aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/gpu/ccpr
diff options
context:
space:
mode:
Diffstat (limited to 'src/gpu/ccpr')
-rw-r--r--src/gpu/ccpr/GrCCPRCoverageOp.cpp12
-rw-r--r--src/gpu/ccpr/GrCCPRCoverageProcessor.cpp50
-rw-r--r--src/gpu/ccpr/GrCCPRCoverageProcessor.h16
-rw-r--r--src/gpu/ccpr/GrCCPRCubicProcessor.cpp240
-rw-r--r--src/gpu/ccpr/GrCCPRCubicProcessor.h76
-rw-r--r--src/gpu/ccpr/GrCCPRGeometry.cpp419
-rw-r--r--src/gpu/ccpr/GrCCPRGeometry.h45
7 files changed, 531 insertions, 327 deletions
diff --git a/src/gpu/ccpr/GrCCPRCoverageOp.cpp b/src/gpu/ccpr/GrCCPRCoverageOp.cpp
index c63b494268..a923726713 100644
--- a/src/gpu/ccpr/GrCCPRCoverageOp.cpp
+++ b/src/gpu/ccpr/GrCCPRCoverageOp.cpp
@@ -314,13 +314,13 @@ bool GrCCPRCoverageOpsBuilder::finalize(GrOnFlushResourceProvider* onFlushRP,
currFan.push_back(ptsIdx += 2);
continue;
- case GrCCPRGeometry::Verb::kConvexSerpentineTo:
+ case GrCCPRGeometry::Verb::kMonotonicSerpentineTo:
SkASSERT(!currFan.empty());
curveInstanceData[currIndices->fSerpentines++] = {ptsIdx, packedAtlasOffset};
currFan.push_back(ptsIdx += 3);
continue;
- case GrCCPRGeometry::Verb::kConvexLoopTo:
+ case GrCCPRGeometry::Verb::kMonotonicLoopTo:
SkASSERT(!currFan.empty());
curveInstanceData[currIndices->fLoops++] = {ptsIdx, packedAtlasOffset};
currFan.push_back(ptsIdx += 3);
@@ -410,13 +410,13 @@ void GrCCPRCoverageOp::onExecute(GrOpFlushState* flushState) {
// Cubics.
auto constexpr kCubicsGrPrimitiveType = GrCCPRCoverageProcessor::kCubicsGrPrimitiveType;
- this->drawMaskPrimitives(flushState, pipeline, Mode::kSerpentineInsets,
+ this->drawMaskPrimitives(flushState, pipeline, Mode::kSerpentineHulls,
kCubicsGrPrimitiveType, 4, &PrimitiveTallies::fSerpentines);
- this->drawMaskPrimitives(flushState, pipeline, Mode::kLoopInsets,
+ this->drawMaskPrimitives(flushState, pipeline, Mode::kLoopHulls,
kCubicsGrPrimitiveType, 4, &PrimitiveTallies::fLoops);
- this->drawMaskPrimitives(flushState, pipeline, Mode::kSerpentineBorders,
+ this->drawMaskPrimitives(flushState, pipeline, Mode::kSerpentineCorners,
kCubicsGrPrimitiveType, 4, &PrimitiveTallies::fSerpentines);
- this->drawMaskPrimitives(flushState, pipeline, Mode::kLoopBorders,
+ this->drawMaskPrimitives(flushState, pipeline, Mode::kLoopCorners,
kCubicsGrPrimitiveType, 4, &PrimitiveTallies::fLoops);
}
diff --git a/src/gpu/ccpr/GrCCPRCoverageProcessor.cpp b/src/gpu/ccpr/GrCCPRCoverageProcessor.cpp
index 69ec6ef0d1..69605095f6 100644
--- a/src/gpu/ccpr/GrCCPRCoverageProcessor.cpp
+++ b/src/gpu/ccpr/GrCCPRCoverageProcessor.cpp
@@ -30,14 +30,14 @@ const char* GrCCPRCoverageProcessor::GetProcessorName(Mode mode) {
return "GrCCPRQuadraticHullProcessor";
case Mode::kQuadraticCorners:
return "GrCCPRQuadraticCornerProcessor";
- case Mode::kSerpentineInsets:
- return "GrCCPRCubicInsetProcessor (serpentine)";
- case Mode::kSerpentineBorders:
- return "GrCCPRCubicBorderProcessor (serpentine)";
- case Mode::kLoopInsets:
- return "GrCCPRCubicInsetProcessor (loop)";
- case Mode::kLoopBorders:
- return "GrCCPRCubicBorderProcessor (loop)";
+ case Mode::kSerpentineHulls:
+ return "GrCCPRCubicHullProcessor (serpentine)";
+ case Mode::kLoopHulls:
+ return "GrCCPRCubicHullProcessor (loop)";
+ case Mode::kSerpentineCorners:
+ return "GrCCPRCubicCornerProcessor (serpentine)";
+ case Mode::kLoopCorners:
+ return "GrCCPRCubicCornerProcessor (loop)";
}
SK_ABORT("Unexpected ccpr coverage processor mode.");
return nullptr;
@@ -76,14 +76,14 @@ GrGLSLPrimitiveProcessor* GrCCPRCoverageProcessor::createGLSLInstance(const GrSh
return new GrCCPRQuadraticHullProcessor();
case Mode::kQuadraticCorners:
return new GrCCPRQuadraticCornerProcessor();
- case Mode::kSerpentineInsets:
- return new GrCCPRCubicInsetProcessor(GrCCPRCubicProcessor::Type::kSerpentine);
- case Mode::kSerpentineBorders:
- return new GrCCPRCubicBorderProcessor(GrCCPRCubicProcessor::Type::kSerpentine);
- case Mode::kLoopInsets:
- return new GrCCPRCubicInsetProcessor(GrCCPRCubicProcessor::Type::kLoop);
- case Mode::kLoopBorders:
- return new GrCCPRCubicBorderProcessor(GrCCPRCubicProcessor::Type::kLoop);
+ case Mode::kSerpentineHulls:
+ return new GrCCPRCubicHullProcessor(GrCCPRCubicProcessor::CubicType::kSerpentine);
+ case Mode::kLoopHulls:
+ return new GrCCPRCubicHullProcessor(GrCCPRCubicProcessor::CubicType::kLoop);
+ case Mode::kSerpentineCorners:
+ return new GrCCPRCubicCornerProcessor(GrCCPRCubicProcessor::CubicType::kSerpentine);
+ case Mode::kLoopCorners:
+ return new GrCCPRCubicCornerProcessor(GrCCPRCubicProcessor::CubicType::kLoop);
}
SK_ABORT("Unexpected ccpr coverage processor mode.");
return nullptr;
@@ -169,12 +169,13 @@ void PrimitiveProcessor::emitGeometryShader(const GrCCPRCoverageProcessor& proc,
int PrimitiveProcessor::emitHullGeometry(GrGLSLGeometryBuilder* g, const char* emitVertexFn,
const char* polygonPts, int numSides,
- const char* wedgeIdx, const char* insetPts) const {
+ const char* wedgeIdx, const char* midpoint) const {
SkASSERT(numSides >= 3);
- if (!insetPts) {
- g->codeAppendf("highp float2 centroidpt = %s * float%i(%f);",
+ if (!midpoint) {
+ g->codeAppendf("highp float2 midpoint = %s * float%i(%f);",
polygonPts, numSides, 1.0 / numSides);
+ midpoint = "midpoint";
}
g->codeAppendf("int previdx = (%s + %i) %% %i, "
@@ -222,15 +223,8 @@ int PrimitiveProcessor::emitHullGeometry(GrGLSLGeometryBuilder* g, const char* e
// Emit one third of what is the convex hull of pixel-size boxes centered on the vertices.
// Each invocation emits a different third.
- if (insetPts) {
- g->codeAppendf("%s(%s[rightidx], 1);", emitVertexFn, insetPts);
- }
g->codeAppendf("%s(right + bloat * dr, 1);", emitVertexFn);
- if (insetPts) {
- g->codeAppendf("%s(%s[%s], 1);", emitVertexFn, insetPts, wedgeIdx);
- } else {
- g->codeAppendf("%s(centroidpt, 1);", emitVertexFn);
- }
+ g->codeAppendf("%s(%s, 1);", emitVertexFn, midpoint);
g->codeAppendf("%s(self + bloat * %s, 1);", emitVertexFn, dr2);
g->codeAppend ("if (any(dnotequal)) {");
g->codeAppendf( "%s(self + bloat * dl, 1);", emitVertexFn);
@@ -240,7 +234,7 @@ int PrimitiveProcessor::emitHullGeometry(GrGLSLGeometryBuilder* g, const char* e
g->codeAppend ("}");
g->codeAppend ("EndPrimitive();");
- return insetPts ? 6 : 5;
+ return 5;
}
int PrimitiveProcessor::emitEdgeGeometry(GrGLSLGeometryBuilder* g, const char* emitVertexFn,
diff --git a/src/gpu/ccpr/GrCCPRCoverageProcessor.h b/src/gpu/ccpr/GrCCPRCoverageProcessor.h
index d0b20cf686..2835cc5a5f 100644
--- a/src/gpu/ccpr/GrCCPRCoverageProcessor.h
+++ b/src/gpu/ccpr/GrCCPRCoverageProcessor.h
@@ -68,10 +68,10 @@ public:
kQuadraticCorners,
// Cubics.
- kSerpentineInsets,
- kSerpentineBorders,
- kLoopInsets,
- kLoopBorders
+ kSerpentineHulls,
+ kLoopHulls,
+ kSerpentineCorners,
+ kLoopCorners
};
static constexpr GrVertexAttribType InstanceArrayFormat(Mode mode) {
return mode < Mode::kQuadraticHulls ? kVec4i_GrVertexAttribType : kVec2i_GrVertexAttribType;
@@ -92,9 +92,8 @@ public:
void getGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const override;
GrGLSLPrimitiveProcessor* createGLSLInstance(const GrShaderCaps&) const override;
-#ifdef SK_DEBUG
static constexpr float kDebugBloat = 50;
-
+#ifdef SK_DEBUG
// Increases the 1/2 pixel AA bloat by a factor of kDebugBloat and outputs color instead of
// coverage (coverage=+1 -> green, coverage=0 -> black, coverage=-1 -> red).
void enableDebugVisualizations() { fDebugVisualizations = true; }
@@ -188,14 +187,11 @@ protected:
// Logically, the conservative raster hull is equivalent to the convex hull of pixel-size boxes
// centered on the vertices.
//
- // If an optional inset polygon is provided, then this emits a border from the inset to the
- // hull, rather than the entire hull.
- //
// Geometry shader must be configured to output triangle strips.
//
// Returns the maximum number of vertices that will be emitted.
int emitHullGeometry(GrGLSLGeometryBuilder*, const char* emitVertexFn, const char* polygonPts,
- int numSides, const char* wedgeIdx, const char* insetPts = nullptr) const;
+ int numSides, const char* wedgeIdx, const char* midpoint = nullptr) const;
// Emits the conservative raster of an edge (i.e. convex hull of two pixel-size boxes centered
// on the endpoints). Coverage is -1 on the outside border of the edge geometry and 0 on the
diff --git a/src/gpu/ccpr/GrCCPRCubicProcessor.cpp b/src/gpu/ccpr/GrCCPRCubicProcessor.cpp
index ad0729bca1..0ac4517d5f 100644
--- a/src/gpu/ccpr/GrCCPRCubicProcessor.cpp
+++ b/src/gpu/ccpr/GrCCPRCubicProcessor.cpp
@@ -16,56 +16,10 @@ void GrCCPRCubicProcessor::onEmitVertexShader(const GrCCPRCoverageProcessor& pro
const TexelBufferHandle& pointsBuffer,
const char* atlasOffset, const char* rtAdjust,
GrGPArgs* gpArgs) const {
- float inset = 1 - kAABloatRadius;
-#ifdef SK_DEBUG
- if (proc.debugVisualizations()) {
- inset *= GrCCPRCoverageProcessor::kDebugBloat;
- }
-#endif
-
- // Fetch all 4 cubic bezier points.
- v->codeAppendf("int4 indices = int4(%s.x, %s.x + 1, %s.x + 2, %s.x + 3);",
- proc.instanceAttrib(), proc.instanceAttrib(), proc.instanceAttrib(),
- proc.instanceAttrib());
- v->codeAppend ("highp float4x2 bezierpts = float4x2(");
- v->appendTexelFetch(pointsBuffer, "indices[sk_VertexID]");
- v->codeAppend (".xy, ");
- v->appendTexelFetch(pointsBuffer, "indices[(sk_VertexID + 1) % 4]");
- v->codeAppend (".xy, ");
- v->appendTexelFetch(pointsBuffer, "indices[(sk_VertexID + 2) % 4]");
- v->codeAppend (".xy, ");
- v->appendTexelFetch(pointsBuffer, "indices[(sk_VertexID + 3) % 4]");
- v->codeAppend (".xy);");
-
- // Find the corner of the inset geometry that corresponds to this bezier vertex (bezierpts[0]).
- v->codeAppend ("highp float2x2 N = float2x2(bezierpts[3].y - bezierpts[0].y, "
- "bezierpts[0].x - bezierpts[3].x, "
- "bezierpts[1].y - bezierpts[0].y, "
- "bezierpts[0].x - bezierpts[1].x);");
- v->codeAppend ("highp float2x2 P = float2x2(bezierpts[3], bezierpts[1]);");
- v->codeAppend ("if (abs(determinant(N)) < 2) {"); // Area of [pts[3], pts[0], pts[1]] < 1px.
- // The inset corner doesn't exist because we are effectively colinear with
- // both neighbor vertices. Just duplicate a neighbor's inset corner.
- v->codeAppend ( "int smallidx = (dot(N[0], N[0]) > dot(N[1], N[1])) ? 1 : 0;");
- v->codeAppend ( "N[smallidx] = float2(bezierpts[2].y - bezierpts[3 - smallidx * 2].y, "
- "bezierpts[3 - smallidx * 2].x - bezierpts[2].x);");
- v->codeAppend ( "P[smallidx] = bezierpts[2];");
- v->codeAppend ("}");
- v->codeAppend ("N[0] *= sign(dot(N[0], P[1] - P[0]));");
- v->codeAppend ("N[1] *= sign(dot(N[1], P[0] - P[1]));");
-
- v->codeAppendf("highp float2 K = float2(dot(N[0], P[0] + %f * sign(N[0])), "
- "dot(N[1], P[1] + %f * sign(N[1])));", inset, inset);
- v->codeAppendf("%s.xy = K * inverse(N) + %s;", fInset.vsOut(), atlasOffset);
- v->codeAppendf("%s.xy = %s.xy * %s.xz + %s.yw;",
- fInset.vsOut(), fInset.vsOut(), rtAdjust, rtAdjust);
-
- // The z component tells the gemetry shader how "sharp" this corner is.
- v->codeAppendf("%s.z = determinant(N) * sign(%s.x) * sign(%s.z);",
- fInset.vsOut(), rtAdjust, rtAdjust);
-
- // Emit the vertex position.
- v->codeAppendf("highp float2 self = bezierpts[0] + %s;", atlasOffset);
+ v->codeAppend ("highp float2 self = ");
+ v->appendTexelFetch(pointsBuffer,
+ SkStringPrintf("%s.x + sk_VertexID", proc.instanceAttrib()).c_str());
+ v->codeAppendf(".xy + %s;", atlasOffset);
gpArgs->fPositionVar.set(kVec2f_GrSLType, "self");
}
@@ -93,63 +47,13 @@ void GrCCPRCubicProcessor::onEmitGeometryShader(GrGLSLGeometryBuilder* g, const
const char* wind, const char* rtAdjust) const {
// Prepend bezierpts at the start of the shader.
g->codePrependf("highp float4x2 bezierpts = float4x2(sk_in[0].gl_Position.xy, "
- "sk_in[1].gl_Position.xy, "
- "sk_in[2].gl_Position.xy, "
- "sk_in[3].gl_Position.xy);");
+ "sk_in[1].gl_Position.xy, "
+ "sk_in[2].gl_Position.xy, "
+ "sk_in[3].gl_Position.xy);");
- // Evaluate the cubic at t=.5 for an approximate midpoint.
+ // Evaluate the cubic at T=.5 for an mid-ish point.
g->codeAppendf("highp float2 midpoint = bezierpts * float4(.125, .375, .375, .125);");
- // Finish finding the inset geometry we started in the vertex shader. The z component tells us
- // how "sharp" an inset corner is. And the vertex shader already skips one corner if it is
- // colinear with its neighbors. So at this point, if a corner is flat, it means the inset
- // geometry is all empty (it should never be non-convex because the curve gets chopped into
- // convex segments ahead of time).
- g->codeAppendf("bool isempty = "
- "any(lessThan(float4(%s[0].z, %s[1].z, %s[2].z, %s[3].z) * %s, float4(2)));",
- fInset.gsIn(), fInset.gsIn(), fInset.gsIn(), fInset.gsIn(), wind);
- g->codeAppendf("highp float2 inset[4];");
- g->codeAppend ("for (int i = 0; i < 4; ++i) {");
- g->codeAppendf( "inset[i] = isempty ? midpoint : %s[i].xy;", fInset.gsIn());
- g->codeAppend ("}");
-
- // We determine crossover and/or degeneracy by how many inset edges run the opposite direction
- // of their corresponding bezier edge. If there is one backwards edge, the inset geometry is
- // actually triangle with a vertex at the crossover point. If there are >1 backwards edges, the
- // inset geometry doesn't exist (i.e. the bezier quadrilateral isn't large enough) and we
- // degenerate to the midpoint.
- g->codeAppend ("lowp float backwards[4];");
- g->codeAppend ("lowp int numbackwards = 0;");
- g->codeAppend ("for (int i = 0; i < 4; ++i) {");
- g->codeAppend ( "lowp int j = (i + 1) % 4;");
- g->codeAppendf( "highp float2 inner = inset[j] - inset[i];");
- g->codeAppendf( "highp float2 outer = sk_in[j].gl_Position.xy - sk_in[i].gl_Position.xy;");
- g->codeAppendf( "backwards[i] = sign(dot(outer, inner));");
- g->codeAppendf( "numbackwards += backwards[i] < 0 ? 1 : 0;");
- g->codeAppend ("}");
-
- // Find the crossover point. If there actually isn't one, this math is meaningless and will get
- // dropped on the floor later.
- g->codeAppend ("lowp int x = (backwards[0] != backwards[2]) ? 1 : 0;");
- g->codeAppend ("lowp int x3 = (x + 3) % 4;");
- g->codeAppend ("highp float2x2 X = float2x2(inset[x].y - inset[x+1].y, "
- "inset[x+1].x - inset[x].x, "
- "inset[x+2].y - inset[x3].y, "
- "inset[x3].x - inset[x+2].x);");
- g->codeAppend ("highp float2 KK = float2(dot(X[0], inset[x]), dot(X[1], inset[x+2]));");
- g->codeAppend ("highp float2 crossoverpoint = KK * inverse(X);");
-
- // Determine what point backwards edges should collapse into. If there is one backwards edge,
- // it should collapse to the crossover point. If >1, they should all collapse to the midpoint.
- g->codeAppend ("highp float2 collapsepoint = numbackwards == 1 ? crossoverpoint : midpoint;");
-
- // Collapse backwards egdes to the "collapse" point.
- g->codeAppend ("for (int i = 0; i < 4; ++i) {");
- g->codeAppend ( "if (backwards[i] < 0) {");
- g->codeAppend ( "inset[i] = inset[(i + 1) % 4] = collapsepoint;");
- g->codeAppend ( "}");
- g->codeAppend ("}");
-
// Find the cubic's power basis coefficients.
g->codeAppend ("highp float2x4 C = float4x4(-1, 3, -3, 1, "
" 3, -6, 3, 0, "
@@ -166,7 +70,7 @@ void GrCCPRCubicProcessor::onEmitGeometryShader(GrGLSLGeometryBuilder* g, const
g->codeAppend ("highp float4 K, L, M;");
g->codeAppend ("highp float2 l, m;");
g->codeAppend ("highp float discr = 3*D2*D2 - 4*D1*D3;");
- if (Type::kSerpentine == fType) {
+ if (CubicType::kSerpentine == fCubicType) {
// This math also works out for the "cusp" and "cusp at infinity" cases.
g->codeAppend ("highp float q = 3*D2 + sign(D2) * sqrt(max(3*discr, 0));");
g->codeAppend ("l.ts = normalize(float2(q, 6*D1));");
@@ -206,119 +110,105 @@ void GrCCPRCubicProcessor::onEmitGeometryShader(GrGLSLGeometryBuilder* g, const
g->codeAppendf("%s[2] = %s[2].xy * %s.xz;",
fKLMDerivatives.c_str(), fKLMMatrix.c_str(), rtAdjust);
+ // Determine the amount of additional coverage to subtract out for the flat edge (P3 -> P0).
+ g->declareGlobal(fEdgeDistanceEquation);
+ g->codeAppendf("int edgeidx0 = %s > 0 ? 3 : 0;", wind);
+ g->codeAppendf("highp float2 edgept0 = bezierpts[edgeidx0];");
+ g->codeAppendf("highp float2 edgept1 = bezierpts[3 - edgeidx0];");
+ this->emitEdgeDistanceEquation(g, "edgept0", "edgept1", fEdgeDistanceEquation.c_str());
+
this->emitCubicGeometry(g, emitVertexFn, wind, rtAdjust);
}
-void GrCCPRCubicInsetProcessor::emitCubicGeometry(GrGLSLGeometryBuilder* g,
- const char* emitVertexFn, const char* wind,
- const char* rtAdjust) const {
+void GrCCPRCubicProcessor::emitPerVertexGeometryCode(SkString* fnBody, const char* position,
+ const char* /*coverage*/,
+ const char* /*wind*/) const {
+ fnBody->appendf("highp float3 klm = float3(%s, 1) * %s;", position, fKLMMatrix.c_str());
+ fnBody->appendf("highp float d = dot(float3(%s, 1), %s);",
+ position, fEdgeDistanceEquation.c_str());
+ fnBody->appendf("%s = float4(klm, d);", fKLMD.gsOut());
+ this->onEmitPerVertexGeometryCode(fnBody);
+}
+
+void GrCCPRCubicHullProcessor::emitCubicGeometry(GrGLSLGeometryBuilder* g, const char* emitVertexFn,
+ const char* wind, const char* rtAdjust) const {
// FIXME: we should clip this geometry at the tip of the curve.
- g->codeAppendf("%s(inset[0], 1);", emitVertexFn);
- g->codeAppendf("%s(inset[1], 1);", emitVertexFn);
- g->codeAppendf("%s(inset[3], 1);", emitVertexFn);
- g->codeAppendf("%s(inset[2], 1);", emitVertexFn);
- g->codeAppend ("EndPrimitive();");
+ int maxVertices = this->emitHullGeometry(g, emitVertexFn, "bezierpts", 4, "sk_InvocationID",
+ "midpoint");
g->configure(GrGLSLGeometryBuilder::InputType::kLinesAdjacency,
GrGLSLGeometryBuilder::OutputType::kTriangleStrip,
- 4, 1);
+ maxVertices, 4);
}
-void GrCCPRCubicInsetProcessor::emitPerVertexGeometryCode(SkString* fnBody, const char* position,
- const char* /*coverage*/,
- const char* /*wind*/) const {
- fnBody->appendf("highp float3 klm = float3(%s, 1) * %s;", position, fKLMMatrix.c_str());
- fnBody->appendf("%s = klm;", fKLM.gsOut());
+void GrCCPRCubicHullProcessor::onEmitPerVertexGeometryCode(SkString* fnBody) const {
+ // "klm" was just defined by the base class.
fnBody->appendf("%s[0] = 3 * klm[0] * %s[0];", fGradMatrix.gsOut(), fKLMDerivatives.c_str());
fnBody->appendf("%s[1] = -klm[1] * %s[2].xy - klm[2] * %s[1].xy;",
fGradMatrix.gsOut(), fKLMDerivatives.c_str(), fKLMDerivatives.c_str());
}
-void GrCCPRCubicInsetProcessor::emitShaderCoverage(GrGLSLFragmentBuilder* f,
- const char* outputCoverage) const {
- f->codeAppendf("highp float k = %s.x, l = %s.y, m = %s.z;",
- fKLM.fsIn(), fKLM.fsIn(), fKLM.fsIn());
+void GrCCPRCubicHullProcessor::emitShaderCoverage(GrGLSLFragmentBuilder* f,
+ const char* outputCoverage) const {
+ f->codeAppendf("highp float k = %s.x, l = %s.y, m = %s.z, d = %s.w;",
+ fKLMD.fsIn(), fKLMD.fsIn(), fKLMD.fsIn(), fKLMD.fsIn());
f->codeAppend ("highp float f = k*k*k - l*m;");
- f->codeAppendf("highp float2 grad = %s * float2(k, 1);", fGradMatrix.fsIn());
- f->codeAppend ("highp float d = f * inversesqrt(dot(grad, grad));");
- f->codeAppendf("%s = clamp(0.5 - d, 0, 1);", outputCoverage);
+ f->codeAppendf("highp float2 grad_f = %s * float2(k, 1);", fGradMatrix.fsIn());
+ f->codeAppendf("%s = clamp(0.5 - f * inversesqrt(dot(grad_f, grad_f)), 0, 1);", outputCoverage);
+ f->codeAppendf("%s += min(d, 0);", outputCoverage); // Flat closing edge.
}
-void GrCCPRCubicBorderProcessor::emitCubicGeometry(GrGLSLGeometryBuilder* g,
+void GrCCPRCubicCornerProcessor::emitCubicGeometry(GrGLSLGeometryBuilder* g,
const char* emitVertexFn, const char* wind,
const char* rtAdjust) const {
// We defined bezierpts in onEmitGeometryShader.
- g->declareGlobal(fEdgeDistanceEquation);
- g->codeAppendf("int edgeidx0 = %s > 0 ? 3 : 0;", wind);
- g->codeAppendf("highp float2 edgept0 = bezierpts[edgeidx0];");
- g->codeAppendf("highp float2 edgept1 = bezierpts[3 - edgeidx0];");
- this->emitEdgeDistanceEquation(g, "edgept0", "edgept1", fEdgeDistanceEquation.c_str());
- g->codeAppendf("%s.z += 0.5;", fEdgeDistanceEquation.c_str()); // outer = -.5, inner = .5
-
g->declareGlobal(fEdgeDistanceDerivatives);
g->codeAppendf("%s = %s.xy * %s.xz;",
fEdgeDistanceDerivatives.c_str(), fEdgeDistanceEquation.c_str(), rtAdjust);
- g->declareGlobal(fEdgeSpaceTransform);
- g->codeAppend ("highp float4 edgebbox = float4(min(bezierpts[0], bezierpts[3]) - bloat, "
- "max(bezierpts[0], bezierpts[3]) + bloat);");
- g->codeAppendf("%s.xy = 2 / float2(edgebbox.zw - edgebbox.xy);", fEdgeSpaceTransform.c_str());
- g->codeAppendf("%s.zw = -1 - %s.xy * edgebbox.xy;",
- fEdgeSpaceTransform.c_str(), fEdgeSpaceTransform.c_str());
-
- int maxVertices = this->emitHullGeometry(g, emitVertexFn, "bezierpts", 4, "sk_InvocationID",
- "inset");
+ g->codeAppendf("highp float2 corner = bezierpts[sk_InvocationID * 3];");
+ int numVertices = this->emitCornerGeometry(g, emitVertexFn, "corner");
g->configure(GrGLSLGeometryBuilder::InputType::kLinesAdjacency,
- GrGLSLGeometryBuilder::OutputType::kTriangleStrip,
- maxVertices, 4);
+ GrGLSLGeometryBuilder::OutputType::kTriangleStrip, numVertices, 2);
}
-void GrCCPRCubicBorderProcessor::emitPerVertexGeometryCode(SkString* fnBody, const char* position,
- const char* /*coverage*/,
- const char* /*wind*/) const {
- fnBody->appendf("highp float3 klm = float3(%s, 1) * %s;", position, fKLMMatrix.c_str());
- fnBody->appendf("highp float d = dot(float3(%s, 1), %s);",
- position, fEdgeDistanceEquation.c_str());
- fnBody->appendf("%s = float4(klm, d);", fKLMD.gsOut());
+void GrCCPRCubicCornerProcessor::onEmitPerVertexGeometryCode(SkString* fnBody) const {
fnBody->appendf("%s = float4(%s[0].x, %s[1].x, %s[2].x, %s.x);",
fdKLMDdx.gsOut(), fKLMDerivatives.c_str(), fKLMDerivatives.c_str(),
fKLMDerivatives.c_str(), fEdgeDistanceDerivatives.c_str());
fnBody->appendf("%s = float4(%s[0].y, %s[1].y, %s[2].y, %s.y);",
fdKLMDdy.gsOut(), fKLMDerivatives.c_str(), fKLMDerivatives.c_str(),
fKLMDerivatives.c_str(), fEdgeDistanceDerivatives.c_str());
- fnBody->appendf("%s = position * %s.xy + %s.zw;", fEdgeSpaceCoord.gsOut(),
- fEdgeSpaceTransform.c_str(), fEdgeSpaceTransform.c_str());
// Otherwise, fEdgeDistances = fEdgeDistances * sign(wind * rtAdjust.x * rdAdjust.z).
GR_STATIC_ASSERT(kTopLeft_GrSurfaceOrigin == GrCCPRCoverageProcessor::kAtlasOrigin);
}
-void GrCCPRCubicBorderProcessor::emitShaderCoverage(GrGLSLFragmentBuilder* f,
+void GrCCPRCubicCornerProcessor::emitShaderCoverage(GrGLSLFragmentBuilder* f,
const char* outputCoverage) const {
- // Use software msaa to determine coverage.
- const int sampleCount = this->defineSoftSampleLocations(f, "samples");
-
- // Along the shared edge, we start with distance-to-edge coverage, then subtract out the
- // remaining pixel coverage that is still inside the shared edge, but outside the curve.
- // Outside the shared edege, we just use standard msaa to count samples inside the curve.
- f->codeAppendf("bool use_edge = all(lessThan(abs(%s), float2(1)));", fEdgeSpaceCoord.fsIn());
- f->codeAppendf("%s = (use_edge ? clamp(%s.w + 0.5, 0, 1) : 0) * %i;",
- outputCoverage, fKLMD.fsIn(), sampleCount);
+ f->codeAppendf("highp float2x4 grad_klmd = float2x4(%s, %s);",
+ fdKLMDdx.fsIn(), fdKLMDdy.fsIn());
- f->codeAppendf("highp float2x4 grad_klmd = float2x4(%s, %s);", fdKLMDdx.fsIn(),
- fdKLMDdy.fsIn());
+ // Erase what the previous hull shader wrote. We don't worry about the two corners falling on
+ // the same pixel because those cases should have been weeded out by this point.
+ f->codeAppendf("highp float k = %s.x, l = %s.y, m = %s.z, d = %s.w;",
+ fKLMD.fsIn(), fKLMD.fsIn(), fKLMD.fsIn(), fKLMD.fsIn());
+ f->codeAppend ("highp float f = k*k*k - l*m;");
+ f->codeAppend ("highp float2 grad_f = float3(3*k*k, -m, -l) * float2x3(grad_klmd);");
+ f->codeAppendf("%s = -clamp(0.5 - f * inversesqrt(dot(grad_f, grad_f)), 0, 1);",
+ outputCoverage);
+ f->codeAppendf("%s -= d;", outputCoverage);
+ // Use software msaa to estimate actual coverage at the corner pixels.
+ const int sampleCount = this->defineSoftSampleLocations(f, "samples");
+ f->codeAppendf("highp float4 klmd_center = float4(%s.xyz, %s.w + 0.5);",
+ fKLMD.fsIn(), fKLMD.fsIn());
f->codeAppendf("for (int i = 0; i < %i; ++i) {", sampleCount);
- f->codeAppendf( "highp float4 klmd = grad_klmd * samples[i] + %s;", fKLMD.fsIn());
+ f->codeAppend ( "highp float4 klmd = grad_klmd * samples[i] + klmd_center;");
f->codeAppend ( "lowp float f = klmd.y * klmd.z - klmd.x * klmd.x * klmd.x;");
- // A sample is inside our cubic sub-section if it is inside the implicit AND L & M are both
- // positive. This works because the sections get chopped at the K/L and K/M intersections.
- f->codeAppend ( "bool4 inside = greaterThan(float4(f,klmd.yzw), float4(0));");
- f->codeAppend ( "lowp float in_curve = all(inside.xyz) ? 1 : 0;");
- f->codeAppend ( "lowp float in_edge = inside.w ? 1 : 0;");
- f->codeAppendf( "%s += use_edge ? in_edge * (in_curve - 1) : in_curve;", outputCoverage);
+ f->codeAppendf( "%s += all(greaterThan(float4(f, klmd.y, klmd.z, klmd.w), "
+ "float4(0))) ? %f : 0;",
+ outputCoverage, 1.0 / sampleCount);
f->codeAppend ("}");
-
- f->codeAppendf("%s *= %f;", outputCoverage, 1.0 / sampleCount);
}
diff --git a/src/gpu/ccpr/GrCCPRCubicProcessor.h b/src/gpu/ccpr/GrCCPRCubicProcessor.h
index d445eeb315..cfee7bfac1 100644
--- a/src/gpu/ccpr/GrCCPRCubicProcessor.h
+++ b/src/gpu/ccpr/GrCCPRCubicProcessor.h
@@ -19,40 +19,29 @@ class GrGLSLGeometryBuilder;
*
* https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/p1000-loop.pdf
*
- * The caller is expected to chop cubics at the KLM roots (a.k.a. inflection points and loop
- * intersection points, resulting in necessarily convex segments) before feeding them into this
- * processor. (Use GrCCPRGeometry.)
- *
- * The curves are rendered in two passes:
- *
- * Pass 1: Draw the (convex) bezier quadrilateral, inset by 1/2 pixel all around, and use the
- * gradient-based AA technique outlined in the Loop/Blinn paper to compute coverage.
- *
- * Pass 2: Draw a border around the previous inset, up to the bezier quadrilatral's conservative
- * raster hull, and compute coverage using pseudo MSAA. This pass is necessary because the
- * gradient approach does not work near the L and M lines.
- *
- * FIXME: The pseudo MSAA border is slow and ugly. We should investigate an alternate solution of
- * just approximating the curve with straight lines for short distances across the problem points
- * instead.
+ * The provided curves must be convex, monotonic with respect to the vector of their closing edge
+ * [P3 - P0], and must not contain or be near any inflection points or loop intersections.
+ * (Use GrCCPRGeometry.)
*/
class GrCCPRCubicProcessor : public GrCCPRCoverageProcessor::PrimitiveProcessor {
public:
- enum class Type {
+ enum class CubicType {
kSerpentine,
kLoop
};
- GrCCPRCubicProcessor(Type type)
+ GrCCPRCubicProcessor(CubicType cubicType)
: INHERITED(CoverageType::kShader)
- , fType(type)
- , fInset(kVec3f_GrSLType)
+ , fCubicType(cubicType)
, fKLMMatrix("klm_matrix", kMat33f_GrSLType, GrShaderVar::kNonArray,
kHigh_GrSLPrecision)
- , fKLMDerivatives("klm_derivatives", kVec2f_GrSLType, 3, kHigh_GrSLPrecision) {}
+ , fKLMDerivatives("klm_derivatives", kVec2f_GrSLType, 3, kHigh_GrSLPrecision)
+ , fEdgeDistanceEquation("edge_distance_equation", kVec3f_GrSLType,
+ GrShaderVar::kNonArray, kHigh_GrSLPrecision)
+ , fKLMD(kVec4f_GrSLType) {}
void resetVaryings(GrGLSLVaryingHandler* varyingHandler) override {
- varyingHandler->addVarying("insets", &fInset, kHigh_GrSLPrecision);
+ varyingHandler->addVarying("klmd", &fKLMD, kHigh_GrSLPrecision);
}
void onEmitVertexShader(const GrCCPRCoverageProcessor&, GrGLSLVertexBuilder*,
@@ -61,82 +50,69 @@ public:
void emitWind(GrGLSLGeometryBuilder*, const char* rtAdjust, const char* outputWind) const final;
void onEmitGeometryShader(GrGLSLGeometryBuilder*, const char* emitVertexFn, const char* wind,
const char* rtAdjust) const final;
+ void emitPerVertexGeometryCode(SkString* fnBody, const char* position, const char* coverage,
+ const char* wind) const final;
protected:
virtual void emitCubicGeometry(GrGLSLGeometryBuilder*, const char* emitVertexFn,
const char* wind, const char* rtAdjust) const = 0;
+ virtual void onEmitPerVertexGeometryCode(SkString* fnBody) const = 0;
- const Type fType;
- GrGLSLVertToGeo fInset;
+ const CubicType fCubicType;
GrShaderVar fKLMMatrix;
GrShaderVar fKLMDerivatives;
+ GrShaderVar fEdgeDistanceEquation;
+ GrGLSLGeoToFrag fKLMD;
typedef GrCCPRCoverageProcessor::PrimitiveProcessor INHERITED;
};
-class GrCCPRCubicInsetProcessor : public GrCCPRCubicProcessor {
+class GrCCPRCubicHullProcessor : public GrCCPRCubicProcessor {
public:
- GrCCPRCubicInsetProcessor(Type type)
- : INHERITED(type)
- , fKLM(kVec3f_GrSLType)
+ GrCCPRCubicHullProcessor(CubicType cubicType)
+ : INHERITED(cubicType)
, fGradMatrix(kMat22f_GrSLType) {}
void resetVaryings(GrGLSLVaryingHandler* varyingHandler) override {
this->INHERITED::resetVaryings(varyingHandler);
- varyingHandler->addVarying("klm", &fKLM, kHigh_GrSLPrecision);
varyingHandler->addVarying("grad_matrix", &fGradMatrix, kHigh_GrSLPrecision);
}
void emitCubicGeometry(GrGLSLGeometryBuilder*, const char* emitVertexFn,
const char* wind, const char* rtAdjust) const override;
- void emitPerVertexGeometryCode(SkString* fnBody, const char* position, const char* coverage,
- const char* wind) const override;
+ void onEmitPerVertexGeometryCode(SkString* fnBody) const override;
void emitShaderCoverage(GrGLSLFragmentBuilder*, const char* outputCoverage) const override;
protected:
- GrGLSLGeoToFrag fKLM;
GrGLSLGeoToFrag fGradMatrix;
typedef GrCCPRCubicProcessor INHERITED;
};
-class GrCCPRCubicBorderProcessor : public GrCCPRCubicProcessor {
+class GrCCPRCubicCornerProcessor : public GrCCPRCubicProcessor {
public:
- GrCCPRCubicBorderProcessor(Type type)
- : INHERITED(type)
- , fEdgeDistanceEquation("edge_distance_equation", kVec3f_GrSLType,
- GrShaderVar::kNonArray, kHigh_GrSLPrecision)
+ GrCCPRCubicCornerProcessor(CubicType cubicType)
+ : INHERITED(cubicType)
, fEdgeDistanceDerivatives("edge_distance_derivatives", kVec2f_GrSLType,
GrShaderVar::kNonArray, kHigh_GrSLPrecision)
- , fEdgeSpaceTransform("edge_space_transform", kVec4f_GrSLType, GrShaderVar::kNonArray,
- kHigh_GrSLPrecision)
- , fKLMD(kVec4f_GrSLType)
, fdKLMDdx(kVec4f_GrSLType)
- , fdKLMDdy(kVec4f_GrSLType)
- , fEdgeSpaceCoord(kVec2f_GrSLType) {}
+ , fdKLMDdy(kVec4f_GrSLType) {}
void resetVaryings(GrGLSLVaryingHandler* varyingHandler) override {
this->INHERITED::resetVaryings(varyingHandler);
- varyingHandler->addVarying("klmd", &fKLMD, kHigh_GrSLPrecision);
varyingHandler->addFlatVarying("dklmddx", &fdKLMDdx, kHigh_GrSLPrecision);
varyingHandler->addFlatVarying("dklmddy", &fdKLMDdy, kHigh_GrSLPrecision);
- varyingHandler->addVarying("edge_space_coord", &fEdgeSpaceCoord, kHigh_GrSLPrecision);
}
void emitCubicGeometry(GrGLSLGeometryBuilder*, const char* emitVertexFn,
const char* wind, const char* rtAdjust) const override;
- void emitPerVertexGeometryCode(SkString* fnBody, const char* position, const char* coverage,
- const char* wind) const override;
+ void onEmitPerVertexGeometryCode(SkString* fnBody) const override;
void emitShaderCoverage(GrGLSLFragmentBuilder*, const char* outputCoverage) const override;
protected:
- GrShaderVar fEdgeDistanceEquation;
GrShaderVar fEdgeDistanceDerivatives;
- GrShaderVar fEdgeSpaceTransform;
- GrGLSLGeoToFrag fKLMD;
GrGLSLGeoToFrag fdKLMDdx;
GrGLSLGeoToFrag fdKLMDdy;
- GrGLSLGeoToFrag fEdgeSpaceCoord;
typedef GrCCPRCubicProcessor INHERITED;
};
diff --git a/src/gpu/ccpr/GrCCPRGeometry.cpp b/src/gpu/ccpr/GrCCPRGeometry.cpp
index a2c08908bf..4ba4f54c63 100644
--- a/src/gpu/ccpr/GrCCPRGeometry.cpp
+++ b/src/gpu/ccpr/GrCCPRGeometry.cpp
@@ -8,9 +8,7 @@
#include "GrCCPRGeometry.h"
#include "GrTypes.h"
-#include "SkGeometry.h"
-#include "SkPoint.h"
-#include "../pathops/SkPathOpsCubic.h"
+#include "GrPathUtils.h"
#include <algorithm>
#include <cmath>
#include <cstdlib>
@@ -126,84 +124,403 @@ inline void GrCCPRGeometry::appendMonotonicQuadratic(const Sk2f& p1, const Sk2f&
++fCurrContourTallies.fQuadratics;
}
-void GrCCPRGeometry::cubicTo(const SkPoint& devP1, const SkPoint& devP2, const SkPoint& devP3) {
+using ExcludedTerm = GrPathUtils::ExcludedTerm;
+
+// Calculates the padding to apply around inflection points, in homogeneous parametric coordinates.
+//
+// More specifically, if the inflection point lies at C(t/s), then C((t +/- returnValue) / s) will
+// be the two points on the curve at which a square box with radius "padRadius" will have a corner
+// that touches the inflection point's tangent line.
+//
+// A serpentine cubic has two inflection points, so this method takes Sk2f and computes the padding
+// for both in SIMD.
+static inline Sk2f calc_inflect_homogeneous_padding(float padRadius, const Sk2f& t, const Sk2f& s,
+ const SkMatrix& CIT, ExcludedTerm skipTerm) {
+ SkASSERT(padRadius >= 0);
+
+ Sk2f Clx = s*s*s;
+ Sk2f Cly = (ExcludedTerm::kLinearTerm == skipTerm) ? s*s*t*-3 : s*t*t*3;
+
+ Sk2f Lx = CIT[0] * Clx + CIT[3] * Cly;
+ Sk2f Ly = CIT[1] * Clx + CIT[4] * Cly;
+
+ float ret[2];
+ Sk2f bloat = padRadius * (Lx.abs() + Ly.abs());
+ (bloat * s >= 0).thenElse(bloat, -bloat).store(ret);
+
+ ret[0] = cbrtf(ret[0]);
+ ret[1] = cbrtf(ret[1]);
+ return Sk2f::Load(ret);
+}
+
+static inline void swap_if_greater(float& a, float& b) {
+ if (a > b) {
+ std::swap(a, b);
+ }
+}
+
+// Calculates all parameter values for a loop at which points a square box with radius "padRadius"
+// will have a corner that touches a tangent line from the intersection.
+//
+// T2 must contain the lesser parameter value of the loop intersection in its first component, and
+// the greater in its second.
+//
+// roots[0] will be filled with 1 or 3 sorted parameter values, representing the padding points
+// around the first tangent. roots[1] will be filled with the padding points for the second tangent.
+static inline void calc_loop_intersect_padding_pts(float padRadius, const Sk2f& T2,
+ const SkMatrix& CIT, ExcludedTerm skipTerm,
+ SkSTArray<3, float, true> roots[2]) {
+ SkASSERT(padRadius >= 0);
+ SkASSERT(T2[0] <= T2[1]);
+ SkASSERT(roots[0].empty());
+ SkASSERT(roots[1].empty());
+
+ Sk2f T1 = SkNx_shuffle<1,0>(T2);
+ Sk2f Cl = (ExcludedTerm::kLinearTerm == skipTerm) ? T2*-2 - T1 : T2*T2 + T2*T1*2;
+ Sk2f Lx = Cl * CIT[3] + CIT[0];
+ Sk2f Ly = Cl * CIT[4] + CIT[1];
+
+ Sk2f bloat = Sk2f(+.5f * padRadius, -.5f * padRadius) * (Lx.abs() + Ly.abs());
+ Sk2f q = (1.f/3) * (T2 - T1);
+
+ Sk2f qqq = q*q*q;
+ Sk2f discr = qqq*bloat*2 + bloat*bloat;
+
+ float numRoots[2], D[2];
+ (discr < 0).thenElse(3, 1).store(numRoots);
+ (T2 - q).store(D);
+
+ // Values for calculating one root.
+ float R[2], QQ[2];
+ if ((discr >= 0).anyTrue()) {
+ Sk2f r = qqq + bloat;
+ Sk2f s = r.abs() + discr.sqrt();
+ (r > 0).thenElse(-s, s).store(R);
+ (q*q).store(QQ);
+ }
+
+ // Values for calculating three roots.
+ float P[2], cosTheta3[2];
+ if ((discr < 0).anyTrue()) {
+ (q.abs() * -2).store(P);
+ ((q >= 0).thenElse(1, -1) + bloat / qqq.abs()).store(cosTheta3);
+ }
+
+ for (int i = 0; i < 2; ++i) {
+ if (1 == numRoots[i]) {
+ float A = cbrtf(R[i]);
+ float B = A != 0 ? QQ[i]/A : 0;
+ roots[i].push_back(A + B + D[i]);
+ continue;
+ }
+
+ static constexpr float k2PiOver3 = 2 * SK_ScalarPI / 3;
+ float theta = std::acos(cosTheta3[i]) * (1.f/3);
+ roots[i].push_back(P[i] * std::cos(theta) + D[i]);
+ roots[i].push_back(P[i] * std::cos(theta + k2PiOver3) + D[i]);
+ roots[i].push_back(P[i] * std::cos(theta - k2PiOver3) + D[i]);
+
+ // Sort the three roots.
+ swap_if_greater(roots[i][0], roots[i][1]);
+ swap_if_greater(roots[i][1], roots[i][2]);
+ swap_if_greater(roots[i][0], roots[i][1]);
+ }
+}
+
+void GrCCPRGeometry::cubicTo(const SkPoint& devP1, const SkPoint& devP2, const SkPoint& devP3,
+ float inflectPad, float loopIntersectPad) {
SkASSERT(fBuildingContour);
- SkPoint P[4] = {fCurrFanPoint, devP1, devP2, devP3};
- double t[2], s[2];
- SkCubicType type = SkClassifyCubic(P, t, s);
+ SkPoint devPts[4] = {fCurrFanPoint, devP1, devP2, devP3};
+ Sk2f p0 = Sk2f::Load(&fCurrFanPoint);
+ Sk2f p1 = Sk2f::Load(&devP1);
+ Sk2f p2 = Sk2f::Load(&devP2);
+ Sk2f p3 = Sk2f::Load(&devP3);
+ fCurrFanPoint = devP3;
- if (SkCubicType::kLineOrPoint == type) {
- this->lineTo(P[3]);
+ double tt[2], ss[2];
+ fCurrCubicType = SkClassifyCubic(devPts, tt, ss);
+ if (SkCubicIsDegenerate(fCurrCubicType)) {
+ // Allow one subdivision in case the curve is quadratic, but not monotonic.
+ this->appendCubicApproximation(p0, p1, p2, p3, /*maxSubdivisions=*/1);
return;
}
- if (SkCubicType::kQuadratic == type) {
- SkPoint quadP1 = (devP1 + devP2) * .75f - (fCurrFanPoint + devP3) * .25f;
- this->quadraticTo(quadP1, devP3);
+ SkMatrix CIT;
+ ExcludedTerm skipTerm = GrPathUtils::calcCubicInverseTransposePowerBasisMatrix(devPts, &CIT);
+ if (ExcludedTerm::kNonInvertible == skipTerm) {
+ // This could technically also happen if the curve were a quadratic, but SkClassifyCubic
+ // should have detected that case already with tolerance.
+ fCurrCubicType = SkCubicType::kLineOrPoint;
+ this->appendCubicApproximation(p0, p1, p2, p3, /*maxSubdivisions=*/0);
return;
}
+ SkASSERT(0 == CIT[6]);
+ SkASSERT(0 == CIT[7]);
+ SkASSERT(1 == CIT[8]);
- fCurrFanPoint = devP3;
+ // Each cubic has five different sections (not always inside t=[0..1]):
+ //
+ // 1. The section before the first inflection or loop intersection point, with padding.
+ // 2. The section that passes through the first inflection/intersection (aka the K,L
+ // intersection point or T=tt[0]/ss[0]).
+ // 3. The section between the two inflections/intersections, with padding.
+ // 4. The section that passes through the second inflection/intersection (aka the K,M
+ // intersection point or T=tt[1]/ss[1]).
+ // 5. The section after the second inflection/intersection, with padding.
+ //
+ // Sections 1,3,5 can be rendered directly using the CCPR cubic shader.
+ //
+ // Sections 2 & 4 must be approximated. For loop intersections we render them with
+ // quadratic(s), and when passing through an inflection point we use a plain old flat line.
+ //
+ // We find T0..T3 below to be the dividing points between these five sections.
+ float T0, T1, T2, T3;
+ if (SkCubicType::kLoop != fCurrCubicType) {
+ Sk2f t = Sk2f(static_cast<float>(tt[0]), static_cast<float>(tt[1]));
+ Sk2f s = Sk2f(static_cast<float>(ss[0]), static_cast<float>(ss[1]));
+ Sk2f pad = calc_inflect_homogeneous_padding(inflectPad, t, s, CIT, skipTerm);
+
+ float T[2];
+ ((t - pad) / s).store(T);
+ T0 = T[0];
+ T2 = T[1];
+
+ ((t + pad) / s).store(T);
+ T1 = T[0];
+ T3 = T[1];
+ } else {
+ const float T[2] = {static_cast<float>(tt[0]/ss[0]), static_cast<float>(tt[1]/ss[1])};
+ SkSTArray<3, float, true> roots[2];
+ calc_loop_intersect_padding_pts(loopIntersectPad, Sk2f::Load(T), CIT, skipTerm, roots);
+ T0 = roots[0].front();
+ if (1 == roots[0].count() || 1 == roots[1].count()) {
+ // The loop is tighter than our desired padding. Collapse the middle section to a point
+ // somewhere in the middle-ish of the loop and Sections 2 & 4 will approximate the the
+ // whole thing with quadratics.
+ T1 = T2 = (T[0] + T[1]) * .5f;
+ } else {
+ T1 = roots[0][1];
+ T2 = roots[1][1];
+ }
+ T3 = roots[1].back();
+ }
- SkDCubic C;
- C.set(P);
+ // Guarantee that T0..T3 are monotonic.
+ if (T0 > T3) {
+ // This is not a mathematically valid scenario. The only reason it would happen is if
+ // padding is very small and we have encountered FP rounding error.
+ T0 = T1 = T2 = T3 = (T0 + T3) / 2;
+ } else if (T1 > T2) {
+ // This just means padding before the middle section overlaps the padding after it. We
+ // collapse the middle section to a single point that splits the difference between the
+ // overlap in padding.
+ T1 = T2 = (T1 + T2) / 2;
+ }
+ // Clamp T1 & T2 inside T0..T3. The only reason this would be necessary is if we have
+ // encountered FP rounding error.
+ T1 = std::max(T0, std::min(T1, T3));
+ T2 = std::max(T0, std::min(T2, T3));
+
+ // Next we chop the cubic up at all T0..T3 inside 0..1 and store the resulting segments.
+ if (T1 >= 1) {
+ // Only sections 1 & 2 can be in 0..1.
+ this->chopCubic<&GrCCPRGeometry::appendMonotonicCubics,
+ &GrCCPRGeometry::appendCubicApproximation>(p0, p1, p2, p3, T0);
+ return;
+ }
- for (int x = 0; x <= 1; ++x) {
- if (t[x] * s[x] <= 0) { // This is equivalent to tx/sx <= 0.
- // This technically also gets taken if tx/sx = infinity, but the code still does
- // the right thing in that edge case.
- continue; // Don't increment x0.
- }
- if (fabs(t[x]) >= fabs(s[x])) { // tx/sx >= 1.
- break;
- }
+ if (T2 <= 0) {
+ // Only sections 4 & 5 can be in 0..1.
+ this->chopCubic<&GrCCPRGeometry::appendCubicApproximation,
+ &GrCCPRGeometry::appendMonotonicCubics>(p0, p1, p2, p3, T3);
+ return;
+ }
- const double chopT = double(t[x]) / double(s[x]);
- SkASSERT(chopT >= 0 && chopT <= 1);
- if (chopT <= 0 || chopT >= 1) { // floating-point error.
- continue;
+ Sk2f midp0, midp1; // These hold the first two bezier points of the middle section, if needed.
+
+ if (T1 > 0) {
+ Sk2f T1T1 = Sk2f(T1);
+ Sk2f ab1 = lerp(p0, p1, T1T1);
+ Sk2f bc1 = lerp(p1, p2, T1T1);
+ Sk2f cd1 = lerp(p2, p3, T1T1);
+ Sk2f abc1 = lerp(ab1, bc1, T1T1);
+ Sk2f bcd1 = lerp(bc1, cd1, T1T1);
+ Sk2f abcd1 = lerp(abc1, bcd1, T1T1);
+
+ // Sections 1 & 2.
+ this->chopCubic<&GrCCPRGeometry::appendMonotonicCubics,
+ &GrCCPRGeometry::appendCubicApproximation>(p0, ab1, abc1, abcd1, T0/T1);
+
+ if (T2 >= 1) {
+ // The rest of the curve is Section 3 (middle section).
+ this->appendMonotonicCubics(abcd1, bcd1, cd1, p3);
+ return;
}
- SkDCubicPair chopped = C.chopAt(chopT);
+ // Now calculate the first two bezier points of the middle section. The final two will come
+ // from when we chop the other side, as that is numerically more stable.
+ midp0 = abcd1;
+ midp1 = lerp(abcd1, bcd1, Sk2f((T2 - T1) / (1 - T1)));
+ } else if (T2 >= 1) {
+ // The entire cubic is Section 3 (middle section).
+ this->appendMonotonicCubics(p0, p1, p2, p3);
+ return;
+ }
- // Ensure the double points are identical if this is a loop (more workarounds for FP error).
- if (SkCubicType::kLoop == type && 0 == t[0]) {
- chopped.pts[3] = chopped.pts[0];
- }
+ SkASSERT(T2 > 0 && T2 < 1);
+
+ Sk2f T2T2 = Sk2f(T2);
+ Sk2f ab2 = lerp(p0, p1, T2T2);
+ Sk2f bc2 = lerp(p1, p2, T2T2);
+ Sk2f cd2 = lerp(p2, p3, T2T2);
+ Sk2f abc2 = lerp(ab2, bc2, T2T2);
+ Sk2f bcd2 = lerp(bc2, cd2, T2T2);
+ Sk2f abcd2 = lerp(abc2, bcd2, T2T2);
+
+ if (T1 <= 0) {
+ // The curve begins at Section 3 (middle section).
+ this->appendMonotonicCubics(p0, ab2, abc2, abcd2);
+ } else if (T2 > T1) {
+ // Section 3 (middle section).
+ Sk2f midp2 = lerp(abc2, abcd2, T1/T2);
+ this->appendMonotonicCubics(midp0, midp1, midp2, abcd2);
+ }
+
+ // Sections 4 & 5.
+ this->chopCubic<&GrCCPRGeometry::appendCubicApproximation,
+ &GrCCPRGeometry::appendMonotonicCubics>(abcd2, bcd2, cd2, p3, (T3-T2) / (1-T2));
+}
- // (This might put ts0/ts1 out of order, but it doesn't matter anymore at this point.)
- this->appendConvexCubic(type, chopped.first());
- t[x] = 0;
- s[x] = 1;
+static inline Sk2f first_unless_nearly_zero(const Sk2f& a, const Sk2f& b) {
+ Sk2f aa = a*a;
+ aa += SkNx_shuffle<1,0>(aa);
+ SkASSERT(aa[0] == aa[1]);
- const double r = s[1 - x] * chopT;
- t[1 - x] -= r;
- s[1 - x] -= r;
+ Sk2f bb = b*b;
+ bb += SkNx_shuffle<1,0>(bb);
+ SkASSERT(bb[0] == bb[1]);
+
+ return (aa > bb * SK_ScalarNearlyZero).thenElse(a, b);
+}
- C = chopped.second();
+template<GrCCPRGeometry::AppendCubicFn AppendLeftRight>
+inline void GrCCPRGeometry::chopCubicAtMidTangent(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
+ const Sk2f& p3, const Sk2f& tan0,
+ const Sk2f& tan3, int maxFutureSubdivisions) {
+ // Find the T value whose tangent is perpendicular to the vector that bisects tan0 and -tan3.
+ Sk2f n = normalize(tan0) - normalize(tan3);
+
+ float a = 3 * dot(p3 + (p1 - p2)*3 - p0, n);
+ float b = 6 * dot(p0 - p1*2 + p2, n);
+ float c = 3 * dot(p1 - p0, n);
+
+ float discr = b*b - 4*a*c;
+ if (discr < 0) {
+ // If this is the case then the cubic must be nearly flat.
+ (this->*AppendLeftRight)(p0, p1, p2, p3, maxFutureSubdivisions);
+ return;
}
- this->appendConvexCubic(type, C);
+ float q = -.5f * (b + copysignf(std::sqrt(discr), b));
+ float m = .5f*q*a;
+ float T = std::abs(q*q - m) < std::abs(a*c - m) ? q/a : c/q;
+
+ this->chopCubic<AppendLeftRight, AppendLeftRight>(p0, p1, p2, p3, T, maxFutureSubdivisions);
}
-static SkPoint to_skpoint(const SkDPoint& dpoint) {
- return {static_cast<SkScalar>(dpoint.fX), static_cast<SkScalar>(dpoint.fY)};
+template<GrCCPRGeometry::AppendCubicFn AppendLeft, GrCCPRGeometry::AppendCubicFn AppendRight>
+inline void GrCCPRGeometry::chopCubic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
+ const Sk2f& p3, float T, int maxFutureSubdivisions) {
+ if (T >= 1) {
+ (this->*AppendLeft)(p0, p1, p2, p3, maxFutureSubdivisions);
+ return;
+ }
+
+ if (T <= 0) {
+ (this->*AppendRight)(p0, p1, p2, p3, maxFutureSubdivisions);
+ return;
+ }
+
+ Sk2f TT = T;
+ Sk2f ab = lerp(p0, p1, TT);
+ Sk2f bc = lerp(p1, p2, TT);
+ Sk2f cd = lerp(p2, p3, TT);
+ Sk2f abc = lerp(ab, bc, TT);
+ Sk2f bcd = lerp(bc, cd, TT);
+ Sk2f abcd = lerp(abc, bcd, TT);
+ (this->*AppendLeft)(p0, ab, abc, abcd, maxFutureSubdivisions);
+ (this->*AppendRight)(abcd, bcd, cd, p3, maxFutureSubdivisions);
}
-inline void GrCCPRGeometry::appendConvexCubic(SkCubicType type, const SkDCubic& C) {
- fPoints.push_back(to_skpoint(C[1]));
- fPoints.push_back(to_skpoint(C[2]));
- fPoints.push_back(to_skpoint(C[3]));
- if (SkCubicType::kLoop != type) {
- fVerbs.push_back(Verb::kConvexSerpentineTo);
+void GrCCPRGeometry::appendMonotonicCubics(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
+ const Sk2f& p3, int maxSubdivisions) {
+ if ((p0 == p3).allTrue()) {
+ return;
+ }
+
+ if (maxSubdivisions) {
+ Sk2f tan0 = first_unless_nearly_zero(p1 - p0, p2 - p0);
+ Sk2f tan3 = first_unless_nearly_zero(p3 - p2, p3 - p1);
+
+ if (!is_convex_curve_monotonic(p0, tan0, p3, tan3)) {
+ this->chopCubicAtMidTangent<&GrCCPRGeometry::appendMonotonicCubics>(p0, p1, p2, p3,
+ tan0, tan3,
+ maxSubdivisions-1);
+ return;
+ }
+ }
+
+ SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1]));
+ p1.store(&fPoints.push_back());
+ p2.store(&fPoints.push_back());
+ p3.store(&fPoints.push_back());
+ if (SkCubicType::kLoop != fCurrCubicType) {
+ fVerbs.push_back(Verb::kMonotonicSerpentineTo);
++fCurrContourTallies.fSerpentines;
} else {
- fVerbs.push_back(Verb::kConvexLoopTo);
+ fVerbs.push_back(Verb::kMonotonicLoopTo);
++fCurrContourTallies.fLoops;
}
}
+void GrCCPRGeometry::appendCubicApproximation(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
+ const Sk2f& p3, int maxSubdivisions) {
+ if ((p0 == p3).allTrue()) {
+ return;
+ }
+
+ if (SkCubicType::kLoop != fCurrCubicType && SkCubicType::kQuadratic != fCurrCubicType) {
+ // This section passes through an inflection point, so we can get away with a flat line.
+ // This can cause some curves to feel slightly more flat when inspected rigorously back and
+ // forth against another renderer, but for now this seems acceptable given the simplicity.
+ SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1]));
+ p3.store(&fPoints.push_back());
+ fVerbs.push_back(Verb::kLineTo);
+ return;
+ }
+
+ Sk2f tan0 = first_unless_nearly_zero(p1 - p0, p2 - p0);
+ Sk2f tan3 = first_unless_nearly_zero(p3 - p2, p3 - p1);
+
+ Sk2f c1 = SkNx_fma(Sk2f(1.5f), tan0, p0);
+ Sk2f c2 = SkNx_fma(Sk2f(-1.5f), tan3, p3);
+
+ if (maxSubdivisions) {
+ bool nearlyQuadratic = ((c1 - c2).abs() <= 1).allTrue();
+
+ if (!nearlyQuadratic || !is_convex_curve_monotonic(p0, tan0, p3, tan3)) {
+ this->chopCubicAtMidTangent<&GrCCPRGeometry::appendCubicApproximation>(p0, p1, p2, p3,
+ tan0, tan3,
+ maxSubdivisions-1);
+ return;
+ }
+ }
+
+ SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1]));
+ this->appendMonotonicQuadratic((c1 + c2) * .5f, p3);
+}
+
GrCCPRGeometry::PrimitiveTallies GrCCPRGeometry::endContour() {
SkASSERT(fBuildingContour);
SkASSERT(fVerbs.count() >= fCurrContourTallies.fTriangles);
diff --git a/src/gpu/ccpr/GrCCPRGeometry.h b/src/gpu/ccpr/GrCCPRGeometry.h
index 72b84d5a77..ee06f78a9a 100644
--- a/src/gpu/ccpr/GrCCPRGeometry.h
+++ b/src/gpu/ccpr/GrCCPRGeometry.h
@@ -8,13 +8,11 @@
#ifndef GrGrCCPRGeometry_DEFINED
#define GrGrCCPRGeometry_DEFINED
+#include "SkGeometry.h"
#include "SkNx.h"
#include "SkPoint.h"
#include "SkTArray.h"
-struct SkDCubic;
-enum class SkCubicType;
-
/**
* This class chops device-space contours up into a series of segments that CCPR knows how to
* render. (See GrCCPRGeometry::Verb.)
@@ -32,8 +30,8 @@ public:
kBeginContour,
kLineTo,
kMonotonicQuadraticTo, // Monotonic relative to the vector between its endpoints [P2 - P0].
- kConvexSerpentineTo,
- kConvexLoopTo,
+ kMonotonicSerpentineTo,
+ kMonotonicLoopTo,
kEndClosedContour, // endPt == startPt.
kEndOpenContour // endPt != startPt.
};
@@ -77,17 +75,50 @@ public:
void beginContour(const SkPoint& devPt);
void lineTo(const SkPoint& devPt);
void quadraticTo(const SkPoint& devP1, const SkPoint& devP2);
- void cubicTo(const SkPoint& devP1, const SkPoint& devP2, const SkPoint& devP3);
+
+ // We pass through inflection points and loop intersections using a line and quadratic(s)
+ // respectively. 'inflectPad' and 'loopIntersectPad' specify how close (in pixels) cubic
+ // segments are allowed to get to these points. For normal rendering you will want to use the
+ // default values, but these can be overridden for testing purposes.
+ //
+ // NOTE: loops do appear to require two full pixels of padding around the intersection point.
+ // With just one pixel-width of pad, we start to see bad pixels. Ultimately this has a
+ // minimal effect on the total amount of segments produced. Most sections that pass
+ // through the loop intersection can be approximated with a single quadratic anyway,
+ // regardless of whether we are use one pixel of pad or two (1.622 avg. quads per loop
+ // intersection vs. 1.489 on the tiger).
+ void cubicTo(const SkPoint& devP1, const SkPoint& devP2, const SkPoint& devP3,
+ float inflectPad = 0.55f, float loopIntersectPad = 2);
+
PrimitiveTallies endContour(); // Returns the numbers of primitives needed to draw the contour.
private:
inline void appendMonotonicQuadratic(const Sk2f& p1, const Sk2f& p2);
- inline void appendConvexCubic(SkCubicType, const SkDCubic&);
+
+ using AppendCubicFn = void(GrCCPRGeometry::*)(const Sk2f& p0, const Sk2f& p1,
+ const Sk2f& p2, const Sk2f& p3,
+ int maxSubdivisions);
+ static constexpr int kMaxSubdivionsPerCubicSection = 2;
+
+ template<AppendCubicFn AppendLeftRight>
+ inline void chopCubicAtMidTangent(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
+ const Sk2f& p3, const Sk2f& tan0, const Sk2f& tan3,
+ int maxFutureSubdivisions = kMaxSubdivionsPerCubicSection);
+
+ template<AppendCubicFn AppendLeft, AppendCubicFn AppendRight>
+ inline void chopCubic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, const Sk2f& p3,
+ float T, int maxFutureSubdivisions = kMaxSubdivionsPerCubicSection);
+
+ void appendMonotonicCubics(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, const Sk2f& p3,
+ int maxSubdivisions = kMaxSubdivionsPerCubicSection);
+ void appendCubicApproximation(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, const Sk2f& p3,
+ int maxSubdivisions = kMaxSubdivionsPerCubicSection);
// Transient state used while building a contour.
SkPoint fCurrAnchorPoint;
SkPoint fCurrFanPoint;
PrimitiveTallies fCurrContourTallies;
+ SkCubicType fCurrCubicType;
SkDEBUGCODE(bool fBuildingContour = false);
// TODO: These points could eventually be written directly to block-allocated GPU buffers.