1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
namespace Eigen {
/** \geometry_module \ingroup Geometry_Module
*
* \class Translation
*
* \brief Represents a translation transformation
*
* \param _Scalar the scalar type, i.e., the type of the coefficients.
* \param _Dim the dimension of the space, can be a compile time value or Dynamic
*
* \note This class is not aimed to be used to store a translation transformation,
* but rather to make easier the constructions and updates of Transform objects.
*
* \sa class Scaling, class Transform
*/
template<typename _Scalar, int _Dim>
class Translation
{
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim)
/** dimension of the space */
enum { Dim = _Dim };
/** the scalar type of the coefficients */
typedef _Scalar Scalar;
/** corresponding vector type */
typedef Matrix<Scalar,Dim,1> VectorType;
/** corresponding linear transformation matrix type */
typedef Matrix<Scalar,Dim,Dim> LinearMatrixType;
/** corresponding scaling transformation type */
typedef Scaling<Scalar,Dim> ScalingType;
/** corresponding affine transformation type */
typedef Transform<Scalar,Dim> TransformType;
protected:
VectorType m_coeffs;
public:
/** Default constructor without initialization. */
Translation() {}
/** */
inline Translation(const Scalar& sx, const Scalar& sy)
{
ei_assert(Dim==2);
m_coeffs.x() = sx;
m_coeffs.y() = sy;
}
/** */
inline Translation(const Scalar& sx, const Scalar& sy, const Scalar& sz)
{
ei_assert(Dim==3);
m_coeffs.x() = sx;
m_coeffs.y() = sy;
m_coeffs.z() = sz;
}
/** Constructs and initialize the scaling transformation from a vector of scaling coefficients */
explicit inline Translation(const VectorType& vector) : m_coeffs(vector) {}
const VectorType& vector() const { return m_coeffs; }
VectorType& vector() { return m_coeffs; }
/** Concatenates two translation */
inline Translation operator* (const Translation& other) const
{ return Translation(m_coeffs + other.m_coeffs); }
/** Concatenates a translation and a scaling */
inline TransformType operator* (const ScalingType& other) const;
/** Concatenates a translation and a linear transformation */
inline TransformType operator* (const LinearMatrixType& linear) const;
template<typename Derived>
inline TransformType operator*(const RotationBase<Derived,Dim>& r) const
{ return *this * r.toRotationMatrix(); }
/** Concatenates a linear transformation and a translation */
// its a nightmare to define a templated friend function outside its declaration
friend inline TransformType operator* (const LinearMatrixType& linear, const Translation& t)
{
TransformType res;
res.matrix().setZero();
res.linear() = linear;
res.translation() = linear * t.m_coeffs;
res.matrix().row(Dim).setZero();
res(Dim,Dim) = Scalar(1);
return res;
}
/** Concatenates a translation and an affine transformation */
inline TransformType operator* (const TransformType& t) const;
/** Applies translation to vector */
inline VectorType operator* (const VectorType& other) const
{ return m_coeffs + other; }
/** \returns the inverse translation (opposite) */
Translation inverse() const { return Translation(-m_coeffs); }
Translation& operator=(const Translation& other)
{
m_coeffs = other.m_coeffs;
return *this;
}
/** \returns \c *this with scalar type casted to \a NewScalarType
*
* Note that if \a NewScalarType is equal to the current scalar type of \c *this
* then this function smartly returns a const reference to \c *this.
*/
template<typename NewScalarType>
inline typename internal::cast_return_type<Translation,Translation<NewScalarType,Dim> >::type cast() const
{ return typename internal::cast_return_type<Translation,Translation<NewScalarType,Dim> >::type(*this); }
/** Copy constructor with scalar type conversion */
template<typename OtherScalarType>
inline explicit Translation(const Translation<OtherScalarType,Dim>& other)
{ m_coeffs = other.vector().template cast<Scalar>(); }
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
* determined by \a prec.
*
* \sa MatrixBase::isApprox() */
bool isApprox(const Translation& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
{ return m_coeffs.isApprox(other.m_coeffs, prec); }
};
/** \addtogroup Geometry_Module */
//@{
typedef Translation<float, 2> Translation2f;
typedef Translation<double,2> Translation2d;
typedef Translation<float, 3> Translation3f;
typedef Translation<double,3> Translation3d;
//@}
template<typename Scalar, int Dim>
inline typename Translation<Scalar,Dim>::TransformType
Translation<Scalar,Dim>::operator* (const ScalingType& other) const
{
TransformType res;
res.matrix().setZero();
res.linear().diagonal() = other.coeffs();
res.translation() = m_coeffs;
res(Dim,Dim) = Scalar(1);
return res;
}
template<typename Scalar, int Dim>
inline typename Translation<Scalar,Dim>::TransformType
Translation<Scalar,Dim>::operator* (const LinearMatrixType& linear) const
{
TransformType res;
res.matrix().setZero();
res.linear() = linear;
res.translation() = m_coeffs;
res.matrix().row(Dim).setZero();
res(Dim,Dim) = Scalar(1);
return res;
}
template<typename Scalar, int Dim>
inline typename Translation<Scalar,Dim>::TransformType
Translation<Scalar,Dim>::operator* (const TransformType& t) const
{
TransformType res = t;
res.pretranslate(m_coeffs);
return res;
}
} // end namespace Eigen
|