType;
- /** corresponding translation type */
- typedef Translation<Scalar,Dim> TranslationType;
- /** corresponding affine transformation type */
- typedef Transform<Scalar,Dim> TransformType;
-
-protected:
-
- VectorType m_coeffs;
-
-public:
-
- /** Default constructor without initialization. */
- Scaling() {}
- /** Constructs and initialize a uniform scaling transformation */
- explicit inline Scaling(const Scalar& s) { m_coeffs.setConstant(s); }
- /** 2D only */
- inline Scaling(const Scalar& sx, const Scalar& sy)
- {
- ei_assert(Dim==2);
- m_coeffs.x() = sx;
- m_coeffs.y() = sy;
- }
- /** 3D only */
- inline Scaling(const Scalar& sx, const Scalar& sy, const Scalar& sz)
- {
- ei_assert(Dim==3);
- m_coeffs.x() = sx;
- m_coeffs.y() = sy;
- m_coeffs.z() = sz;
- }
- /** Constructs and initialize the scaling transformation from a vector of scaling coefficients */
- explicit inline Scaling(const VectorType& coeffs) : m_coeffs(coeffs) {}
-
- const VectorType& coeffs() const { return m_coeffs; }
- VectorType& coeffs() { return m_coeffs; }
-
- /** Concatenates two scaling */
- inline Scaling operator* (const Scaling& other) const
- { return Scaling(coeffs().cwise() * other.coeffs()); }
-
- /** Concatenates a scaling and a translation */
- inline TransformType operator* (const TranslationType& t) const;
-
- /** Concatenates a scaling and an affine transformation */
- inline TransformType operator* (const TransformType& t) const;
-
- /** Concatenates a scaling and a linear transformation matrix */
- // TODO returns an expression
- inline LinearMatrixType operator* (const LinearMatrixType& other) const
- { return coeffs().asDiagonal() * other; }
-
- /** Concatenates a linear transformation matrix and a scaling */
- // TODO returns an expression
- friend inline LinearMatrixType operator* (const LinearMatrixType& other, const Scaling& s)
- { return other * s.coeffs().asDiagonal(); }
-
- template<typename Derived>
- inline LinearMatrixType operator*(const RotationBase<Derived,Dim>& r) const
- { return *this * r.toRotationMatrix(); }
-
- /** Applies scaling to vector */
- inline VectorType operator* (const VectorType& other) const
- { return coeffs().asDiagonal() * other; }
-
- /** \returns the inverse scaling */
- inline Scaling inverse() const
- { return Scaling(coeffs().cwise().inverse()); }
-
- inline Scaling& operator=(const Scaling& other)
- {
- m_coeffs = other.m_coeffs;
- return *this;
- }
-
- /** \returns \c *this with scalar type casted to \a NewScalarType
- *
- * Note that if \a NewScalarType is equal to the current scalar type of \c *this
- * then this function smartly returns a const reference to \c *this.
- */
- template<typename NewScalarType>
- inline typename internal::cast_return_type<Scaling,Scaling<NewScalarType,Dim> >::type cast() const
- { return typename internal::cast_return_type<Scaling,Scaling<NewScalarType,Dim> >::type(*this); }
-
- /** Copy constructor with scalar type conversion */
- template<typename OtherScalarType>
- inline explicit Scaling(const Scaling<OtherScalarType,Dim>& other)
- { m_coeffs = other.coeffs().template cast<Scalar>(); }
-
- /** \returns \c true if \c *this is approximately equal to \a other, within the precision
- * determined by \a prec.
- *
- * \sa MatrixBase::isApprox() */
- bool isApprox(const Scaling& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
- { return m_coeffs.isApprox(other.m_coeffs, prec); }
-
-};
-
-/** \addtogroup Geometry_Module */
-//@{
-typedef Scaling<float, 2> Scaling2f;
-typedef Scaling<double,2> Scaling2d;
-typedef Scaling<float, 3> Scaling3f;
-typedef Scaling<double,3> Scaling3d;
-//@}
-
-template<typename Scalar, int Dim>
-inline typename Scaling<Scalar,Dim>::TransformType
-Scaling<Scalar,Dim>::operator* (const TranslationType& t) const
-{
- TransformType res;
- res.matrix().setZero();
- res.linear().diagonal() = coeffs();
- res.translation() = m_coeffs.cwise() * t.vector();
- res(Dim,Dim) = Scalar(1);
- return res;
-}
-
-template<typename Scalar, int Dim>
-inline typename Scaling<Scalar,Dim>::TransformType
-Scaling<Scalar,Dim>::operator* (const TransformType& t) const
-{
- TransformType res = t;
- res.prescale(m_coeffs);
- return res;
-}
-
-} // end namespace Eigen
diff --git a/Eigen/src/Eigen2Support/Geometry/Transform.h b/Eigen/src/Eigen2Support/Geometry/Transform.h
deleted file mode 100644
index fab60b251..000000000
--- a/Eigen/src/Eigen2Support/Geometry/Transform.h
+++ /dev/null
@@ -1,786 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
-// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
-
-namespace Eigen {
-
-// Note that we have to pass Dim and HDim because it is not allowed to use a template
-// parameter to define a template specialization. To be more precise, in the following
-// specializations, it is not allowed to use Dim+1 instead of HDim.
-template< typename Other,
- int Dim,
- int HDim,
- int OtherRows=Other::RowsAtCompileTime,
- int OtherCols=Other::ColsAtCompileTime>
-struct ei_transform_product_impl;
-
-/** \geometry_module \ingroup Geometry_Module
- *
- * \class Transform
- *
- * \brief Represents an homogeneous transformation in a N dimensional space
- *
- * \param _Scalar the scalar type, i.e., the type of the coefficients
- * \param _Dim the dimension of the space
- *
- * The homography is internally represented and stored as a (Dim+1)^2 matrix which
- * is available through the matrix() method.
- *
- * Conversion methods from/to Qt's QMatrix and QTransform are available if the
- * preprocessor token EIGEN_QT_SUPPORT is defined.
- *
- * \sa class Matrix, class Quaternion
- */
-template<typename _Scalar, int _Dim>
-class Transform
-{
-public:
- EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim==Dynamic ? Dynamic : (_Dim+1)*(_Dim+1))
- enum {
- Dim = _Dim, ///< space dimension in which the transformation holds
- HDim = _Dim+1 ///< size of a respective homogeneous vector
- };
- /** the scalar type of the coefficients */
- typedef _Scalar Scalar;
- /** type of the matrix used to represent the transformation */
- typedef Matrix<Scalar,HDim,HDim> MatrixType;
- /** type of the matrix used to represent the linear part of the transformation */
- typedef Matrix<Scalar,Dim,Dim> LinearMatrixType;
- /** type of read/write reference to the linear part of the transformation */
- typedef Block<MatrixType,Dim,Dim> LinearPart;
- /** type of read/write reference to the linear part of the transformation */
- typedef const Block<const MatrixType,Dim,Dim> ConstLinearPart;
- /** type of a vector */
- typedef Matrix<Scalar,Dim,1> VectorType;
- /** type of a read/write reference to the translation part of the rotation */
- typedef Block<MatrixType,Dim,1> TranslationPart;
- /** type of a read/write reference to the translation part of the rotation */
- typedef const Block<const MatrixType,Dim,1> ConstTranslationPart;
- /** corresponding translation type */
- typedef Translation<Scalar,Dim> TranslationType;
- /** corresponding scaling transformation type */
- typedef Scaling<Scalar,Dim> ScalingType;
-
-protected:
-
- MatrixType m_matrix;
-
-public:
-
- /** Default constructor without initialization of the coefficients. */
- inline Transform() { }
-
- inline Transform(const Transform& other)
- {
- m_matrix = other.m_matrix;
- }
-
- inline explicit Transform(const TranslationType& t) { *this = t; }
- inline explicit Transform(const ScalingType& s) { *this = s; }
- template<typename Derived>
- inline explicit Transform(const RotationBase<Derived, Dim>& r) { *this = r; }
-
- inline Transform& operator=(const Transform& other)
- { m_matrix = other.m_matrix; return *this; }
-
- template<typename OtherDerived, bool BigMatrix> // MSVC 2005 will commit suicide if BigMatrix has a default value
- struct construct_from_matrix
- {
- static inline void run(Transform *transform, const MatrixBase<OtherDerived>& other)
- {
- transform->matrix() = other;
- }
- };
-
- template<typename OtherDerived> struct construct_from_matrix<OtherDerived, true>
- {
- static inline void run(Transform *transform, const MatrixBase<OtherDerived>& other)
- {
- transform->linear() = other;
- transform->translation().setZero();
- transform->matrix()(Dim,Dim) = Scalar(1);
- transform->matrix().template block<1,Dim>(Dim,0).setZero();
- }
- };
-
- /** Constructs and initializes a transformation from a Dim^2 or a (Dim+1)^2 matrix. */
- template<typename OtherDerived>
- inline explicit Transform(const MatrixBase<OtherDerived>& other)
- {
- construct_from_matrix<OtherDerived, int(OtherDerived::RowsAtCompileTime) == Dim>::run(this, other);
- }
-
- /** Set \c *this from a (Dim+1)^2 matrix. */
- template<typename OtherDerived>
- inline Transform& operator=(const MatrixBase<OtherDerived>& other)
- { m_matrix = other; return *this; }
-
- #ifdef EIGEN_QT_SUPPORT
- inline Transform(const QMatrix& other);
- inline Transform& operator=(const QMatrix& other);
- inline QMatrix toQMatrix(void) const;
- inline Transform(const QTransform& other);
- inline Transform& operator=(const QTransform& other);
- inline QTransform toQTransform(void) const;
- #endif
-
- /** shortcut for m_matrix(row,col);
- * \sa MatrixBase::operaror(int,int) const */
- inline Scalar operator() (int row, int col) const { return m_matrix(row,col); }
- /** shortcut for m_matrix(row,col);
- * \sa MatrixBase::operaror(int,int) */
- inline Scalar& operator() (int row, int col) { return m_matrix(row,col); }
-
- /** \returns a read-only expression of the transformation matrix */
- inline const MatrixType& matrix() const { return m_matrix; }
- /** \returns a writable expression of the transformation matrix */
- inline MatrixType& matrix() { return m_matrix; }
-
- /** \returns a read-only expression of the linear (linear) part of the transformation */
- inline ConstLinearPart linear() const { return m_matrix.template block<Dim,Dim>(0,0); }
- /** \returns a writable expression of the linear (linear) part of the transformation */
- inline LinearPart linear() { return m_matrix.template block<Dim,Dim>(0,0); }
-
- /** \returns a read-only expression of the translation vector of the transformation */
- inline ConstTranslationPart translation() const { return m_matrix.template block<Dim,1>(0,Dim); }
- /** \returns a writable expression of the translation vector of the transformation */
- inline TranslationPart translation() { return m_matrix.template block<Dim,1>(0,Dim); }
-
- /** \returns an expression of the product between the transform \c *this and a matrix expression \a other
- *
- * The right hand side \a other might be either:
- * \li a vector of size Dim,
- * \li an homogeneous vector of size Dim+1,
- * \li a transformation matrix of size Dim+1 x Dim+1.
- */
- // note: this function is defined here because some compilers cannot find the respective declaration
- template<typename OtherDerived>
- inline const typename ei_transform_product_impl<OtherDerived,_Dim,_Dim+1>::ResultType
- operator * (const MatrixBase<OtherDerived> &other) const
- { return ei_transform_product_impl<OtherDerived,Dim,HDim>::run(*this,other.derived()); }
-
- /** \returns the product expression of a transformation matrix \a a times a transform \a b
- * The transformation matrix \a a must have a Dim+1 x Dim+1 sizes. */
- template<typename OtherDerived>
- friend inline const typename ProductReturnType<OtherDerived,MatrixType>::Type
- operator * (const MatrixBase<OtherDerived> &a, const Transform &b)
- { return a.derived() * b.matrix(); }
-
- /** Contatenates two transformations */
- inline const Transform
- operator * (const Transform& other) const
- { return Transform(m_matrix * other.matrix()); }
-
- /** \sa MatrixBase::setIdentity() */
- void setIdentity() { m_matrix.setIdentity(); }
- static const typename MatrixType::IdentityReturnType Identity()
- {
- return MatrixType::Identity();
- }
-
- template<typename OtherDerived>
- inline Transform& scale(const MatrixBase<OtherDerived> &other);
-
- template<typename OtherDerived>
- inline Transform& prescale(const MatrixBase<OtherDerived> &other);
-
- inline Transform& scale(Scalar s);
- inline Transform& prescale(Scalar s);
-
- template<typename OtherDerived>
- inline Transform& translate(const MatrixBase<OtherDerived> &other);
-
- template<typename OtherDerived>
- inline Transform& pretranslate(const MatrixBase<OtherDerived> &other);
-
- template<typename RotationType>
- inline Transform& rotate(const RotationType& rotation);
-
- template<typename RotationType>
- inline Transform& prerotate(const RotationType& rotation);
-
- Transform& shear(Scalar sx, Scalar sy);
- Transform& preshear(Scalar sx, Scalar sy);
-
- inline Transform& operator=(const TranslationType& t);
- inline Transform& operator*=(const TranslationType& t) { return translate(t.vector()); }
- inline Transform operator*(const TranslationType& t) const;
-
- inline Transform& operator=(const ScalingType& t);
- inline Transform& operator*=(const ScalingType& s) { return scale(s.coeffs()); }
- inline Transform operator*(const ScalingType& s) const;
- friend inline Transform operator*(const LinearMatrixType& mat, const Transform& t)
- {
- Transform res = t;
- res.matrix().row(Dim) = t.matrix().row(Dim);
- res.matrix().template block<Dim,HDim>(0,0) = (mat * t.matrix().template block<Dim,HDim>(0,0)).lazy();
- return res;
- }
-
- template<typename Derived>
- inline Transform& operator=(const RotationBase<Derived,Dim>& r);
- template<typename Derived>
- inline Transform& operator*=(const RotationBase<Derived,Dim>& r) { return rotate(r.toRotationMatrix()); }
- template<typename Derived>
- inline Transform operator*(const RotationBase<Derived,Dim>& r) const;
-
- LinearMatrixType rotation() const;
- template<typename RotationMatrixType, typename ScalingMatrixType>
- void computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const;
- template<typename ScalingMatrixType, typename RotationMatrixType>
- void computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const;
-
- template<typename PositionDerived, typename OrientationType, typename ScaleDerived>
- Transform& fromPositionOrientationScale(const MatrixBase<PositionDerived> &position,
- const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale);
-
- inline const MatrixType inverse(TransformTraits traits = Affine) const;
-
- /** \returns a const pointer to the column major internal matrix */
- const Scalar* data() const { return m_matrix.data(); }
- /** \returns a non-const pointer to the column major internal matrix */
- Scalar* data() { return m_matrix.data(); }
-
- /** \returns \c *this with scalar type casted to \a NewScalarType
- *
- * Note that if \a NewScalarType is equal to the current scalar type of \c *this
- * then this function smartly returns a const reference to \c *this.
- */
- template<typename NewScalarType>
- inline typename internal::cast_return_type<Transform,Transform<NewScalarType,Dim> >::type cast() const
- { return typename internal::cast_return_type<Transform,Transform<NewScalarType,Dim> >::type(*this); }
-
- /** Copy constructor with scalar type conversion */
- template<typename OtherScalarType>
- inline explicit Transform(const Transform<OtherScalarType,Dim>& other)
- { m_matrix = other.matrix().template cast<Scalar>(); }
-
- /** \returns \c true if \c *this is approximately equal to \a other, within the precision
- * determined by \a prec.
- *
- * \sa MatrixBase::isApprox() */
- bool isApprox(const Transform& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
- { return m_matrix.isApprox(other.m_matrix, prec); }
-
- #ifdef EIGEN_TRANSFORM_PLUGIN
- #include EIGEN_TRANSFORM_PLUGIN
- #endif
-
-protected:
-
-};
-
-/** \ingroup Geometry_Module */
-typedef Transform<float,2> Transform2f;
-/** \ingroup Geometry_Module */
-typedef Transform<float,3> Transform3f;
-/** \ingroup Geometry_Module */
-typedef Transform<double,2> Transform2d;
-/** \ingroup Geometry_Module */
-typedef Transform<double,3> Transform3d;
-
-/**************************
-*** Optional QT support ***
-**************************/
-
-#ifdef EIGEN_QT_SUPPORT
-/** Initialises \c *this from a QMatrix assuming the dimension is 2.
- *
- * This function is available only if the token EIGEN_QT_SUPPORT is defined.
- */
-template<typename Scalar, int Dim>
-Transform<Scalar,Dim>::Transform(const QMatrix& other)
-{
- *this = other;
-}
-
-/** Set \c *this from a QMatrix assuming the dimension is 2.
- *
- * This function is available only if the token EIGEN_QT_SUPPORT is defined.
- */
-template<typename Scalar, int Dim>
-Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const QMatrix& other)
-{
- EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
- m_matrix << other.m11(), other.m21(), other.dx(),
- other.m12(), other.m22(), other.dy(),
- 0, 0, 1;
- return *this;
-}
-
-/** \returns a QMatrix from \c *this assuming the dimension is 2.
- *
- * \warning this convertion might loss data if \c *this is not affine
- *
- * This function is available only if the token EIGEN_QT_SUPPORT is defined.
- */
-template<typename Scalar, int Dim>
-QMatrix Transform<Scalar,Dim>::toQMatrix(void) const
-{
- EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
- return QMatrix(m_matrix.coeff(0,0), m_matrix.coeff(1,0),
- m_matrix.coeff(0,1), m_matrix.coeff(1,1),
- m_matrix.coeff(0,2), m_matrix.coeff(1,2));
-}
-
-/** Initialises \c *this from a QTransform assuming the dimension is 2.
- *
- * This function is available only if the token EIGEN_QT_SUPPORT is defined.
- */
-template<typename Scalar, int Dim>
-Transform<Scalar,Dim>::Transform(const QTransform& other)
-{
- *this = other;
-}
-
-/** Set \c *this from a QTransform assuming the dimension is 2.
- *
- * This function is available only if the token EIGEN_QT_SUPPORT is defined.
- */
-template<typename Scalar, int Dim>
-Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const QTransform& other)
-{
- EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
- m_matrix << other.m11(), other.m21(), other.dx(),
- other.m12(), other.m22(), other.dy(),
- other.m13(), other.m23(), other.m33();
- return *this;
-}
-
-/** \returns a QTransform from \c *this assuming the dimension is 2.
- *
- * This function is available only if the token EIGEN_QT_SUPPORT is defined.
- */
-template<typename Scalar, int Dim>
-QTransform Transform<Scalar,Dim>::toQTransform(void) const
-{
- EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
- return QTransform(m_matrix.coeff(0,0), m_matrix.coeff(1,0), m_matrix.coeff(2,0),
- m_matrix.coeff(0,1), m_matrix.coeff(1,1), m_matrix.coeff(2,1),
- m_matrix.coeff(0,2), m_matrix.coeff(1,2), m_matrix.coeff(2,2));
-}
-#endif
-
-/*********************
-*** Procedural API ***
-*********************/
-
-/** Applies on the right the non uniform scale transformation represented
- * by the vector \a other to \c *this and returns a reference to \c *this.
- * \sa prescale()
- */
-template<typename Scalar, int Dim>
-template<typename OtherDerived>
-Transform<Scalar,Dim>&
-Transform<Scalar,Dim>::scale(const MatrixBase<OtherDerived> &other)
-{
- EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
- linear() = (linear() * other.asDiagonal()).lazy();
- return *this;
-}
-
-/** Applies on the right a uniform scale of a factor \a c to \c *this
- * and returns a reference to \c *this.
- * \sa prescale(Scalar)
- */
-template<typename Scalar, int Dim>
-inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::scale(Scalar s)
-{
- linear() *= s;
- return *this;
-}
-
-/** Applies on the left the non uniform scale transformation represented
- * by the vector \a other to \c *this and returns a reference to \c *this.
- * \sa scale()
- */
-template<typename Scalar, int Dim>
-template<typename OtherDerived>
-Transform<Scalar,Dim>&
-Transform<Scalar,Dim>::prescale(const MatrixBase<OtherDerived> &other)
-{
- EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
- m_matrix.template block<Dim,HDim>(0,0) = (other.asDiagonal() * m_matrix.template block<Dim,HDim>(0,0)).lazy();
- return *this;
-}
-
-/** Applies on the left a uniform scale of a factor \a c to \c *this
- * and returns a reference to \c *this.
- * \sa scale(Scalar)
- */
-template<typename Scalar, int Dim>
-inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::prescale(Scalar s)
-{
- m_matrix.template corner<Dim,HDim>(TopLeft) *= s;
- return *this;
-}
-
-/** Applies on the right the translation matrix represented by the vector \a other
- * to \c *this and returns a reference to \c *this.
- * \sa pretranslate()
- */
-template<typename Scalar, int Dim>
-template<typename OtherDerived>
-Transform<Scalar,Dim>&
-Transform<Scalar,Dim>::translate(const MatrixBase<OtherDerived> &other)
-{
- EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
- translation() += linear() * other;
- return *this;
-}
-
-/** Applies on the left the translation matrix represented by the vector \a other
- * to \c *this and returns a reference to \c *this.
- * \sa translate()
- */
-template<typename Scalar, int Dim>
-template<typename OtherDerived>
-Transform<Scalar,Dim>&
-Transform<Scalar,Dim>::pretranslate(const MatrixBase<OtherDerived> &other)
-{
- EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
- translation() += other;
- return *this;
-}
-
-/** Applies on the right the rotation represented by the rotation \a rotation
- * to \c *this and returns a reference to \c *this.
- *
- * The template parameter \a RotationType is the type of the rotation which
- * must be known by ei_toRotationMatrix<>.
- *
- * Natively supported types includes:
- * - any scalar (2D),
- * - a Dim x Dim matrix expression,
- * - a Quaternion (3D),
- * - a AngleAxis (3D)
- *
- * This mechanism is easily extendable to support user types such as Euler angles,
- * or a pair of Quaternion for 4D rotations.
- *
- * \sa rotate(Scalar), class Quaternion, class AngleAxis, prerotate(RotationType)
- */
-template<typename Scalar, int Dim>
-template<typename RotationType>
-Transform<Scalar,Dim>&
-Transform<Scalar,Dim>::rotate(const RotationType& rotation)
-{
- linear() *= ei_toRotationMatrix<Scalar,Dim>(rotation);
- return *this;
-}
-
-/** Applies on the left the rotation represented by the rotation \a rotation
- * to \c *this and returns a reference to \c *this.
- *
- * See rotate() for further details.
- *
- * \sa rotate()
- */
-template<typename Scalar, int Dim>
-template<typename RotationType>
-Transform<Scalar,Dim>&
-Transform<Scalar,Dim>::prerotate(const RotationType& rotation)
-{
- m_matrix.template block<Dim,HDim>(0,0) = ei_toRotationMatrix<Scalar,Dim>(rotation)
- * m_matrix.template block<Dim,HDim>(0,0);
- return *this;
-}
-
-/** Applies on the right the shear transformation represented
- * by the vector \a other to \c *this and returns a reference to \c *this.
- * \warning 2D only.
- * \sa preshear()
- */
-template<typename Scalar, int Dim>
-Transform<Scalar,Dim>&
-Transform<Scalar,Dim>::shear(Scalar sx, Scalar sy)
-{
- EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
- VectorType tmp = linear().col(0)*sy + linear().col(1);
- linear() << linear().col(0) + linear().col(1)*sx, tmp;
- return *this;
-}
-
-/** Applies on the left the shear transformation represented
- * by the vector \a other to \c *this and returns a reference to \c *this.
- * \warning 2D only.
- * \sa shear()
- */
-template<typename Scalar, int Dim>
-Transform<Scalar,Dim>&
-Transform<Scalar,Dim>::preshear(Scalar sx, Scalar sy)
-{
- EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
- m_matrix.template block<Dim,HDim>(0,0) = LinearMatrixType(1, sx, sy, 1) * m_matrix.template block<Dim,HDim>(0,0);
- return *this;
-}
-
-/******************************************************
-*** Scaling, Translation and Rotation compatibility ***
-******************************************************/
-
-template<typename Scalar, int Dim>
-inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const TranslationType& t)
-{
- linear().setIdentity();
- translation() = t.vector();
- m_matrix.template block<1,Dim>(Dim,0).setZero();
- m_matrix(Dim,Dim) = Scalar(1);
- return *this;
-}
-
-template<typename Scalar, int Dim>
-inline Transform<Scalar,Dim> Transform<Scalar,Dim>::operator*(const TranslationType& t) const
-{
- Transform res = *this;
- res.translate(t.vector());
- return res;
-}
-
-template<typename Scalar, int Dim>
-inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const ScalingType& s)
-{
- m_matrix.setZero();
- linear().diagonal() = s.coeffs();
- m_matrix.coeffRef(Dim,Dim) = Scalar(1);
- return *this;
-}
-
-template<typename Scalar, int Dim>
-inline Transform<Scalar,Dim> Transform<Scalar,Dim>::operator*(const ScalingType& s) const
-{
- Transform res = *this;
- res.scale(s.coeffs());
- return res;
-}
-
-template<typename Scalar, int Dim>
-template<typename Derived>
-inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const RotationBase<Derived,Dim>& r)
-{
- linear() = ei_toRotationMatrix<Scalar,Dim>(r);
- translation().setZero();
- m_matrix.template block<1,Dim>(Dim,0).setZero();
- m_matrix.coeffRef(Dim,Dim) = Scalar(1);
- return *this;
-}
-
-template<typename Scalar, int Dim>
-template<typename Derived>
-inline Transform<Scalar,Dim> Transform<Scalar,Dim>::operator*(const RotationBase<Derived,Dim>& r) const
-{
- Transform res = *this;
- res.rotate(r.derived());
- return res;
-}
-
-/************************
-*** Special functions ***
-************************/
-
-/** \returns the rotation part of the transformation
- * \nonstableyet
- *
- * \svd_module
- *
- * \sa computeRotationScaling(), computeScalingRotation(), class SVD
- */
-template<typename Scalar, int Dim>
-typename Transform<Scalar,Dim>::LinearMatrixType
-Transform<Scalar,Dim>::rotation() const
-{
- LinearMatrixType result;
- computeRotationScaling(&result, (LinearMatrixType*)0);
- return result;
-}
-
-
-/** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being
- * not necessarily positive.
- *
- * If either pointer is zero, the corresponding computation is skipped.
- *
- * \nonstableyet
- *
- * \svd_module
- *
- * \sa computeScalingRotation(), rotation(), class SVD
- */
-template<typename Scalar, int Dim>
-template<typename RotationMatrixType, typename ScalingMatrixType>
-void Transform<Scalar,Dim>::computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const
-{
- JacobiSVD<LinearMatrixType> svd(linear(), ComputeFullU|ComputeFullV);
- Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant(); // so x has absolute value 1
- Matrix<Scalar, Dim, 1> sv(svd.singularValues());
- sv.coeffRef(0) *= x;
- if(scaling)
- {
- scaling->noalias() = svd.matrixV() * sv.asDiagonal() * svd.matrixV().adjoint();
- }
- if(rotation)
- {
- LinearMatrixType m(svd.matrixU());
- m.col(0) /= x;
- rotation->noalias() = m * svd.matrixV().adjoint();
- }
-}
-
-/** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being
- * not necessarily positive.
- *
- * If either pointer is zero, the corresponding computation is skipped.
- *
- * \nonstableyet
- *
- * \svd_module
- *
- * \sa computeRotationScaling(), rotation(), class SVD
- */
-template<typename Scalar, int Dim>
-template<typename ScalingMatrixType, typename RotationMatrixType>
-void Transform<Scalar,Dim>::computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const
-{
- JacobiSVD<LinearMatrixType> svd(linear(), ComputeFullU|ComputeFullV);
- Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant(); // so x has absolute value 1
- Matrix<Scalar, Dim, 1> sv(svd.singularValues());
- sv.coeffRef(0) *= x;
- if(scaling)
- {
- scaling->noalias() = svd.matrixU() * sv.asDiagonal() * svd.matrixU().adjoint();
- }
- if(rotation)
- {
- LinearMatrixType m(svd.matrixU());
- m.col(0) /= x;
- rotation->noalias() = m * svd.matrixV().adjoint();
- }
-}
-
-/** Convenient method to set \c *this from a position, orientation and scale
- * of a 3D object.
- */
-template<typename Scalar, int Dim>
-template<typename PositionDerived, typename OrientationType, typename ScaleDerived>
-Transform<Scalar,Dim>&
-Transform<Scalar,Dim>::fromPositionOrientationScale(const MatrixBase<PositionDerived> &position,
- const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale)
-{
- linear() = ei_toRotationMatrix<Scalar,Dim>(orientation);
- linear() *= scale.asDiagonal();
- translation() = position;
- m_matrix.template block<1,Dim>(Dim,0).setZero();
- m_matrix(Dim,Dim) = Scalar(1);
- return *this;
-}
-
-/** \nonstableyet
- *
- * \returns the inverse transformation matrix according to some given knowledge
- * on \c *this.
- *
- * \param traits allows to optimize the inversion process when the transformion
- * is known to be not a general transformation. The possible values are:
- * - Projective if the transformation is not necessarily affine, i.e., if the
- * last row is not guaranteed to be [0 ... 0 1]
- * - Affine is the default, the last row is assumed to be [0 ... 0 1]
- * - Isometry if the transformation is only a concatenations of translations
- * and rotations.
- *
- * \warning unless \a traits is always set to NoShear or NoScaling, this function
- * requires the generic inverse method of MatrixBase defined in the LU module. If
- * you forget to include this module, then you will get hard to debug linking errors.
- *
- * \sa MatrixBase::inverse()
- */
-template<typename Scalar, int Dim>
-inline const typename Transform<Scalar,Dim>::MatrixType
-Transform<Scalar,Dim>::inverse(TransformTraits traits) const
-{
- if (traits == Projective)
- {
- return m_matrix.inverse();
- }
- else
- {
- MatrixType res;
- if (traits == Affine)
- {
- res.template corner<Dim,Dim>(TopLeft) = linear().inverse();
- }
- else if (traits == Isometry)
- {
- res.template corner<Dim,Dim>(TopLeft) = linear().transpose();
- }
- else
- {
- ei_assert("invalid traits value in Transform::inverse()");
- }
- // translation and remaining parts
- res.template corner<Dim,1>(TopRight) = - res.template corner<Dim,Dim>(TopLeft) * translation();
- res.template corner<1,Dim>(BottomLeft).setZero();
- res.coeffRef(Dim,Dim) = Scalar(1);
- return res;
- }
-}
-
-/*****************************************************
-*** Specializations of operator* with a MatrixBase ***
-*****************************************************/
-
-template<typename Other, int Dim, int HDim>
-struct ei_transform_product_impl<Other,Dim,HDim, HDim,HDim>
-{
- typedef Transform<typename Other::Scalar,Dim> TransformType;
- typedef typename TransformType::MatrixType MatrixType;
- typedef typename ProductReturnType<MatrixType,Other>::Type ResultType;
- static ResultType run(const TransformType& tr, const Other& other)
- { return tr.matrix() * other; }
-};
-
-template<typename Other, int Dim, int HDim>
-struct ei_transform_product_impl<Other,Dim,HDim, Dim,Dim>
-{
- typedef Transform<typename Other::Scalar,Dim> TransformType;
- typedef typename TransformType::MatrixType MatrixType;
- typedef TransformType ResultType;
- static ResultType run(const TransformType& tr, const Other& other)
- {
- TransformType res;
- res.translation() = tr.translation();
- res.matrix().row(Dim) = tr.matrix().row(Dim);
- res.linear() = (tr.linear() * other).lazy();
- return res;
- }
-};
-
-template<typename Other, int Dim, int HDim>
-struct ei_transform_product_impl<Other,Dim,HDim, HDim,1>
-{
- typedef Transform<typename Other::Scalar,Dim> TransformType;
- typedef typename TransformType::MatrixType MatrixType;
- typedef typename ProductReturnType<MatrixType,Other>::Type ResultType;
- static ResultType run(const TransformType& tr, const Other& other)
- { return tr.matrix() * other; }
-};
-
-template<typename Other, int Dim, int HDim>
-struct ei_transform_product_impl<Other,Dim,HDim, Dim,1>
-{
- typedef typename Other::Scalar Scalar;
- typedef Transform<Scalar,Dim> TransformType;
- typedef Matrix<Scalar,Dim,1> ResultType;
- static ResultType run(const TransformType& tr, const Other& other)
- { return ((tr.linear() * other) + tr.translation())
- * (Scalar(1) / ( (tr.matrix().template block<1,Dim>(Dim,0) * other).coeff(0) + tr.matrix().coeff(Dim,Dim))); }
-};
-
-} // end namespace Eigen
diff --git a/Eigen/src/Eigen2Support/Geometry/Translation.h b/Eigen/src/Eigen2Support/Geometry/Translation.h
deleted file mode 100644
index 2b9859f6f..000000000
--- a/Eigen/src/Eigen2Support/Geometry/Translation.h
+++ /dev/null
@@ -1,184 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
-
-namespace Eigen {
-
-/** \geometry_module \ingroup Geometry_Module
- *
- * \class Translation
- *
- * \brief Represents a translation transformation
- *
- * \param _Scalar the scalar type, i.e., the type of the coefficients.
- * \param _Dim the dimension of the space, can be a compile time value or Dynamic
- *
- * \note This class is not aimed to be used to store a translation transformation,
- * but rather to make easier the constructions and updates of Transform objects.
- *
- * \sa class Scaling, class Transform
- */
-template<typename _Scalar, int _Dim>
-class Translation
-{
-public:
- EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim)
- /** dimension of the space */
- enum { Dim = _Dim };
- /** the scalar type of the coefficients */
- typedef _Scalar Scalar;
- /** corresponding vector type */
- typedef Matrix<Scalar,Dim,1> VectorType;
- /** corresponding linear transformation matrix type */
- typedef Matrix<Scalar,Dim,Dim> LinearMatrixType;
- /** corresponding scaling transformation type */
- typedef Scaling<Scalar,Dim> ScalingType;
- /** corresponding affine transformation type */
- typedef Transform<Scalar,Dim> TransformType;
-
-protected:
-
- VectorType m_coeffs;
-
-public:
-
- /** Default constructor without initialization. */
- Translation() {}
- /** */
- inline Translation(const Scalar& sx, const Scalar& sy)
- {
- ei_assert(Dim==2);
- m_coeffs.x() = sx;
- m_coeffs.y() = sy;
- }
- /** */
- inline Translation(const Scalar& sx, const Scalar& sy, const Scalar& sz)
- {
- ei_assert(Dim==3);
- m_coeffs.x() = sx;
- m_coeffs.y() = sy;
- m_coeffs.z() = sz;
- }
- /** Constructs and initialize the scaling transformation from a vector of scaling coefficients */
- explicit inline Translation(const VectorType& vector) : m_coeffs(vector) {}
-
- const VectorType& vector() const { return m_coeffs; }
- VectorType& vector() { return m_coeffs; }
-
- /** Concatenates two translation */
- inline Translation operator* (const Translation& other) const
- { return Translation(m_coeffs + other.m_coeffs); }
-
- /** Concatenates a translation and a scaling */
- inline TransformType operator* (const ScalingType& other) const;
-
- /** Concatenates a translation and a linear transformation */
- inline TransformType operator* (const LinearMatrixType& linear) const;
-
- template<typename Derived>
- inline TransformType operator*(const RotationBase<Derived,Dim>& r) const
- { return *this * r.toRotationMatrix(); }
-
- /** Concatenates a linear transformation and a translation */
- // its a nightmare to define a templated friend function outside its declaration
- friend inline TransformType operator* (const LinearMatrixType& linear, const Translation& t)
- {
- TransformType res;
- res.matrix().setZero();
- res.linear() = linear;
- res.translation() = linear * t.m_coeffs;
- res.matrix().row(Dim).setZero();
- res(Dim,Dim) = Scalar(1);
- return res;
- }
-
- /** Concatenates a translation and an affine transformation */
- inline TransformType operator* (const TransformType& t) const;
-
- /** Applies translation to vector */
- inline VectorType operator* (const VectorType& other) const
- { return m_coeffs + other; }
-
- /** \returns the inverse translation (opposite) */
- Translation inverse() const { return Translation(-m_coeffs); }
-
- Translation& operator=(const Translation& other)
- {
- m_coeffs = other.m_coeffs;
- return *this;
- }
-
- /** \returns \c *this with scalar type casted to \a NewScalarType
- *
- * Note that if \a NewScalarType is equal to the current scalar type of \c *this
- * then this function smartly returns a const reference to \c *this.
- */
- template<typename NewScalarType>
- inline typename internal::cast_return_type<Translation,Translation<NewScalarType,Dim> >::type cast() const
- { return typename internal::cast_return_type<Translation,Translation<NewScalarType,Dim> >::type(*this); }
-
- /** Copy constructor with scalar type conversion */
- template<typename OtherScalarType>
- inline explicit Translation(const Translation<OtherScalarType,Dim>& other)
- { m_coeffs = other.vector().template cast<Scalar>(); }
-
- /** \returns \c true if \c *this is approximately equal to \a other, within the precision
- * determined by \a prec.
- *
- * \sa MatrixBase::isApprox() */
- bool isApprox(const Translation& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
- { return m_coeffs.isApprox(other.m_coeffs, prec); }
-
-};
-
-/** \addtogroup Geometry_Module */
-//@{
-typedef Translation<float, 2> Translation2f;
-typedef Translation<double,2> Translation2d;
-typedef Translation<float, 3> Translation3f;
-typedef Translation<double,3> Translation3d;
-//@}
-
-
-template<typename Scalar, int Dim>
-inline typename Translation<Scalar,Dim>::TransformType
-Translation<Scalar,Dim>::operator* (const ScalingType& other) const
-{
- TransformType res;
- res.matrix().setZero();
- res.linear().diagonal() = other.coeffs();
- res.translation() = m_coeffs;
- res(Dim,Dim) = Scalar(1);
- return res;
-}
-
-template<typename Scalar, int Dim>
-inline typename Translation<Scalar,Dim>::TransformType
-Translation<Scalar,Dim>::operator* (const LinearMatrixType& linear) const
-{
- TransformType res;
- res.matrix().setZero();
- res.linear() = linear;
- res.translation() = m_coeffs;
- res.matrix().row(Dim).setZero();
- res(Dim,Dim) = Scalar(1);
- return res;
-}
-
-template<typename Scalar, int Dim>
-inline typename Translation<Scalar,Dim>::TransformType
-Translation<Scalar,Dim>::operator* (const TransformType& t) const
-{
- TransformType res = t;
- res.pretranslate(m_coeffs);
- return res;
-}
-
-} // end namespace Eigen
diff --git a/Eigen/src/Eigen2Support/LU.h b/Eigen/src/Eigen2Support/LU.h
deleted file mode 100644
index 49f19ad76..000000000
--- a/Eigen/src/Eigen2Support/LU.h
+++ /dev/null
@@ -1,120 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2011 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN2_LU_H
-#define EIGEN2_LU_H
-
-namespace Eigen {
-
-template<typename MatrixType>
-class LU : public FullPivLU<MatrixType>
-{
- public:
-
- typedef typename MatrixType::Scalar Scalar;
- typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
- typedef Matrix<int, 1, MatrixType::ColsAtCompileTime, MatrixType::Options, 1, MatrixType::MaxColsAtCompileTime> IntRowVectorType;
- typedef Matrix<int, MatrixType::RowsAtCompileTime, 1, MatrixType::Options, MatrixType::MaxRowsAtCompileTime, 1> IntColVectorType;
- typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime, MatrixType::Options, 1, MatrixType::MaxColsAtCompileTime> RowVectorType;
- typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1, MatrixType::Options, MatrixType::MaxRowsAtCompileTime, 1> ColVectorType;
-
- typedef Matrix<typename MatrixType::Scalar,
- MatrixType::ColsAtCompileTime, // the number of rows in the "kernel matrix" is the number of cols of the original matrix
- // so that the product "matrix * kernel = zero" makes sense
- Dynamic, // we don't know at compile-time the dimension of the kernel
- MatrixType::Options,
- MatrixType::MaxColsAtCompileTime, // see explanation for 2nd template parameter
- MatrixType::MaxColsAtCompileTime // the kernel is a subspace of the domain space, whose dimension is the number
- // of columns of the original matrix
- > KernelResultType;
-
- typedef Matrix<typename MatrixType::Scalar,
- MatrixType::RowsAtCompileTime, // the image is a subspace of the destination space, whose dimension is the number
- // of rows of the original matrix
- Dynamic, // we don't know at compile time the dimension of the image (the rank)
- MatrixType::Options,
- MatrixType::MaxRowsAtCompileTime, // the image matrix will consist of columns from the original matrix,
- MatrixType::MaxColsAtCompileTime // so it has the same number of rows and at most as many columns.
- > ImageResultType;
-
- typedef FullPivLU<MatrixType> Base;
-
- template<typename T>
- explicit LU(const T& t) : Base(t), m_originalMatrix(t) {}
-
- template<typename OtherDerived, typename ResultType>
- bool solve(const MatrixBase<OtherDerived>& b, ResultType *result) const
- {
- *result = static_cast<const Base*>(this)->solve(b);
- return true;
- }
-
- template<typename ResultType>
- inline void computeInverse(ResultType *result) const
- {
- solve(MatrixType::Identity(this->rows(), this->cols()), result);
- }
-
- template<typename KernelMatrixType>
- void computeKernel(KernelMatrixType *result) const
- {
- *result = static_cast<const Base*>(this)->kernel();
- }
-
- template<typename ImageMatrixType>
- void computeImage(ImageMatrixType *result) const
- {
- *result = static_cast<const Base*>(this)->image(m_originalMatrix);
- }
-
- const ImageResultType image() const
- {
- return static_cast<const Base*>(this)->image(m_originalMatrix);
- }
-
- const MatrixType& m_originalMatrix;
-};
-
-#if EIGEN2_SUPPORT_STAGE < STAGE20_RESOLVE_API_CONFLICTS
-/** \lu_module
- *
- * Synonym of partialPivLu().
- *
- * \return the partial-pivoting LU decomposition of \c *this.
- *
- * \sa class PartialPivLU
- */
-template<typename Derived>
-inline const LU<typename MatrixBase<Derived>::PlainObject>
-MatrixBase<Derived>::lu() const
-{
- return LU<PlainObject>(eval());
-}
-#endif
-
-#ifdef EIGEN2_SUPPORT
-/** \lu_module
- *
- * Synonym of partialPivLu().
- *
- * \return the partial-pivoting LU decomposition of \c *this.
- *
- * \sa class PartialPivLU
- */
-template<typename Derived>
-inline const LU<typename MatrixBase<Derived>::PlainObject>
-MatrixBase<Derived>::eigen2_lu() const
-{
- return LU<PlainObject>(eval());
-}
-#endif
-
-} // end namespace Eigen
-
-#endif // EIGEN2_LU_H
diff --git a/Eigen/src/Eigen2Support/Lazy.h b/Eigen/src/Eigen2Support/Lazy.h
deleted file mode 100644
index 593fc78e6..000000000
--- a/Eigen/src/Eigen2Support/Lazy.h
+++ /dev/null
@@ -1,71 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_LAZY_H
-#define EIGEN_LAZY_H
-
-namespace Eigen {
-
-/** \deprecated it is only used by lazy() which is deprecated
- *
- * \returns an expression of *this with added flags
- *
- * Example: \include MatrixBase_marked.cpp
- * Output: \verbinclude MatrixBase_marked.out
- *
- * \sa class Flagged, extract(), part()
- */
-template<typename Derived>
-template<unsigned int Added>
-inline const Flagged<Derived, Added, 0>
-MatrixBase<Derived>::marked() const
-{
- return derived();
-}
-
-/** \deprecated use MatrixBase::noalias()
- *
- * \returns an expression of *this with the EvalBeforeAssigningBit flag removed.
- *
- * Example: \include MatrixBase_lazy.cpp
- * Output: \verbinclude MatrixBase_lazy.out
- *
- * \sa class Flagged, marked()
- */
-template<typename Derived>
-inline const Flagged<Derived, 0, EvalBeforeAssigningBit>
-MatrixBase<Derived>::lazy() const
-{
- return derived();
-}
-
-
-/** \internal
- * Overloaded to perform an efficient C += (A*B).lazy() */
-template<typename Derived>
-template<typename ProductDerived, typename Lhs, typename Rhs>
-Derived& MatrixBase<Derived>::operator+=(const Flagged<ProductBase<ProductDerived, Lhs,Rhs>, 0,
- EvalBeforeAssigningBit>& other)
-{
- other._expression().derived().addTo(derived()); return derived();
-}
-
-/** \internal
- * Overloaded to perform an efficient C -= (A*B).lazy() */
-template<typename Derived>
-template<typename ProductDerived, typename Lhs, typename Rhs>
-Derived& MatrixBase<Derived>::operator-=(const Flagged<ProductBase<ProductDerived, Lhs,Rhs>, 0,
- EvalBeforeAssigningBit>& other)
-{
- other._expression().derived().subTo(derived()); return derived();
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_LAZY_H
diff --git a/Eigen/src/Eigen2Support/LeastSquares.h b/Eigen/src/Eigen2Support/LeastSquares.h
deleted file mode 100644
index 0e6fdb488..000000000
--- a/Eigen/src/Eigen2Support/LeastSquares.h
+++ /dev/null
@@ -1,170 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN2_LEASTSQUARES_H
-#define EIGEN2_LEASTSQUARES_H
-
-namespace Eigen {
-
-/** \ingroup LeastSquares_Module
- *
- * \leastsquares_module
- *
- * For a set of points, this function tries to express
- * one of the coords as a linear (affine) function of the other coords.
- *
- * This is best explained by an example. This function works in full
- * generality, for points in a space of arbitrary dimension, and also over
- * the complex numbers, but for this example we will work in dimension 3
- * over the real numbers (doubles).
- *
- * So let us work with the following set of 5 points given by their
- * \f$(x,y,z)\f$ coordinates:
- * @code
- Vector3d points[5];
- points[0] = Vector3d( 3.02, 6.89, -4.32 );
- points[1] = Vector3d( 2.01, 5.39, -3.79 );
- points[2] = Vector3d( 2.41, 6.01, -4.01 );
- points[3] = Vector3d( 2.09, 5.55, -3.86 );
- points[4] = Vector3d( 2.58, 6.32, -4.10 );
- * @endcode
- * Suppose that we want to express the second coordinate (\f$y\f$) as a linear
- * expression in \f$x\f$ and \f$z\f$, that is,
- * \f[ y=ax+bz+c \f]
- * for some constants \f$a,b,c\f$. Thus, we want to find the best possible
- * constants \f$a,b,c\f$ so that the plane of equation \f$y=ax+bz+c\f$ fits
- * best the five above points. To do that, call this function as follows:
- * @code
- Vector3d coeffs; // will store the coefficients a, b, c
- linearRegression(
- 5,
- &points,
- &coeffs,
- 1 // the coord to express as a function of
- // the other ones. 0 means x, 1 means y, 2 means z.
- );
- * @endcode
- * Now the vector \a coeffs is approximately
- * \f$( 0.495 , -1.927 , -2.906 )\f$.
- * Thus, we get \f$a=0.495, b = -1.927, c = -2.906\f$. Let us check for
- * instance how near points[0] is from the plane of equation \f$y=ax+bz+c\f$.
- * Looking at the coords of points[0], we see that:
- * \f[ax+bz+c = 0.495 * 3.02 + (-1.927) * (-4.32) + (-2.906) = 6.91.\f]
- * On the other hand, we have \f$y=6.89\f$. We see that the values
- * \f$6.91\f$ and \f$6.89\f$
- * are near, so points[0] is very near the plane of equation \f$y=ax+bz+c\f$.
- *
- * Let's now describe precisely the parameters:
- * @param numPoints the number of points
- * @param points the array of pointers to the points on which to perform the linear regression
- * @param result pointer to the vector in which to store the result.
- This vector must be of the same type and size as the
- data points. The meaning of its coords is as follows.
- For brevity, let \f$n=Size\f$,
- \f$r_i=result[i]\f$,
- and \f$f=funcOfOthers\f$. Denote by
- \f$x_0,\ldots,x_{n-1}\f$
- the n coordinates in the n-dimensional space.
- Then the resulting equation is:
- \f[ x_f = r_0 x_0 + \cdots + r_{f-1}x_{f-1}
- + r_{f+1}x_{f+1} + \cdots + r_{n-1}x_{n-1} + r_n. \f]
- * @param funcOfOthers Determines which coord to express as a function of the
- others. Coords are numbered starting from 0, so that a
- value of 0 means \f$x\f$, 1 means \f$y\f$,
- 2 means \f$z\f$, ...
- *
- * \sa fitHyperplane()
- */
-template<typename VectorType>
-void linearRegression(int numPoints,
- VectorType **points,
- VectorType *result,
- int funcOfOthers )
-{
- typedef typename VectorType::Scalar Scalar;
- typedef Hyperplane<Scalar, VectorType::SizeAtCompileTime> HyperplaneType;
- const int size = points[0]->size();
- result->resize(size);
- HyperplaneType h(size);
- fitHyperplane(numPoints, points, &h);
- for(int i = 0; i < funcOfOthers; i++)
- result->coeffRef(i) = - h.coeffs()[i] / h.coeffs()[funcOfOthers];
- for(int i = funcOfOthers; i < size; i++)
- result->coeffRef(i) = - h.coeffs()[i+1] / h.coeffs()[funcOfOthers];
-}
-
-/** \ingroup LeastSquares_Module
- *
- * \leastsquares_module
- *
- * This function is quite similar to linearRegression(), so we refer to the
- * documentation of this function and only list here the differences.
- *
- * The main difference from linearRegression() is that this function doesn't
- * take a \a funcOfOthers argument. Instead, it finds a general equation
- * of the form
- * \f[ r_0 x_0 + \cdots + r_{n-1}x_{n-1} + r_n = 0, \f]
- * where \f$n=Size\f$, \f$r_i=retCoefficients[i]\f$, and we denote by
- * \f$x_0,\ldots,x_{n-1}\f$ the n coordinates in the n-dimensional space.
- *
- * Thus, the vector \a retCoefficients has size \f$n+1\f$, which is another
- * difference from linearRegression().
- *
- * In practice, this function performs an hyper-plane fit in a total least square sense
- * via the following steps:
- * 1 - center the data to the mean
- * 2 - compute the covariance matrix
- * 3 - pick the eigenvector corresponding to the smallest eigenvalue of the covariance matrix
- * The ratio of the smallest eigenvalue and the second one gives us a hint about the relevance
- * of the solution. This value is optionally returned in \a soundness.
- *
- * \sa linearRegression()
- */
-template<typename VectorType, typename HyperplaneType>
-void fitHyperplane(int numPoints,
- VectorType **points,
- HyperplaneType *result,
- typename NumTraits<typename VectorType::Scalar>::Real* soundness = 0)
-{
- typedef typename VectorType::Scalar Scalar;
- typedef Matrix<Scalar,VectorType::SizeAtCompileTime,VectorType::SizeAtCompileTime> CovMatrixType;
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(VectorType)
- ei_assert(numPoints >= 1);
- int size = points[0]->size();
- ei_assert(size+1 == result->coeffs().size());
-
- // compute the mean of the data
- VectorType mean = VectorType::Zero(size);
- for(int i = 0; i < numPoints; ++i)
- mean += *(points[i]);
- mean /= numPoints;
-
- // compute the covariance matrix
- CovMatrixType covMat = CovMatrixType::Zero(size, size);
- VectorType remean = VectorType::Zero(size);
- for(int i = 0; i < numPoints; ++i)
- {
- VectorType diff = (*(points[i]) - mean).conjugate();
- covMat += diff * diff.adjoint();
- }
-
- // now we just have to pick the eigen vector with smallest eigen value
- SelfAdjointEigenSolver<CovMatrixType> eig(covMat);
- result->normal() = eig.eigenvectors().col(0);
- if (soundness)
- *soundness = eig.eigenvalues().coeff(0)/eig.eigenvalues().coeff(1);
-
- // let's compute the constant coefficient such that the
- // plane pass trough the mean point:
- result->offset() = - (result->normal().cwise()* mean).sum();
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN2_LEASTSQUARES_H
diff --git a/Eigen/src/Eigen2Support/Macros.h b/Eigen/src/Eigen2Support/Macros.h
deleted file mode 100644
index 351c32afb..000000000
--- a/Eigen/src/Eigen2Support/Macros.h
+++ /dev/null
@@ -1,20 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2011 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN2_MACROS_H
-#define EIGEN2_MACROS_H
-
-#define ei_assert eigen_assert
-#define ei_internal_assert eigen_internal_assert
-
-#define EIGEN_ALIGN_128 EIGEN_ALIGN16
-
-#define EIGEN_ARCH_WANTS_ALIGNMENT EIGEN_ALIGN_STATICALLY
-
-#endif // EIGEN2_MACROS_H
diff --git a/Eigen/src/Eigen2Support/MathFunctions.h b/Eigen/src/Eigen2Support/MathFunctions.h
deleted file mode 100644
index 3544af253..000000000
--- a/Eigen/src/Eigen2Support/MathFunctions.h
+++ /dev/null
@@ -1,57 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN2_MATH_FUNCTIONS_H
-#define EIGEN2_MATH_FUNCTIONS_H
-
-namespace Eigen {
-
-template<typename T> inline typename NumTraits<T>::Real ei_real(const T& x) { return numext::real(x); }
-template<typename T> inline typename NumTraits<T>::Real ei_imag(const T& x) { return numext::imag(x); }
-template<typename T> inline T ei_conj(const T& x) { return numext::conj(x); }
-template<typename T> inline typename NumTraits<T>::Real ei_abs (const T& x) { using std::abs; return abs(x); }
-template<typename T> inline typename NumTraits<T>::Real ei_abs2(const T& x) { return numext::abs2(x); }
-template<typename T> inline T ei_sqrt(const T& x) { using std::sqrt; return sqrt(x); }
-template<typename T> inline T ei_exp (const T& x) { using std::exp; return exp(x); }
-template<typename T> inline T ei_log (const T& x) { using std::log; return log(x); }
-template<typename T> inline T ei_sin (const T& x) { using std::sin; return sin(x); }
-template<typename T> inline T ei_cos (const T& x) { using std::cos; return cos(x); }
-template<typename T> inline T ei_atan2(const T& x,const T& y) { using std::atan2; return atan2(x,y); }
-template<typename T> inline T ei_pow (const T& x,const T& y) { return numext::pow(x,y); }
-template<typename T> inline T ei_random () { return internal::random<T>(); }
-template<typename T> inline T ei_random (const T& x, const T& y) { return internal::random(x, y); }
-
-template<typename T> inline T precision () { return NumTraits<T>::dummy_precision(); }
-template<typename T> inline T machine_epsilon () { return NumTraits<T>::epsilon(); }
-
-
-template<typename Scalar, typename OtherScalar>
-inline bool ei_isMuchSmallerThan(const Scalar& x, const OtherScalar& y,
- typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision())
-{
- return internal::isMuchSmallerThan(x, y, precision);
-}
-
-template<typename Scalar>
-inline bool ei_isApprox(const Scalar& x, const Scalar& y,
- typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision())
-{
- return internal::isApprox(x, y, precision);
-}
-
-template<typename Scalar>
-inline bool ei_isApproxOrLessThan(const Scalar& x, const Scalar& y,
- typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision())
-{
- return internal::isApproxOrLessThan(x, y, precision);
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN2_MATH_FUNCTIONS_H
diff --git a/Eigen/src/Eigen2Support/Memory.h b/Eigen/src/Eigen2Support/Memory.h
deleted file mode 100644
index f86372b6b..000000000
--- a/Eigen/src/Eigen2Support/Memory.h
+++ /dev/null
@@ -1,45 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2011 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN2_MEMORY_H
-#define EIGEN2_MEMORY_H
-
-namespace Eigen {
-
-inline void* ei_aligned_malloc(size_t size) { return internal::aligned_malloc(size); }
-inline void ei_aligned_free(void *ptr) { internal::aligned_free(ptr); }
-inline void* ei_aligned_realloc(void *ptr, size_t new_size, size_t old_size) { return internal::aligned_realloc(ptr, new_size, old_size); }
-inline void* ei_handmade_aligned_malloc(size_t size) { return internal::handmade_aligned_malloc(size); }
-inline void ei_handmade_aligned_free(void *ptr) { internal::handmade_aligned_free(ptr); }
-
-template<bool Align> inline void* ei_conditional_aligned_malloc(size_t size)
-{
- return internal::conditional_aligned_malloc<Align>(size);
-}
-template<bool Align> inline void ei_conditional_aligned_free(void *ptr)
-{
- internal::conditional_aligned_free<Align>(ptr);
-}
-template<bool Align> inline void* ei_conditional_aligned_realloc(void* ptr, size_t new_size, size_t old_size)
-{
- return internal::conditional_aligned_realloc<Align>(ptr, new_size, old_size);
-}
-
-template<typename T> inline T* ei_aligned_new(size_t size)
-{
- return internal::aligned_new<T>(size);
-}
-template<typename T> inline void ei_aligned_delete(T *ptr, size_t size)
-{
- return internal::aligned_delete(ptr, size);
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN2_MACROS_H
diff --git a/Eigen/src/Eigen2Support/Meta.h b/Eigen/src/Eigen2Support/Meta.h
deleted file mode 100644
index fa37cfc96..000000000
--- a/Eigen/src/Eigen2Support/Meta.h
+++ /dev/null
@@ -1,75 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2011 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN2_META_H
-#define EIGEN2_META_H
-
-namespace Eigen {
-
-template<typename T>
-struct ei_traits : internal::traits<T>
-{};
-
-struct ei_meta_true { enum { ret = 1 }; };
-struct ei_meta_false { enum { ret = 0 }; };
-
-template<bool Condition, typename Then, typename Else>
-struct ei_meta_if { typedef Then ret; };
-
-template<typename Then, typename Else>
-struct ei_meta_if <false, Then, Else> { typedef Else ret; };
-
-template<typename T, typename U> struct ei_is_same_type { enum { ret = 0 }; };
-template<typename T> struct ei_is_same_type<T,T> { enum { ret = 1 }; };
-
-template<typename T> struct ei_unref { typedef T type; };
-template<typename T> struct ei_unref<T&> { typedef T type; };
-
-template<typename T> struct ei_unpointer { typedef T type; };
-template<typename T> struct ei_unpointer<T*> { typedef T type; };
-template<typename T> struct ei_unpointer<T*const> { typedef T type; };
-
-template<typename T> struct ei_unconst { typedef T type; };
-template<typename T> struct ei_unconst<const T> { typedef T type; };
-template<typename T> struct ei_unconst<T const &> { typedef T & type; };
-template<typename T> struct ei_unconst<T const *> { typedef T * type; };
-
-template<typename T> struct ei_cleantype { typedef T type; };
-template<typename T> struct ei_cleantype<const T> { typedef typename ei_cleantype<T>::type type; };
-template<typename T> struct ei_cleantype<const T&> { typedef typename ei_cleantype<T>::type type; };
-template<typename T> struct ei_cleantype<T&> { typedef typename ei_cleantype<T>::type type; };
-template<typename T> struct ei_cleantype<const T*> { typedef typename ei_cleantype<T>::type type; };
-template<typename T> struct ei_cleantype<T*> { typedef typename ei_cleantype<T>::type type; };
-
-/** \internal In short, it computes int(sqrt(\a Y)) with \a Y an integer.
- * Usage example: \code ei_meta_sqrt<1023>::ret \endcode
- */
-template<int Y,
- int InfX = 0,
- int SupX = ((Y==1) ? 1 : Y/2),
- bool Done = ((SupX-InfX)<=1 ? true : ((SupX*SupX <= Y) && ((SupX+1)*(SupX+1) > Y))) >
- // use ?: instead of || just to shut up a stupid gcc 4.3 warning
-class ei_meta_sqrt
-{
- enum {
- MidX = (InfX+SupX)/2,
- TakeInf = MidX*MidX > Y ? 1 : 0,
- NewInf = int(TakeInf) ? InfX : int(MidX),
- NewSup = int(TakeInf) ? int(MidX) : SupX
- };
- public:
- enum { ret = ei_meta_sqrt<Y,NewInf,NewSup>::ret };
-};
-
-template<int Y, int InfX, int SupX>
-class ei_meta_sqrt<Y, InfX, SupX, true> { public: enum { ret = (SupX*SupX <= Y) ? SupX : InfX }; };
-
-} // end namespace Eigen
-
-#endif // EIGEN2_META_H
diff --git a/Eigen/src/Eigen2Support/Minor.h b/Eigen/src/Eigen2Support/Minor.h
deleted file mode 100644
index 4cded5734..000000000
--- a/Eigen/src/Eigen2Support/Minor.h
+++ /dev/null
@@ -1,117 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_MINOR_H
-#define EIGEN_MINOR_H
-
-namespace Eigen {
-
-/**
- * \class Minor
- *
- * \brief Expression of a minor
- *
- * \param MatrixType the type of the object in which we are taking a minor
- *
- * This class represents an expression of a minor. It is the return
- * type of MatrixBase::minor() and most of the time this is the only way it
- * is used.
- *
- * \sa MatrixBase::minor()
- */
-
-namespace internal {
-template<typename MatrixType>
-struct traits<Minor<MatrixType> >
- : traits<MatrixType>
-{
- typedef typename nested<MatrixType>::type MatrixTypeNested;
- typedef typename remove_reference<MatrixTypeNested>::type _MatrixTypeNested;
- typedef typename MatrixType::StorageKind StorageKind;
- enum {
- RowsAtCompileTime = (MatrixType::RowsAtCompileTime != Dynamic) ?
- int(MatrixType::RowsAtCompileTime) - 1 : Dynamic,
- ColsAtCompileTime = (MatrixType::ColsAtCompileTime != Dynamic) ?
- int(MatrixType::ColsAtCompileTime) - 1 : Dynamic,
- MaxRowsAtCompileTime = (MatrixType::MaxRowsAtCompileTime != Dynamic) ?
- int(MatrixType::MaxRowsAtCompileTime) - 1 : Dynamic,
- MaxColsAtCompileTime = (MatrixType::MaxColsAtCompileTime != Dynamic) ?
- int(MatrixType::MaxColsAtCompileTime) - 1 : Dynamic,
- Flags = _MatrixTypeNested::Flags & (HereditaryBits | LvalueBit),
- CoeffReadCost = _MatrixTypeNested::CoeffReadCost // minor is used typically on tiny matrices,
- // where loops are unrolled and the 'if' evaluates at compile time
- };
-};
-}
-
-template<typename MatrixType> class Minor
- : public MatrixBase<Minor<MatrixType> >
-{
- public:
-
- typedef MatrixBase<Minor> Base;
- EIGEN_DENSE_PUBLIC_INTERFACE(Minor)
-
- inline Minor(const MatrixType& matrix,
- Index row, Index col)
- : m_matrix(matrix), m_row(row), m_col(col)
- {
- eigen_assert(row >= 0 && row < matrix.rows()
- && col >= 0 && col < matrix.cols());
- }
-
- EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Minor)
-
- inline Index rows() const { return m_matrix.rows() - 1; }
- inline Index cols() const { return m_matrix.cols() - 1; }
-
- inline Scalar& coeffRef(Index row, Index col)
- {
- return m_matrix.const_cast_derived().coeffRef(row + (row >= m_row), col + (col >= m_col));
- }
-
- inline const Scalar coeff(Index row, Index col) const
- {
- return m_matrix.coeff(row + (row >= m_row), col + (col >= m_col));
- }
-
- protected:
- const typename MatrixType::Nested m_matrix;
- const Index m_row, m_col;
-};
-
-/**
- * \return an expression of the (\a row, \a col)-minor of *this,
- * i.e. an expression constructed from *this by removing the specified
- * row and column.
- *
- * Example: \include MatrixBase_minor.cpp
- * Output: \verbinclude MatrixBase_minor.out
- *
- * \sa class Minor
- */
-template<typename Derived>
-inline Minor<Derived>
-MatrixBase<Derived>::minor(Index row, Index col)
-{
- return Minor<Derived>(derived(), row, col);
-}
-
-/**
- * This is the const version of minor(). */
-template<typename Derived>
-inline const Minor<Derived>
-MatrixBase<Derived>::minor(Index row, Index col) const
-{
- return Minor<Derived>(derived(), row, col);
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_MINOR_H
diff --git a/Eigen/src/Eigen2Support/QR.h b/Eigen/src/Eigen2Support/QR.h
deleted file mode 100644
index 2042c9851..000000000
--- a/Eigen/src/Eigen2Support/QR.h
+++ /dev/null
@@ -1,67 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
-// Copyright (C) 2011 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN2_QR_H
-#define EIGEN2_QR_H
-
-namespace Eigen {
-
-template<typename MatrixType>
-class QR : public HouseholderQR<MatrixType>
-{
- public:
-
- typedef HouseholderQR<MatrixType> Base;
- typedef Block<const MatrixType, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> MatrixRBlockType;
-
- QR() : Base() {}
-
- template<typename T>
- explicit QR(const T& t) : Base(t) {}
-
- template<typename OtherDerived, typename ResultType>
- bool solve(const MatrixBase<OtherDerived>& b, ResultType *result) const
- {
- *result = static_cast<const Base*>(this)->solve(b);
- return true;
- }
-
- MatrixType matrixQ(void) const {
- MatrixType ret = MatrixType::Identity(this->rows(), this->cols());
- ret = this->householderQ() * ret;
- return ret;
- }
-
- bool isFullRank() const {
- return true;
- }
-
- const TriangularView<MatrixRBlockType, UpperTriangular>
- matrixR(void) const
- {
- int cols = this->cols();
- return MatrixRBlockType(this->matrixQR(), 0, 0, cols, cols).template triangularView<UpperTriangular>();
- }
-};
-
-/** \return the QR decomposition of \c *this.
- *
- * \sa class QR
- */
-template<typename Derived>
-const QR<typename MatrixBase<Derived>::PlainObject>
-MatrixBase<Derived>::qr() const
-{
- return QR<PlainObject>(eval());
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN2_QR_H
diff --git a/Eigen/src/Eigen2Support/SVD.h b/Eigen/src/Eigen2Support/SVD.h
deleted file mode 100644
index 3d03d2288..000000000
--- a/Eigen/src/Eigen2Support/SVD.h
+++ /dev/null
@@ -1,637 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN2_SVD_H
-#define EIGEN2_SVD_H
-
-namespace Eigen {
-
-/** \ingroup SVD_Module
- * \nonstableyet
- *
- * \class SVD
- *
- * \brief Standard SVD decomposition of a matrix and associated features
- *
- * \param MatrixType the type of the matrix of which we are computing the SVD decomposition
- *
- * This class performs a standard SVD decomposition of a real matrix A of size \c M x \c N
- * with \c M \>= \c N.
- *
- *
- * \sa MatrixBase::SVD()
- */
-template<typename MatrixType> class SVD
-{
- private:
- typedef typename MatrixType::Scalar Scalar;
- typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
-
- enum {
- PacketSize = internal::packet_traits<Scalar>::size,
- AlignmentMask = int(PacketSize)-1,
- MinSize = EIGEN_SIZE_MIN_PREFER_DYNAMIC(MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime)
- };
-
- typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> ColVector;
- typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> RowVector;
-
- typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MinSize> MatrixUType;
- typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> MatrixVType;
- typedef Matrix<Scalar, MinSize, 1> SingularValuesType;
-
- public:
-
- SVD() {} // a user who relied on compiler-generated default compiler reported problems with MSVC in 2.0.7
-
- SVD(const MatrixType& matrix)
- : m_matU(matrix.rows(), (std::min)(matrix.rows(), matrix.cols())),
- m_matV(matrix.cols(),matrix.cols()),
- m_sigma((std::min)(matrix.rows(),matrix.cols()))
- {
- compute(matrix);
- }
-
- template<typename OtherDerived, typename ResultType>
- bool solve(const MatrixBase<OtherDerived> &b, ResultType* result) const;
-
- const MatrixUType& matrixU() const { return m_matU; }
- const SingularValuesType& singularValues() const { return m_sigma; }
- const MatrixVType& matrixV() const { return m_matV; }
-
- void compute(const MatrixType& matrix);
- SVD& sort();
-
- template<typename UnitaryType, typename PositiveType>
- void computeUnitaryPositive(UnitaryType *unitary, PositiveType *positive) const;
- template<typename PositiveType, typename UnitaryType>
- void computePositiveUnitary(PositiveType *positive, UnitaryType *unitary) const;
- template<typename RotationType, typename ScalingType>
- void computeRotationScaling(RotationType *unitary, ScalingType *positive) const;
- template<typename ScalingType, typename RotationType>
- void computeScalingRotation(ScalingType *positive, RotationType *unitary) const;
-
- protected:
- /** \internal */
- MatrixUType m_matU;
- /** \internal */
- MatrixVType m_matV;
- /** \internal */
- SingularValuesType m_sigma;
-};
-
-/** Computes / recomputes the SVD decomposition A = U S V^* of \a matrix
- *
- * \note this code has been adapted from JAMA (public domain)
- */
-template<typename MatrixType>
-void SVD<MatrixType>::compute(const MatrixType& matrix)
-{
- const int m = matrix.rows();
- const int n = matrix.cols();
- const int nu = (std::min)(m,n);
- ei_assert(m>=n && "In Eigen 2.0, SVD only works for MxN matrices with M>=N. Sorry!");
- ei_assert(m>1 && "In Eigen 2.0, SVD doesn't work on 1x1 matrices");
-
- m_matU.resize(m, nu);
- m_matU.setZero();
- m_sigma.resize((std::min)(m,n));
- m_matV.resize(n,n);
-
- RowVector e(n);
- ColVector work(m);
- MatrixType matA(matrix);
- const bool wantu = true;
- const bool wantv = true;
- int i=0, j=0, k=0;
-
- // Reduce A to bidiagonal form, storing the diagonal elements
- // in s and the super-diagonal elements in e.
- int nct = (std::min)(m-1,n);
- int nrt = (std::max)(0,(std::min)(n-2,m));
- for (k = 0; k < (std::max)(nct,nrt); ++k)
- {
- if (k < nct)
- {
- // Compute the transformation for the k-th column and
- // place the k-th diagonal in m_sigma[k].
- m_sigma[k] = matA.col(k).end(m-k).norm();
- if (m_sigma[k] != 0.0) // FIXME
- {
- if (matA(k,k) < 0.0)
- m_sigma[k] = -m_sigma[k];
- matA.col(k).end(m-k) /= m_sigma[k];
- matA(k,k) += 1.0;
- }
- m_sigma[k] = -m_sigma[k];
- }
-
- for (j = k+1; j < n; ++j)
- {
- if ((k < nct) && (m_sigma[k] != 0.0))
- {
- // Apply the transformation.
- Scalar t = matA.col(k).end(m-k).eigen2_dot(matA.col(j).end(m-k)); // FIXME dot product or cwise prod + .sum() ??
- t = -t/matA(k,k);
- matA.col(j).end(m-k) += t * matA.col(k).end(m-k);
- }
-
- // Place the k-th row of A into e for the
- // subsequent calculation of the row transformation.
- e[j] = matA(k,j);
- }
-
- // Place the transformation in U for subsequent back multiplication.
- if (wantu & (k < nct))
- m_matU.col(k).end(m-k) = matA.col(k).end(m-k);
-
- if (k < nrt)
- {
- // Compute the k-th row transformation and place the
- // k-th super-diagonal in e[k].
- e[k] = e.end(n-k-1).norm();
- if (e[k] != 0.0)
- {
- if (e[k+1] < 0.0)
- e[k] = -e[k];
- e.end(n-k-1) /= e[k];
- e[k+1] += 1.0;
- }
- e[k] = -e[k];
- if ((k+1 < m) & (e[k] != 0.0))
- {
- // Apply the transformation.
- work.end(m-k-1) = matA.corner(BottomRight,m-k-1,n-k-1) * e.end(n-k-1);
- for (j = k+1; j < n; ++j)
- matA.col(j).end(m-k-1) += (-e[j]/e[k+1]) * work.end(m-k-1);
- }
-
- // Place the transformation in V for subsequent back multiplication.
- if (wantv)
- m_matV.col(k).end(n-k-1) = e.end(n-k-1);
- }
- }
-
-
- // Set up the final bidiagonal matrix or order p.
- int p = (std::min)(n,m+1);
- if (nct < n)
- m_sigma[nct] = matA(nct,nct);
- if (m < p)
- m_sigma[p-1] = 0.0;
- if (nrt+1 < p)
- e[nrt] = matA(nrt,p-1);
- e[p-1] = 0.0;
-
- // If required, generate U.
- if (wantu)
- {
- for (j = nct; j < nu; ++j)
- {
- m_matU.col(j).setZero();
- m_matU(j,j) = 1.0;
- }
- for (k = nct-1; k >= 0; k--)
- {
- if (m_sigma[k] != 0.0)
- {
- for (j = k+1; j < nu; ++j)
- {
- Scalar t = m_matU.col(k).end(m-k).eigen2_dot(m_matU.col(j).end(m-k)); // FIXME is it really a dot product we want ?
- t = -t/m_matU(k,k);
- m_matU.col(j).end(m-k) += t * m_matU.col(k).end(m-k);
- }
- m_matU.col(k).end(m-k) = - m_matU.col(k).end(m-k);
- m_matU(k,k) = Scalar(1) + m_matU(k,k);
- if (k-1>0)
- m_matU.col(k).start(k-1).setZero();
- }
- else
- {
- m_matU.col(k).setZero();
- m_matU(k,k) = 1.0;
- }
- }
- }
-
- // If required, generate V.
- if (wantv)
- {
- for (k = n-1; k >= 0; k--)
- {
- if ((k < nrt) & (e[k] != 0.0))
- {
- for (j = k+1; j < nu; ++j)
- {
- Scalar t = m_matV.col(k).end(n-k-1).eigen2_dot(m_matV.col(j).end(n-k-1)); // FIXME is it really a dot product we want ?
- t = -t/m_matV(k+1,k);
- m_matV.col(j).end(n-k-1) += t * m_matV.col(k).end(n-k-1);
- }
- }
- m_matV.col(k).setZero();
- m_matV(k,k) = 1.0;
- }
- }
-
- // Main iteration loop for the singular values.
- int pp = p-1;
- int iter = 0;
- Scalar eps = ei_pow(Scalar(2),ei_is_same_type<Scalar,float>::ret ? Scalar(-23) : Scalar(-52));
- while (p > 0)
- {
- int k=0;
- int kase=0;
-
- // Here is where a test for too many iterations would go.
-
- // This section of the program inspects for
- // negligible elements in the s and e arrays. On
- // completion the variables kase and k are set as follows.
-
- // kase = 1 if s(p) and e[k-1] are negligible and k<p
- // kase = 2 if s(k) is negligible and k<p
- // kase = 3 if e[k-1] is negligible, k<p, and
- // s(k), ..., s(p) are not negligible (qr step).
- // kase = 4 if e(p-1) is negligible (convergence).
-
- for (k = p-2; k >= -1; --k)
- {
- if (k == -1)
- break;
- if (ei_abs(e[k]) <= eps*(ei_abs(m_sigma[k]) + ei_abs(m_sigma[k+1])))
- {
- e[k] = 0.0;
- break;
- }
- }
- if (k == p-2)
- {
- kase = 4;
- }
- else
- {
- int ks;
- for (ks = p-1; ks >= k; --ks)
- {
- if (ks == k)
- break;
- Scalar t = (ks != p ? ei_abs(e[ks]) : Scalar(0)) + (ks != k+1 ? ei_abs(e[ks-1]) : Scalar(0));
- if (ei_abs(m_sigma[ks]) <= eps*t)
- {
- m_sigma[ks] = 0.0;
- break;
- }
- }
- if (ks == k)
- {
- kase = 3;
- }
- else if (ks == p-1)
- {
- kase = 1;
- }
- else
- {
- kase = 2;
- k = ks;
- }
- }
- ++k;
-
- // Perform the task indicated by kase.
- switch (kase)
- {
-
- // Deflate negligible s(p).
- case 1:
- {
- Scalar f(e[p-2]);
- e[p-2] = 0.0;
- for (j = p-2; j >= k; --j)
- {
- Scalar t(numext::hypot(m_sigma[j],f));
- Scalar cs(m_sigma[j]/t);
- Scalar sn(f/t);
- m_sigma[j] = t;
- if (j != k)
- {
- f = -sn*e[j-1];
- e[j-1] = cs*e[j-1];
- }
- if (wantv)
- {
- for (i = 0; i < n; ++i)
- {
- t = cs*m_matV(i,j) + sn*m_matV(i,p-1);
- m_matV(i,p-1) = -sn*m_matV(i,j) + cs*m_matV(i,p-1);
- m_matV(i,j) = t;
- }
- }
- }
- }
- break;
-
- // Split at negligible s(k).
- case 2:
- {
- Scalar f(e[k-1]);
- e[k-1] = 0.0;
- for (j = k; j < p; ++j)
- {
- Scalar t(numext::hypot(m_sigma[j],f));
- Scalar cs( m_sigma[j]/t);
- Scalar sn(f/t);
- m_sigma[j] = t;
- f = -sn*e[j];
- e[j] = cs*e[j];
- if (wantu)
- {
- for (i = 0; i < m; ++i)
- {
- t = cs*m_matU(i,j) + sn*m_matU(i,k-1);
- m_matU(i,k-1) = -sn*m_matU(i,j) + cs*m_matU(i,k-1);
- m_matU(i,j) = t;
- }
- }
- }
- }
- break;
-
- // Perform one qr step.
- case 3:
- {
- // Calculate the shift.
- Scalar scale = (std::max)((std::max)((std::max)((std::max)(
- ei_abs(m_sigma[p-1]),ei_abs(m_sigma[p-2])),ei_abs(e[p-2])),
- ei_abs(m_sigma[k])),ei_abs(e[k]));
- Scalar sp = m_sigma[p-1]/scale;
- Scalar spm1 = m_sigma[p-2]/scale;
- Scalar epm1 = e[p-2]/scale;
- Scalar sk = m_sigma[k]/scale;
- Scalar ek = e[k]/scale;
- Scalar b = ((spm1 + sp)*(spm1 - sp) + epm1*epm1)/Scalar(2);
- Scalar c = (sp*epm1)*(sp*epm1);
- Scalar shift(0);
- if ((b != 0.0) || (c != 0.0))
- {
- shift = ei_sqrt(b*b + c);
- if (b < 0.0)
- shift = -shift;
- shift = c/(b + shift);
- }
- Scalar f = (sk + sp)*(sk - sp) + shift;
- Scalar g = sk*ek;
-
- // Chase zeros.
-
- for (j = k; j < p-1; ++j)
- {
- Scalar t = numext::hypot(f,g);
- Scalar cs = f/t;
- Scalar sn = g/t;
- if (j != k)
- e[j-1] = t;
- f = cs*m_sigma[j] + sn*e[j];
- e[j] = cs*e[j] - sn*m_sigma[j];
- g = sn*m_sigma[j+1];
- m_sigma[j+1] = cs*m_sigma[j+1];
- if (wantv)
- {
- for (i = 0; i < n; ++i)
- {
- t = cs*m_matV(i,j) + sn*m_matV(i,j+1);
- m_matV(i,j+1) = -sn*m_matV(i,j) + cs*m_matV(i,j+1);
- m_matV(i,j) = t;
- }
- }
- t = numext::hypot(f,g);
- cs = f/t;
- sn = g/t;
- m_sigma[j] = t;
- f = cs*e[j] + sn*m_sigma[j+1];
- m_sigma[j+1] = -sn*e[j] + cs*m_sigma[j+1];
- g = sn*e[j+1];
- e[j+1] = cs*e[j+1];
- if (wantu && (j < m-1))
- {
- for (i = 0; i < m; ++i)
- {
- t = cs*m_matU(i,j) + sn*m_matU(i,j+1);
- m_matU(i,j+1) = -sn*m_matU(i,j) + cs*m_matU(i,j+1);
- m_matU(i,j) = t;
- }
- }
- }
- e[p-2] = f;
- iter = iter + 1;
- }
- break;
-
- // Convergence.
- case 4:
- {
- // Make the singular values positive.
- if (m_sigma[k] <= 0.0)
- {
- m_sigma[k] = m_sigma[k] < Scalar(0) ? -m_sigma[k] : Scalar(0);
- if (wantv)
- m_matV.col(k).start(pp+1) = -m_matV.col(k).start(pp+1);
- }
-
- // Order the singular values.
- while (k < pp)
- {
- if (m_sigma[k] >= m_sigma[k+1])
- break;
- Scalar t = m_sigma[k];
- m_sigma[k] = m_sigma[k+1];
- m_sigma[k+1] = t;
- if (wantv && (k < n-1))
- m_matV.col(k).swap(m_matV.col(k+1));
- if (wantu && (k < m-1))
- m_matU.col(k).swap(m_matU.col(k+1));
- ++k;
- }
- iter = 0;
- p--;
- }
- break;
- } // end big switch
- } // end iterations
-}
-
-template<typename MatrixType>
-SVD<MatrixType>& SVD<MatrixType>::sort()
-{
- int mu = m_matU.rows();
- int mv = m_matV.rows();
- int n = m_matU.cols();
-
- for (int i=0; i<n; ++i)
- {
- int k = i;
- Scalar p = m_sigma.coeff(i);
-
- for (int j=i+1; j<n; ++j)
- {
- if (m_sigma.coeff(j) > p)
- {
- k = j;
- p = m_sigma.coeff(j);
- }
- }
- if (k != i)
- {
- m_sigma.coeffRef(k) = m_sigma.coeff(i); // i.e.
- m_sigma.coeffRef(i) = p; // swaps the i-th and the k-th elements
-
- int j = mu;
- for(int s=0; j!=0; ++s, --j)
- std::swap(m_matU.coeffRef(s,i), m_matU.coeffRef(s,k));
-
- j = mv;
- for (int s=0; j!=0; ++s, --j)
- std::swap(m_matV.coeffRef(s,i), m_matV.coeffRef(s,k));
- }
- }
- return *this;
-}
-
-/** \returns the solution of \f$ A x = b \f$ using the current SVD decomposition of A.
- * The parts of the solution corresponding to zero singular values are ignored.
- *
- * \sa MatrixBase::svd(), LU::solve(), LLT::solve()
- */
-template<typename MatrixType>
-template<typename OtherDerived, typename ResultType>
-bool SVD<MatrixType>::solve(const MatrixBase<OtherDerived> &b, ResultType* result) const
-{
- ei_assert(b.rows() == m_matU.rows());
-
- Scalar maxVal = m_sigma.cwise().abs().maxCoeff();
- for (int j=0; j<b.cols(); ++j)
- {
- Matrix<Scalar,MatrixUType::RowsAtCompileTime,1> aux = m_matU.transpose() * b.col(j);
-
- for (int i = 0; i <m_matU.cols(); ++i)
- {
- Scalar si = m_sigma.coeff(i);
- if (ei_isMuchSmallerThan(ei_abs(si),maxVal))
- aux.coeffRef(i) = 0;
- else
- aux.coeffRef(i) /= si;
- }
-
- result->col(j) = m_matV * aux;
- }
- return true;
-}
-
-/** Computes the polar decomposition of the matrix, as a product unitary x positive.
- *
- * If either pointer is zero, the corresponding computation is skipped.
- *
- * Only for square matrices.
- *
- * \sa computePositiveUnitary(), computeRotationScaling()
- */
-template<typename MatrixType>
-template<typename UnitaryType, typename PositiveType>
-void SVD<MatrixType>::computeUnitaryPositive(UnitaryType *unitary,
- PositiveType *positive) const
-{
- ei_assert(m_matU.cols() == m_matV.cols() && "Polar decomposition is only for square matrices");
- if(unitary) *unitary = m_matU * m_matV.adjoint();
- if(positive) *positive = m_matV * m_sigma.asDiagonal() * m_matV.adjoint();
-}
-
-/** Computes the polar decomposition of the matrix, as a product positive x unitary.
- *
- * If either pointer is zero, the corresponding computation is skipped.
- *
- * Only for square matrices.
- *
- * \sa computeUnitaryPositive(), computeRotationScaling()
- */
-template<typename MatrixType>
-template<typename UnitaryType, typename PositiveType>
-void SVD<MatrixType>::computePositiveUnitary(UnitaryType *positive,
- PositiveType *unitary) const
-{
- ei_assert(m_matU.rows() == m_matV.rows() && "Polar decomposition is only for square matrices");
- if(unitary) *unitary = m_matU * m_matV.adjoint();
- if(positive) *positive = m_matU * m_sigma.asDiagonal() * m_matU.adjoint();
-}
-
-/** decomposes the matrix as a product rotation x scaling, the scaling being
- * not necessarily positive.
- *
- * If either pointer is zero, the corresponding computation is skipped.
- *
- * This method requires the Geometry module.
- *
- * \sa computeScalingRotation(), computeUnitaryPositive()
- */
-template<typename MatrixType>
-template<typename RotationType, typename ScalingType>
-void SVD<MatrixType>::computeRotationScaling(RotationType *rotation, ScalingType *scaling) const
-{
- ei_assert(m_matU.rows() == m_matV.rows() && "Polar decomposition is only for square matrices");
- Scalar x = (m_matU * m_matV.adjoint()).determinant(); // so x has absolute value 1
- Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> sv(m_sigma);
- sv.coeffRef(0) *= x;
- if(scaling) scaling->lazyAssign(m_matV * sv.asDiagonal() * m_matV.adjoint());
- if(rotation)
- {
- MatrixType m(m_matU);
- m.col(0) /= x;
- rotation->lazyAssign(m * m_matV.adjoint());
- }
-}
-
-/** decomposes the matrix as a product scaling x rotation, the scaling being
- * not necessarily positive.
- *
- * If either pointer is zero, the corresponding computation is skipped.
- *
- * This method requires the Geometry module.
- *
- * \sa computeRotationScaling(), computeUnitaryPositive()
- */
-template<typename MatrixType>
-template<typename ScalingType, typename RotationType>
-void SVD<MatrixType>::computeScalingRotation(ScalingType *scaling, RotationType *rotation) const
-{
- ei_assert(m_matU.rows() == m_matV.rows() && "Polar decomposition is only for square matrices");
- Scalar x = (m_matU * m_matV.adjoint()).determinant(); // so x has absolute value 1
- Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> sv(m_sigma);
- sv.coeffRef(0) *= x;
- if(scaling) scaling->lazyAssign(m_matU * sv.asDiagonal() * m_matU.adjoint());
- if(rotation)
- {
- MatrixType m(m_matU);
- m.col(0) /= x;
- rotation->lazyAssign(m * m_matV.adjoint());
- }
-}
-
-
-/** \svd_module
- * \returns the SVD decomposition of \c *this
- */
-template<typename Derived>
-inline SVD<typename MatrixBase<Derived>::PlainObject>
-MatrixBase<Derived>::svd() const
-{
- return SVD<PlainObject>(derived());
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN2_SVD_H
diff --git a/Eigen/src/Eigen2Support/TriangularSolver.h b/Eigen/src/Eigen2Support/TriangularSolver.h
deleted file mode 100644
index ebbeb3b49..000000000
--- a/Eigen/src/Eigen2Support/TriangularSolver.h
+++ /dev/null
@@ -1,42 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_TRIANGULAR_SOLVER2_H
-#define EIGEN_TRIANGULAR_SOLVER2_H
-
-namespace Eigen {
-
-const unsigned int UnitDiagBit = UnitDiag;
-const unsigned int SelfAdjointBit = SelfAdjoint;
-const unsigned int UpperTriangularBit = Upper;
-const unsigned int LowerTriangularBit = Lower;
-
-const unsigned int UpperTriangular = Upper;
-const unsigned int LowerTriangular = Lower;
-const unsigned int UnitUpperTriangular = UnitUpper;
-const unsigned int UnitLowerTriangular = UnitLower;
-
-template<typename ExpressionType, unsigned int Added, unsigned int Removed>
-template<typename OtherDerived>
-typename ExpressionType::PlainObject
-Flagged<ExpressionType,Added,Removed>::solveTriangular(const MatrixBase<OtherDerived>& other) const
-{
- return m_matrix.template triangularView<Added>().solve(other.derived());
-}
-
-template<typename ExpressionType, unsigned int Added, unsigned int Removed>
-template<typename OtherDerived>
-void Flagged<ExpressionType,Added,Removed>::solveTriangularInPlace(const MatrixBase<OtherDerived>& other) const
-{
- m_matrix.template triangularView<Added>().solveInPlace(other.derived());
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_TRIANGULAR_SOLVER2_H
diff --git a/Eigen/src/Eigen2Support/VectorBlock.h b/Eigen/src/Eigen2Support/VectorBlock.h
deleted file mode 100644
index 71a8080a9..000000000
--- a/Eigen/src/Eigen2Support/VectorBlock.h
+++ /dev/null
@@ -1,94 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN2_VECTORBLOCK_H
-#define EIGEN2_VECTORBLOCK_H
-
-namespace Eigen {
-
-/** \deprecated use DenseMase::head(Index) */
-template<typename Derived>
-inline VectorBlock<Derived>
-MatrixBase<Derived>::start(Index size)
-{
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
- return VectorBlock<Derived>(derived(), 0, size);
-}
-
-/** \deprecated use DenseMase::head(Index) */
-template<typename Derived>
-inline const VectorBlock<const Derived>
-MatrixBase<Derived>::start(Index size) const
-{
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
- return VectorBlock<const Derived>(derived(), 0, size);
-}
-
-/** \deprecated use DenseMase::tail(Index) */
-template<typename Derived>
-inline VectorBlock<Derived>
-MatrixBase<Derived>::end(Index size)
-{
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
- return VectorBlock<Derived>(derived(), this->size() - size, size);
-}
-
-/** \deprecated use DenseMase::tail(Index) */
-template<typename Derived>
-inline const VectorBlock<const Derived>
-MatrixBase<Derived>::end(Index size) const
-{
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
- return VectorBlock<const Derived>(derived(), this->size() - size, size);
-}
-
-/** \deprecated use DenseMase::head() */
-template<typename Derived>
-template<int Size>
-inline VectorBlock<Derived,Size>
-MatrixBase<Derived>::start()
-{
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
- return VectorBlock<Derived,Size>(derived(), 0);
-}
-
-/** \deprecated use DenseMase::head() */
-template<typename Derived>
-template<int Size>
-inline const VectorBlock<const Derived,Size>
-MatrixBase<Derived>::start() const
-{
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
- return VectorBlock<const Derived,Size>(derived(), 0);
-}
-
-/** \deprecated use DenseMase::tail() */
-template<typename Derived>
-template<int Size>
-inline VectorBlock<Derived,Size>
-MatrixBase<Derived>::end()
-{
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
- return VectorBlock<Derived, Size>(derived(), size() - Size);
-}
-
-/** \deprecated use DenseMase::tail() */
-template<typename Derived>
-template<int Size>
-inline const VectorBlock<const Derived,Size>
-MatrixBase<Derived>::end() const
-{
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
- return VectorBlock<const Derived, Size>(derived(), size() - Size);
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN2_VECTORBLOCK_H
diff --git a/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h b/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h
index b8146d04d..fc8ecaa6f 100644
--- a/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h
+++ b/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h
@@ -346,40 +346,6 @@ template<typename _MatrixType> class SelfAdjointEigenSolver
*/
static const int m_maxIterations = 30;
- #ifdef EIGEN2_SUPPORT
- EIGEN_DEVICE_FUNC
- SelfAdjointEigenSolver(const MatrixType& matrix, bool computeEigenvectors)
- : m_eivec(matrix.rows(), matrix.cols()),
- m_eivalues(matrix.cols()),
- m_subdiag(matrix.rows() > 1 ? matrix.rows() - 1 : 1),
- m_isInitialized(false)
- {
- compute(matrix, computeEigenvectors);
- }
-
- EIGEN_DEVICE_FUNC
- SelfAdjointEigenSolver(const MatrixType& matA, const MatrixType& matB, bool computeEigenvectors = true)
- : m_eivec(matA.cols(), matA.cols()),
- m_eivalues(matA.cols()),
- m_subdiag(matA.cols() > 1 ? matA.cols() - 1 : 1),
- m_isInitialized(false)
- {
- static_cast<GeneralizedSelfAdjointEigenSolver<MatrixType>*>(this)->compute(matA, matB, computeEigenvectors ? ComputeEigenvectors : EigenvaluesOnly);
- }
-
- EIGEN_DEVICE_FUNC
- void compute(const MatrixType& matrix, bool computeEigenvectors)
- {
- compute(matrix, computeEigenvectors ? ComputeEigenvectors : EigenvaluesOnly);
- }
-
- EIGEN_DEVICE_FUNC
- void compute(const MatrixType& matA, const MatrixType& matB, bool computeEigenvectors = true)
- {
- compute(matA, matB, computeEigenvectors ? ComputeEigenvectors : EigenvaluesOnly);
- }
- #endif // EIGEN2_SUPPORT
-
protected:
MatrixType m_eivec;
RealVectorType m_eivalues;
@@ -389,6 +355,7 @@ template<typename _MatrixType> class SelfAdjointEigenSolver
bool m_eigenvectorsOk;
};
+namespace internal {
/** \internal
*
* \eigenvalues_module \ingroup Eigenvalues_Module
@@ -405,7 +372,6 @@ template<typename _MatrixType> class SelfAdjointEigenSolver
* Implemented from Golub's "Matrix Computations", algorithm 8.3.2:
* "implicit symmetric QR step with Wilkinson shift"
*/
-namespace internal {
template<int StorageOrder,typename RealScalar, typename Scalar, typename Index>
EIGEN_DEVICE_FUNC
static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end, Scalar* matrixQ, Index n);
diff --git a/Eigen/src/Geometry/AngleAxis.h b/Eigen/src/Geometry/AngleAxis.h
index b42048c55..636712c2b 100644
--- a/Eigen/src/Geometry/AngleAxis.h
+++ b/Eigen/src/Geometry/AngleAxis.h
@@ -77,7 +77,9 @@ public:
* represents an invalid rotation. */
template<typename Derived>
inline AngleAxis(const Scalar& angle, const MatrixBase<Derived>& axis) : m_axis(axis), m_angle(angle) {}
- /** Constructs and initialize the angle-axis rotation from a quaternion \a q. */
+ /** Constructs and initialize the angle-axis rotation from a quaternion \a q.
+ * This function implicitly normalizes the quaternion \a q.
+ */
template<typename QuatDerived> inline explicit AngleAxis(const QuaternionBase<QuatDerived>& q) { *this = q; }
/** Constructs and initialize the angle-axis rotation from a 3x3 rotation matrix. */
template<typename Derived>
@@ -149,29 +151,27 @@ typedef AngleAxis<float> AngleAxisf;
typedef AngleAxis<double> AngleAxisd;
/** Set \c *this from a \b unit quaternion.
- * The axis is normalized.
+ * The resulting axis is normalized.
*
- * \warning As any other method dealing with quaternion, if the input quaternion
- * is not normalized then the result is undefined.
+ * This function implicitly normalizes the quaternion \a q.
*/
template<typename Scalar>
template<typename QuatDerived>
AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const QuaternionBase<QuatDerived>& q)
{
- using std::acos;
- EIGEN_USING_STD_MATH(min);
- EIGEN_USING_STD_MATH(max);
- using std::sqrt;
- Scalar n2 = q.vec().squaredNorm();
- if (n2 < NumTraits<Scalar>::dummy_precision()*NumTraits<Scalar>::dummy_precision())
+ using std::atan2;
+ Scalar n = q.vec().norm();
+ if(n<NumTraits<Scalar>::epsilon())
+ n = q.vec().stableNorm();
+ if (n > Scalar(0))
{
- m_angle = Scalar(0);
- m_axis << Scalar(1), Scalar(0), Scalar(0);
+ m_angle = Scalar(2)*atan2(n, q.w());
+ m_axis = q.vec() / n;
}
else
{
- m_angle = Scalar(2)*acos((min)((max)(Scalar(-1),q.w()),Scalar(1)));
- m_axis = q.vec() / sqrt(n2);
+ m_angle = 0;
+ m_axis << 1, 0, 0;
}
return *this;
}
diff --git a/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h b/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h
index 73ca9bfde..1f3c060d0 100644
--- a/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h
+++ b/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h
@@ -65,10 +65,10 @@ class DiagonalPreconditioner
{
typename MatType::InnerIterator it(mat,j);
while(it && it.index()!=j) ++it;
- if(it && it.index()==j)
+ if(it && it.index()==j && it.value()!=Scalar(0))
m_invdiag(j) = Scalar(1)/it.value();
else
- m_invdiag(j) = 0;
+ m_invdiag(j) = Scalar(1);
}
m_isInitialized = true;
return *this;
diff --git a/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h b/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h
index 7a46b51fa..dc524c225 100644
--- a/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h
+++ b/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h
@@ -61,6 +61,7 @@ bool bicgstab(const MatrixType& mat, const Rhs& rhs, Dest& x,
VectorType s(n), t(n);
RealScalar tol2 = tol*tol;
+ RealScalar eps2 = NumTraits<Scalar>::epsilon()*NumTraits<Scalar>::epsilon();
int i = 0;
int restarts = 0;
@@ -69,7 +70,7 @@ bool bicgstab(const MatrixType& mat, const Rhs& rhs, Dest& x,
Scalar rho_old = rho;
rho = r0.dot(r);
- if (internal::isMuchSmallerThan(rho,r0_sqnorm))
+ if (abs(rho) < eps2*r0_sqnorm)
{
// The new residual vector became too orthogonal to the arbitrarily choosen direction r0
// Let's restart with a new r0:
diff --git a/Eigen/src/Jacobi/Jacobi.h b/Eigen/src/Jacobi/Jacobi.h
index 956f72d57..da9fb53d0 100644
--- a/Eigen/src/Jacobi/Jacobi.h
+++ b/Eigen/src/Jacobi/Jacobi.h
@@ -255,13 +255,13 @@ void JacobiRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar
* Implementation of MatrixBase methods
****************************************************************************************/
+namespace internal {
/** \jacobi_module
* Applies the clock wise 2D rotation \a j to the set of 2D vectors of cordinates \a x and \a y:
* \f$ \left ( \begin{array}{cc} x \\ y \end{array} \right ) = J \left ( \begin{array}{cc} x \\ y \end{array} \right ) \f$
*
* \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
*/
-namespace internal {
template<typename VectorX, typename VectorY, typename OtherScalar>
void apply_rotation_in_the_plane(VectorX& _x, VectorY& _y, const JacobiRotation<OtherScalar>& j);
}
diff --git a/Eigen/src/LU/PartialPivLU.h b/Eigen/src/LU/PartialPivLU.h
index 1d389ecac..2f65c3a49 100644
--- a/Eigen/src/LU/PartialPivLU.h
+++ b/Eigen/src/LU/PartialPivLU.h
@@ -371,13 +371,13 @@ struct partial_lu_impl
/** \internal performs the LU decomposition with partial pivoting in-place.
*/
template<typename MatrixType, typename TranspositionType>
-void partial_lu_inplace(MatrixType& lu, TranspositionType& row_transpositions, typename TranspositionType::Index& nb_transpositions)
+void partial_lu_inplace(MatrixType& lu, TranspositionType& row_transpositions, typename TranspositionType::StorageIndexType& nb_transpositions)
{
eigen_assert(lu.cols() == row_transpositions.size());
eigen_assert((&row_transpositions.coeffRef(1)-&row_transpositions.coeffRef(0)) == 1);
partial_lu_impl
- <typename MatrixType::Scalar, MatrixType::Flags&RowMajorBit?RowMajor:ColMajor, typename TranspositionType::Index>
+ <typename MatrixType::Scalar, MatrixType::Flags&RowMajorBit?RowMajor:ColMajor, typename TranspositionType::StorageIndexType>
::blocked_lu(lu.rows(), lu.cols(), &lu.coeffRef(0,0), lu.outerStride(), &row_transpositions.coeffRef(0), nb_transpositions);
}
@@ -396,7 +396,7 @@ PartialPivLU<MatrixType>& PartialPivLU<MatrixType>::compute(const MatrixType& ma
m_rowsTranspositions.resize(size);
- typename TranspositionType::Index nb_transpositions;
+ typename TranspositionType::StorageIndexType nb_transpositions;
internal::partial_lu_inplace(m_lu, m_rowsTranspositions, nb_transpositions);
m_det_p = (nb_transpositions%2) ? -1 : 1;
@@ -481,7 +481,6 @@ MatrixBase<Derived>::partialPivLu() const
}
#endif
-#if EIGEN2_SUPPORT_STAGE > STAGE20_RESOLVE_API_CONFLICTS
/** \lu_module
*
* Synonym of partialPivLu().
@@ -499,8 +498,6 @@ MatrixBase<Derived>::lu() const
}
#endif
-#endif
-
} // end namespace Eigen
#endif // EIGEN_PARTIALLU_H
diff --git a/Eigen/src/OrderingMethods/Ordering.h b/Eigen/src/OrderingMethods/Ordering.h
index b4da6531a..f3c31f9cb 100644
--- a/Eigen/src/OrderingMethods/Ordering.h
+++ b/Eigen/src/OrderingMethods/Ordering.h
@@ -109,7 +109,7 @@ class NaturalOrdering
* \class COLAMDOrdering
*
* Functor computing the \em column \em approximate \em minimum \em degree ordering
- * The matrix should be in column-major format
+ * The matrix should be in column-major and \b compressed format (see SparseMatrix::makeCompressed()).
*/
template<typename Index>
class COLAMDOrdering
@@ -118,10 +118,14 @@ class COLAMDOrdering
typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType;
typedef Matrix<Index, Dynamic, 1> IndexVector;
- /** Compute the permutation vector form a sparse matrix */
+ /** Compute the permutation vector \a perm form the sparse matrix \a mat
+ * \warning The input sparse matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()).
+ */
template <typename MatrixType>
void operator() (const MatrixType& mat, PermutationType& perm)
{
+ eigen_assert(mat.isCompressed() && "COLAMDOrdering requires a sparse matrix in compressed mode. Call .makeCompressed() before passing it to COLAMDOrdering");
+
Index m = mat.rows();
Index n = mat.cols();
Index nnz = mat.nonZeros();
@@ -132,12 +136,12 @@ class COLAMDOrdering
Index stats [COLAMD_STATS];
internal::colamd_set_defaults(knobs);
- Index info;
IndexVector p(n+1), A(Alen);
for(Index i=0; i <= n; i++) p(i) = mat.outerIndexPtr()[i];
for(Index i=0; i < nnz; i++) A(i) = mat.innerIndexPtr()[i];
// Call Colamd routine to compute the ordering
- info = internal::colamd(m, n, Alen, A.data(), p.data(), knobs, stats);
+ Index info = internal::colamd(m, n, Alen, A.data(), p.data(), knobs, stats);
+ EIGEN_UNUSED_VARIABLE(info);
eigen_assert( info && "COLAMD failed " );
perm.resize(n);
diff --git a/Eigen/src/SVD/JacobiSVD.h b/Eigen/src/SVD/JacobiSVD.h
index 439eb5d29..412daa746 100644
--- a/Eigen/src/SVD/JacobiSVD.h
+++ b/Eigen/src/SVD/JacobiSVD.h
@@ -375,17 +375,19 @@ struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, true>
Scalar z;
JacobiRotation<Scalar> rot;
RealScalar n = sqrt(numext::abs2(work_matrix.coeff(p,p)) + numext::abs2(work_matrix.coeff(q,p)));
+
if(n==0)
{
z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q);
work_matrix.row(p) *= z;
if(svd.computeU()) svd.m_matrixU.col(p) *= conj(z);
if(work_matrix.coeff(q,q)!=Scalar(0))
+ {
z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q);
- else
- z = Scalar(0);
- work_matrix.row(q) *= z;
- if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z);
+ work_matrix.row(q) *= z;
+ if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z);
+ }
+ // otherwise the second row is already zero, so we have nothing to do.
}
else
{
@@ -835,7 +837,7 @@ JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsig
if(m_computeThinV) m_matrixV.setIdentity(m_cols, m_diagSize);
}
- // Scaling factor to reducover/under-flows
+ // Scaling factor to reduce over/under-flows
RealScalar scale = m_workMatrix.cwiseAbs().maxCoeff();
if(scale==RealScalar(0)) scale = RealScalar(1);
m_workMatrix /= scale;
diff --git a/Eigen/src/SparseCholesky/SimplicialCholesky.h b/Eigen/src/SparseCholesky/SimplicialCholesky.h
index f41d7e010..e1f96ba5a 100644
--- a/Eigen/src/SparseCholesky/SimplicialCholesky.h
+++ b/Eigen/src/SparseCholesky/SimplicialCholesky.h
@@ -37,6 +37,7 @@ class SimplicialCholeskyBase : internal::noncopyable
{
public:
typedef typename internal::traits<Derived>::MatrixType MatrixType;
+ typedef typename internal::traits<Derived>::OrderingType OrderingType;
enum { UpLo = internal::traits<Derived>::UpLo };
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
@@ -240,15 +241,16 @@ class SimplicialCholeskyBase : internal::noncopyable
RealScalar m_shiftScale;
};
-template<typename _MatrixType, int _UpLo = Lower> class SimplicialLLT;
-template<typename _MatrixType, int _UpLo = Lower> class SimplicialLDLT;
-template<typename _MatrixType, int _UpLo = Lower> class SimplicialCholesky;
+template<typename _MatrixType, int _UpLo = Lower, typename _Ordering = AMDOrdering<typename _MatrixType::Index> > class SimplicialLLT;
+template<typename _MatrixType, int _UpLo = Lower, typename _Ordering = AMDOrdering<typename _MatrixType::Index> > class SimplicialLDLT;
+template<typename _MatrixType, int _UpLo = Lower, typename _Ordering = AMDOrdering<typename _MatrixType::Index> > class SimplicialCholesky;
namespace internal {
-template<typename _MatrixType, int _UpLo> struct traits<SimplicialLLT<_MatrixType,_UpLo> >
+template<typename _MatrixType, int _UpLo, typename _Ordering> struct traits<SimplicialLLT<_MatrixType,_UpLo,_Ordering> >
{
typedef _MatrixType MatrixType;
+ typedef _Ordering OrderingType;
enum { UpLo = _UpLo };
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::Index Index;
@@ -259,9 +261,10 @@ template<typename _MatrixType, int _UpLo> struct traits<SimplicialLLT<_MatrixTyp
static inline MatrixU getU(const MatrixType& m) { return m.adjoint(); }
};
-template<typename _MatrixType,int _UpLo> struct traits<SimplicialLDLT<_MatrixType,_UpLo> >
+template<typename _MatrixType,int _UpLo, typename _Ordering> struct traits<SimplicialLDLT<_MatrixType,_UpLo,_Ordering> >
{
typedef _MatrixType MatrixType;
+ typedef _Ordering OrderingType;
enum { UpLo = _UpLo };
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::Index Index;
@@ -272,9 +275,10 @@ template<typename _MatrixType,int _UpLo> struct traits<SimplicialLDLT<_MatrixTyp
static inline MatrixU getU(const MatrixType& m) { return m.adjoint(); }
};
-template<typename _MatrixType, int _UpLo> struct traits<SimplicialCholesky<_MatrixType,_UpLo> >
+template<typename _MatrixType, int _UpLo, typename _Ordering> struct traits<SimplicialCholesky<_MatrixType,_UpLo,_Ordering> >
{
typedef _MatrixType MatrixType;
+ typedef _Ordering OrderingType;
enum { UpLo = _UpLo };
};
@@ -294,11 +298,12 @@ template<typename _MatrixType, int _UpLo> struct traits<SimplicialCholesky<_Matr
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
* or Upper. Default is Lower.
+ * \tparam _Ordering The ordering method to use, either AMDOrdering<> or NaturalOrdering<>. Default is AMDOrdering<>
*
- * \sa class SimplicialLDLT
+ * \sa class SimplicialLDLT, class AMDOrdering, class NaturalOrdering
*/
-template<typename _MatrixType, int _UpLo>
- class SimplicialLLT : public SimplicialCholeskyBase<SimplicialLLT<_MatrixType,_UpLo> >
+template<typename _MatrixType, int _UpLo, typename _Ordering>
+ class SimplicialLLT : public SimplicialCholeskyBase<SimplicialLLT<_MatrixType,_UpLo,_Ordering> >
{
public:
typedef _MatrixType MatrixType;
@@ -382,11 +387,12 @@ public:
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
* or Upper. Default is Lower.
+ * \tparam _Ordering The ordering method to use, either AMDOrdering<> or NaturalOrdering<>. Default is AMDOrdering<>
*
- * \sa class SimplicialLLT
+ * \sa class SimplicialLLT, class AMDOrdering, class NaturalOrdering
*/
-template<typename _MatrixType, int _UpLo>
- class SimplicialLDLT : public SimplicialCholeskyBase<SimplicialLDLT<_MatrixType,_UpLo> >
+template<typename _MatrixType, int _UpLo, typename _Ordering>
+ class SimplicialLDLT : public SimplicialCholeskyBase<SimplicialLDLT<_MatrixType,_UpLo,_Ordering> >
{
public:
typedef _MatrixType MatrixType;
@@ -467,8 +473,8 @@ public:
*
* \sa class SimplicialLDLT, class SimplicialLLT
*/
-template<typename _MatrixType, int _UpLo>
- class SimplicialCholesky : public SimplicialCholeskyBase<SimplicialCholesky<_MatrixType,_UpLo> >
+template<typename _MatrixType, int _UpLo, typename _Ordering>
+ class SimplicialCholesky : public SimplicialCholeskyBase<SimplicialCholesky<_MatrixType,_UpLo,_Ordering> >
{
public:
typedef _MatrixType MatrixType;
@@ -612,15 +618,13 @@ void SimplicialCholeskyBase<Derived>::ordering(const MatrixType& a, CholMatrixTy
{
eigen_assert(a.rows()==a.cols());
const Index size = a.rows();
- // TODO allows to configure the permutation
// Note that amd compute the inverse permutation
{
CholMatrixType C;
C = a.template selfadjointView<UpLo>();
- // remove diagonal entries:
- // seems not to be needed
- // C.prune(keep_diag());
- internal::minimum_degree_ordering(C, m_Pinv);
+
+ OrderingType ordering;
+ ordering(C,m_Pinv);
}
if(m_Pinv.size()>0)
diff --git a/Eigen/src/SparseCore/CompressedStorage.h b/Eigen/src/SparseCore/CompressedStorage.h
index 10d516a66..a667cb56e 100644
--- a/Eigen/src/SparseCore/CompressedStorage.h
+++ b/Eigen/src/SparseCore/CompressedStorage.h
@@ -83,10 +83,10 @@ class CompressedStorage
reallocate(m_size);
}
- void resize(size_t size, float reserveSizeFactor = 0)
+ void resize(size_t size, double reserveSizeFactor = 0)
{
if (m_allocatedSize<size)
- reallocate(size + size_t(reserveSizeFactor*size));
+ reallocate(size + size_t(reserveSizeFactor*double(size)));
m_size = size;
}
diff --git a/Eigen/src/SparseCore/SparseBlock.h b/Eigen/src/SparseCore/SparseBlock.h
index 5b95cc33f..491cc72b0 100644
--- a/Eigen/src/SparseCore/SparseBlock.h
+++ b/Eigen/src/SparseCore/SparseBlock.h
@@ -50,11 +50,11 @@ public:
Index m_outer;
};
- inline BlockImpl(const XprType& xpr, int i)
+ inline BlockImpl(const XprType& xpr, Index i)
: m_matrix(xpr), m_outerStart(i), m_outerSize(OuterSize)
{}
- inline BlockImpl(const XprType& xpr, int startRow, int startCol, int blockRows, int blockCols)
+ inline BlockImpl(const XprType& xpr, Index startRow, Index startCol, Index blockRows, Index blockCols)
: m_matrix(xpr), m_outerStart(IsRowMajor ? startRow : startCol), m_outerSize(IsRowMajor ? blockRows : blockCols)
{}
@@ -65,7 +65,7 @@ public:
{
Index nnz = 0;
Index end = m_outerStart + m_outerSize.value();
- for(int j=m_outerStart; j<end; ++j)
+ for(Index j=m_outerStart; j<end; ++j)
for(typename XprType::InnerIterator it(m_matrix, j); it; ++it)
++nnz;
return nnz;
@@ -124,11 +124,11 @@ public:
Index m_outer;
};
- inline sparse_matrix_block_impl(const SparseMatrixType& xpr, int i)
+ inline sparse_matrix_block_impl(const SparseMatrixType& xpr, Index i)
: m_matrix(xpr), m_outerStart(i), m_outerSize(OuterSize)
{}
- inline sparse_matrix_block_impl(const SparseMatrixType& xpr, int startRow, int startCol, int blockRows, int blockCols)
+ inline sparse_matrix_block_impl(const SparseMatrixType& xpr, Index startRow, Index startCol, Index blockRows, Index blockCols)
: m_matrix(xpr), m_outerStart(IsRowMajor ? startRow : startCol), m_outerSize(IsRowMajor ? blockRows : blockCols)
{}
@@ -228,8 +228,8 @@ public:
Index nonZeros() const
{
if(m_matrix.isCompressed())
- return std::size_t(m_matrix.outerIndexPtr()[m_outerStart+m_outerSize.value()])
- - std::size_t(m_matrix.outerIndexPtr()[m_outerStart]);
+ return Index( std::size_t(m_matrix.outerIndexPtr()[m_outerStart+m_outerSize.value()])
+ - std::size_t(m_matrix.outerIndexPtr()[m_outerStart]));
else if(m_outerSize.value()==0)
return 0;
else
@@ -264,13 +264,14 @@ class BlockImpl<SparseMatrix<_Scalar, _Options, _Index>,BlockRows,BlockCols,true
: public internal::sparse_matrix_block_impl<SparseMatrix<_Scalar, _Options, _Index>,BlockRows,BlockCols>
{
public:
+ typedef _Index Index;
typedef SparseMatrix<_Scalar, _Options, _Index> SparseMatrixType;
typedef internal::sparse_matrix_block_impl<SparseMatrixType,BlockRows,BlockCols> Base;
- inline BlockImpl(SparseMatrixType& xpr, int i)
+ inline BlockImpl(SparseMatrixType& xpr, Index i)
: Base(xpr, i)
{}
- inline BlockImpl(SparseMatrixType& xpr, int startRow, int startCol, int blockRows, int blockCols)
+ inline BlockImpl(SparseMatrixType& xpr, Index startRow, Index startCol, Index blockRows, Index blockCols)
: Base(xpr, startRow, startCol, blockRows, blockCols)
{}
@@ -282,13 +283,14 @@ class BlockImpl<const SparseMatrix<_Scalar, _Options, _Index>,BlockRows,BlockCol
: public internal::sparse_matrix_block_impl<const SparseMatrix<_Scalar, _Options, _Index>,BlockRows,BlockCols>
{
public:
+ typedef _Index Index;
typedef const SparseMatrix<_Scalar, _Options, _Index> SparseMatrixType;
typedef internal::sparse_matrix_block_impl<SparseMatrixType,BlockRows,BlockCols> Base;
- inline BlockImpl(SparseMatrixType& xpr, int i)
+ inline BlockImpl(SparseMatrixType& xpr, Index i)
: Base(xpr, i)
{}
- inline BlockImpl(SparseMatrixType& xpr, int startRow, int startCol, int blockRows, int blockCols)
+ inline BlockImpl(SparseMatrixType& xpr, Index startRow, Index startCol, Index blockRows, Index blockCols)
: Base(xpr, startRow, startCol, blockRows, blockCols)
{}
@@ -362,7 +364,7 @@ public:
/** Column or Row constructor
*/
- inline BlockImpl(const XprType& xpr, int i)
+ inline BlockImpl(const XprType& xpr, Index i)
: m_matrix(xpr),
m_startRow( (BlockRows==1) && (BlockCols==XprType::ColsAtCompileTime) ? i : 0),
m_startCol( (BlockRows==XprType::RowsAtCompileTime) && (BlockCols==1) ? i : 0),
@@ -372,32 +374,32 @@ public:
/** Dynamic-size constructor
*/
- inline BlockImpl(const XprType& xpr, int startRow, int startCol, int blockRows, int blockCols)
+ inline BlockImpl(const XprType& xpr, Index startRow, Index startCol, Index blockRows, Index blockCols)
: m_matrix(xpr), m_startRow(startRow), m_startCol(startCol), m_blockRows(blockRows), m_blockCols(blockCols)
{}
- inline int rows() const { return m_blockRows.value(); }
- inline int cols() const { return m_blockCols.value(); }
+ inline Index rows() const { return m_blockRows.value(); }
+ inline Index cols() const { return m_blockCols.value(); }
- inline Scalar& coeffRef(int row, int col)
+ inline Scalar& coeffRef(Index row, Index col)
{
return m_matrix.const_cast_derived()
.coeffRef(row + m_startRow.value(), col + m_startCol.value());
}
- inline const Scalar coeff(int row, int col) const
+ inline const Scalar coeff(Index row, Index col) const
{
return m_matrix.coeff(row + m_startRow.value(), col + m_startCol.value());
}
- inline Scalar& coeffRef(int index)
+ inline Scalar& coeffRef(Index index)
{
return m_matrix.const_cast_derived()
.coeffRef(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index),
m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0));
}
- inline const Scalar coeff(int index) const
+ inline const Scalar coeff(Index index) const
{
return m_matrix
.coeff(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index),
@@ -521,6 +523,7 @@ namespace internal {
while(m_outerPos<m_end)
{
m_outerPos++;
+ if(m_outerPos==m_end) break;
typename XprType::InnerIterator it(m_block.m_matrix, m_outerPos);
// search for the key m_innerIndex in the current outer-vector
while(it && it.index() < m_innerIndex) ++it;
diff --git a/Eigen/src/SparseCore/SparseCwiseBinaryOp.h b/Eigen/src/SparseCore/SparseCwiseBinaryOp.h
index ec86ca933..60fdd214a 100644
--- a/Eigen/src/SparseCore/SparseCwiseBinaryOp.h
+++ b/Eigen/src/SparseCore/SparseCwiseBinaryOp.h
@@ -69,7 +69,6 @@ class CwiseBinaryOpImpl<BinaryOp,Lhs,Rhs,Sparse>::InnerIterator
: public internal::sparse_cwise_binary_op_inner_iterator_selector<BinaryOp,Lhs,Rhs,typename CwiseBinaryOpImpl<BinaryOp,Lhs,Rhs,Sparse>::InnerIterator>
{
public:
- typedef typename Lhs::Index Index;
typedef internal::sparse_cwise_binary_op_inner_iterator_selector<
BinaryOp,Lhs,Rhs, InnerIterator> Base;
@@ -95,11 +94,11 @@ class sparse_cwise_binary_op_inner_iterator_selector<BinaryOp, Lhs, Rhs, Derived
{
typedef CwiseBinaryOp<BinaryOp, Lhs, Rhs> CwiseBinaryXpr;
typedef typename traits<CwiseBinaryXpr>::Scalar Scalar;
+ typedef typename traits<CwiseBinaryXpr>::Index Index;
typedef typename traits<CwiseBinaryXpr>::_LhsNested _LhsNested;
typedef typename traits<CwiseBinaryXpr>::_RhsNested _RhsNested;
typedef typename _LhsNested::InnerIterator LhsIterator;
typedef typename _RhsNested::InnerIterator RhsIterator;
- typedef typename Lhs::Index Index;
public:
@@ -161,11 +160,11 @@ class sparse_cwise_binary_op_inner_iterator_selector<scalar_product_op<T>, Lhs,
typedef scalar_product_op<T> BinaryFunc;
typedef CwiseBinaryOp<BinaryFunc, Lhs, Rhs> CwiseBinaryXpr;
typedef typename CwiseBinaryXpr::Scalar Scalar;
+ typedef typename CwiseBinaryXpr::Index Index;
typedef typename traits<CwiseBinaryXpr>::_LhsNested _LhsNested;
typedef typename _LhsNested::InnerIterator LhsIterator;
typedef typename traits<CwiseBinaryXpr>::_RhsNested _RhsNested;
typedef typename _RhsNested::InnerIterator RhsIterator;
- typedef typename Lhs::Index Index;
public:
EIGEN_STRONG_INLINE sparse_cwise_binary_op_inner_iterator_selector(const CwiseBinaryXpr& xpr, Index outer)
@@ -215,15 +214,15 @@ class sparse_cwise_binary_op_inner_iterator_selector<scalar_product_op<T>, Lhs,
typedef scalar_product_op<T> BinaryFunc;
typedef CwiseBinaryOp<BinaryFunc, Lhs, Rhs> CwiseBinaryXpr;
typedef typename CwiseBinaryXpr::Scalar Scalar;
+ typedef typename CwiseBinaryXpr::Index Index;
typedef typename traits<CwiseBinaryXpr>::_LhsNested _LhsNested;
typedef typename traits<CwiseBinaryXpr>::RhsNested RhsNested;
typedef typename _LhsNested::InnerIterator LhsIterator;
- typedef typename Lhs::Index Index;
enum { IsRowMajor = (int(Lhs::Flags)&RowMajorBit)==RowMajorBit };
public:
EIGEN_STRONG_INLINE sparse_cwise_binary_op_inner_iterator_selector(const CwiseBinaryXpr& xpr, Index outer)
- : m_rhs(xpr.rhs()), m_lhsIter(xpr.lhs(),outer), m_functor(xpr.functor()), m_outer(outer)
+ : m_rhs(xpr.rhs()), m_lhsIter(xpr.lhs(),typename _LhsNested::Index(outer)), m_functor(xpr.functor()), m_outer(outer)
{}
EIGEN_STRONG_INLINE Derived& operator++()
@@ -256,9 +255,9 @@ class sparse_cwise_binary_op_inner_iterator_selector<scalar_product_op<T>, Lhs,
typedef scalar_product_op<T> BinaryFunc;
typedef CwiseBinaryOp<BinaryFunc, Lhs, Rhs> CwiseBinaryXpr;
typedef typename CwiseBinaryXpr::Scalar Scalar;
+ typedef typename CwiseBinaryXpr::Index Index;
typedef typename traits<CwiseBinaryXpr>::_RhsNested _RhsNested;
typedef typename _RhsNested::InnerIterator RhsIterator;
- typedef typename Lhs::Index Index;
enum { IsRowMajor = (int(Rhs::Flags)&RowMajorBit)==RowMajorBit };
public:
diff --git a/Eigen/src/SparseCore/SparseDenseProduct.h b/Eigen/src/SparseCore/SparseDenseProduct.h
index 610833f3b..4a7813296 100644
--- a/Eigen/src/SparseCore/SparseDenseProduct.h
+++ b/Eigen/src/SparseCore/SparseDenseProduct.h
@@ -19,7 +19,10 @@ template<typename Lhs, typename Rhs, int InnerSize> struct SparseDenseProductRet
template<typename Lhs, typename Rhs> struct SparseDenseProductReturnType<Lhs,Rhs,1>
{
- typedef SparseDenseOuterProduct<Lhs,Rhs,false> Type;
+ typedef typename internal::conditional<
+ Lhs::IsRowMajor,
+ SparseDenseOuterProduct<Rhs,Lhs,true>,
+ SparseDenseOuterProduct<Lhs,Rhs,false> >::type Type;
};
template<typename Lhs, typename Rhs, int InnerSize> struct DenseSparseProductReturnType
@@ -29,7 +32,10 @@ template<typename Lhs, typename Rhs, int InnerSize> struct DenseSparseProductRet
template<typename Lhs, typename Rhs> struct DenseSparseProductReturnType<Lhs,Rhs,1>
{
- typedef SparseDenseOuterProduct<Rhs,Lhs,true> Type;
+ typedef typename internal::conditional<
+ Rhs::IsRowMajor,
+ SparseDenseOuterProduct<Rhs,Lhs,true>,
+ SparseDenseOuterProduct<Lhs,Rhs,false> >::type Type;
};
namespace internal {
@@ -96,8 +102,8 @@ class SparseDenseOuterProduct
EIGEN_STATIC_ASSERT(Tr,YOU_MADE_A_PROGRAMMING_MISTAKE);
}
- EIGEN_STRONG_INLINE Index rows() const { return Tr ? m_rhs.rows() : m_lhs.rows(); }
- EIGEN_STRONG_INLINE Index cols() const { return Tr ? m_lhs.cols() : m_rhs.cols(); }
+ EIGEN_STRONG_INLINE Index rows() const { return Tr ? Index(m_rhs.rows()) : m_lhs.rows(); }
+ EIGEN_STRONG_INLINE Index cols() const { return Tr ? m_lhs.cols() : Index(m_rhs.cols()); }
EIGEN_STRONG_INLINE const _LhsNested& lhs() const { return m_lhs; }
EIGEN_STRONG_INLINE const _RhsNested& rhs() const { return m_rhs; }
@@ -114,18 +120,33 @@ class SparseDenseOuterProduct<Lhs,Rhs,Transpose>::InnerIterator : public _LhsNes
typedef typename SparseDenseOuterProduct::Index Index;
public:
EIGEN_STRONG_INLINE InnerIterator(const SparseDenseOuterProduct& prod, Index outer)
- : Base(prod.lhs(), 0), m_outer(outer), m_factor(prod.rhs().coeff(outer))
- {
- }
+ : Base(prod.lhs(), 0), m_outer(outer), m_empty(false), m_factor(get(prod.rhs(), outer, typename internal::traits<Rhs>::StorageKind() ))
+ {}
inline Index outer() const { return m_outer; }
- inline Index row() const { return Transpose ? Base::row() : m_outer; }
- inline Index col() const { return Transpose ? m_outer : Base::row(); }
+ inline Index row() const { return Transpose ? m_outer : Base::index(); }
+ inline Index col() const { return Transpose ? Base::index() : m_outer; }
inline Scalar value() const { return Base::value() * m_factor; }
+ inline operator bool() const { return Base::operator bool() && !m_empty; }
protected:
+ Scalar get(const _RhsNested &rhs, Index outer, Dense = Dense()) const
+ {
+ return rhs.coeff(outer);
+ }
+
+ Scalar get(const _RhsNested &rhs, Index outer, Sparse = Sparse())
+ {
+ typename Traits::_RhsNested::InnerIterator it(rhs, outer);
+ if (it && it.index()==0 && it.value()!=Scalar(0))
+ return it.value();
+ m_empty = true;
+ return Scalar(0);
+ }
+
Index m_outer;
+ bool m_empty;
Scalar m_factor;
};
diff --git a/Eigen/src/SparseCore/SparseDiagonalProduct.h b/Eigen/src/SparseCore/SparseDiagonalProduct.h
index 1bb590e64..c056b4914 100644
--- a/Eigen/src/SparseCore/SparseDiagonalProduct.h
+++ b/Eigen/src/SparseCore/SparseDiagonalProduct.h
@@ -32,8 +32,10 @@ struct traits<SparseDiagonalProduct<Lhs, Rhs> >
typedef typename remove_all<Lhs>::type _Lhs;
typedef typename remove_all<Rhs>::type _Rhs;
typedef typename _Lhs::Scalar Scalar;
- typedef typename promote_index_type<typename traits<Lhs>::Index,
- typename traits<Rhs>::Index>::type Index;
+ // propagate the index type of the sparse matrix
+ typedef typename conditional< is_diagonal<_Lhs>::ret,
+ typename traits<Rhs>::Index,
+ typename traits<Lhs>::Index>::type Index;
typedef Sparse StorageKind;
typedef MatrixXpr XprKind;
enum {
@@ -90,8 +92,8 @@ class SparseDiagonalProduct
eigen_assert(lhs.cols() == rhs.rows() && "invalid sparse matrix * diagonal matrix product");
}
- EIGEN_STRONG_INLINE Index rows() const { return m_lhs.rows(); }
- EIGEN_STRONG_INLINE Index cols() const { return m_rhs.cols(); }
+ EIGEN_STRONG_INLINE Index rows() const { return Index(m_lhs.rows()); }
+ EIGEN_STRONG_INLINE Index cols() const { return Index(m_rhs.cols()); }
EIGEN_STRONG_INLINE const _LhsNested& lhs() const { return m_lhs; }
EIGEN_STRONG_INLINE const _RhsNested& rhs() const { return m_rhs; }
@@ -109,7 +111,7 @@ class sparse_diagonal_product_inner_iterator_selector
: public CwiseUnaryOp<scalar_multiple_op<typename Lhs::Scalar>,const Rhs>::InnerIterator
{
typedef typename CwiseUnaryOp<scalar_multiple_op<typename Lhs::Scalar>,const Rhs>::InnerIterator Base;
- typedef typename Lhs::Index Index;
+ typedef typename Rhs::Index Index;
public:
inline sparse_diagonal_product_inner_iterator_selector(
const SparseDiagonalProductType& expr, Index outer)
@@ -129,7 +131,7 @@ class sparse_diagonal_product_inner_iterator_selector
scalar_product_op<typename Lhs::Scalar>,
const typename Rhs::ConstInnerVectorReturnType,
const typename Lhs::DiagonalVectorType>::InnerIterator Base;
- typedef typename Lhs::Index Index;
+ typedef typename Rhs::Index Index;
Index m_outer;
public:
inline sparse_diagonal_product_inner_iterator_selector(
diff --git a/Eigen/src/SparseCore/SparseMatrix.h b/Eigen/src/SparseCore/SparseMatrix.h
index e0b7494c1..2ed2f3ebd 100644
--- a/Eigen/src/SparseCore/SparseMatrix.h
+++ b/Eigen/src/SparseCore/SparseMatrix.h
@@ -800,7 +800,9 @@ protected:
template<typename Other>
void initAssignment(const Other& other)
{
- resize(other.rows(), other.cols());
+ eigen_assert( other.rows() == typename Other::Index(Index(other.rows()))
+ && other.cols() == typename Other::Index(Index(other.cols())) );
+ resize(Index(other.rows()), Index(other.cols()));
if(m_innerNonZeros)
{
std::free(m_innerNonZeros);
@@ -940,7 +942,7 @@ void set_from_triplets(const InputIterator& begin, const InputIterator& end, Spa
enum { IsRowMajor = SparseMatrixType::IsRowMajor };
typedef typename SparseMatrixType::Scalar Scalar;
typedef typename SparseMatrixType::Index Index;
- SparseMatrix<Scalar,IsRowMajor?ColMajor:RowMajor> trMat(mat.rows(),mat.cols());
+ SparseMatrix<Scalar,IsRowMajor?ColMajor:RowMajor,Index> trMat(mat.rows(),mat.cols());
if(begin!=end)
{
@@ -1178,7 +1180,7 @@ EIGEN_DONT_INLINE typename SparseMatrix<_Scalar,_Options,_Index>::Scalar& Sparse
size_t p = m_outerIndex[outer+1];
++m_outerIndex[outer+1];
- float reallocRatio = 1;
+ double reallocRatio = 1;
if (m_data.allocatedSize()<=m_data.size())
{
// if there is no preallocated memory, let's reserve a minimum of 32 elements
@@ -1190,13 +1192,13 @@ EIGEN_DONT_INLINE typename SparseMatrix<_Scalar,_Options,_Index>::Scalar& Sparse
{
// we need to reallocate the data, to reduce multiple reallocations
// we use a smart resize algorithm based on the current filling ratio
- // in addition, we use float to avoid integers overflows
- float nnzEstimate = float(m_outerIndex[outer])*float(m_outerSize)/float(outer+1);
- reallocRatio = (nnzEstimate-float(m_data.size()))/float(m_data.size());
+ // in addition, we use double to avoid integers overflows
+ double nnzEstimate = double(m_outerIndex[outer])*double(m_outerSize)/double(outer+1);
+ reallocRatio = (nnzEstimate-double(m_data.size()))/double(m_data.size());
// furthermore we bound the realloc ratio to:
// 1) reduce multiple minor realloc when the matrix is almost filled
// 2) avoid to allocate too much memory when the matrix is almost empty
- reallocRatio = (std::min)((std::max)(reallocRatio,1.5f),8.f);
+ reallocRatio = (std::min)((std::max)(reallocRatio,1.5),8.);
}
}
m_data.resize(m_data.size()+1,reallocRatio);
diff --git a/Eigen/src/SparseCore/SparseMatrixBase.h b/Eigen/src/SparseCore/SparseMatrixBase.h
index bbcf7fb1c..1050cf3f1 100644
--- a/Eigen/src/SparseCore/SparseMatrixBase.h
+++ b/Eigen/src/SparseCore/SparseMatrixBase.h
@@ -202,20 +202,20 @@ template<typename Derived> class SparseMatrixBase : public EigenBase<Derived>
inline Derived& assign(const OtherDerived& other)
{
const bool transpose = (Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit);
- const Index outerSize = (int(OtherDerived::Flags) & RowMajorBit) ? other.rows() : other.cols();
+ const Index outerSize = (int(OtherDerived::Flags) & RowMajorBit) ? Index(other.rows()) : Index(other.cols());
if ((!transpose) && other.isRValue())
{
// eval without temporary
- derived().resize(other.rows(), other.cols());
+ derived().resize(Index(other.rows()), Index(other.cols()));
derived().setZero();
derived().reserve((std::max)(this->rows(),this->cols())*2);
for (Index j=0; j<outerSize; ++j)
{
derived().startVec(j);
- for (typename OtherDerived::InnerIterator it(other, j); it; ++it)
+ for (typename OtherDerived::InnerIterator it(other, typename OtherDerived::Index(j)); it; ++it)
{
Scalar v = it.value();
- derived().insertBackByOuterInner(j,it.index()) = v;
+ derived().insertBackByOuterInner(j,Index(it.index())) = v;
}
}
derived().finalize();
@@ -237,19 +237,19 @@ template<typename Derived> class SparseMatrixBase : public EigenBase<Derived>
enum { Flip = (Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit) };
- const Index outerSize = other.outerSize();
+ const Index outerSize = Index(other.outerSize());
//typedef typename internal::conditional<transpose, LinkedVectorMatrix<Scalar,Flags&RowMajorBit>, Derived>::type TempType;
// thanks to shallow copies, we always eval to a tempary
- Derived temp(other.rows(), other.cols());
+ Derived temp(Index(other.rows()), Index(other.cols()));
temp.reserve((std::max)(this->rows(),this->cols())*2);
for (Index j=0; j<outerSize; ++j)
{
temp.startVec(j);
- for (typename OtherDerived::InnerIterator it(other.derived(), j); it; ++it)
+ for (typename OtherDerived::InnerIterator it(other.derived(), typename OtherDerived::Index(j)); it; ++it)
{
Scalar v = it.value();
- temp.insertBackByOuterInner(Flip?it.index():j,Flip?j:it.index()) = v;
+ temp.insertBackByOuterInner(Flip?Index(it.index()):j,Flip?j:Index(it.index())) = v;
}
}
temp.finalize();
@@ -369,17 +369,6 @@ template<typename Derived> class SparseMatrixBase : public EigenBase<Derived>
template<typename OtherDerived>
Derived& operator*=(const SparseMatrixBase<OtherDerived>& other);
- #ifdef EIGEN2_SUPPORT
- // deprecated
- template<typename OtherDerived>
- typename internal::plain_matrix_type_column_major<OtherDerived>::type
- solveTriangular(const MatrixBase<OtherDerived>& other) const;
-
- // deprecated
- template<typename OtherDerived>
- void solveTriangularInPlace(MatrixBase<OtherDerived>& other) const;
- #endif // EIGEN2_SUPPORT
-
template<int Mode>
inline const SparseTriangularView<Derived, Mode> triangularView() const;
@@ -412,7 +401,7 @@ template<typename Derived> class SparseMatrixBase : public EigenBase<Derived>
{
dst.setZero();
for (Index j=0; j<outerSize(); ++j)
- for (typename Derived::InnerIterator i(derived(),j); i; ++i)
+ for (typename Derived::InnerIterator i(derived(),typename Derived::Index(j)); i; ++i)
dst.coeffRef(i.row(),i.col()) = i.value();
}
diff --git a/Eigen/src/SparseCore/SparseSelfAdjointView.h b/Eigen/src/SparseCore/SparseSelfAdjointView.h
index 0eda96bc4..56c922929 100644
--- a/Eigen/src/SparseCore/SparseSelfAdjointView.h
+++ b/Eigen/src/SparseCore/SparseSelfAdjointView.h
@@ -246,7 +246,7 @@ class SparseSelfAdjointTimeDenseProduct
|| ( (UpLo&Lower) && LhsIsRowMajor),
ProcessSecondHalf = !ProcessFirstHalf
};
- for (Index j=0; j<m_lhs.outerSize(); ++j)
+ for (typename _Lhs::Index j=0; j<m_lhs.outerSize(); ++j)
{
LhsInnerIterator i(m_lhs,j);
if (ProcessSecondHalf)
diff --git a/Eigen/src/SparseCore/SparseUtil.h b/Eigen/src/SparseCore/SparseUtil.h
index 05023858b..02c19d18f 100644
--- a/Eigen/src/SparseCore/SparseUtil.h
+++ b/Eigen/src/SparseCore/SparseUtil.h
@@ -84,8 +84,11 @@ template<typename Lhs, typename Rhs> class DenseTimeSparseProduct;
template<typename Lhs, typename Rhs, bool Transpose> class SparseDenseOuterProduct;
template<typename Lhs, typename Rhs> struct SparseSparseProductReturnType;
-template<typename Lhs, typename Rhs, int InnerSize = internal::traits<Lhs>::ColsAtCompileTime> struct DenseSparseProductReturnType;
-template<typename Lhs, typename Rhs, int InnerSize = internal::traits<Lhs>::ColsAtCompileTime> struct SparseDenseProductReturnType;
+template<typename Lhs, typename Rhs,
+ int InnerSize = EIGEN_SIZE_MIN_PREFER_FIXED(internal::traits<Lhs>::ColsAtCompileTime,internal::traits<Rhs>::RowsAtCompileTime)> struct DenseSparseProductReturnType;
+
+template<typename Lhs, typename Rhs,
+ int InnerSize = EIGEN_SIZE_MIN_PREFER_FIXED(internal::traits<Lhs>::ColsAtCompileTime,internal::traits<Rhs>::RowsAtCompileTime)> struct SparseDenseProductReturnType;
template<typename MatrixType,int UpLo> class SparseSymmetricPermutationProduct;
namespace internal {
diff --git a/Eigen/src/SparseCore/TriangularSolver.h b/Eigen/src/SparseCore/TriangularSolver.h
index cb8ad82b4..dd55522a7 100644
--- a/Eigen/src/SparseCore/TriangularSolver.h
+++ b/Eigen/src/SparseCore/TriangularSolver.h
@@ -28,15 +28,16 @@ template<typename Lhs, typename Rhs, int Mode>
struct sparse_solve_triangular_selector<Lhs,Rhs,Mode,Lower,RowMajor>
{
typedef typename Rhs::Scalar Scalar;
+ typedef typename Lhs::Index Index;
static void run(const Lhs& lhs, Rhs& other)
{
- for(int col=0 ; col<other.cols() ; ++col)
+ for(Index col=0 ; col<other.cols() ; ++col)
{
- for(int i=0; i<lhs.rows(); ++i)
+ for(Index i=0; i<lhs.rows(); ++i)
{
Scalar tmp = other.coeff(i,col);
Scalar lastVal(0);
- int lastIndex = 0;
+ Index lastIndex = 0;
for(typename Lhs::InnerIterator it(lhs, i); it; ++it)
{
lastVal = it.value();
@@ -62,11 +63,12 @@ template<typename Lhs, typename Rhs, int Mode>
struct sparse_solve_triangular_selector<Lhs,Rhs,Mode,Upper,RowMajor>
{
typedef typename Rhs::Scalar Scalar;
+ typedef typename Lhs::Index Index;
static void run(const Lhs& lhs, Rhs& other)
{
- for(int col=0 ; col<other.cols() ; ++col)
+ for(Index col=0 ; col<other.cols() ; ++col)
{
- for(int i=lhs.rows()-1 ; i>=0 ; --i)
+ for(Index i=lhs.rows()-1 ; i>=0 ; --i)
{
Scalar tmp = other.coeff(i,col);
Scalar l_ii = 0;
@@ -100,11 +102,12 @@ template<typename Lhs, typename Rhs, int Mode>
struct sparse_solve_triangular_selector<Lhs,Rhs,Mode,Lower,ColMajor>
{
typedef typename Rhs::Scalar Scalar;
+ typedef typename Lhs::Index Index;
static void run(const Lhs& lhs, Rhs& other)
{
- for(int col=0 ; col<other.cols() ; ++col)
+ for(Index col=0 ; col<other.cols() ; ++col)
{
- for(int i=0; i<lhs.cols(); ++i)
+ for(Index i=0; i<lhs.cols(); ++i)
{
Scalar& tmp = other.coeffRef(i,col);
if (tmp!=Scalar(0)) // optimization when other is actually sparse
@@ -132,11 +135,12 @@ template<typename Lhs, typename Rhs, int Mode>
struct sparse_solve_triangular_selector<Lhs,Rhs,Mode,Upper,ColMajor>
{
typedef typename Rhs::Scalar Scalar;
+ typedef typename Lhs::Index Index;
static void run(const Lhs& lhs, Rhs& other)
{
- for(int col=0 ; col<other.cols() ; ++col)
+ for(Index col=0 ; col<other.cols() ; ++col)
{
- for(int i=lhs.cols()-1; i>=0; --i)
+ for(Index i=lhs.cols()-1; i>=0; --i)
{
Scalar& tmp = other.coeffRef(i,col);
if (tmp!=Scalar(0)) // optimization when other is actually sparse
@@ -209,7 +213,7 @@ struct sparse_solve_triangular_sparse_selector<Lhs,Rhs,Mode,UpLo,ColMajor>
{
typedef typename Rhs::Scalar Scalar;
typedef typename promote_index_type<typename traits<Lhs>::Index,
- typename traits<Rhs>::Index>::type Index;
+ typename traits<Rhs>::Index>::type Index;
static void run(const Lhs& lhs, Rhs& other)
{
const bool IsLower = (UpLo==Lower);
@@ -219,7 +223,7 @@ struct sparse_solve_triangular_sparse_selector<Lhs,Rhs,Mode,UpLo,ColMajor>
Rhs res(other.rows(), other.cols());
res.reserve(other.nonZeros());
- for(int col=0 ; col<other.cols() ; ++col)
+ for(Index col=0 ; col<other.cols() ; ++col)
{
// FIXME estimate number of non zeros
tempVector.init(.99/*float(other.col(col).nonZeros())/float(other.rows())*/);
@@ -230,7 +234,7 @@ struct sparse_solve_triangular_sparse_selector<Lhs,Rhs,Mode,UpLo,ColMajor>
tempVector.coeffRef(rhsIt.index()) = rhsIt.value();
}
- for(int i=IsLower?0:lhs.cols()-1;
+ for(Index i=IsLower?0:lhs.cols()-1;
IsLower?i<lhs.cols():i>=0;
i+=IsLower?1:-1)
{
@@ -267,7 +271,7 @@ struct sparse_solve_triangular_sparse_selector<Lhs,Rhs,Mode,UpLo,ColMajor>
}
- int count = 0;
+ Index count = 0;
// FIXME compute a reference value to filter zeros
for (typename AmbiVector<Scalar,Index>::Iterator it(tempVector/*,1e-12*/); it; ++it)
{
@@ -305,30 +309,6 @@ void SparseTriangularView<ExpressionType,Mode>::solveInPlace(SparseMatrixBase<Ot
// other = otherCopy;
}
-#ifdef EIGEN2_SUPPORT
-
-// deprecated stuff:
-
-/** \deprecated */
-template<typename Derived>
-template<typename OtherDerived>
-void SparseMatrixBase<Derived>::solveTriangularInPlace(MatrixBase<OtherDerived>& other) const
-{
- this->template triangular<Flags&(Upper|Lower)>().solveInPlace(other);
-}
-
-/** \deprecated */
-template<typename Derived>
-template<typename OtherDerived>
-typename internal::plain_matrix_type_column_major<OtherDerived>::type
-SparseMatrixBase<Derived>::solveTriangular(const MatrixBase<OtherDerived>& other) const
-{
- typename internal::plain_matrix_type_column_major<OtherDerived>::type res(other);
- derived().solveTriangularInPlace(res);
- return res;
-}
-#endif // EIGEN2_SUPPORT
-
} // end namespace Eigen
#endif // EIGEN_SPARSETRIANGULARSOLVER_H
diff --git a/Eigen/src/SparseQR/SparseQR.h b/Eigen/src/SparseQR/SparseQR.h
index 267c48bc3..4c6553bf2 100644
--- a/Eigen/src/SparseQR/SparseQR.h
+++ b/Eigen/src/SparseQR/SparseQR.h
@@ -2,7 +2,7 @@
// for linear algebra.
//
// Copyright (C) 2012-2013 Desire Nuentsa <desire.nuentsa_wakam@inria.fr>
-// Copyright (C) 2012-2013 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2012-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
@@ -58,6 +58,7 @@ namespace internal {
* \tparam _OrderingType The fill-reducing ordering method. See the \link OrderingMethods_Module
* OrderingMethods \endlink module for the list of built-in and external ordering methods.
*
+ * \warning The input sparse matrix A must be in compressed mode (see SparseMatrix::makeCompressed()).
*
*/
template<typename _MatrixType, typename _OrderingType>
@@ -77,10 +78,23 @@ class SparseQR
SparseQR () : m_isInitialized(false), m_analysisIsok(false), m_lastError(""), m_useDefaultThreshold(true),m_isQSorted(false)
{ }
+ /** Construct a QR factorization of the matrix \a mat.
+ *
+ * \warning The matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()).
+ *
+ * \sa compute()
+ */
SparseQR(const MatrixType& mat) : m_isInitialized(false), m_analysisIsok(false), m_lastError(""), m_useDefaultThreshold(true),m_isQSorted(false)
{
compute(mat);
}
+
+ /** Computes the QR factorization of the sparse matrix \a mat.
+ *
+ * \warning The matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()).
+ *
+ * \sa analyzePattern(), factorize()
+ */
void compute(const MatrixType& mat)
{
analyzePattern(mat);
@@ -166,7 +180,7 @@ class SparseQR
y.bottomRows(y.rows()-rank).setZero();
// Apply the column permutation
- if (m_perm_c.size()) dest.topRows(cols()) = colsPermutation() * y.topRows(cols());
+ if (m_perm_c.size()) dest = colsPermutation() * y.topRows(cols());
else dest = y.topRows(cols());
m_info = Success;
@@ -256,6 +270,8 @@ class SparseQR
/** \brief Preprocessing step of a QR factorization
*
+ * \warning The matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()).
+ *
* In this step, the fill-reducing permutation is computed and applied to the columns of A
* and the column elimination tree is computed as well. Only the sparsity pattern of \a mat is exploited.
*
@@ -264,11 +280,13 @@ class SparseQR
template <typename MatrixType, typename OrderingType>
void SparseQR<MatrixType,OrderingType>::analyzePattern(const MatrixType& mat)
{
+ eigen_assert(mat.isCompressed() && "SparseQR requires a sparse matrix in compressed mode. Call .makeCompressed() before passing it to SparseQR");
// Compute the column fill reducing ordering
OrderingType ord;
ord(mat, m_perm_c);
Index n = mat.cols();
Index m = mat.rows();
+ Index diagSize = (std::min)(m,n);
if (!m_perm_c.size())
{
@@ -280,13 +298,13 @@ void SparseQR<MatrixType,OrderingType>::analyzePattern(const MatrixType& mat)
m_outputPerm_c = m_perm_c.inverse();
internal::coletree(mat, m_etree, m_firstRowElt, m_outputPerm_c.indices().data());
- m_R.resize(n, n);
- m_Q.resize(m, n);
+ m_R.resize(m, n);
+ m_Q.resize(m, diagSize);
// Allocate space for nonzero elements : rough estimation
m_R.reserve(2*mat.nonZeros()); //FIXME Get a more accurate estimation through symbolic factorization with the etree
m_Q.reserve(2*mat.nonZeros());
- m_hcoeffs.resize(n);
+ m_hcoeffs.resize(diagSize);
m_analysisIsok = true;
}
@@ -306,11 +324,12 @@ void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
eigen_assert(m_analysisIsok && "analyzePattern() should be called before this step");
Index m = mat.rows();
Index n = mat.cols();
- IndexVector mark(m); mark.setConstant(-1); // Record the visited nodes
- IndexVector Ridx(n), Qidx(m); // Store temporarily the row indexes for the current column of R and Q
- Index nzcolR, nzcolQ; // Number of nonzero for the current column of R and Q
- ScalarVector tval(m); // The dense vector used to compute the current column
- bool found_diag;
+ Index diagSize = (std::min)(m,n);
+ IndexVector mark((std::max)(m,n)); mark.setConstant(-1); // Record the visited nodes
+ IndexVector Ridx(n), Qidx(m); // Store temporarily the row indexes for the current column of R and Q
+ Index nzcolR, nzcolQ; // Number of nonzero for the current column of R and Q
+ ScalarVector tval(m); // The dense vector used to compute the current column
+ RealScalar pivotThreshold = m_threshold;
m_pmat = mat;
m_pmat.uncompress(); // To have the innerNonZeroPtr allocated
@@ -322,7 +341,7 @@ void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
m_pmat.innerNonZeroPtr()[p] = mat.outerIndexPtr()[i+1] - mat.outerIndexPtr()[i];
}
- /* Compute the default threshold, see :
+ /* Compute the default threshold as in MatLab, see:
* Tim Davis, "Algorithm 915, SuiteSparseQR: Multifrontal Multithreaded Rank-Revealing
* Sparse QR Factorization, ACM Trans. on Math. Soft. 38(1), 2011, Page 8:3
*/
@@ -330,24 +349,24 @@ void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
{
RealScalar max2Norm = 0.0;
for (int j = 0; j < n; j++) max2Norm = (max)(max2Norm, m_pmat.col(j).norm());
- m_threshold = 20 * (m + n) * max2Norm * NumTraits<RealScalar>::epsilon();
+ pivotThreshold = 20 * (m + n) * max2Norm * NumTraits<RealScalar>::epsilon();
}
// Initialize the numerical permutation
m_pivotperm.setIdentity(n);
Index nonzeroCol = 0; // Record the number of valid pivots
+ m_Q.startVec(0);
// Left looking rank-revealing QR factorization: compute a column of R and Q at a time
- for (Index col = 0; col < (std::min)(n,m); ++col)
+ for (Index col = 0; col < n; ++col)
{
mark.setConstant(-1);
m_R.startVec(col);
- m_Q.startVec(col);
mark(nonzeroCol) = col;
Qidx(0) = nonzeroCol;
nzcolR = 0; nzcolQ = 1;
- found_diag = col>=m;
+ bool found_diag = nonzeroCol>=m;
tval.setZero();
// Symbolic factorization: find the nonzero locations of the column k of the factors R and Q, i.e.,
@@ -356,7 +375,7 @@ void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
// thus the trick with found_diag that permits to do one more iteration on the diagonal element if this one has not been found.
for (typename MatrixType::InnerIterator itp(m_pmat, col); itp || !found_diag; ++itp)
{
- Index curIdx = nonzeroCol ;
+ Index curIdx = nonzeroCol;
if(itp) curIdx = itp.row();
if(curIdx == nonzeroCol) found_diag = true;
@@ -398,7 +417,7 @@ void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
// Browse all the indexes of R(:,col) in reverse order
for (Index i = nzcolR-1; i >= 0; i--)
{
- Index curIdx = m_pivotperm.indices()(Ridx(i));
+ Index curIdx = Ridx(i);
// Apply the curIdx-th householder vector to the current column (temporarily stored into tval)
Scalar tdot(0);
@@ -427,34 +446,37 @@ void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
}
}
} // End update current column
-
- // Compute the Householder reflection that eliminate the current column
- // FIXME this step should call the Householder module.
- Scalar tau;
- RealScalar beta;
- Scalar c0 = nzcolQ ? tval(Qidx(0)) : Scalar(0);
- // First, the squared norm of Q((col+1):m, col)
- RealScalar sqrNorm = 0.;
- for (Index itq = 1; itq < nzcolQ; ++itq) sqrNorm += numext::abs2(tval(Qidx(itq)));
+ Scalar tau;
+ RealScalar beta = 0;
- if(sqrNorm == RealScalar(0) && numext::imag(c0) == RealScalar(0))
- {
- tau = RealScalar(0);
- beta = numext::real(c0);
- tval(Qidx(0)) = 1;
- }
- else
+ if(nonzeroCol < diagSize)
{
- using std::sqrt;
- beta = sqrt(numext::abs2(c0) + sqrNorm);
- if(numext::real(c0) >= RealScalar(0))
- beta = -beta;
- tval(Qidx(0)) = 1;
- for (Index itq = 1; itq < nzcolQ; ++itq)
- tval(Qidx(itq)) /= (c0 - beta);
- tau = numext::conj((beta-c0) / beta);
-
+ // Compute the Householder reflection that eliminate the current column
+ // FIXME this step should call the Householder module.
+ Scalar c0 = nzcolQ ? tval(Qidx(0)) : Scalar(0);
+
+ // First, the squared norm of Q((col+1):m, col)
+ RealScalar sqrNorm = 0.;
+ for (Index itq = 1; itq < nzcolQ; ++itq) sqrNorm += numext::abs2(tval(Qidx(itq)));
+ if(sqrNorm == RealScalar(0) && numext::imag(c0) == RealScalar(0))
+ {
+ tau = RealScalar(0);
+ beta = numext::real(c0);
+ tval(Qidx(0)) = 1;
+ }
+ else
+ {
+ using std::sqrt;
+ beta = sqrt(numext::abs2(c0) + sqrNorm);
+ if(numext::real(c0) >= RealScalar(0))
+ beta = -beta;
+ tval(Qidx(0)) = 1;
+ for (Index itq = 1; itq < nzcolQ; ++itq)
+ tval(Qidx(itq)) /= (c0 - beta);
+ tau = numext::conj((beta-c0) / beta);
+
+ }
}
// Insert values in R
@@ -468,24 +490,25 @@ void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
}
}
- if(abs(beta) >= m_threshold)
+ if(nonzeroCol < diagSize && abs(beta) >= pivotThreshold)
{
m_R.insertBackByOuterInner(col, nonzeroCol) = beta;
- nonzeroCol++;
// The householder coefficient
- m_hcoeffs(col) = tau;
+ m_hcoeffs(nonzeroCol) = tau;
// Record the householder reflections
for (Index itq = 0; itq < nzcolQ; ++itq)
{
Index iQ = Qidx(itq);
- m_Q.insertBackByOuterInnerUnordered(col,iQ) = tval(iQ);
+ m_Q.insertBackByOuterInnerUnordered(nonzeroCol,iQ) = tval(iQ);
tval(iQ) = Scalar(0.);
- }
+ }
+ nonzeroCol++;
+ if(nonzeroCol<diagSize)
+ m_Q.startVec(nonzeroCol);
}
else
{
// Zero pivot found: move implicitly this column to the end
- m_hcoeffs(col) = Scalar(0);
for (Index j = nonzeroCol; j < n-1; j++)
std::swap(m_pivotperm.indices()(j), m_pivotperm.indices()[j+1]);
@@ -494,6 +517,8 @@ void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
}
}
+ m_hcoeffs.tail(diagSize-nonzeroCol).setZero();
+
// Finalize the column pointers of the sparse matrices R and Q
m_Q.finalize();
m_Q.makeCompressed();
@@ -562,14 +587,16 @@ struct SparseQR_QProduct : ReturnByValue<SparseQR_QProduct<SparseQRType, Derived
template<typename DesType>
void evalTo(DesType& res) const
{
+ Index m = m_qr.rows();
Index n = m_qr.cols();
+ Index diagSize = (std::min)(m,n);
res = m_other;
if (m_transpose)
{
eigen_assert(m_qr.m_Q.rows() == m_other.rows() && "Non conforming object sizes");
//Compute res = Q' * other column by column
for(Index j = 0; j < res.cols(); j++){
- for (Index k = 0; k < n; k++)
+ for (Index k = 0; k < diagSize; k++)
{
Scalar tau = Scalar(0);
tau = m_qr.m_Q.col(k).dot(res.col(j));
@@ -582,10 +609,10 @@ struct SparseQR_QProduct : ReturnByValue<SparseQR_QProduct<SparseQRType, Derived
else
{
eigen_assert(m_qr.m_Q.rows() == m_other.rows() && "Non conforming object sizes");
- // Compute res = Q' * other column by column
+ // Compute res = Q * other column by column
for(Index j = 0; j < res.cols(); j++)
{
- for (Index k = n-1; k >=0; k--)
+ for (Index k = diagSize-1; k >=0; k--)
{
Scalar tau = Scalar(0);
tau = m_qr.m_Q.col(k).dot(res.col(j));
@@ -619,7 +646,7 @@ struct SparseQRMatrixQReturnType : public EigenBase<SparseQRMatrixQReturnType<Sp
return SparseQRMatrixQTransposeReturnType<SparseQRType>(m_qr);
}
inline Index rows() const { return m_qr.rows(); }
- inline Index cols() const { return m_qr.cols(); }
+ inline Index cols() const { return (std::min)(m_qr.rows(),m_qr.cols()); }
// To use for operations with the transpose of Q
SparseQRMatrixQTransposeReturnType<SparseQRType> transpose() const
{
diff --git a/Eigen/src/plugins/ArrayCwiseUnaryOps.h b/Eigen/src/plugins/ArrayCwiseUnaryOps.h
index aea3375ed..ce462e951 100644
--- a/Eigen/src/plugins/ArrayCwiseUnaryOps.h
+++ b/Eigen/src/plugins/ArrayCwiseUnaryOps.h
@@ -141,6 +141,18 @@ tan() const
return derived();
}
+/** \returns an expression of the coefficient-wise arc tan of *this.
+ *
+ * Example: \include Cwise_atan.cpp
+ * Output: \verbinclude Cwise_atan.out
+ *
+ * \sa cos(), sin(), tan()
+ */
+inline const CwiseUnaryOp<internal::scalar_atan_op<Scalar>, Derived>
+atan() const
+{
+ return derived();
+}
/** \returns an expression of the coefficient-wise power of *this to the given exponent.
*