aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/SVD/JacobiSVD.h
blob: 439eb5d297099ab5c55652270a2f78c800cdb237 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_JACOBISVD_H
#define EIGEN_JACOBISVD_H

namespace Eigen { 

namespace internal {
// forward declaration (needed by ICC)
// the empty body is required by MSVC
template<typename MatrixType, int QRPreconditioner,
         bool IsComplex = NumTraits<typename MatrixType::Scalar>::IsComplex>
struct svd_precondition_2x2_block_to_be_real {};

/*** QR preconditioners (R-SVD)
 ***
 *** Their role is to reduce the problem of computing the SVD to the case of a square matrix.
 *** This approach, known as R-SVD, is an optimization for rectangular-enough matrices, and is a requirement for
 *** JacobiSVD which by itself is only able to work on square matrices.
 ***/

enum { PreconditionIfMoreColsThanRows, PreconditionIfMoreRowsThanCols };

template<typename MatrixType, int QRPreconditioner, int Case>
struct qr_preconditioner_should_do_anything
{
  enum { a = MatrixType::RowsAtCompileTime != Dynamic &&
             MatrixType::ColsAtCompileTime != Dynamic &&
             MatrixType::ColsAtCompileTime <= MatrixType::RowsAtCompileTime,
         b = MatrixType::RowsAtCompileTime != Dynamic &&
             MatrixType::ColsAtCompileTime != Dynamic &&
             MatrixType::RowsAtCompileTime <= MatrixType::ColsAtCompileTime,
         ret = !( (QRPreconditioner == NoQRPreconditioner) ||
                  (Case == PreconditionIfMoreColsThanRows && bool(a)) ||
                  (Case == PreconditionIfMoreRowsThanCols && bool(b)) )
  };
};

template<typename MatrixType, int QRPreconditioner, int Case,
         bool DoAnything = qr_preconditioner_should_do_anything<MatrixType, QRPreconditioner, Case>::ret
> struct qr_preconditioner_impl {};

template<typename MatrixType, int QRPreconditioner, int Case>
class qr_preconditioner_impl<MatrixType, QRPreconditioner, Case, false>
{
public:
  typedef typename MatrixType::Index Index;
  void allocate(const JacobiSVD<MatrixType, QRPreconditioner>&) {}
  bool run(JacobiSVD<MatrixType, QRPreconditioner>&, const MatrixType&)
  {
    return false;
  }
};

/*** preconditioner using FullPivHouseholderQR ***/

template<typename MatrixType>
class qr_preconditioner_impl<MatrixType, FullPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
{
public:
  typedef typename MatrixType::Index Index;
  typedef typename MatrixType::Scalar Scalar;
  enum
  {
    RowsAtCompileTime = MatrixType::RowsAtCompileTime,
    MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime
  };
  typedef Matrix<Scalar, 1, RowsAtCompileTime, RowMajor, 1, MaxRowsAtCompileTime> WorkspaceType;

  void allocate(const JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd)
  {
    if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols())
    {
      m_qr.~QRType();
      ::new (&m_qr) QRType(svd.rows(), svd.cols());
    }
    if (svd.m_computeFullU) m_workspace.resize(svd.rows());
  }

  bool run(JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
  {
    if(matrix.rows() > matrix.cols())
    {
      m_qr.compute(matrix);
      svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
      if(svd.m_computeFullU) m_qr.matrixQ().evalTo(svd.m_matrixU, m_workspace);
      if(svd.computeV()) svd.m_matrixV = m_qr.colsPermutation();
      return true;
    }
    return false;
  }
private:
  typedef FullPivHouseholderQR<MatrixType> QRType;
  QRType m_qr;
  WorkspaceType m_workspace;
};

template<typename MatrixType>
class qr_preconditioner_impl<MatrixType, FullPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
{
public:
  typedef typename MatrixType::Index Index;
  typedef typename MatrixType::Scalar Scalar;
  enum
  {
    RowsAtCompileTime = MatrixType::RowsAtCompileTime,
    ColsAtCompileTime = MatrixType::ColsAtCompileTime,
    MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
    MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
    Options = MatrixType::Options
  };
  typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime>
          TransposeTypeWithSameStorageOrder;

  void allocate(const JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd)
  {
    if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols())
    {
      m_qr.~QRType();
      ::new (&m_qr) QRType(svd.cols(), svd.rows());
    }
    m_adjoint.resize(svd.cols(), svd.rows());
    if (svd.m_computeFullV) m_workspace.resize(svd.cols());
  }

  bool run(JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
  {
    if(matrix.cols() > matrix.rows())
    {
      m_adjoint = matrix.adjoint();
      m_qr.compute(m_adjoint);
      svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
      if(svd.m_computeFullV) m_qr.matrixQ().evalTo(svd.m_matrixV, m_workspace);
      if(svd.computeU()) svd.m_matrixU = m_qr.colsPermutation();
      return true;
    }
    else return false;
  }
private:
  typedef FullPivHouseholderQR<TransposeTypeWithSameStorageOrder> QRType;
  QRType m_qr;
  TransposeTypeWithSameStorageOrder m_adjoint;
  typename internal::plain_row_type<MatrixType>::type m_workspace;
};

/*** preconditioner using ColPivHouseholderQR ***/

template<typename MatrixType>
class qr_preconditioner_impl<MatrixType, ColPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
{
public:
  typedef typename MatrixType::Index Index;

  void allocate(const JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd)
  {
    if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols())
    {
      m_qr.~QRType();
      ::new (&m_qr) QRType(svd.rows(), svd.cols());
    }
    if (svd.m_computeFullU) m_workspace.resize(svd.rows());
    else if (svd.m_computeThinU) m_workspace.resize(svd.cols());
  }

  bool run(JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
  {
    if(matrix.rows() > matrix.cols())
    {
      m_qr.compute(matrix);
      svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
      if(svd.m_computeFullU) m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace);
      else if(svd.m_computeThinU)
      {
        svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols());
        m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixU, m_workspace);
      }
      if(svd.computeV()) svd.m_matrixV = m_qr.colsPermutation();
      return true;
    }
    return false;
  }

private:
  typedef ColPivHouseholderQR<MatrixType> QRType;
  QRType m_qr;
  typename internal::plain_col_type<MatrixType>::type m_workspace;
};

template<typename MatrixType>
class qr_preconditioner_impl<MatrixType, ColPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
{
public:
  typedef typename MatrixType::Index Index;
  typedef typename MatrixType::Scalar Scalar;
  enum
  {
    RowsAtCompileTime = MatrixType::RowsAtCompileTime,
    ColsAtCompileTime = MatrixType::ColsAtCompileTime,
    MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
    MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
    Options = MatrixType::Options
  };

  typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime>
          TransposeTypeWithSameStorageOrder;

  void allocate(const JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd)
  {
    if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols())
    {
      m_qr.~QRType();
      ::new (&m_qr) QRType(svd.cols(), svd.rows());
    }
    if (svd.m_computeFullV) m_workspace.resize(svd.cols());
    else if (svd.m_computeThinV) m_workspace.resize(svd.rows());
    m_adjoint.resize(svd.cols(), svd.rows());
  }

  bool run(JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
  {
    if(matrix.cols() > matrix.rows())
    {
      m_adjoint = matrix.adjoint();
      m_qr.compute(m_adjoint);

      svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
      if(svd.m_computeFullV) m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace);
      else if(svd.m_computeThinV)
      {
        svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows());
        m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixV, m_workspace);
      }
      if(svd.computeU()) svd.m_matrixU = m_qr.colsPermutation();
      return true;
    }
    else return false;
  }

private:
  typedef ColPivHouseholderQR<TransposeTypeWithSameStorageOrder> QRType;
  QRType m_qr;
  TransposeTypeWithSameStorageOrder m_adjoint;
  typename internal::plain_row_type<MatrixType>::type m_workspace;
};

/*** preconditioner using HouseholderQR ***/

template<typename MatrixType>
class qr_preconditioner_impl<MatrixType, HouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
{
public:
  typedef typename MatrixType::Index Index;

  void allocate(const JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd)
  {
    if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols())
    {
      m_qr.~QRType();
      ::new (&m_qr) QRType(svd.rows(), svd.cols());
    }
    if (svd.m_computeFullU) m_workspace.resize(svd.rows());
    else if (svd.m_computeThinU) m_workspace.resize(svd.cols());
  }

  bool run(JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd, const MatrixType& matrix)
  {
    if(matrix.rows() > matrix.cols())
    {
      m_qr.compute(matrix);
      svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
      if(svd.m_computeFullU) m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace);
      else if(svd.m_computeThinU)
      {
        svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols());
        m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixU, m_workspace);
      }
      if(svd.computeV()) svd.m_matrixV.setIdentity(matrix.cols(), matrix.cols());
      return true;
    }
    return false;
  }
private:
  typedef HouseholderQR<MatrixType> QRType;
  QRType m_qr;
  typename internal::plain_col_type<MatrixType>::type m_workspace;
};

template<typename MatrixType>
class qr_preconditioner_impl<MatrixType, HouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
{
public:
  typedef typename MatrixType::Index Index;
  typedef typename MatrixType::Scalar Scalar;
  enum
  {
    RowsAtCompileTime = MatrixType::RowsAtCompileTime,
    ColsAtCompileTime = MatrixType::ColsAtCompileTime,
    MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
    MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
    Options = MatrixType::Options
  };

  typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime>
          TransposeTypeWithSameStorageOrder;

  void allocate(const JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd)
  {
    if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols())
    {
      m_qr.~QRType();
      ::new (&m_qr) QRType(svd.cols(), svd.rows());
    }
    if (svd.m_computeFullV) m_workspace.resize(svd.cols());
    else if (svd.m_computeThinV) m_workspace.resize(svd.rows());
    m_adjoint.resize(svd.cols(), svd.rows());
  }

  bool run(JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd, const MatrixType& matrix)
  {
    if(matrix.cols() > matrix.rows())
    {
      m_adjoint = matrix.adjoint();
      m_qr.compute(m_adjoint);

      svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
      if(svd.m_computeFullV) m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace);
      else if(svd.m_computeThinV)
      {
        svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows());
        m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixV, m_workspace);
      }
      if(svd.computeU()) svd.m_matrixU.setIdentity(matrix.rows(), matrix.rows());
      return true;
    }
    else return false;
  }

private:
  typedef HouseholderQR<TransposeTypeWithSameStorageOrder> QRType;
  QRType m_qr;
  TransposeTypeWithSameStorageOrder m_adjoint;
  typename internal::plain_row_type<MatrixType>::type m_workspace;
};

/*** 2x2 SVD implementation
 ***
 *** JacobiSVD consists in performing a series of 2x2 SVD subproblems
 ***/

template<typename MatrixType, int QRPreconditioner>
struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, false>
{
  typedef JacobiSVD<MatrixType, QRPreconditioner> SVD;
  typedef typename SVD::Index Index;
  static void run(typename SVD::WorkMatrixType&, SVD&, Index, Index) {}
};

template<typename MatrixType, int QRPreconditioner>
struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, true>
{
  typedef JacobiSVD<MatrixType, QRPreconditioner> SVD;
  typedef typename MatrixType::Scalar Scalar;
  typedef typename MatrixType::RealScalar RealScalar;
  typedef typename SVD::Index Index;
  static void run(typename SVD::WorkMatrixType& work_matrix, SVD& svd, Index p, Index q)
  {
    using std::sqrt;
    Scalar z;
    JacobiRotation<Scalar> rot;
    RealScalar n = sqrt(numext::abs2(work_matrix.coeff(p,p)) + numext::abs2(work_matrix.coeff(q,p)));
    if(n==0)
    {
      z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q);
      work_matrix.row(p) *= z;
      if(svd.computeU()) svd.m_matrixU.col(p) *= conj(z);
      if(work_matrix.coeff(q,q)!=Scalar(0))
        z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q);
      else
        z = Scalar(0);
      work_matrix.row(q) *= z;
      if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z);
    }
    else
    {
      rot.c() = conj(work_matrix.coeff(p,p)) / n;
      rot.s() = work_matrix.coeff(q,p) / n;
      work_matrix.applyOnTheLeft(p,q,rot);
      if(svd.computeU()) svd.m_matrixU.applyOnTheRight(p,q,rot.adjoint());
      if(work_matrix.coeff(p,q) != Scalar(0))
      {
        Scalar z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q);
        work_matrix.col(q) *= z;
        if(svd.computeV()) svd.m_matrixV.col(q) *= z;
      }
      if(work_matrix.coeff(q,q) != Scalar(0))
      {
        z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q);
        work_matrix.row(q) *= z;
        if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z);
      }
    }
  }
};

template<typename MatrixType, typename RealScalar, typename Index>
void real_2x2_jacobi_svd(const MatrixType& matrix, Index p, Index q,
                         JacobiRotation<RealScalar> *j_left,
                         JacobiRotation<RealScalar> *j_right)
{
  using std::sqrt;
  using std::abs;
  Matrix<RealScalar,2,2> m;
  m << numext::real(matrix.coeff(p,p)), numext::real(matrix.coeff(p,q)),
       numext::real(matrix.coeff(q,p)), numext::real(matrix.coeff(q,q));
  JacobiRotation<RealScalar> rot1;
  RealScalar t = m.coeff(0,0) + m.coeff(1,1);
  RealScalar d = m.coeff(1,0) - m.coeff(0,1);
  if(t == RealScalar(0))
  {
    rot1.c() = RealScalar(0);
    rot1.s() = d > RealScalar(0) ? RealScalar(1) : RealScalar(-1);
  }
  else
  {
    RealScalar t2d2 = numext::hypot(t,d);
    rot1.c() = abs(t)/t2d2;
    rot1.s() = d/t2d2;
    if(t<RealScalar(0))
      rot1.s() = -rot1.s();
  }
  m.applyOnTheLeft(0,1,rot1);
  j_right->makeJacobi(m,0,1);
  *j_left  = rot1 * j_right->transpose();
}

} // end namespace internal

/** \ingroup SVD_Module
  *
  *
  * \class JacobiSVD
  *
  * \brief Two-sided Jacobi SVD decomposition of a rectangular matrix
  *
  * \param MatrixType the type of the matrix of which we are computing the SVD decomposition
  * \param QRPreconditioner this optional parameter allows to specify the type of QR decomposition that will be used internally
  *                        for the R-SVD step for non-square matrices. See discussion of possible values below.
  *
  * SVD decomposition consists in decomposing any n-by-p matrix \a A as a product
  *   \f[ A = U S V^* \f]
  * where \a U is a n-by-n unitary, \a V is a p-by-p unitary, and \a S is a n-by-p real positive matrix which is zero outside of its main diagonal;
  * the diagonal entries of S are known as the \em singular \em values of \a A and the columns of \a U and \a V are known as the left
  * and right \em singular \em vectors of \a A respectively.
  *
  * Singular values are always sorted in decreasing order.
  *
  * This JacobiSVD decomposition computes only the singular values by default. If you want \a U or \a V, you need to ask for them explicitly.
  *
  * You can ask for only \em thin \a U or \a V to be computed, meaning the following. In case of a rectangular n-by-p matrix, letting \a m be the
  * smaller value among \a n and \a p, there are only \a m singular vectors; the remaining columns of \a U and \a V do not correspond to actual
  * singular vectors. Asking for \em thin \a U or \a V means asking for only their \a m first columns to be formed. So \a U is then a n-by-m matrix,
  * and \a V is then a p-by-m matrix. Notice that thin \a U and \a V are all you need for (least squares) solving.
  *
  * Here's an example demonstrating basic usage:
  * \include JacobiSVD_basic.cpp
  * Output: \verbinclude JacobiSVD_basic.out
  *
  * This JacobiSVD class is a two-sided Jacobi R-SVD decomposition, ensuring optimal reliability and accuracy. The downside is that it's slower than
  * bidiagonalizing SVD algorithms for large square matrices; however its complexity is still \f$ O(n^2p) \f$ where \a n is the smaller dimension and
  * \a p is the greater dimension, meaning that it is still of the same order of complexity as the faster bidiagonalizing R-SVD algorithms.
  * In particular, like any R-SVD, it takes advantage of non-squareness in that its complexity is only linear in the greater dimension.
  *
  * If the input matrix has inf or nan coefficients, the result of the computation is undefined, but the computation is guaranteed to
  * terminate in finite (and reasonable) time.
  *
  * The possible values for QRPreconditioner are:
  * \li ColPivHouseholderQRPreconditioner is the default. In practice it's very safe. It uses column-pivoting QR.
  * \li FullPivHouseholderQRPreconditioner, is the safest and slowest. It uses full-pivoting QR.
  *     Contrary to other QRs, it doesn't allow computing thin unitaries.
  * \li HouseholderQRPreconditioner is the fastest, and less safe and accurate than the pivoting variants. It uses non-pivoting QR.
  *     This is very similar in safety and accuracy to the bidiagonalization process used by bidiagonalizing SVD algorithms (since bidiagonalization
  *     is inherently non-pivoting). However the resulting SVD is still more reliable than bidiagonalizing SVDs because the Jacobi-based iterarive
  *     process is more reliable than the optimized bidiagonal SVD iterations.
  * \li NoQRPreconditioner allows not to use a QR preconditioner at all. This is useful if you know that you will only be computing
  *     JacobiSVD decompositions of square matrices. Non-square matrices require a QR preconditioner. Using this option will result in
  *     faster compilation and smaller executable code. It won't significantly speed up computation, since JacobiSVD is always checking
  *     if QR preconditioning is needed before applying it anyway.
  *
  * \sa MatrixBase::jacobiSvd()
  */
template<typename _MatrixType, int QRPreconditioner> class JacobiSVD
{
  public:

    typedef _MatrixType MatrixType;
    typedef typename MatrixType::Scalar Scalar;
    typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
    typedef typename MatrixType::Index Index;
    enum {
      RowsAtCompileTime = MatrixType::RowsAtCompileTime,
      ColsAtCompileTime = MatrixType::ColsAtCompileTime,
      DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime),
      MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
      MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
      MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime,MaxColsAtCompileTime),
      MatrixOptions = MatrixType::Options
    };

    typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime,
                   MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime>
            MatrixUType;
    typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime,
                   MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime>
            MatrixVType;
    typedef typename internal::plain_diag_type<MatrixType, RealScalar>::type SingularValuesType;
    typedef typename internal::plain_row_type<MatrixType>::type RowType;
    typedef typename internal::plain_col_type<MatrixType>::type ColType;
    typedef Matrix<Scalar, DiagSizeAtCompileTime, DiagSizeAtCompileTime,
                   MatrixOptions, MaxDiagSizeAtCompileTime, MaxDiagSizeAtCompileTime>
            WorkMatrixType;

    /** \brief Default Constructor.
      *
      * The default constructor is useful in cases in which the user intends to
      * perform decompositions via JacobiSVD::compute(const MatrixType&).
      */
    JacobiSVD()
      : m_isInitialized(false),
        m_isAllocated(false),
        m_usePrescribedThreshold(false),
        m_computationOptions(0),
        m_rows(-1), m_cols(-1), m_diagSize(0)
    {}


    /** \brief Default Constructor with memory preallocation
      *
      * Like the default constructor but with preallocation of the internal data
      * according to the specified problem size.
      * \sa JacobiSVD()
      */
    JacobiSVD(Index rows, Index cols, unsigned int computationOptions = 0)
      : m_isInitialized(false),
        m_isAllocated(false),
        m_usePrescribedThreshold(false),
        m_computationOptions(0),
        m_rows(-1), m_cols(-1)
    {
      allocate(rows, cols, computationOptions);
    }

    /** \brief Constructor performing the decomposition of given matrix.
     *
     * \param matrix the matrix to decompose
     * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
     *                           By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU,
     *                           #ComputeFullV, #ComputeThinV.
     *
     * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
     * available with the (non-default) FullPivHouseholderQR preconditioner.
     */
    JacobiSVD(const MatrixType& matrix, unsigned int computationOptions = 0)
      : m_isInitialized(false),
        m_isAllocated(false),
        m_usePrescribedThreshold(false),
        m_computationOptions(0),
        m_rows(-1), m_cols(-1)
    {
      compute(matrix, computationOptions);
    }

    /** \brief Method performing the decomposition of given matrix using custom options.
     *
     * \param matrix the matrix to decompose
     * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
     *                           By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU,
     *                           #ComputeFullV, #ComputeThinV.
     *
     * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
     * available with the (non-default) FullPivHouseholderQR preconditioner.
     */
    JacobiSVD& compute(const MatrixType& matrix, unsigned int computationOptions);

    /** \brief Method performing the decomposition of given matrix using current options.
     *
     * \param matrix the matrix to decompose
     *
     * This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int).
     */
    JacobiSVD& compute(const MatrixType& matrix)
    {
      return compute(matrix, m_computationOptions);
    }

    /** \returns the \a U matrix.
     *
     * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p,
     * the U matrix is n-by-n if you asked for #ComputeFullU, and is n-by-m if you asked for #ComputeThinU.
     *
     * The \a m first columns of \a U are the left singular vectors of the matrix being decomposed.
     *
     * This method asserts that you asked for \a U to be computed.
     */
    const MatrixUType& matrixU() const
    {
      eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
      eigen_assert(computeU() && "This JacobiSVD decomposition didn't compute U. Did you ask for it?");
      return m_matrixU;
    }

    /** \returns the \a V matrix.
     *
     * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p,
     * the V matrix is p-by-p if you asked for #ComputeFullV, and is p-by-m if you asked for ComputeThinV.
     *
     * The \a m first columns of \a V are the right singular vectors of the matrix being decomposed.
     *
     * This method asserts that you asked for \a V to be computed.
     */
    const MatrixVType& matrixV() const
    {
      eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
      eigen_assert(computeV() && "This JacobiSVD decomposition didn't compute V. Did you ask for it?");
      return m_matrixV;
    }

    /** \returns the vector of singular values.
     *
     * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p, the
     * returned vector has size \a m.  Singular values are always sorted in decreasing order.
     */
    const SingularValuesType& singularValues() const
    {
      eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
      return m_singularValues;
    }

    /** \returns true if \a U (full or thin) is asked for in this SVD decomposition */
    inline bool computeU() const { return m_computeFullU || m_computeThinU; }
    /** \returns true if \a V (full or thin) is asked for in this SVD decomposition */
    inline bool computeV() const { return m_computeFullV || m_computeThinV; }

    /** \returns a (least squares) solution of \f$ A x = b \f$ using the current SVD decomposition of A.
      *
      * \param b the right-hand-side of the equation to solve.
      *
      * \note Solving requires both U and V to be computed. Thin U and V are enough, there is no need for full U or V.
      *
      * \note SVD solving is implicitly least-squares. Thus, this method serves both purposes of exact solving and least-squares solving.
      * In other words, the returned solution is guaranteed to minimize the Euclidean norm \f$ \Vert A x - b \Vert \f$.
      */
    template<typename Rhs>
    inline const internal::solve_retval<JacobiSVD, Rhs>
    solve(const MatrixBase<Rhs>& b) const
    {
      eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
      eigen_assert(computeU() && computeV() && "JacobiSVD::solve() requires both unitaries U and V to be computed (thin unitaries suffice).");
      return internal::solve_retval<JacobiSVD, Rhs>(*this, b.derived());
    }

    /** \returns the number of singular values that are not exactly 0 */
    Index nonzeroSingularValues() const
    {
      eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
      return m_nonzeroSingularValues;
    }
    
    /** \returns the rank of the matrix of which \c *this is the SVD.
      *
      * \note This method has to determine which singular values should be considered nonzero.
      *       For that, it uses the threshold value that you can control by calling
      *       setThreshold(const RealScalar&).
      */
    inline Index rank() const
    {
      using std::abs;
      eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
      if(m_singularValues.size()==0) return 0;
      RealScalar premultiplied_threshold = m_singularValues.coeff(0) * threshold();
      Index i = m_nonzeroSingularValues-1;
      while(i>=0 && m_singularValues.coeff(i) < premultiplied_threshold) --i;
      return i+1;
    }
    
    /** Allows to prescribe a threshold to be used by certain methods, such as rank() and solve(),
      * which need to determine when singular values are to be considered nonzero.
      * This is not used for the SVD decomposition itself.
      *
      * When it needs to get the threshold value, Eigen calls threshold().
      * The default is \c NumTraits<Scalar>::epsilon()
      *
      * \param threshold The new value to use as the threshold.
      *
      * A singular value will be considered nonzero if its value is strictly greater than
      *  \f$ \vert singular value \vert \leqslant threshold \times \vert max singular value \vert \f$.
      *
      * If you want to come back to the default behavior, call setThreshold(Default_t)
      */
    JacobiSVD& setThreshold(const RealScalar& threshold)
    {
      m_usePrescribedThreshold = true;
      m_prescribedThreshold = threshold;
      return *this;
    }

    /** Allows to come back to the default behavior, letting Eigen use its default formula for
      * determining the threshold.
      *
      * You should pass the special object Eigen::Default as parameter here.
      * \code svd.setThreshold(Eigen::Default); \endcode
      *
      * See the documentation of setThreshold(const RealScalar&).
      */
    JacobiSVD& setThreshold(Default_t)
    {
      m_usePrescribedThreshold = false;
      return *this;
    }

    /** Returns the threshold that will be used by certain methods such as rank().
      *
      * See the documentation of setThreshold(const RealScalar&).
      */
    RealScalar threshold() const
    {
      eigen_assert(m_isInitialized || m_usePrescribedThreshold);
      return m_usePrescribedThreshold ? m_prescribedThreshold
                                      : (std::max<Index>)(1,m_diagSize)*NumTraits<Scalar>::epsilon();
    }

    inline Index rows() const { return m_rows; }
    inline Index cols() const { return m_cols; }

  private:
    void allocate(Index rows, Index cols, unsigned int computationOptions);

  protected:
    MatrixUType m_matrixU;
    MatrixVType m_matrixV;
    SingularValuesType m_singularValues;
    WorkMatrixType m_workMatrix;
    bool m_isInitialized, m_isAllocated, m_usePrescribedThreshold;
    bool m_computeFullU, m_computeThinU;
    bool m_computeFullV, m_computeThinV;
    unsigned int m_computationOptions;
    Index m_nonzeroSingularValues, m_rows, m_cols, m_diagSize;
    RealScalar m_prescribedThreshold;

    template<typename __MatrixType, int _QRPreconditioner, bool _IsComplex>
    friend struct internal::svd_precondition_2x2_block_to_be_real;
    template<typename __MatrixType, int _QRPreconditioner, int _Case, bool _DoAnything>
    friend struct internal::qr_preconditioner_impl;

    internal::qr_preconditioner_impl<MatrixType, QRPreconditioner, internal::PreconditionIfMoreColsThanRows> m_qr_precond_morecols;
    internal::qr_preconditioner_impl<MatrixType, QRPreconditioner, internal::PreconditionIfMoreRowsThanCols> m_qr_precond_morerows;
};

template<typename MatrixType, int QRPreconditioner>
void JacobiSVD<MatrixType, QRPreconditioner>::allocate(Index rows, Index cols, unsigned int computationOptions)
{
  eigen_assert(rows >= 0 && cols >= 0);

  if (m_isAllocated &&
      rows == m_rows &&
      cols == m_cols &&
      computationOptions == m_computationOptions)
  {
    return;
  }

  m_rows = rows;
  m_cols = cols;
  m_isInitialized = false;
  m_isAllocated = true;
  m_computationOptions = computationOptions;
  m_computeFullU = (computationOptions & ComputeFullU) != 0;
  m_computeThinU = (computationOptions & ComputeThinU) != 0;
  m_computeFullV = (computationOptions & ComputeFullV) != 0;
  m_computeThinV = (computationOptions & ComputeThinV) != 0;
  eigen_assert(!(m_computeFullU && m_computeThinU) && "JacobiSVD: you can't ask for both full and thin U");
  eigen_assert(!(m_computeFullV && m_computeThinV) && "JacobiSVD: you can't ask for both full and thin V");
  eigen_assert(EIGEN_IMPLIES(m_computeThinU || m_computeThinV, MatrixType::ColsAtCompileTime==Dynamic) &&
              "JacobiSVD: thin U and V are only available when your matrix has a dynamic number of columns.");
  if (QRPreconditioner == FullPivHouseholderQRPreconditioner)
  {
      eigen_assert(!(m_computeThinU || m_computeThinV) &&
              "JacobiSVD: can't compute thin U or thin V with the FullPivHouseholderQR preconditioner. "
              "Use the ColPivHouseholderQR preconditioner instead.");
  }
  m_diagSize = (std::min)(m_rows, m_cols);
  m_singularValues.resize(m_diagSize);
  if(RowsAtCompileTime==Dynamic)
    m_matrixU.resize(m_rows, m_computeFullU ? m_rows
                            : m_computeThinU ? m_diagSize
                            : 0);
  if(ColsAtCompileTime==Dynamic)
    m_matrixV.resize(m_cols, m_computeFullV ? m_cols
                            : m_computeThinV ? m_diagSize
                            : 0);
  m_workMatrix.resize(m_diagSize, m_diagSize);
  
  if(m_cols>m_rows) m_qr_precond_morecols.allocate(*this);
  if(m_rows>m_cols) m_qr_precond_morerows.allocate(*this);
}

template<typename MatrixType, int QRPreconditioner>
JacobiSVD<MatrixType, QRPreconditioner>&
JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsigned int computationOptions)
{
  using std::abs;
  allocate(matrix.rows(), matrix.cols(), computationOptions);

  // currently we stop when we reach precision 2*epsilon as the last bit of precision can require an unreasonable number of iterations,
  // only worsening the precision of U and V as we accumulate more rotations
  const RealScalar precision = RealScalar(2) * NumTraits<Scalar>::epsilon();

  // limit for very small denormal numbers to be considered zero in order to avoid infinite loops (see bug 286)
  const RealScalar considerAsZero = RealScalar(2) * std::numeric_limits<RealScalar>::denorm_min();

  /*** step 1. The R-SVD step: we use a QR decomposition to reduce to the case of a square matrix */

  if(!m_qr_precond_morecols.run(*this, matrix) && !m_qr_precond_morerows.run(*this, matrix))
  {
    m_workMatrix = matrix.block(0,0,m_diagSize,m_diagSize);
    if(m_computeFullU) m_matrixU.setIdentity(m_rows,m_rows);
    if(m_computeThinU) m_matrixU.setIdentity(m_rows,m_diagSize);
    if(m_computeFullV) m_matrixV.setIdentity(m_cols,m_cols);
    if(m_computeThinV) m_matrixV.setIdentity(m_cols, m_diagSize);
  }
  
  // Scaling factor to reducover/under-flows
  RealScalar scale = m_workMatrix.cwiseAbs().maxCoeff();
  if(scale==RealScalar(0)) scale = RealScalar(1);
  m_workMatrix /= scale;

  /*** step 2. The main Jacobi SVD iteration. ***/

  bool finished = false;
  while(!finished)
  {
    finished = true;

    // do a sweep: for all index pairs (p,q), perform SVD of the corresponding 2x2 sub-matrix

    for(Index p = 1; p < m_diagSize; ++p)
    {
      for(Index q = 0; q < p; ++q)
      {
        // if this 2x2 sub-matrix is not diagonal already...
        // notice that this comparison will evaluate to false if any NaN is involved, ensuring that NaN's don't
        // keep us iterating forever. Similarly, small denormal numbers are considered zero.
        EIGEN_USING_STD_MATH(max);
        RealScalar threshold = (max)(considerAsZero, precision * (max)(abs(m_workMatrix.coeff(p,p)),
                                                                       abs(m_workMatrix.coeff(q,q))));
        if((max)(abs(m_workMatrix.coeff(p,q)),abs(m_workMatrix.coeff(q,p))) > threshold)
        {
          finished = false;

          // perform SVD decomposition of 2x2 sub-matrix corresponding to indices p,q to make it diagonal
          internal::svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner>::run(m_workMatrix, *this, p, q);
          JacobiRotation<RealScalar> j_left, j_right;
          internal::real_2x2_jacobi_svd(m_workMatrix, p, q, &j_left, &j_right);

          // accumulate resulting Jacobi rotations
          m_workMatrix.applyOnTheLeft(p,q,j_left);
          if(computeU()) m_matrixU.applyOnTheRight(p,q,j_left.transpose());

          m_workMatrix.applyOnTheRight(p,q,j_right);
          if(computeV()) m_matrixV.applyOnTheRight(p,q,j_right);
        }
      }
    }
  }

  /*** step 3. The work matrix is now diagonal, so ensure it's positive so its diagonal entries are the singular values ***/

  for(Index i = 0; i < m_diagSize; ++i)
  {
    RealScalar a = abs(m_workMatrix.coeff(i,i));
    m_singularValues.coeffRef(i) = a;
    if(computeU() && (a!=RealScalar(0))) m_matrixU.col(i) *= m_workMatrix.coeff(i,i)/a;
  }
  
  m_singularValues *= scale;

  /*** step 4. Sort singular values in descending order and compute the number of nonzero singular values ***/

  m_nonzeroSingularValues = m_diagSize;
  for(Index i = 0; i < m_diagSize; i++)
  {
    Index pos;
    RealScalar maxRemainingSingularValue = m_singularValues.tail(m_diagSize-i).maxCoeff(&pos);
    if(maxRemainingSingularValue == RealScalar(0))
    {
      m_nonzeroSingularValues = i;
      break;
    }
    if(pos)
    {
      pos += i;
      std::swap(m_singularValues.coeffRef(i), m_singularValues.coeffRef(pos));
      if(computeU()) m_matrixU.col(pos).swap(m_matrixU.col(i));
      if(computeV()) m_matrixV.col(pos).swap(m_matrixV.col(i));
    }
  }

  m_isInitialized = true;
  return *this;
}

namespace internal {
template<typename _MatrixType, int QRPreconditioner, typename Rhs>
struct solve_retval<JacobiSVD<_MatrixType, QRPreconditioner>, Rhs>
  : solve_retval_base<JacobiSVD<_MatrixType, QRPreconditioner>, Rhs>
{
  typedef JacobiSVD<_MatrixType, QRPreconditioner> JacobiSVDType;
  EIGEN_MAKE_SOLVE_HELPERS(JacobiSVDType,Rhs)

  template<typename Dest> void evalTo(Dest& dst) const
  {
    eigen_assert(rhs().rows() == dec().rows());

    // A = U S V^*
    // So A^{-1} = V S^{-1} U^*

    Matrix<Scalar, Dynamic, Rhs::ColsAtCompileTime, 0, _MatrixType::MaxRowsAtCompileTime, Rhs::MaxColsAtCompileTime> tmp;
    Index rank = dec().rank();
    
    tmp.noalias() = dec().matrixU().leftCols(rank).adjoint() * rhs();
    tmp = dec().singularValues().head(rank).asDiagonal().inverse() * tmp;
    dst = dec().matrixV().leftCols(rank) * tmp;
  }
};
} // end namespace internal

#ifndef __CUDACC__
/** \svd_module
  *
  * \return the singular value decomposition of \c *this computed by two-sided
  * Jacobi transformations.
  *
  * \sa class JacobiSVD
  */
template<typename Derived>
JacobiSVD<typename MatrixBase<Derived>::PlainObject>
MatrixBase<Derived>::jacobiSvd(unsigned int computationOptions) const
{
  return JacobiSVD<PlainObject>(*this, computationOptions);
}
#endif // __CUDACC__

} // end namespace Eigen

#endif // EIGEN_JACOBISVD_H