aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Cholesky/LDLT.h
blob: aa9784e545bffa8a141286ca8b23a558f7fbc3ae (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2009 Keir Mierle <mierle@gmail.com>
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2011 Timothy E. Holy <tim.holy@gmail.com >
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_LDLT_H
#define EIGEN_LDLT_H

namespace Eigen { 

namespace internal {
  template<typename MatrixType, int UpLo> struct LDLT_Traits;

  // PositiveSemiDef means positive semi-definite and non-zero; same for NegativeSemiDef
  enum SignMatrix { PositiveSemiDef, NegativeSemiDef, ZeroSign, Indefinite };
}

/** \ingroup Cholesky_Module
  *
  * \class LDLT
  *
  * \brief Robust Cholesky decomposition of a matrix with pivoting
  *
  * \param MatrixType the type of the matrix of which to compute the LDL^T Cholesky decomposition
  * \param UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper.
  *             The other triangular part won't be read.
  *
  * Perform a robust Cholesky decomposition of a positive semidefinite or negative semidefinite
  * matrix \f$ A \f$ such that \f$ A =  P^TLDL^*P \f$, where P is a permutation matrix, L
  * is lower triangular with a unit diagonal and D is a diagonal matrix.
  *
  * The decomposition uses pivoting to ensure stability, so that L will have
  * zeros in the bottom right rank(A) - n submatrix. Avoiding the square root
  * on D also stabilizes the computation.
  *
  * Remember that Cholesky decompositions are not rank-revealing. Also, do not use a Cholesky
  * decomposition to determine whether a system of equations has a solution.
  *
  * \sa MatrixBase::ldlt(), SelfAdjointView::ldlt(), class LLT
  */
template<typename _MatrixType, int _UpLo> class LDLT
{
  public:
    typedef _MatrixType MatrixType;
    enum {
      RowsAtCompileTime = MatrixType::RowsAtCompileTime,
      ColsAtCompileTime = MatrixType::ColsAtCompileTime,
      Options = MatrixType::Options & ~RowMajorBit, // these are the options for the TmpMatrixType, we need a ColMajor matrix here!
      MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
      MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
      UpLo = _UpLo
    };
    typedef typename MatrixType::Scalar Scalar;
    typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
    typedef typename MatrixType::Index Index;
    typedef Matrix<Scalar, RowsAtCompileTime, 1, Options, MaxRowsAtCompileTime, 1> TmpMatrixType;

    typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType;
    typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType;

    typedef internal::LDLT_Traits<MatrixType,UpLo> Traits;

    /** \brief Default Constructor.
      *
      * The default constructor is useful in cases in which the user intends to
      * perform decompositions via LDLT::compute(const MatrixType&).
      */
    LDLT() 
      : m_matrix(), 
        m_transpositions(), 
        m_sign(internal::ZeroSign),
        m_isInitialized(false) 
    {}

    /** \brief Default Constructor with memory preallocation
      *
      * Like the default constructor but with preallocation of the internal data
      * according to the specified problem \a size.
      * \sa LDLT()
      */
    LDLT(Index size)
      : m_matrix(size, size),
        m_transpositions(size),
        m_temporary(size),
        m_sign(internal::ZeroSign),
        m_isInitialized(false)
    {}

    /** \brief Constructor with decomposition
      *
      * This calculates the decomposition for the input \a matrix.
      * \sa LDLT(Index size)
      */
    LDLT(const MatrixType& matrix)
      : m_matrix(matrix.rows(), matrix.cols()),
        m_transpositions(matrix.rows()),
        m_temporary(matrix.rows()),
        m_sign(internal::ZeroSign),
        m_isInitialized(false)
    {
      compute(matrix);
    }

    /** Clear any existing decomposition
     * \sa rankUpdate(w,sigma)
     */
    void setZero()
    {
      m_isInitialized = false;
    }

    /** \returns a view of the upper triangular matrix U */
    inline typename Traits::MatrixU matrixU() const
    {
      eigen_assert(m_isInitialized && "LDLT is not initialized.");
      return Traits::getU(m_matrix);
    }

    /** \returns a view of the lower triangular matrix L */
    inline typename Traits::MatrixL matrixL() const
    {
      eigen_assert(m_isInitialized && "LDLT is not initialized.");
      return Traits::getL(m_matrix);
    }

    /** \returns the permutation matrix P as a transposition sequence.
      */
    inline const TranspositionType& transpositionsP() const
    {
      eigen_assert(m_isInitialized && "LDLT is not initialized.");
      return m_transpositions;
    }

    /** \returns the coefficients of the diagonal matrix D */
    inline Diagonal<const MatrixType> vectorD() const
    {
      eigen_assert(m_isInitialized && "LDLT is not initialized.");
      return m_matrix.diagonal();
    }

    /** \returns true if the matrix is positive (semidefinite) */
    inline bool isPositive() const
    {
      eigen_assert(m_isInitialized && "LDLT is not initialized.");
      return m_sign == internal::PositiveSemiDef || m_sign == internal::ZeroSign;
    }

    /** \returns true if the matrix is negative (semidefinite) */
    inline bool isNegative(void) const
    {
      eigen_assert(m_isInitialized && "LDLT is not initialized.");
      return m_sign == internal::NegativeSemiDef || m_sign == internal::ZeroSign;
    }

    /** \returns a solution x of \f$ A x = b \f$ using the current decomposition of A.
      *
      * This function also supports in-place solves using the syntax <tt>x = decompositionObject.solve(x)</tt> .
      *
      * \note_about_checking_solutions
      *
      * More precisely, this method solves \f$ A x = b \f$ using the decomposition \f$ A = P^T L D L^* P \f$
      * by solving the systems \f$ P^T y_1 = b \f$, \f$ L y_2 = y_1 \f$, \f$ D y_3 = y_2 \f$, 
      * \f$ L^* y_4 = y_3 \f$ and \f$ P x = y_4 \f$ in succession. If the matrix \f$ A \f$ is singular, then
      * \f$ D \f$ will also be singular (all the other matrices are invertible). In that case, the
      * least-square solution of \f$ D y_3 = y_2 \f$ is computed. This does not mean that this function
      * computes the least-square solution of \f$ A x = b \f$ is \f$ A \f$ is singular.
      *
      * \sa MatrixBase::ldlt(), SelfAdjointView::ldlt()
      */
    template<typename Rhs>
    inline const internal::solve_retval<LDLT, Rhs>
    solve(const MatrixBase<Rhs>& b) const
    {
      eigen_assert(m_isInitialized && "LDLT is not initialized.");
      eigen_assert(m_matrix.rows()==b.rows()
                && "LDLT::solve(): invalid number of rows of the right hand side matrix b");
      return internal::solve_retval<LDLT, Rhs>(*this, b.derived());
    }

    template<typename Derived>
    bool solveInPlace(MatrixBase<Derived> &bAndX) const;

    LDLT& compute(const MatrixType& matrix);

    template <typename Derived>
    LDLT& rankUpdate(const MatrixBase<Derived>& w, const RealScalar& alpha=1);

    /** \returns the internal LDLT decomposition matrix
      *
      * TODO: document the storage layout
      */
    inline const MatrixType& matrixLDLT() const
    {
      eigen_assert(m_isInitialized && "LDLT is not initialized.");
      return m_matrix;
    }

    MatrixType reconstructedMatrix() const;

    inline Index rows() const { return m_matrix.rows(); }
    inline Index cols() const { return m_matrix.cols(); }

    /** \brief Reports whether previous computation was successful.
      *
      * \returns \c Success if computation was succesful,
      *          \c NumericalIssue if the matrix.appears to be negative.
      */
    ComputationInfo info() const
    {
      eigen_assert(m_isInitialized && "LDLT is not initialized.");
      return Success;
    }

  protected:

    /** \internal
      * Used to compute and store the Cholesky decomposition A = L D L^* = U^* D U.
      * The strict upper part is used during the decomposition, the strict lower
      * part correspond to the coefficients of L (its diagonal is equal to 1 and
      * is not stored), and the diagonal entries correspond to D.
      */
    MatrixType m_matrix;
    TranspositionType m_transpositions;
    TmpMatrixType m_temporary;
    internal::SignMatrix m_sign;
    bool m_isInitialized;
};

namespace internal {

template<int UpLo> struct ldlt_inplace;

template<> struct ldlt_inplace<Lower>
{
  template<typename MatrixType, typename TranspositionType, typename Workspace>
  static bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, SignMatrix& sign)
  {
    using std::abs;
    typedef typename MatrixType::Scalar Scalar;
    typedef typename MatrixType::RealScalar RealScalar;
    typedef typename MatrixType::Index Index;
    typedef typename TranspositionType::StorageIndexType IndexType;
    eigen_assert(mat.rows()==mat.cols());
    const Index size = mat.rows();

    if (size <= 1)
    {
      transpositions.setIdentity();
      if (numext::real(mat.coeff(0,0)) > 0) sign = PositiveSemiDef;
      else if (numext::real(mat.coeff(0,0)) < 0) sign = NegativeSemiDef;
      else sign = ZeroSign;
      return true;
    }

    for (Index k = 0; k < size; ++k)
    {
      // Find largest diagonal element
      Index index_of_biggest_in_corner;
      mat.diagonal().tail(size-k).cwiseAbs().maxCoeff(&index_of_biggest_in_corner);
      index_of_biggest_in_corner += k;

      transpositions.coeffRef(k) = IndexType(index_of_biggest_in_corner);
      if(k != index_of_biggest_in_corner)
      {
        // apply the transposition while taking care to consider only
        // the lower triangular part
        Index s = size-index_of_biggest_in_corner-1; // trailing size after the biggest element
        mat.row(k).head(k).swap(mat.row(index_of_biggest_in_corner).head(k));
        mat.col(k).tail(s).swap(mat.col(index_of_biggest_in_corner).tail(s));
        std::swap(mat.coeffRef(k,k),mat.coeffRef(index_of_biggest_in_corner,index_of_biggest_in_corner));
        for(Index i=k+1;i<index_of_biggest_in_corner;++i)
        {
          Scalar tmp = mat.coeffRef(i,k);
          mat.coeffRef(i,k) = numext::conj(mat.coeffRef(index_of_biggest_in_corner,i));
          mat.coeffRef(index_of_biggest_in_corner,i) = numext::conj(tmp);
        }
        if(NumTraits<Scalar>::IsComplex)
          mat.coeffRef(index_of_biggest_in_corner,k) = numext::conj(mat.coeff(index_of_biggest_in_corner,k));
      }

      // partition the matrix:
      //       A00 |  -  |  -
      // lu  = A10 | A11 |  -
      //       A20 | A21 | A22
      Index rs = size - k - 1;
      Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1);
      Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k);
      Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k);

      if(k>0)
      {
        temp.head(k) = mat.diagonal().real().head(k).asDiagonal() * A10.adjoint();
        mat.coeffRef(k,k) -= (A10 * temp.head(k)).value();
        if(rs>0)
          A21.noalias() -= A20 * temp.head(k);
      }
      
      // In some previous versions of Eigen (e.g., 3.2.1), the scaling was omitted if the pivot
      // was smaller than the cutoff value. However, soince LDLT is not rank-revealing
      // we should only make sure we do not introduce INF or NaN values.
      // LAPACK also uses 0 as the cutoff value.
      RealScalar realAkk = numext::real(mat.coeffRef(k,k));
      if((rs>0) && (abs(realAkk) > RealScalar(0)))
        A21 /= realAkk;

      if (sign == PositiveSemiDef) {
        if (realAkk < 0) sign = Indefinite;
      } else if (sign == NegativeSemiDef) {
        if (realAkk > 0) sign = Indefinite;
      } else if (sign == ZeroSign) {
        if (realAkk > 0) sign = PositiveSemiDef;
        else if (realAkk < 0) sign = NegativeSemiDef;
      }
    }

    return true;
  }

  // Reference for the algorithm: Davis and Hager, "Multiple Rank
  // Modifications of a Sparse Cholesky Factorization" (Algorithm 1)
  // Trivial rearrangements of their computations (Timothy E. Holy)
  // allow their algorithm to work for rank-1 updates even if the
  // original matrix is not of full rank.
  // Here only rank-1 updates are implemented, to reduce the
  // requirement for intermediate storage and improve accuracy
  template<typename MatrixType, typename WDerived>
  static bool updateInPlace(MatrixType& mat, MatrixBase<WDerived>& w, const typename MatrixType::RealScalar& sigma=1)
  {
    using numext::isfinite;
    typedef typename MatrixType::Scalar Scalar;
    typedef typename MatrixType::RealScalar RealScalar;
    typedef typename MatrixType::Index Index;

    const Index size = mat.rows();
    eigen_assert(mat.cols() == size && w.size()==size);

    RealScalar alpha = 1;

    // Apply the update
    for (Index j = 0; j < size; j++)
    {
      // Check for termination due to an original decomposition of low-rank
      if (!(isfinite)(alpha))
        break;

      // Update the diagonal terms
      RealScalar dj = numext::real(mat.coeff(j,j));
      Scalar wj = w.coeff(j);
      RealScalar swj2 = sigma*numext::abs2(wj);
      RealScalar gamma = dj*alpha + swj2;

      mat.coeffRef(j,j) += swj2/alpha;
      alpha += swj2/dj;


      // Update the terms of L
      Index rs = size-j-1;
      w.tail(rs) -= wj * mat.col(j).tail(rs);
      if(gamma != 0)
        mat.col(j).tail(rs) += (sigma*numext::conj(wj)/gamma)*w.tail(rs);
    }
    return true;
  }

  template<typename MatrixType, typename TranspositionType, typename Workspace, typename WType>
  static bool update(MatrixType& mat, const TranspositionType& transpositions, Workspace& tmp, const WType& w, const typename MatrixType::RealScalar& sigma=1)
  {
    // Apply the permutation to the input w
    tmp = transpositions * w;

    return ldlt_inplace<Lower>::updateInPlace(mat,tmp,sigma);
  }
};

template<> struct ldlt_inplace<Upper>
{
  template<typename MatrixType, typename TranspositionType, typename Workspace>
  static EIGEN_STRONG_INLINE bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, SignMatrix& sign)
  {
    Transpose<MatrixType> matt(mat);
    return ldlt_inplace<Lower>::unblocked(matt, transpositions, temp, sign);
  }

  template<typename MatrixType, typename TranspositionType, typename Workspace, typename WType>
  static EIGEN_STRONG_INLINE bool update(MatrixType& mat, TranspositionType& transpositions, Workspace& tmp, WType& w, const typename MatrixType::RealScalar& sigma=1)
  {
    Transpose<MatrixType> matt(mat);
    return ldlt_inplace<Lower>::update(matt, transpositions, tmp, w.conjugate(), sigma);
  }
};

template<typename MatrixType> struct LDLT_Traits<MatrixType,Lower>
{
  typedef const TriangularView<const MatrixType, UnitLower> MatrixL;
  typedef const TriangularView<const typename MatrixType::AdjointReturnType, UnitUpper> MatrixU;
  static inline MatrixL getL(const MatrixType& m) { return m; }
  static inline MatrixU getU(const MatrixType& m) { return m.adjoint(); }
};

template<typename MatrixType> struct LDLT_Traits<MatrixType,Upper>
{
  typedef const TriangularView<const typename MatrixType::AdjointReturnType, UnitLower> MatrixL;
  typedef const TriangularView<const MatrixType, UnitUpper> MatrixU;
  static inline MatrixL getL(const MatrixType& m) { return m.adjoint(); }
  static inline MatrixU getU(const MatrixType& m) { return m; }
};

} // end namespace internal

/** Compute / recompute the LDLT decomposition A = L D L^* = U^* D U of \a matrix
  */
template<typename MatrixType, int _UpLo>
LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::compute(const MatrixType& a)
{
  eigen_assert(a.rows()==a.cols());
  const Index size = a.rows();

  m_matrix = a;

  m_transpositions.resize(size);
  m_isInitialized = false;
  m_temporary.resize(size);

  internal::ldlt_inplace<UpLo>::unblocked(m_matrix, m_transpositions, m_temporary, m_sign);

  m_isInitialized = true;
  return *this;
}

/** Update the LDLT decomposition:  given A = L D L^T, efficiently compute the decomposition of A + sigma w w^T.
 * \param w a vector to be incorporated into the decomposition.
 * \param sigma a scalar, +1 for updates and -1 for "downdates," which correspond to removing previously-added column vectors. Optional; default value is +1.
 * \sa setZero()
  */
template<typename MatrixType, int _UpLo>
template<typename Derived>
LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::rankUpdate(const MatrixBase<Derived>& w, const typename NumTraits<typename MatrixType::Scalar>::Real& sigma)
{
  typedef typename TranspositionType::StorageIndexType IndexType;
  const Index size = w.rows();
  if (m_isInitialized)
  {
    eigen_assert(m_matrix.rows()==size);
  }
  else
  {    
    m_matrix.resize(size,size);
    m_matrix.setZero();
    m_transpositions.resize(size);
    for (Index i = 0; i < size; i++)
      m_transpositions.coeffRef(i) = IndexType(i);
    m_temporary.resize(size);
    m_sign = sigma>=0 ? internal::PositiveSemiDef : internal::NegativeSemiDef;
    m_isInitialized = true;
  }

  internal::ldlt_inplace<UpLo>::update(m_matrix, m_transpositions, m_temporary, w, sigma);

  return *this;
}

namespace internal {
template<typename _MatrixType, int _UpLo, typename Rhs>
struct solve_retval<LDLT<_MatrixType,_UpLo>, Rhs>
  : solve_retval_base<LDLT<_MatrixType,_UpLo>, Rhs>
{
  typedef LDLT<_MatrixType,_UpLo> LDLTType;
  EIGEN_MAKE_SOLVE_HELPERS(LDLTType,Rhs)

  template<typename Dest> void evalTo(Dest& dst) const
  {
    eigen_assert(rhs().rows() == dec().matrixLDLT().rows());
    // dst = P b
    dst = dec().transpositionsP() * rhs();

    // dst = L^-1 (P b)
    dec().matrixL().solveInPlace(dst);

    // dst = D^-1 (L^-1 P b)
    // more precisely, use pseudo-inverse of D (see bug 241)
    using std::abs;
    EIGEN_USING_STD_MATH(max);
    typedef typename LDLTType::MatrixType MatrixType;
    typedef typename LDLTType::RealScalar RealScalar;
    const typename Diagonal<const MatrixType>::RealReturnType vectorD(dec().vectorD());
    // In some previous versions, tolerance was set to the max of 1/highest and the maximal diagonal entry * epsilon
    // as motivated by LAPACK's xGELSS:
    // RealScalar tolerance = (max)(vectorD.array().abs().maxCoeff() *NumTraits<RealScalar>::epsilon(),RealScalar(1) / NumTraits<RealScalar>::highest());
    // However, LDLT is not rank revealing, and so adjusting the tolerance wrt to the highest
    // diagonal element is not well justified and to numerical issues in some cases.
    // Moreover, Lapack's xSYTRS routines use 0 for the tolerance.
    RealScalar tolerance = RealScalar(1) / NumTraits<RealScalar>::highest();
    for (Index i = 0; i < vectorD.size(); ++i) {
      if(abs(vectorD(i)) > tolerance)
        dst.row(i) /= vectorD(i);
      else
        dst.row(i).setZero();
    }

    // dst = L^-T (D^-1 L^-1 P b)
    dec().matrixU().solveInPlace(dst);

    // dst = P^-1 (L^-T D^-1 L^-1 P b) = A^-1 b
    dst = dec().transpositionsP().transpose() * dst;
  }
};
}

/** \internal use x = ldlt_object.solve(x);
  *
  * This is the \em in-place version of solve().
  *
  * \param bAndX represents both the right-hand side matrix b and result x.
  *
  * \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD.
  *
  * This version avoids a copy when the right hand side matrix b is not
  * needed anymore.
  *
  * \sa LDLT::solve(), MatrixBase::ldlt()
  */
template<typename MatrixType,int _UpLo>
template<typename Derived>
bool LDLT<MatrixType,_UpLo>::solveInPlace(MatrixBase<Derived> &bAndX) const
{
  eigen_assert(m_isInitialized && "LDLT is not initialized.");
  eigen_assert(m_matrix.rows() == bAndX.rows());

  bAndX = this->solve(bAndX);

  return true;
}

/** \returns the matrix represented by the decomposition,
 * i.e., it returns the product: P^T L D L^* P.
 * This function is provided for debug purpose. */
template<typename MatrixType, int _UpLo>
MatrixType LDLT<MatrixType,_UpLo>::reconstructedMatrix() const
{
  eigen_assert(m_isInitialized && "LDLT is not initialized.");
  const Index size = m_matrix.rows();
  MatrixType res(size,size);

  // P
  res.setIdentity();
  res = transpositionsP() * res;
  // L^* P
  res = matrixU() * res;
  // D(L^*P)
  res = vectorD().real().asDiagonal() * res;
  // L(DL^*P)
  res = matrixL() * res;
  // P^T (LDL^*P)
  res = transpositionsP().transpose() * res;

  return res;
}

#ifndef __CUDACC__
/** \cholesky_module
  * \returns the Cholesky decomposition with full pivoting without square root of \c *this
  * \sa MatrixBase::ldlt()
  */
template<typename MatrixType, unsigned int UpLo>
inline const LDLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo>
SelfAdjointView<MatrixType, UpLo>::ldlt() const
{
  return LDLT<PlainObject,UpLo>(m_matrix);
}

/** \cholesky_module
  * \returns the Cholesky decomposition with full pivoting without square root of \c *this
  * \sa SelfAdjointView::ldlt()
  */
template<typename Derived>
inline const LDLT<typename MatrixBase<Derived>::PlainObject>
MatrixBase<Derived>::ldlt() const
{
  return LDLT<PlainObject>(derived());
}
#endif // __CUDACC__

} // end namespace Eigen

#endif // EIGEN_LDLT_H