aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Core/Matrix.h
blob: 8c95ee3ca1587706fb9c4e07632006ce8b9c083a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_MATRIX_H
#define EIGEN_MATRIX_H

namespace Eigen {

/** \class Matrix
  * \ingroup Core_Module
  *
  * \brief The matrix class, also used for vectors and row-vectors
  *
  * The %Matrix class is the work-horse for all \em dense (\ref dense "note") matrices and vectors within Eigen.
  * Vectors are matrices with one column, and row-vectors are matrices with one row.
  *
  * The %Matrix class encompasses \em both fixed-size and dynamic-size objects (\ref fixedsize "note").
  *
  * The first three template parameters are required:
  * \tparam _Scalar \anchor matrix_tparam_scalar Numeric type, e.g. float, double, int or std::complex<float>.
  *                 User defined sclar types are supported as well (see \ref user_defined_scalars "here").
  * \tparam _Rows Number of rows, or \b Dynamic
  * \tparam _Cols Number of columns, or \b Dynamic
  *
  * The remaining template parameters are optional -- in most cases you don't have to worry about them.
  * \tparam _Options \anchor matrix_tparam_options A combination of either \b #RowMajor or \b #ColMajor, and of either
  *                 \b #AutoAlign or \b #DontAlign.
  *                 The former controls \ref TopicStorageOrders "storage order", and defaults to column-major. The latter controls alignment, which is required
  *                 for vectorization. It defaults to aligning matrices except for fixed sizes that aren't a multiple of the packet size.
  * \tparam _MaxRows Maximum number of rows. Defaults to \a _Rows (\ref maxrows "note").
  * \tparam _MaxCols Maximum number of columns. Defaults to \a _Cols (\ref maxrows "note").
  *
  * Eigen provides a number of typedefs covering the usual cases. Here are some examples:
  *
  * \li \c Matrix2d is a 2x2 square matrix of doubles (\c Matrix<double, 2, 2>)
  * \li \c Vector4f is a vector of 4 floats (\c Matrix<float, 4, 1>)
  * \li \c RowVector3i is a row-vector of 3 ints (\c Matrix<int, 1, 3>)
  *
  * \li \c MatrixXf is a dynamic-size matrix of floats (\c Matrix<float, Dynamic, Dynamic>)
  * \li \c VectorXf is a dynamic-size vector of floats (\c Matrix<float, Dynamic, 1>)
  *
  * \li \c Matrix2Xf is a partially fixed-size (dynamic-size) matrix of floats (\c Matrix<float, 2, Dynamic>)
  * \li \c MatrixX3d is a partially dynamic-size (fixed-size) matrix of double (\c Matrix<double, Dynamic, 3>)
  *
  * See \link matrixtypedefs this page \endlink for a complete list of predefined \em %Matrix and \em Vector typedefs.
  *
  * You can access elements of vectors and matrices using normal subscripting:
  *
  * \code
  * Eigen::VectorXd v(10);
  * v[0] = 0.1;
  * v[1] = 0.2;
  * v(0) = 0.3;
  * v(1) = 0.4;
  *
  * Eigen::MatrixXi m(10, 10);
  * m(0, 1) = 1;
  * m(0, 2) = 2;
  * m(0, 3) = 3;
  * \endcode
  *
  * This class can be extended with the help of the plugin mechanism described on the page
  * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_MATRIX_PLUGIN.
  *
  * <i><b>Some notes:</b></i>
  *
  * <dl>
  * <dt><b>\anchor dense Dense versus sparse:</b></dt>
  * <dd>This %Matrix class handles dense, not sparse matrices and vectors. For sparse matrices and vectors, see the Sparse module.
  *
  * Dense matrices and vectors are plain usual arrays of coefficients. All the coefficients are stored, in an ordinary contiguous array.
  * This is unlike Sparse matrices and vectors where the coefficients are stored as a list of nonzero coefficients.</dd>
  *
  * <dt><b>\anchor fixedsize Fixed-size versus dynamic-size:</b></dt>
  * <dd>Fixed-size means that the numbers of rows and columns are known are compile-time. In this case, Eigen allocates the array
  * of coefficients as a fixed-size array, as a class member. This makes sense for very small matrices, typically up to 4x4, sometimes up
  * to 16x16. Larger matrices should be declared as dynamic-size even if one happens to know their size at compile-time.
  *
  * Dynamic-size means that the numbers of rows or columns are not necessarily known at compile-time. In this case they are runtime
  * variables, and the array of coefficients is allocated dynamically on the heap.
  *
  * Note that \em dense matrices, be they Fixed-size or Dynamic-size, <em>do not</em> expand dynamically in the sense of a std::map.
  * If you want this behavior, see the Sparse module.</dd>
  *
  * <dt><b>\anchor maxrows _MaxRows and _MaxCols:</b></dt>
  * <dd>In most cases, one just leaves these parameters to the default values.
  * These parameters mean the maximum size of rows and columns that the matrix may have. They are useful in cases
  * when the exact numbers of rows and columns are not known are compile-time, but it is known at compile-time that they cannot
  * exceed a certain value. This happens when taking dynamic-size blocks inside fixed-size matrices: in this case _MaxRows and _MaxCols
  * are the dimensions of the original matrix, while _Rows and _Cols are Dynamic.</dd>
  * </dl>
  *
  * \see MatrixBase for the majority of the API methods for matrices, \ref TopicClassHierarchy, 
  * \ref TopicStorageOrders 
  */

namespace internal {
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
struct traits<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
{
  typedef _Scalar Scalar;
  typedef Dense StorageKind;
  typedef DenseIndex Index;
  typedef MatrixXpr XprKind;
  enum {
    RowsAtCompileTime = _Rows,
    ColsAtCompileTime = _Cols,
    MaxRowsAtCompileTime = _MaxRows,
    MaxColsAtCompileTime = _MaxCols,
    Flags = compute_matrix_flags<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::ret,
    CoeffReadCost = NumTraits<Scalar>::ReadCost,
    Options = _Options,
    InnerStrideAtCompileTime = 1,
    OuterStrideAtCompileTime = (Options&RowMajor) ? ColsAtCompileTime : RowsAtCompileTime
  };
};
}

template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
class Matrix
  : public PlainObjectBase<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
{
  public:

    /** \brief Base class typedef.
      * \sa PlainObjectBase
      */
    typedef PlainObjectBase<Matrix> Base;

    enum { Options = _Options };

    EIGEN_DENSE_PUBLIC_INTERFACE(Matrix)

    typedef typename Base::PlainObject PlainObject;

    using Base::base;
    using Base::coeffRef;

    /**
      * \brief Assigns matrices to each other.
      *
      * \note This is a special case of the templated operator=. Its purpose is
      * to prevent a default operator= from hiding the templated operator=.
      *
      * \callgraph
      */
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE Matrix& operator=(const Matrix& other)
    {
      return Base::_set(other);
    }

    /** \internal
      * \brief Copies the value of the expression \a other into \c *this with automatic resizing.
      *
      * *this might be resized to match the dimensions of \a other. If *this was a null matrix (not already initialized),
      * it will be initialized.
      *
      * Note that copying a row-vector into a vector (and conversely) is allowed.
      * The resizing, if any, is then done in the appropriate way so that row-vectors
      * remain row-vectors and vectors remain vectors.
      */
    template<typename OtherDerived>
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE Matrix& operator=(const MatrixBase<OtherDerived>& other)
    {
      return Base::_set(other);
    }

    /* Here, doxygen failed to copy the brief information when using \copydoc */

    /**
      * \brief Copies the generic expression \a other into *this.
      * \copydetails DenseBase::operator=(const EigenBase<OtherDerived> &other)
      */
    template<typename OtherDerived>
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE Matrix& operator=(const EigenBase<OtherDerived> &other)
    {
      return Base::operator=(other);
    }

    template<typename OtherDerived>
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE Matrix& operator=(const ReturnByValue<OtherDerived>& func)
    {
      return Base::operator=(func);
    }

    /** \brief Default constructor.
      *
      * For fixed-size matrices, does nothing.
      *
      * For dynamic-size matrices, creates an empty matrix of size 0. Does not allocate any array. Such a matrix
      * is called a null matrix. This constructor is the unique way to create null matrices: resizing
      * a matrix to 0 is not supported.
      *
      * \sa resize(Index,Index)
      */
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE Matrix() : Base()
    {
      Base::_check_template_params();
      EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
    }

    // FIXME is it still needed
    EIGEN_DEVICE_FUNC
    Matrix(internal::constructor_without_unaligned_array_assert)
      : Base(internal::constructor_without_unaligned_array_assert())
    { Base::_check_template_params(); EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED }

#ifdef EIGEN_HAVE_RVALUE_REFERENCES
    Matrix(Matrix&& other)
      : Base(std::move(other))
    {
      Base::_check_template_params();
      if (RowsAtCompileTime!=Dynamic && ColsAtCompileTime!=Dynamic)
        Base::_set_noalias(other);
    }
    Matrix& operator=(Matrix&& other)
    {
      other.swap(*this);
      return *this;
    }
#endif

    #ifndef EIGEN_PARSED_BY_DOXYGEN

    // This constructor is for both 1x1 matrices and dynamic vectors
    template<typename T>
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE explicit Matrix(const T& x)
    {
      Base::_check_template_params();
      Base::template _init1<T>(x);
    }

    template<typename T0, typename T1>
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE Matrix(const T0& x, const T1& y)
    {
      Base::_check_template_params();
      Base::template _init2<T0,T1>(x, y);
    }
    #else
    /** \brief Constructs a fixed-sized matrix initialized with coefficients starting at \a data */
    EIGEN_DEVICE_FUNC
    explicit Matrix(const Scalar *data);

    /** \brief Constructs a vector or row-vector with given dimension. \only_for_vectors
      *
      * This is useful for dynamic-size vectors. For fixed-size vectors,
      * it is redundant to pass these parameters, so one should use the default constructor
      * Matrix() instead.
      * 
      * \warning This constructor is disabled for fixed-size \c 1x1 matrices. For instance,
      * calling Matrix<double,1,1>(1) will call the initialization constructor: Matrix(const Scalar&).
      * For fixed-size \c 1x1 matrices it is thefore recommended to use the default
      * constructor Matrix() instead, especilly when using one of the non standard
      * \c EIGEN_INITIALIZE_MATRICES_BY_{ZERO,\c NAN} macros (see \ref TopicPreprocessorDirectives).
      */
    EIGEN_STRONG_INLINE explicit Matrix(Index dim);
    /** \brief Constructs an initialized 1x1 matrix with the given coefficient */
    Matrix(const Scalar& x);
    /** \brief Constructs an uninitialized matrix with \a rows rows and \a cols columns.
      *
      * This is useful for dynamic-size matrices. For fixed-size matrices,
      * it is redundant to pass these parameters, so one should use the default constructor
      * Matrix() instead.
      * 
      * \warning This constructor is disabled for fixed-size \c 1x2 and \c 2x1 vectors. For instance,
      * calling Matrix2f(2,1) will call the initialization constructor: Matrix(const Scalar& x, const Scalar& y).
      * For fixed-size \c 1x2 or \c 2x1 vectors it is thefore recommended to use the default
      * constructor Matrix() instead, especilly when using one of the non standard
      * \c EIGEN_INITIALIZE_MATRICES_BY_{ZERO,\c NAN} macros (see \ref TopicPreprocessorDirectives).
      */
    EIGEN_DEVICE_FUNC
    Matrix(Index rows, Index cols);
    
    /** \brief Constructs an initialized 2D vector with given coefficients */
    Matrix(const Scalar& x, const Scalar& y);
    #endif

    /** \brief Constructs an initialized 3D vector with given coefficients */
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE Matrix(const Scalar& x, const Scalar& y, const Scalar& z)
    {
      Base::_check_template_params();
      EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Matrix, 3)
      m_storage.data()[0] = x;
      m_storage.data()[1] = y;
      m_storage.data()[2] = z;
    }
    /** \brief Constructs an initialized 4D vector with given coefficients */
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE Matrix(const Scalar& x, const Scalar& y, const Scalar& z, const Scalar& w)
    {
      Base::_check_template_params();
      EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Matrix, 4)
      m_storage.data()[0] = x;
      m_storage.data()[1] = y;
      m_storage.data()[2] = z;
      m_storage.data()[3] = w;
    }


    /** \brief Constructor copying the value of the expression \a other */
    template<typename OtherDerived>
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE Matrix(const MatrixBase<OtherDerived>& other)
             : Base(other.rows() * other.cols(), other.rows(), other.cols())
    {
      // This test resides here, to bring the error messages closer to the user. Normally, these checks
      // are performed deeply within the library, thus causing long and scary error traces.
      EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
        YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)

      Base::_check_template_params();
      Base::_set_noalias(other);
    }
    /** \brief Copy constructor */
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE Matrix(const Matrix& other)
            : Base(other.rows() * other.cols(), other.rows(), other.cols())
    {
      Base::_check_template_params();
      Base::_set_noalias(other);
    }
    /** \brief Copy constructor with in-place evaluation */
    template<typename OtherDerived>
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE Matrix(const ReturnByValue<OtherDerived>& other)
    {
      Base::_check_template_params();
      Base::resize(other.rows(), other.cols());
      other.evalTo(*this);
    }

    /** \brief Copy constructor for generic expressions.
      * \sa MatrixBase::operator=(const EigenBase<OtherDerived>&)
      */
    template<typename OtherDerived>
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE Matrix(const EigenBase<OtherDerived> &other)
      : Base(other.derived().rows() * other.derived().cols(), other.derived().rows(), other.derived().cols())
    {
      Base::_check_template_params();
      Base::_resize_to_match(other);
      // FIXME/CHECK: isn't *this = other.derived() more efficient. it allows to
      //              go for pure _set() implementations, right?
      *this = other;
    }

    /** \internal
      * \brief Override MatrixBase::swap() since for dynamic-sized matrices
      * of same type it is enough to swap the data pointers.
      */
    template<typename OtherDerived>
    EIGEN_DEVICE_FUNC
    void swap(MatrixBase<OtherDerived> const & other)
    { this->_swap(other.derived()); }

    EIGEN_DEVICE_FUNC inline Index innerStride() const { return 1; }
    EIGEN_DEVICE_FUNC inline Index outerStride() const { return this->innerSize(); }

    /////////// Geometry module ///////////

    template<typename OtherDerived>
    EIGEN_DEVICE_FUNC
    explicit Matrix(const RotationBase<OtherDerived,ColsAtCompileTime>& r);
    template<typename OtherDerived>
    EIGEN_DEVICE_FUNC
    Matrix& operator=(const RotationBase<OtherDerived,ColsAtCompileTime>& r);

    // allow to extend Matrix outside Eigen
    #ifdef EIGEN_MATRIX_PLUGIN
    #include EIGEN_MATRIX_PLUGIN
    #endif

  protected:
    template <typename Derived, typename OtherDerived, bool IsVector>
    friend struct internal::conservative_resize_like_impl;

    using Base::m_storage;
};

/** \defgroup matrixtypedefs Global matrix typedefs
  *
  * \ingroup Core_Module
  *
  * Eigen defines several typedef shortcuts for most common matrix and vector types.
  *
  * The general patterns are the following:
  *
  * \c MatrixSizeType where \c Size can be \c 2,\c 3,\c 4 for fixed size square matrices or \c X for dynamic size,
  * and where \c Type can be \c i for integer, \c f for float, \c d for double, \c cf for complex float, \c cd
  * for complex double.
  *
  * For example, \c Matrix3d is a fixed-size 3x3 matrix type of doubles, and \c MatrixXf is a dynamic-size matrix of floats.
  *
  * There are also \c VectorSizeType and \c RowVectorSizeType which are self-explanatory. For example, \c Vector4cf is
  * a fixed-size vector of 4 complex floats.
  *
  * \sa class Matrix
  */

#define EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Size, SizeSuffix)   \
/** \ingroup matrixtypedefs */                                    \
typedef Matrix<Type, Size, Size> Matrix##SizeSuffix##TypeSuffix;  \
/** \ingroup matrixtypedefs */                                    \
typedef Matrix<Type, Size, 1>    Vector##SizeSuffix##TypeSuffix;  \
/** \ingroup matrixtypedefs */                                    \
typedef Matrix<Type, 1, Size>    RowVector##SizeSuffix##TypeSuffix;

#define EIGEN_MAKE_FIXED_TYPEDEFS(Type, TypeSuffix, Size)         \
/** \ingroup matrixtypedefs */                                    \
typedef Matrix<Type, Size, Dynamic> Matrix##Size##X##TypeSuffix;  \
/** \ingroup matrixtypedefs */                                    \
typedef Matrix<Type, Dynamic, Size> Matrix##X##Size##TypeSuffix;

#define EIGEN_MAKE_TYPEDEFS_ALL_SIZES(Type, TypeSuffix) \
EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 2, 2) \
EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 3, 3) \
EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 4, 4) \
EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Dynamic, X) \
EIGEN_MAKE_FIXED_TYPEDEFS(Type, TypeSuffix, 2) \
EIGEN_MAKE_FIXED_TYPEDEFS(Type, TypeSuffix, 3) \
EIGEN_MAKE_FIXED_TYPEDEFS(Type, TypeSuffix, 4)

EIGEN_MAKE_TYPEDEFS_ALL_SIZES(int,                  i)
EIGEN_MAKE_TYPEDEFS_ALL_SIZES(float,                f)
EIGEN_MAKE_TYPEDEFS_ALL_SIZES(double,               d)
EIGEN_MAKE_TYPEDEFS_ALL_SIZES(std::complex<float>,  cf)
EIGEN_MAKE_TYPEDEFS_ALL_SIZES(std::complex<double>, cd)

#undef EIGEN_MAKE_TYPEDEFS_ALL_SIZES
#undef EIGEN_MAKE_TYPEDEFS
#undef EIGEN_MAKE_FIXED_TYPEDEFS

} // end namespace Eigen

#endif // EIGEN_MATRIX_H