aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/gpu/ccpr/GrCCPRCubicProcessor.cpp
blob: ad0729bca121449e089683bc5ecae5d941100ea9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
/*
 * Copyright 2017 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "GrCCPRCubicProcessor.h"

#include "glsl/GrGLSLFragmentShaderBuilder.h"
#include "glsl/GrGLSLGeometryShaderBuilder.h"
#include "glsl/GrGLSLVertexShaderBuilder.h"

void GrCCPRCubicProcessor::onEmitVertexShader(const GrCCPRCoverageProcessor& proc,
                                              GrGLSLVertexBuilder* v,
                                              const TexelBufferHandle& pointsBuffer,
                                              const char* atlasOffset, const char* rtAdjust,
                                              GrGPArgs* gpArgs) const {
    float inset = 1 - kAABloatRadius;
#ifdef SK_DEBUG
    if (proc.debugVisualizations()) {
        inset *= GrCCPRCoverageProcessor::kDebugBloat;
    }
#endif

    // Fetch all 4 cubic bezier points.
    v->codeAppendf("int4 indices = int4(%s.x, %s.x + 1, %s.x + 2, %s.x + 3);",
                   proc.instanceAttrib(), proc.instanceAttrib(), proc.instanceAttrib(),
                   proc.instanceAttrib());
    v->codeAppend ("highp float4x2 bezierpts = float4x2(");
    v->appendTexelFetch(pointsBuffer, "indices[sk_VertexID]");
    v->codeAppend (".xy, ");
    v->appendTexelFetch(pointsBuffer, "indices[(sk_VertexID + 1) % 4]");
    v->codeAppend (".xy, ");
    v->appendTexelFetch(pointsBuffer, "indices[(sk_VertexID + 2) % 4]");
    v->codeAppend (".xy, ");
    v->appendTexelFetch(pointsBuffer, "indices[(sk_VertexID + 3) % 4]");
    v->codeAppend (".xy);");

    // Find the corner of the inset geometry that corresponds to this bezier vertex (bezierpts[0]).
    v->codeAppend ("highp float2x2 N = float2x2(bezierpts[3].y - bezierpts[0].y, "
                                               "bezierpts[0].x - bezierpts[3].x, "
                                               "bezierpts[1].y - bezierpts[0].y, "
                                               "bezierpts[0].x - bezierpts[1].x);");
    v->codeAppend ("highp float2x2 P = float2x2(bezierpts[3], bezierpts[1]);");
    v->codeAppend ("if (abs(determinant(N)) < 2) {"); // Area of [pts[3], pts[0], pts[1]] < 1px.
                       // The inset corner doesn't exist because we are effectively colinear with
                       // both neighbor vertices. Just duplicate a neighbor's inset corner.
    v->codeAppend (    "int smallidx = (dot(N[0], N[0]) > dot(N[1], N[1])) ? 1 : 0;");
    v->codeAppend (    "N[smallidx] = float2(bezierpts[2].y - bezierpts[3 - smallidx * 2].y, "
                                            "bezierpts[3 - smallidx * 2].x - bezierpts[2].x);");
    v->codeAppend (    "P[smallidx] = bezierpts[2];");
    v->codeAppend ("}");
    v->codeAppend ("N[0] *= sign(dot(N[0], P[1] - P[0]));");
    v->codeAppend ("N[1] *= sign(dot(N[1], P[0] - P[1]));");

    v->codeAppendf("highp float2 K = float2(dot(N[0], P[0] + %f * sign(N[0])), "
                                           "dot(N[1], P[1] + %f * sign(N[1])));", inset, inset);
    v->codeAppendf("%s.xy = K * inverse(N) + %s;", fInset.vsOut(), atlasOffset);
    v->codeAppendf("%s.xy = %s.xy * %s.xz + %s.yw;",
                   fInset.vsOut(), fInset.vsOut(), rtAdjust, rtAdjust);

    // The z component tells the gemetry shader how "sharp" this corner is.
    v->codeAppendf("%s.z = determinant(N) * sign(%s.x) * sign(%s.z);",
                   fInset.vsOut(), rtAdjust, rtAdjust);

    // Emit the vertex position.
    v->codeAppendf("highp float2 self = bezierpts[0] + %s;", atlasOffset);
    gpArgs->fPositionVar.set(kVec2f_GrSLType, "self");
}

void GrCCPRCubicProcessor::emitWind(GrGLSLGeometryBuilder* g, const char* rtAdjust,
                                    const char* outputWind) const {
    // We will define bezierpts in onEmitGeometryShader.
    g->codeAppend ("highp float area_times_2 = "
                                          "determinant(float3x3(1, bezierpts[0], "
                                                               "1, bezierpts[2], "
                                                               "0, bezierpts[3] - bezierpts[1]));");
    // Drop curves that are nearly flat. The KLM  math becomes unstable in this case.
    g->codeAppendf("if (2 * abs(area_times_2) < length((bezierpts[3] - bezierpts[0]) * %s.zx)) {",
                   rtAdjust);
#ifndef SK_BUILD_FOR_MAC
    g->codeAppend (    "return;");
#else
    // Returning from this geometry shader makes Mac very unhappy. Instead we make wind 0.
    g->codeAppend (    "area_times_2 = 0;");
#endif
    g->codeAppend ("}");
    g->codeAppendf("%s = sign(area_times_2);", outputWind);
}

void GrCCPRCubicProcessor::onEmitGeometryShader(GrGLSLGeometryBuilder* g, const char* emitVertexFn,
                                                const char* wind, const char* rtAdjust) const {
    // Prepend bezierpts at the start of the shader.
    g->codePrependf("highp float4x2 bezierpts = float4x2(sk_in[0].gl_Position.xy, "
                                                    "sk_in[1].gl_Position.xy, "
                                                    "sk_in[2].gl_Position.xy, "
                                                    "sk_in[3].gl_Position.xy);");

    // Evaluate the cubic at t=.5 for an approximate midpoint.
    g->codeAppendf("highp float2 midpoint = bezierpts * float4(.125, .375, .375, .125);");

    // Finish finding the inset geometry we started in the vertex shader. The z component tells us
    // how "sharp" an inset corner is. And the vertex shader already skips one corner if it is
    // colinear with its neighbors. So at this point, if a corner is flat, it means the inset
    // geometry is all empty (it should never be non-convex because the curve gets chopped into
    // convex segments ahead of time).
    g->codeAppendf("bool isempty = "
                       "any(lessThan(float4(%s[0].z, %s[1].z, %s[2].z, %s[3].z) * %s, float4(2)));",
                   fInset.gsIn(), fInset.gsIn(), fInset.gsIn(), fInset.gsIn(), wind);
    g->codeAppendf("highp float2 inset[4];");
    g->codeAppend ("for (int i = 0; i < 4; ++i) {");
    g->codeAppendf(    "inset[i] = isempty ? midpoint : %s[i].xy;", fInset.gsIn());
    g->codeAppend ("}");

    // We determine crossover and/or degeneracy by how many inset edges run the opposite direction
    // of their corresponding bezier edge. If there is one backwards edge, the inset geometry is
    // actually triangle with a vertex at the crossover point. If there are >1 backwards edges, the
    // inset geometry doesn't exist (i.e. the bezier quadrilateral isn't large enough) and we
    // degenerate to the midpoint.
    g->codeAppend ("lowp float backwards[4];");
    g->codeAppend ("lowp int numbackwards = 0;");
    g->codeAppend ("for (int i = 0; i < 4; ++i) {");
    g->codeAppend (    "lowp int j = (i + 1) % 4;");
    g->codeAppendf(    "highp float2 inner = inset[j] - inset[i];");
    g->codeAppendf(    "highp float2 outer = sk_in[j].gl_Position.xy - sk_in[i].gl_Position.xy;");
    g->codeAppendf(    "backwards[i] = sign(dot(outer, inner));");
    g->codeAppendf(    "numbackwards += backwards[i] < 0 ? 1 : 0;");
    g->codeAppend ("}");

    // Find the crossover point. If there actually isn't one, this math is meaningless and will get
    // dropped on the floor later.
    g->codeAppend ("lowp int x = (backwards[0] != backwards[2]) ? 1 : 0;");
    g->codeAppend ("lowp int x3 = (x + 3) % 4;");
    g->codeAppend ("highp float2x2 X = float2x2(inset[x].y - inset[x+1].y, "
                                               "inset[x+1].x - inset[x].x, "
                                               "inset[x+2].y - inset[x3].y, "
                                               "inset[x3].x - inset[x+2].x);");
    g->codeAppend ("highp float2 KK = float2(dot(X[0], inset[x]), dot(X[1], inset[x+2]));");
    g->codeAppend ("highp float2 crossoverpoint = KK * inverse(X);");

    // Determine what point backwards edges should collapse into. If there is one backwards edge,
    // it should collapse to the crossover point. If >1, they should all collapse to the midpoint.
    g->codeAppend ("highp float2 collapsepoint = numbackwards == 1 ? crossoverpoint : midpoint;");

    // Collapse backwards egdes to the "collapse" point.
    g->codeAppend ("for (int i = 0; i < 4; ++i) {");
    g->codeAppend (    "if (backwards[i] < 0) {");
    g->codeAppend (        "inset[i] = inset[(i + 1) % 4] = collapsepoint;");
    g->codeAppend (    "}");
    g->codeAppend ("}");

    // Find the cubic's power basis coefficients.
    g->codeAppend ("highp float2x4 C = float4x4(-1,  3, -3,  1, "
                                               " 3, -6,  3,  0, "
                                               "-3,  3,  0,  0, "
                                               " 1,  0,  0,  0) * transpose(bezierpts);");

    // Find the cubic's inflection function.
    g->codeAppend ("highp float D3 = +determinant(float2x2(C[0].yz, C[1].yz));");
    g->codeAppend ("highp float D2 = -determinant(float2x2(C[0].xz, C[1].xz));");
    g->codeAppend ("highp float D1 = +determinant(float2x2(C));");

    // Calculate the KLM matrix.
    g->declareGlobal(fKLMMatrix);
    g->codeAppend ("highp float4 K, L, M;");
    g->codeAppend ("highp float2 l, m;");
    g->codeAppend ("highp float discr = 3*D2*D2 - 4*D1*D3;");
    if (Type::kSerpentine == fType) {
        // This math also works out for the "cusp" and "cusp at infinity" cases.
        g->codeAppend ("highp float q = 3*D2 + sign(D2) * sqrt(max(3*discr, 0));");
        g->codeAppend ("l.ts = normalize(float2(q, 6*D1));");
        g->codeAppend ("m.ts = discr <= 0 ? l.ts : normalize(float2(2*D3, q));");
        g->codeAppend ("K = float4(0, l.s * m.s, -l.t * m.s - m.t * l.s, l.t * m.t);");
        g->codeAppend ("L = float4(-1,3,-3,1) * l.ssst * l.sstt * l.sttt;");
        g->codeAppend ("M = float4(-1,3,-3,1) * m.ssst * m.sstt * m.sttt;");
    } else {
        g->codeAppend ("highp float q = D2 + sign(D2) * sqrt(max(-discr, 0));");
        g->codeAppend ("l.ts = normalize(float2(q, 2*D1));");
        g->codeAppend ("m.ts = discr >= 0 ? l.ts : normalize(float2(2 * (D2*D2 - D3*D1), D1*q));");
        g->codeAppend ("highp float4 lxm = float4(l.s * m.s, l.s * m.t, l.t * m.s, l.t * m.t);");
        g->codeAppend ("K = float4(0, lxm.x, -lxm.y - lxm.z, lxm.w);");
        g->codeAppend ("L = float4(-1,1,-1,1) * l.sstt * (lxm.xyzw + float4(0, 2*lxm.zy, 0));");
        g->codeAppend ("M = float4(-1,1,-1,1) * m.sstt * (lxm.xzyw + float4(0, 2*lxm.yz, 0));");
    }
    g->codeAppend ("lowp int middlerow = abs(D2) > abs(D1) ? 2 : 1;");
    g->codeAppend ("highp float3x3 CI = inverse(float3x3(C[0][0], C[0][middlerow], C[0][3], "
                                                        "C[1][0], C[1][middlerow], C[1][3], "
                                                        "      0,               0,       1));");
    g->codeAppendf("%s = CI * float3x3(K[0], K[middlerow], K[3], "
                                      "L[0], L[middlerow], L[3], "
                                      "M[0], M[middlerow], M[3]);", fKLMMatrix.c_str());

    // Orient the KLM matrix so we fill the correct side of the curve.
    g->codeAppendf("lowp float2 orientation = sign(float3(midpoint, 1) * float2x3(%s[1], %s[2]));",
                   fKLMMatrix.c_str(), fKLMMatrix.c_str());
    g->codeAppendf("%s *= float3x3(orientation[0] * orientation[1], 0, 0, "
                                  "0, orientation[0], 0, "
                                  "0, 0, orientation[1]);", fKLMMatrix.c_str());

    g->declareGlobal(fKLMDerivatives);
    g->codeAppendf("%s[0] = %s[0].xy * %s.xz;",
                   fKLMDerivatives.c_str(), fKLMMatrix.c_str(), rtAdjust);
    g->codeAppendf("%s[1] = %s[1].xy * %s.xz;",
                   fKLMDerivatives.c_str(), fKLMMatrix.c_str(), rtAdjust);
    g->codeAppendf("%s[2] = %s[2].xy * %s.xz;",
                   fKLMDerivatives.c_str(), fKLMMatrix.c_str(), rtAdjust);

    this->emitCubicGeometry(g, emitVertexFn, wind, rtAdjust);
}

void GrCCPRCubicInsetProcessor::emitCubicGeometry(GrGLSLGeometryBuilder* g,
                                                  const char* emitVertexFn, const char* wind,
                                                  const char* rtAdjust) const {
    // FIXME: we should clip this geometry at the tip of the curve.
    g->codeAppendf("%s(inset[0], 1);", emitVertexFn);
    g->codeAppendf("%s(inset[1], 1);", emitVertexFn);
    g->codeAppendf("%s(inset[3], 1);", emitVertexFn);
    g->codeAppendf("%s(inset[2], 1);", emitVertexFn);
    g->codeAppend ("EndPrimitive();");

    g->configure(GrGLSLGeometryBuilder::InputType::kLinesAdjacency,
                 GrGLSLGeometryBuilder::OutputType::kTriangleStrip,
                 4, 1);
}

void GrCCPRCubicInsetProcessor::emitPerVertexGeometryCode(SkString* fnBody, const char* position,
                                                          const char* /*coverage*/,
                                                          const char* /*wind*/) const {
    fnBody->appendf("highp float3 klm = float3(%s, 1) * %s;", position, fKLMMatrix.c_str());
    fnBody->appendf("%s = klm;", fKLM.gsOut());
    fnBody->appendf("%s[0] = 3 * klm[0] * %s[0];", fGradMatrix.gsOut(), fKLMDerivatives.c_str());
    fnBody->appendf("%s[1] = -klm[1] * %s[2].xy - klm[2] * %s[1].xy;",
                    fGradMatrix.gsOut(), fKLMDerivatives.c_str(), fKLMDerivatives.c_str());
}

void GrCCPRCubicInsetProcessor::emitShaderCoverage(GrGLSLFragmentBuilder* f,
                                                   const char* outputCoverage) const {
    f->codeAppendf("highp float k = %s.x, l = %s.y, m = %s.z;",
                   fKLM.fsIn(), fKLM.fsIn(), fKLM.fsIn());
    f->codeAppend ("highp float f = k*k*k - l*m;");
    f->codeAppendf("highp float2 grad = %s * float2(k, 1);", fGradMatrix.fsIn());
    f->codeAppend ("highp float d = f * inversesqrt(dot(grad, grad));");
    f->codeAppendf("%s = clamp(0.5 - d, 0, 1);", outputCoverage);
}

void GrCCPRCubicBorderProcessor::emitCubicGeometry(GrGLSLGeometryBuilder* g,
                                                   const char* emitVertexFn, const char* wind,
                                                   const char* rtAdjust) const {
    // We defined bezierpts in onEmitGeometryShader.
    g->declareGlobal(fEdgeDistanceEquation);
    g->codeAppendf("int edgeidx0 = %s > 0 ? 3 : 0;", wind);
    g->codeAppendf("highp float2 edgept0 = bezierpts[edgeidx0];");
    g->codeAppendf("highp float2 edgept1 = bezierpts[3 - edgeidx0];");
    this->emitEdgeDistanceEquation(g, "edgept0", "edgept1", fEdgeDistanceEquation.c_str());
    g->codeAppendf("%s.z += 0.5;", fEdgeDistanceEquation.c_str()); // outer = -.5, inner = .5

    g->declareGlobal(fEdgeDistanceDerivatives);
    g->codeAppendf("%s = %s.xy * %s.xz;",
                   fEdgeDistanceDerivatives.c_str(), fEdgeDistanceEquation.c_str(), rtAdjust);

    g->declareGlobal(fEdgeSpaceTransform);
    g->codeAppend ("highp float4 edgebbox = float4(min(bezierpts[0], bezierpts[3]) - bloat, "
                                              "max(bezierpts[0], bezierpts[3]) + bloat);");
    g->codeAppendf("%s.xy = 2 / float2(edgebbox.zw - edgebbox.xy);", fEdgeSpaceTransform.c_str());
    g->codeAppendf("%s.zw = -1 - %s.xy * edgebbox.xy;",
                   fEdgeSpaceTransform.c_str(), fEdgeSpaceTransform.c_str());

    int maxVertices = this->emitHullGeometry(g, emitVertexFn, "bezierpts", 4, "sk_InvocationID",
                                             "inset");

    g->configure(GrGLSLGeometryBuilder::InputType::kLinesAdjacency,
                 GrGLSLGeometryBuilder::OutputType::kTriangleStrip,
                 maxVertices, 4);
}

void GrCCPRCubicBorderProcessor::emitPerVertexGeometryCode(SkString* fnBody, const char* position,
                                                           const char* /*coverage*/,
                                                           const char* /*wind*/) const {
    fnBody->appendf("highp float3 klm = float3(%s, 1) * %s;", position, fKLMMatrix.c_str());
    fnBody->appendf("highp float d = dot(float3(%s, 1), %s);",
                    position, fEdgeDistanceEquation.c_str());
    fnBody->appendf("%s = float4(klm, d);", fKLMD.gsOut());
    fnBody->appendf("%s = float4(%s[0].x, %s[1].x, %s[2].x, %s.x);",
                    fdKLMDdx.gsOut(), fKLMDerivatives.c_str(), fKLMDerivatives.c_str(),
                    fKLMDerivatives.c_str(), fEdgeDistanceDerivatives.c_str());
    fnBody->appendf("%s = float4(%s[0].y, %s[1].y, %s[2].y, %s.y);",
                    fdKLMDdy.gsOut(), fKLMDerivatives.c_str(), fKLMDerivatives.c_str(),
                    fKLMDerivatives.c_str(), fEdgeDistanceDerivatives.c_str());
    fnBody->appendf("%s = position * %s.xy + %s.zw;", fEdgeSpaceCoord.gsOut(),
                    fEdgeSpaceTransform.c_str(), fEdgeSpaceTransform.c_str());

    // Otherwise, fEdgeDistances = fEdgeDistances * sign(wind * rtAdjust.x * rdAdjust.z).
    GR_STATIC_ASSERT(kTopLeft_GrSurfaceOrigin == GrCCPRCoverageProcessor::kAtlasOrigin);
}

void GrCCPRCubicBorderProcessor::emitShaderCoverage(GrGLSLFragmentBuilder* f,
                                                    const char* outputCoverage) const {
    // Use software msaa to determine coverage.
    const int sampleCount = this->defineSoftSampleLocations(f, "samples");

    // Along the shared edge, we start with distance-to-edge coverage, then subtract out the
    // remaining pixel coverage that is still inside the shared edge, but outside the curve.
    // Outside the shared edege, we just use standard msaa to count samples inside the curve.
    f->codeAppendf("bool use_edge = all(lessThan(abs(%s), float2(1)));", fEdgeSpaceCoord.fsIn());
    f->codeAppendf("%s = (use_edge ? clamp(%s.w + 0.5, 0, 1) : 0) * %i;",
                   outputCoverage, fKLMD.fsIn(), sampleCount);

    f->codeAppendf("highp float2x4 grad_klmd = float2x4(%s, %s);", fdKLMDdx.fsIn(),
                   fdKLMDdy.fsIn());

    f->codeAppendf("for (int i = 0; i < %i; ++i) {", sampleCount);
    f->codeAppendf(    "highp float4 klmd = grad_klmd * samples[i] + %s;", fKLMD.fsIn());
    f->codeAppend (    "lowp float f = klmd.y * klmd.z - klmd.x * klmd.x * klmd.x;");
    // A sample is inside our cubic sub-section if it is inside the implicit AND L & M are both
    // positive. This works because the sections get chopped at the K/L and K/M intersections.
    f->codeAppend (    "bool4 inside = greaterThan(float4(f,klmd.yzw), float4(0));");
    f->codeAppend (    "lowp float in_curve = all(inside.xyz) ? 1 : 0;");
    f->codeAppend (    "lowp float in_edge = inside.w ? 1 : 0;");
    f->codeAppendf(    "%s += use_edge ? in_edge * (in_curve - 1) : in_curve;", outputCoverage);
    f->codeAppend ("}");

    f->codeAppendf("%s *= %f;", outputCoverage, 1.0 / sampleCount);
}