summaryrefslogtreecommitdiff
path: root/theories/IntMap
diff options
context:
space:
mode:
Diffstat (limited to 'theories/IntMap')
-rw-r--r--theories/IntMap/.depend48
-rw-r--r--theories/IntMap/Adalloc.v365
-rw-r--r--theories/IntMap/Addec.v193
-rw-r--r--theories/IntMap/Addr.v491
-rw-r--r--theories/IntMap/Adist.v336
-rw-r--r--theories/IntMap/Allmaps.v26
-rw-r--r--theories/IntMap/Fset.v371
-rw-r--r--theories/IntMap/Lsort.v628
-rw-r--r--theories/IntMap/Map.v865
-rw-r--r--theories/IntMap/Mapaxioms.v763
-rw-r--r--theories/IntMap/Mapc.v542
-rw-r--r--theories/IntMap/Mapcanon.v399
-rw-r--r--theories/IntMap/Mapcard.v764
-rw-r--r--theories/IntMap/Mapfold.v424
-rw-r--r--theories/IntMap/Mapiter.v620
-rw-r--r--theories/IntMap/Maplists.v437
-rw-r--r--theories/IntMap/Mapsubset.v606
-rw-r--r--theories/IntMap/intro.tex6
18 files changed, 7884 insertions, 0 deletions
diff --git a/theories/IntMap/.depend b/theories/IntMap/.depend
new file mode 100644
index 00000000..8c90ac99
--- /dev/null
+++ b/theories/IntMap/.depend
@@ -0,0 +1,48 @@
+Mapsubset.vo: Mapsubset.v Addr.vo Adist.vo Addec.vo Map.vo Fset.vo Mapaxioms.vo Mapiter.vo
+Mapsubset.vi: Mapsubset.v Addr.vo Adist.vo Addec.vo Map.vo Fset.vo Mapaxioms.vo Mapiter.vo
+Maplists.vo: Maplists.v Addr.vo Addec.vo Map.vo Fset.vo Mapaxioms.vo Mapsubset.vo Mapcard.vo Mapcanon.vo Mapc.vo Mapiter.vo Mapfold.vo
+Maplists.vi: Maplists.v Addr.vo Addec.vo Map.vo Fset.vo Mapaxioms.vo Mapsubset.vo Mapcard.vo Mapcanon.vo Mapc.vo Mapiter.vo Mapfold.vo
+Mapiter.vo: Mapiter.v Addr.vo Adist.vo Addec.vo Map.vo Mapaxioms.vo Fset.vo
+Mapiter.vi: Mapiter.v Addr.vo Adist.vo Addec.vo Map.vo Mapaxioms.vo Fset.vo
+Mapfold.vo: Mapfold.v Addr.vo Adist.vo Addec.vo Map.vo Fset.vo Mapaxioms.vo Mapiter.vo Lsort.vo Mapsubset.vo
+Mapfold.vi: Mapfold.v Addr.vo Adist.vo Addec.vo Map.vo Fset.vo Mapaxioms.vo Mapiter.vo Lsort.vo Mapsubset.vo
+Mapcard.vo: Mapcard.v Addr.vo Adist.vo Addec.vo Map.vo Mapaxioms.vo Mapiter.vo Fset.vo Mapsubset.vo Lsort.vo
+Mapcard.vi: Mapcard.v Addr.vo Adist.vo Addec.vo Map.vo Mapaxioms.vo Mapiter.vo Fset.vo Mapsubset.vo Lsort.vo
+Mapcanon.vo: Mapcanon.v Addr.vo Adist.vo Addec.vo Map.vo Mapaxioms.vo Mapiter.vo Fset.vo Lsort.vo Mapsubset.vo Mapcard.vo
+Mapcanon.vi: Mapcanon.v Addr.vo Adist.vo Addec.vo Map.vo Mapaxioms.vo Mapiter.vo Fset.vo Lsort.vo Mapsubset.vo Mapcard.vo
+Mapc.vo: Mapc.v Addr.vo Adist.vo Addec.vo Map.vo Mapaxioms.vo Fset.vo Mapiter.vo Mapsubset.vo Lsort.vo Mapcard.vo Mapcanon.vo
+Mapc.vi: Mapc.v Addr.vo Adist.vo Addec.vo Map.vo Mapaxioms.vo Fset.vo Mapiter.vo Mapsubset.vo Lsort.vo Mapcard.vo Mapcanon.vo
+Mapaxioms.vo: Mapaxioms.v Addr.vo Adist.vo Addec.vo Map.vo Fset.vo
+Mapaxioms.vi: Mapaxioms.v Addr.vo Adist.vo Addec.vo Map.vo Fset.vo
+Map.vo: Map.v Addr.vo Adist.vo Addec.vo
+Map.vi: Map.v Addr.vo Adist.vo Addec.vo
+Lsort.vo: Lsort.v Addr.vo Adist.vo Addec.vo Map.vo Mapiter.vo
+Lsort.vi: Lsort.v Addr.vo Adist.vo Addec.vo Map.vo Mapiter.vo
+Fset.vo: Fset.v Addr.vo Adist.vo Addec.vo Map.vo
+Fset.vi: Fset.v Addr.vo Adist.vo Addec.vo Map.vo
+Allmaps.vo: Allmaps.v Addr.vo Adist.vo Addec.vo Map.vo Fset.vo Mapaxioms.vo Mapiter.vo Mapsubset.vo Lsort.vo Mapfold.vo Mapcard.vo Mapcanon.vo Mapc.vo Maplists.vo Adalloc.vo
+Allmaps.vi: Allmaps.v Addr.vo Adist.vo Addec.vo Map.vo Fset.vo Mapaxioms.vo Mapiter.vo Mapsubset.vo Lsort.vo Mapfold.vo Mapcard.vo Mapcanon.vo Mapc.vo Maplists.vo Adalloc.vo
+Adist.vo: Adist.v Addr.vo
+Adist.vi: Adist.v Addr.vo
+Addr.vo: Addr.v
+Addr.vi: Addr.v
+Addec.vo: Addec.v Addr.vo
+Addec.vi: Addec.v Addr.vo
+Adalloc.vo: Adalloc.v Addr.vo Adist.vo Addec.vo Map.vo Fset.vo
+Adalloc.vi: Adalloc.v Addr.vo Adist.vo Addec.vo Map.vo Fset.vo
+Mapsubset.html: Mapsubset.v Addr.html Adist.html Addec.html Map.html Fset.html Mapaxioms.html Mapiter.html
+Maplists.html: Maplists.v Addr.html Addec.html Map.html Fset.html Mapaxioms.html Mapsubset.html Mapcard.html Mapcanon.html Mapc.html Mapiter.html Mapfold.html
+Mapiter.html: Mapiter.v Addr.html Adist.html Addec.html Map.html Mapaxioms.html Fset.html
+Mapfold.html: Mapfold.v Addr.html Adist.html Addec.html Map.html Fset.html Mapaxioms.html Mapiter.html Lsort.html Mapsubset.html
+Mapcard.html: Mapcard.v Addr.html Adist.html Addec.html Map.html Mapaxioms.html Mapiter.html Fset.html Mapsubset.html Lsort.html
+Mapcanon.html: Mapcanon.v Addr.html Adist.html Addec.html Map.html Mapaxioms.html Mapiter.html Fset.html Lsort.html Mapsubset.html Mapcard.html
+Mapc.html: Mapc.v Addr.html Adist.html Addec.html Map.html Mapaxioms.html Fset.html Mapiter.html Mapsubset.html Lsort.html Mapcard.html Mapcanon.html
+Mapaxioms.html: Mapaxioms.v Addr.html Adist.html Addec.html Map.html Fset.html
+Map.html: Map.v Addr.html Adist.html Addec.html
+Lsort.html: Lsort.v Addr.html Adist.html Addec.html Map.html Mapiter.html
+Fset.html: Fset.v Addr.html Adist.html Addec.html Map.html
+Allmaps.html: Allmaps.v Addr.html Adist.html Addec.html Map.html Fset.html Mapaxioms.html Mapiter.html Mapsubset.html Lsort.html Mapfold.html Mapcard.html Mapcanon.html Mapc.html Maplists.html Adalloc.html
+Adist.html: Adist.v Addr.html
+Addr.html: Addr.v
+Addec.html: Addec.v Addr.html
+Adalloc.html: Adalloc.v Addr.html Adist.html Addec.html Map.html Fset.html
diff --git a/theories/IntMap/Adalloc.v b/theories/IntMap/Adalloc.v
new file mode 100644
index 00000000..9fde8f5f
--- /dev/null
+++ b/theories/IntMap/Adalloc.v
@@ -0,0 +1,365 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(*i $Id: Adalloc.v,v 1.10.2.1 2004/07/16 19:31:04 herbelin Exp $ i*)
+
+Require Import Bool.
+Require Import Sumbool.
+Require Import ZArith.
+Require Import Arith.
+Require Import Addr.
+Require Import Adist.
+Require Import Addec.
+Require Import Map.
+Require Import Fset.
+
+Section AdAlloc.
+
+ Variable A : Set.
+
+ Definition nat_of_ad (a:ad) :=
+ match a with
+ | ad_z => 0
+ | ad_x p => nat_of_P p
+ end.
+
+ Fixpoint nat_le (m:nat) : nat -> bool :=
+ match m with
+ | O => fun _:nat => true
+ | S m' =>
+ fun n:nat => match n with
+ | O => false
+ | S n' => nat_le m' n'
+ end
+ end.
+
+ Lemma nat_le_correct : forall m n:nat, m <= n -> nat_le m n = true.
+ Proof.
+ induction m as [| m IHm]. trivial.
+ destruct n. intro H. elim (le_Sn_O _ H).
+ intros. simpl in |- *. apply IHm. apply le_S_n. assumption.
+ Qed.
+
+ Lemma nat_le_complete : forall m n:nat, nat_le m n = true -> m <= n.
+ Proof.
+ induction m. trivial with arith.
+ destruct n. intro H. discriminate H.
+ auto with arith.
+ Qed.
+
+ Lemma nat_le_correct_conv : forall m n:nat, m < n -> nat_le n m = false.
+ Proof.
+ intros. elim (sumbool_of_bool (nat_le n m)). intro H0.
+ elim (lt_irrefl _ (lt_le_trans _ _ _ H (nat_le_complete _ _ H0))).
+ trivial.
+ Qed.
+
+ Lemma nat_le_complete_conv : forall m n:nat, nat_le n m = false -> m < n.
+ Proof.
+ intros. elim (le_or_lt n m). intro. conditional trivial rewrite nat_le_correct in H. discriminate H.
+ trivial.
+ Qed.
+
+ Definition ad_of_nat (n:nat) :=
+ match n with
+ | O => ad_z
+ | S n' => ad_x (P_of_succ_nat n')
+ end.
+
+ Lemma ad_of_nat_of_ad : forall a:ad, ad_of_nat (nat_of_ad a) = a.
+ Proof.
+ destruct a as [| p]. reflexivity.
+ simpl in |- *. elim (ZL4 p). intros n H. rewrite H. simpl in |- *. rewrite <- nat_of_P_o_P_of_succ_nat_eq_succ in H.
+ rewrite nat_of_P_inj with (1 := H). reflexivity.
+ Qed.
+
+ Lemma nat_of_ad_of_nat : forall n:nat, nat_of_ad (ad_of_nat n) = n.
+ Proof.
+ induction n. trivial.
+ intros. simpl in |- *. apply nat_of_P_o_P_of_succ_nat_eq_succ.
+ Qed.
+
+ Definition ad_le (a b:ad) := nat_le (nat_of_ad a) (nat_of_ad b).
+
+ Lemma ad_le_refl : forall a:ad, ad_le a a = true.
+ Proof.
+ intro. unfold ad_le in |- *. apply nat_le_correct. apply le_n.
+ Qed.
+
+ Lemma ad_le_antisym :
+ forall a b:ad, ad_le a b = true -> ad_le b a = true -> a = b.
+ Proof.
+ unfold ad_le in |- *. intros. rewrite <- (ad_of_nat_of_ad a). rewrite <- (ad_of_nat_of_ad b).
+ rewrite (le_antisym _ _ (nat_le_complete _ _ H) (nat_le_complete _ _ H0)). reflexivity.
+ Qed.
+
+ Lemma ad_le_trans :
+ forall a b c:ad, ad_le a b = true -> ad_le b c = true -> ad_le a c = true.
+ Proof.
+ unfold ad_le in |- *. intros. apply nat_le_correct. apply le_trans with (m := nat_of_ad b).
+ apply nat_le_complete. assumption.
+ apply nat_le_complete. assumption.
+ Qed.
+
+ Lemma ad_le_lt_trans :
+ forall a b c:ad,
+ ad_le a b = true -> ad_le c b = false -> ad_le c a = false.
+ Proof.
+ unfold ad_le in |- *. intros. apply nat_le_correct_conv. apply le_lt_trans with (m := nat_of_ad b).
+ apply nat_le_complete. assumption.
+ apply nat_le_complete_conv. assumption.
+ Qed.
+
+ Lemma ad_lt_le_trans :
+ forall a b c:ad,
+ ad_le b a = false -> ad_le b c = true -> ad_le c a = false.
+ Proof.
+ unfold ad_le in |- *. intros. apply nat_le_correct_conv. apply lt_le_trans with (m := nat_of_ad b).
+ apply nat_le_complete_conv. assumption.
+ apply nat_le_complete. assumption.
+ Qed.
+
+ Lemma ad_lt_trans :
+ forall a b c:ad,
+ ad_le b a = false -> ad_le c b = false -> ad_le c a = false.
+ Proof.
+ unfold ad_le in |- *. intros. apply nat_le_correct_conv. apply lt_trans with (m := nat_of_ad b).
+ apply nat_le_complete_conv. assumption.
+ apply nat_le_complete_conv. assumption.
+ Qed.
+
+ Lemma ad_lt_le_weak : forall a b:ad, ad_le b a = false -> ad_le a b = true.
+ Proof.
+ unfold ad_le in |- *. intros. apply nat_le_correct. apply lt_le_weak.
+ apply nat_le_complete_conv. assumption.
+ Qed.
+
+ Definition ad_min (a b:ad) := if ad_le a b then a else b.
+
+ Lemma ad_min_choice : forall a b:ad, {ad_min a b = a} + {ad_min a b = b}.
+ Proof.
+ unfold ad_min in |- *. intros. elim (sumbool_of_bool (ad_le a b)). intro H. left. rewrite H.
+ reflexivity.
+ intro H. right. rewrite H. reflexivity.
+ Qed.
+
+ Lemma ad_min_le_1 : forall a b:ad, ad_le (ad_min a b) a = true.
+ Proof.
+ unfold ad_min in |- *. intros. elim (sumbool_of_bool (ad_le a b)). intro H. rewrite H.
+ apply ad_le_refl.
+ intro H. rewrite H. apply ad_lt_le_weak. assumption.
+ Qed.
+
+ Lemma ad_min_le_2 : forall a b:ad, ad_le (ad_min a b) b = true.
+ Proof.
+ unfold ad_min in |- *. intros. elim (sumbool_of_bool (ad_le a b)). intro H. rewrite H. assumption.
+ intro H. rewrite H. apply ad_le_refl.
+ Qed.
+
+ Lemma ad_min_le_3 :
+ forall a b c:ad, ad_le a (ad_min b c) = true -> ad_le a b = true.
+ Proof.
+ unfold ad_min in |- *. intros. elim (sumbool_of_bool (ad_le b c)). intro H0. rewrite H0 in H.
+ assumption.
+ intro H0. rewrite H0 in H. apply ad_lt_le_weak. apply ad_le_lt_trans with (b := c); assumption.
+ Qed.
+
+ Lemma ad_min_le_4 :
+ forall a b c:ad, ad_le a (ad_min b c) = true -> ad_le a c = true.
+ Proof.
+ unfold ad_min in |- *. intros. elim (sumbool_of_bool (ad_le b c)). intro H0. rewrite H0 in H.
+ apply ad_le_trans with (b := b); assumption.
+ intro H0. rewrite H0 in H. assumption.
+ Qed.
+
+ Lemma ad_min_le_5 :
+ forall a b c:ad,
+ ad_le a b = true -> ad_le a c = true -> ad_le a (ad_min b c) = true.
+ Proof.
+ intros. elim (ad_min_choice b c). intro H1. rewrite H1. assumption.
+ intro H1. rewrite H1. assumption.
+ Qed.
+
+ Lemma ad_min_lt_3 :
+ forall a b c:ad, ad_le (ad_min b c) a = false -> ad_le b a = false.
+ Proof.
+ unfold ad_min in |- *. intros. elim (sumbool_of_bool (ad_le b c)). intro H0. rewrite H0 in H.
+ assumption.
+ intro H0. rewrite H0 in H. apply ad_lt_trans with (b := c); assumption.
+ Qed.
+
+ Lemma ad_min_lt_4 :
+ forall a b c:ad, ad_le (ad_min b c) a = false -> ad_le c a = false.
+ Proof.
+ unfold ad_min in |- *. intros. elim (sumbool_of_bool (ad_le b c)). intro H0. rewrite H0 in H.
+ apply ad_lt_le_trans with (b := b); assumption.
+ intro H0. rewrite H0 in H. assumption.
+ Qed.
+
+ (** Allocator: returns an address not in the domain of [m].
+ This allocator is optimal in that it returns the lowest possible address,
+ in the usual ordering on integers. It is not the most efficient, however. *)
+ Fixpoint ad_alloc_opt (m:Map A) : ad :=
+ match m with
+ | M0 => ad_z
+ | M1 a _ => if ad_eq a ad_z then ad_x 1 else ad_z
+ | M2 m1 m2 =>
+ ad_min (ad_double (ad_alloc_opt m1))
+ (ad_double_plus_un (ad_alloc_opt m2))
+ end.
+
+ Lemma ad_alloc_opt_allocates_1 :
+ forall m:Map A, MapGet A m (ad_alloc_opt m) = NONE A.
+ Proof.
+ induction m as [| a| m0 H m1 H0]. reflexivity.
+ simpl in |- *. elim (sumbool_of_bool (ad_eq a ad_z)). intro H. rewrite H.
+ rewrite (ad_eq_complete _ _ H). reflexivity.
+ intro H. rewrite H. rewrite H. reflexivity.
+ intros. change
+ (ad_alloc_opt (M2 A m0 m1)) with (ad_min (ad_double (ad_alloc_opt m0))
+ (ad_double_plus_un (ad_alloc_opt m1)))
+ in |- *.
+ elim
+ (ad_min_choice (ad_double (ad_alloc_opt m0))
+ (ad_double_plus_un (ad_alloc_opt m1))).
+ intro H1. rewrite H1. rewrite MapGet_M2_bit_0_0. rewrite ad_double_div_2. assumption.
+ apply ad_double_bit_0.
+ intro H1. rewrite H1. rewrite MapGet_M2_bit_0_1. rewrite ad_double_plus_un_div_2. assumption.
+ apply ad_double_plus_un_bit_0.
+ Qed.
+
+ Lemma ad_alloc_opt_allocates :
+ forall m:Map A, in_dom A (ad_alloc_opt m) m = false.
+ Proof.
+ unfold in_dom in |- *. intro. rewrite (ad_alloc_opt_allocates_1 m). reflexivity.
+ Qed.
+
+ (** Moreover, this is optimal: all addresses below [(ad_alloc_opt m)]
+ are in [dom m]: *)
+
+ Lemma nat_of_ad_double :
+ forall a:ad, nat_of_ad (ad_double a) = 2 * nat_of_ad a.
+ Proof.
+ destruct a as [| p]. trivial.
+ exact (nat_of_P_xO p).
+ Qed.
+
+ Lemma nat_of_ad_double_plus_un :
+ forall a:ad, nat_of_ad (ad_double_plus_un a) = S (2 * nat_of_ad a).
+ Proof.
+ destruct a as [| p]. trivial.
+ exact (nat_of_P_xI p).
+ Qed.
+
+ Lemma ad_le_double_mono :
+ forall a b:ad,
+ ad_le a b = true -> ad_le (ad_double a) (ad_double b) = true.
+ Proof.
+ unfold ad_le in |- *. intros. rewrite nat_of_ad_double. rewrite nat_of_ad_double. apply nat_le_correct.
+ simpl in |- *. apply plus_le_compat. apply nat_le_complete. assumption.
+ apply plus_le_compat. apply nat_le_complete. assumption.
+ apply le_n.
+ Qed.
+
+ Lemma ad_le_double_plus_un_mono :
+ forall a b:ad,
+ ad_le a b = true ->
+ ad_le (ad_double_plus_un a) (ad_double_plus_un b) = true.
+ Proof.
+ unfold ad_le in |- *. intros. rewrite nat_of_ad_double_plus_un. rewrite nat_of_ad_double_plus_un.
+ apply nat_le_correct. apply le_n_S. simpl in |- *. apply plus_le_compat. apply nat_le_complete.
+ assumption.
+ apply plus_le_compat. apply nat_le_complete. assumption.
+ apply le_n.
+ Qed.
+
+ Lemma ad_le_double_mono_conv :
+ forall a b:ad,
+ ad_le (ad_double a) (ad_double b) = true -> ad_le a b = true.
+ Proof.
+ unfold ad_le in |- *. intros a b. rewrite nat_of_ad_double. rewrite nat_of_ad_double. intro.
+ apply nat_le_correct. apply (mult_S_le_reg_l 1). apply nat_le_complete. assumption.
+ Qed.
+
+ Lemma ad_le_double_plus_un_mono_conv :
+ forall a b:ad,
+ ad_le (ad_double_plus_un a) (ad_double_plus_un b) = true ->
+ ad_le a b = true.
+ Proof.
+ unfold ad_le in |- *. intros a b. rewrite nat_of_ad_double_plus_un. rewrite nat_of_ad_double_plus_un.
+ intro. apply nat_le_correct. apply (mult_S_le_reg_l 1). apply le_S_n. apply nat_le_complete.
+ assumption.
+ Qed.
+
+ Lemma ad_lt_double_mono :
+ forall a b:ad,
+ ad_le a b = false -> ad_le (ad_double a) (ad_double b) = false.
+ Proof.
+ intros. elim (sumbool_of_bool (ad_le (ad_double a) (ad_double b))). intro H0.
+ rewrite (ad_le_double_mono_conv _ _ H0) in H. discriminate H.
+ trivial.
+ Qed.
+
+ Lemma ad_lt_double_plus_un_mono :
+ forall a b:ad,
+ ad_le a b = false ->
+ ad_le (ad_double_plus_un a) (ad_double_plus_un b) = false.
+ Proof.
+ intros. elim (sumbool_of_bool (ad_le (ad_double_plus_un a) (ad_double_plus_un b))). intro H0.
+ rewrite (ad_le_double_plus_un_mono_conv _ _ H0) in H. discriminate H.
+ trivial.
+ Qed.
+
+ Lemma ad_lt_double_mono_conv :
+ forall a b:ad,
+ ad_le (ad_double a) (ad_double b) = false -> ad_le a b = false.
+ Proof.
+ intros. elim (sumbool_of_bool (ad_le a b)). intro H0. rewrite (ad_le_double_mono _ _ H0) in H.
+ discriminate H.
+ trivial.
+ Qed.
+
+ Lemma ad_lt_double_plus_un_mono_conv :
+ forall a b:ad,
+ ad_le (ad_double_plus_un a) (ad_double_plus_un b) = false ->
+ ad_le a b = false.
+ Proof.
+ intros. elim (sumbool_of_bool (ad_le a b)). intro H0.
+ rewrite (ad_le_double_plus_un_mono _ _ H0) in H. discriminate H.
+ trivial.
+ Qed.
+
+ Lemma ad_alloc_opt_optimal_1 :
+ forall (m:Map A) (a:ad),
+ ad_le (ad_alloc_opt m) a = false -> {y : A | MapGet A m a = SOME A y}.
+ Proof.
+ induction m as [| a y| m0 H m1 H0]. simpl in |- *. unfold ad_le in |- *. simpl in |- *. intros. discriminate H.
+ simpl in |- *. intros b H. elim (sumbool_of_bool (ad_eq a ad_z)). intro H0. rewrite H0 in H.
+ unfold ad_le in H. cut (ad_z = b). intro. split with y. rewrite <- H1. rewrite H0. reflexivity.
+ rewrite <- (ad_of_nat_of_ad b).
+ rewrite <- (le_n_O_eq _ (le_S_n _ _ (nat_le_complete_conv _ _ H))). reflexivity.
+ intro H0. rewrite H0 in H. discriminate H.
+ intros. simpl in H1. elim (ad_double_or_double_plus_un a). intro H2. elim H2. intros a0 H3.
+ rewrite H3 in H1. elim (H _ (ad_lt_double_mono_conv _ _ (ad_min_lt_3 _ _ _ H1))). intros y H4.
+ split with y. rewrite H3. rewrite MapGet_M2_bit_0_0. rewrite ad_double_div_2. assumption.
+ apply ad_double_bit_0.
+ intro H2. elim H2. intros a0 H3. rewrite H3 in H1.
+ elim (H0 _ (ad_lt_double_plus_un_mono_conv _ _ (ad_min_lt_4 _ _ _ H1))). intros y H4.
+ split with y. rewrite H3. rewrite MapGet_M2_bit_0_1. rewrite ad_double_plus_un_div_2.
+ assumption.
+ apply ad_double_plus_un_bit_0.
+ Qed.
+
+ Lemma ad_alloc_opt_optimal :
+ forall (m:Map A) (a:ad),
+ ad_le (ad_alloc_opt m) a = false -> in_dom A a m = true.
+ Proof.
+ intros. unfold in_dom in |- *. elim (ad_alloc_opt_optimal_1 m a H). intros y H0. rewrite H0.
+ reflexivity.
+ Qed.
+
+End AdAlloc.
diff --git a/theories/IntMap/Addec.v b/theories/IntMap/Addec.v
new file mode 100644
index 00000000..7dba9ef6
--- /dev/null
+++ b/theories/IntMap/Addec.v
@@ -0,0 +1,193 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(*i $Id: Addec.v,v 1.7.2.1 2004/07/16 19:31:04 herbelin Exp $ i*)
+
+(** Equality on adresses *)
+
+Require Import Bool.
+Require Import Sumbool.
+Require Import ZArith.
+Require Import Addr.
+
+Fixpoint ad_eq_1 (p1 p2:positive) {struct p2} : bool :=
+ match p1, p2 with
+ | xH, xH => true
+ | xO p'1, xO p'2 => ad_eq_1 p'1 p'2
+ | xI p'1, xI p'2 => ad_eq_1 p'1 p'2
+ | _, _ => false
+ end.
+
+Definition ad_eq (a a':ad) :=
+ match a, a' with
+ | ad_z, ad_z => true
+ | ad_x p, ad_x p' => ad_eq_1 p p'
+ | _, _ => false
+ end.
+
+Lemma ad_eq_correct : forall a:ad, ad_eq a a = true.
+Proof.
+ destruct a; trivial.
+ induction p; trivial.
+Qed.
+
+Lemma ad_eq_complete : forall a a':ad, ad_eq a a' = true -> a = a'.
+Proof.
+ destruct a. destruct a'; trivial. destruct p.
+ discriminate 1.
+ discriminate 1.
+ discriminate 1.
+ destruct a'. intros. discriminate H.
+ unfold ad_eq in |- *. intros. cut (p = p0). intros. rewrite H0. reflexivity.
+ generalize dependent p0.
+ induction p as [p IHp| p IHp| ]. destruct p0; intro H.
+ rewrite (IHp p0). reflexivity.
+ exact H.
+ discriminate H.
+ discriminate H.
+ destruct p0; intro H. discriminate H.
+ rewrite (IHp p0 H). reflexivity.
+ discriminate H.
+ destruct p0 as [p| p| ]; intro H. discriminate H.
+ discriminate H.
+ trivial.
+Qed.
+
+Lemma ad_eq_comm : forall a a':ad, ad_eq a a' = ad_eq a' a.
+Proof.
+ intros. cut (forall b b':bool, ad_eq a a' = b -> ad_eq a' a = b' -> b = b').
+ intros. apply H. reflexivity.
+ reflexivity.
+ destruct b. intros. cut (a = a').
+ intro. rewrite H1 in H0. rewrite (ad_eq_correct a') in H0. exact H0.
+ apply ad_eq_complete. exact H.
+ destruct b'. intros. cut (a' = a).
+ intro. rewrite H1 in H. rewrite H1 in H0. rewrite <- H. exact H0.
+ apply ad_eq_complete. exact H0.
+ trivial.
+Qed.
+
+Lemma ad_xor_eq_true :
+ forall a a':ad, ad_xor a a' = ad_z -> ad_eq a a' = true.
+Proof.
+ intros. rewrite (ad_xor_eq a a' H). apply ad_eq_correct.
+Qed.
+
+Lemma ad_xor_eq_false :
+ forall (a a':ad) (p:positive), ad_xor a a' = ad_x p -> ad_eq a a' = false.
+Proof.
+ intros. elim (sumbool_of_bool (ad_eq a a')). intro H0.
+ rewrite (ad_eq_complete a a' H0) in H. rewrite (ad_xor_nilpotent a') in H. discriminate H.
+ trivial.
+Qed.
+
+Lemma ad_bit_0_1_not_double :
+ forall a:ad,
+ ad_bit_0 a = true -> forall a0:ad, ad_eq (ad_double a0) a = false.
+Proof.
+ intros. elim (sumbool_of_bool (ad_eq (ad_double a0) a)). intro H0.
+ rewrite <- (ad_eq_complete _ _ H0) in H. rewrite (ad_double_bit_0 a0) in H. discriminate H.
+ trivial.
+Qed.
+
+Lemma ad_not_div_2_not_double :
+ forall a a0:ad,
+ ad_eq (ad_div_2 a) a0 = false -> ad_eq a (ad_double a0) = false.
+Proof.
+ intros. elim (sumbool_of_bool (ad_eq (ad_double a0) a)). intro H0.
+ rewrite <- (ad_eq_complete _ _ H0) in H. rewrite (ad_double_div_2 a0) in H.
+ rewrite (ad_eq_correct a0) in H. discriminate H.
+ intro. rewrite ad_eq_comm. assumption.
+Qed.
+
+Lemma ad_bit_0_0_not_double_plus_un :
+ forall a:ad,
+ ad_bit_0 a = false -> forall a0:ad, ad_eq (ad_double_plus_un a0) a = false.
+Proof.
+ intros. elim (sumbool_of_bool (ad_eq (ad_double_plus_un a0) a)). intro H0.
+ rewrite <- (ad_eq_complete _ _ H0) in H. rewrite (ad_double_plus_un_bit_0 a0) in H.
+ discriminate H.
+ trivial.
+Qed.
+
+Lemma ad_not_div_2_not_double_plus_un :
+ forall a a0:ad,
+ ad_eq (ad_div_2 a) a0 = false -> ad_eq (ad_double_plus_un a0) a = false.
+Proof.
+ intros. elim (sumbool_of_bool (ad_eq a (ad_double_plus_un a0))). intro H0.
+ rewrite (ad_eq_complete _ _ H0) in H. rewrite (ad_double_plus_un_div_2 a0) in H.
+ rewrite (ad_eq_correct a0) in H. discriminate H.
+ intro H0. rewrite ad_eq_comm. assumption.
+Qed.
+
+Lemma ad_bit_0_neq :
+ forall a a':ad,
+ ad_bit_0 a = false -> ad_bit_0 a' = true -> ad_eq a a' = false.
+Proof.
+ intros. elim (sumbool_of_bool (ad_eq a a')). intro H1. rewrite (ad_eq_complete _ _ H1) in H.
+ rewrite H in H0. discriminate H0.
+ trivial.
+Qed.
+
+Lemma ad_div_eq :
+ forall a a':ad, ad_eq a a' = true -> ad_eq (ad_div_2 a) (ad_div_2 a') = true.
+Proof.
+ intros. cut (a = a'). intros. rewrite H0. apply ad_eq_correct.
+ apply ad_eq_complete. exact H.
+Qed.
+
+Lemma ad_div_neq :
+ forall a a':ad,
+ ad_eq (ad_div_2 a) (ad_div_2 a') = false -> ad_eq a a' = false.
+Proof.
+ intros. elim (sumbool_of_bool (ad_eq a a')). intro H0.
+ rewrite (ad_eq_complete _ _ H0) in H. rewrite (ad_eq_correct (ad_div_2 a')) in H. discriminate H.
+ trivial.
+Qed.
+
+Lemma ad_div_bit_eq :
+ forall a a':ad,
+ ad_bit_0 a = ad_bit_0 a' -> ad_div_2 a = ad_div_2 a' -> a = a'.
+Proof.
+ intros. apply ad_faithful. unfold eqf in |- *. destruct n.
+ rewrite ad_bit_0_correct. rewrite ad_bit_0_correct. assumption.
+ rewrite <- ad_div_2_correct. rewrite <- ad_div_2_correct.
+ rewrite H0. reflexivity.
+Qed.
+
+Lemma ad_div_bit_neq :
+ forall a a':ad,
+ ad_eq a a' = false ->
+ ad_bit_0 a = ad_bit_0 a' -> ad_eq (ad_div_2 a) (ad_div_2 a') = false.
+Proof.
+ intros. elim (sumbool_of_bool (ad_eq (ad_div_2 a) (ad_div_2 a'))). intro H1.
+ rewrite (ad_div_bit_eq _ _ H0 (ad_eq_complete _ _ H1)) in H.
+ rewrite (ad_eq_correct a') in H. discriminate H.
+ trivial.
+Qed.
+
+Lemma ad_neq :
+ forall a a':ad,
+ ad_eq a a' = false ->
+ ad_bit_0 a = negb (ad_bit_0 a') \/
+ ad_eq (ad_div_2 a) (ad_div_2 a') = false.
+Proof.
+ intros. cut (ad_bit_0 a = ad_bit_0 a' \/ ad_bit_0 a = negb (ad_bit_0 a')).
+ intros. elim H0. intro. right. apply ad_div_bit_neq. assumption.
+ assumption.
+ intro. left. assumption.
+ case (ad_bit_0 a); case (ad_bit_0 a'); auto.
+Qed.
+
+Lemma ad_double_or_double_plus_un :
+ forall a:ad,
+ {a0 : ad | a = ad_double a0} + {a1 : ad | a = ad_double_plus_un a1}.
+Proof.
+ intro. elim (sumbool_of_bool (ad_bit_0 a)). intro H. right. split with (ad_div_2 a).
+ rewrite (ad_div_2_double_plus_un a H). reflexivity.
+ intro H. left. split with (ad_div_2 a). rewrite (ad_div_2_double a H). reflexivity.
+Qed. \ No newline at end of file
diff --git a/theories/IntMap/Addr.v b/theories/IntMap/Addr.v
new file mode 100644
index 00000000..1370d72d
--- /dev/null
+++ b/theories/IntMap/Addr.v
@@ -0,0 +1,491 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(*i $Id: Addr.v,v 1.8.2.1 2004/07/16 19:31:04 herbelin Exp $ i*)
+
+(** Representation of adresses by the [positive] type of binary numbers *)
+
+Require Import Bool.
+Require Import ZArith.
+
+Inductive ad : Set :=
+ | ad_z : ad
+ | ad_x : positive -> ad.
+
+Lemma ad_sum : forall a:ad, {p : positive | a = ad_x p} + {a = ad_z}.
+Proof.
+ destruct a; auto.
+ left; exists p; trivial.
+Qed.
+
+Fixpoint p_xor (p p2:positive) {struct p} : ad :=
+ match p with
+ | xH =>
+ match p2 with
+ | xH => ad_z
+ | xO p'2 => ad_x (xI p'2)
+ | xI p'2 => ad_x (xO p'2)
+ end
+ | xO p' =>
+ match p2 with
+ | xH => ad_x (xI p')
+ | xO p'2 =>
+ match p_xor p' p'2 with
+ | ad_z => ad_z
+ | ad_x p'' => ad_x (xO p'')
+ end
+ | xI p'2 =>
+ match p_xor p' p'2 with
+ | ad_z => ad_x 1
+ | ad_x p'' => ad_x (xI p'')
+ end
+ end
+ | xI p' =>
+ match p2 with
+ | xH => ad_x (xO p')
+ | xO p'2 =>
+ match p_xor p' p'2 with
+ | ad_z => ad_x 1
+ | ad_x p'' => ad_x (xI p'')
+ end
+ | xI p'2 =>
+ match p_xor p' p'2 with
+ | ad_z => ad_z
+ | ad_x p'' => ad_x (xO p'')
+ end
+ end
+ end.
+
+Definition ad_xor (a a':ad) :=
+ match a with
+ | ad_z => a'
+ | ad_x p => match a' with
+ | ad_z => a
+ | ad_x p' => p_xor p p'
+ end
+ end.
+
+Lemma ad_xor_neutral_left : forall a:ad, ad_xor ad_z a = a.
+Proof.
+ trivial.
+Qed.
+
+Lemma ad_xor_neutral_right : forall a:ad, ad_xor a ad_z = a.
+Proof.
+ destruct a; trivial.
+Qed.
+
+Lemma ad_xor_comm : forall a a':ad, ad_xor a a' = ad_xor a' a.
+Proof.
+ destruct a; destruct a'; simpl in |- *; auto.
+ generalize p0; clear p0; induction p as [p Hrecp| p Hrecp| ]; simpl in |- *;
+ auto.
+ destruct p0; simpl in |- *; trivial; intros.
+ rewrite Hrecp; trivial.
+ rewrite Hrecp; trivial.
+ destruct p0; simpl in |- *; trivial; intros.
+ rewrite Hrecp; trivial.
+ rewrite Hrecp; trivial.
+ destruct p0 as [p| p| ]; simpl in |- *; auto.
+Qed.
+
+Lemma ad_xor_nilpotent : forall a:ad, ad_xor a a = ad_z.
+Proof.
+ destruct a; trivial.
+ simpl in |- *. induction p as [p IHp| p IHp| ]; trivial.
+ simpl in |- *. rewrite IHp; reflexivity.
+ simpl in |- *. rewrite IHp; reflexivity.
+Qed.
+
+Fixpoint ad_bit_1 (p:positive) : nat -> bool :=
+ match p with
+ | xH => fun n:nat => match n with
+ | O => true
+ | S _ => false
+ end
+ | xO p =>
+ fun n:nat => match n with
+ | O => false
+ | S n' => ad_bit_1 p n'
+ end
+ | xI p => fun n:nat => match n with
+ | O => true
+ | S n' => ad_bit_1 p n'
+ end
+ end.
+
+Definition ad_bit (a:ad) :=
+ match a with
+ | ad_z => fun _:nat => false
+ | ad_x p => ad_bit_1 p
+ end.
+
+Definition eqf (f g:nat -> bool) := forall n:nat, f n = g n.
+
+Lemma ad_faithful_1 : forall a:ad, eqf (ad_bit ad_z) (ad_bit a) -> ad_z = a.
+Proof.
+ destruct a. trivial.
+ induction p as [p IHp| p IHp| ]; intro H. absurd (ad_z = ad_x p). discriminate.
+ exact (IHp (fun n:nat => H (S n))).
+ absurd (ad_z = ad_x p). discriminate.
+ exact (IHp (fun n:nat => H (S n))).
+ absurd (false = true). discriminate.
+ exact (H 0).
+Qed.
+
+Lemma ad_faithful_2 :
+ forall a:ad, eqf (ad_bit (ad_x 1)) (ad_bit a) -> ad_x 1 = a.
+Proof.
+ destruct a. intros. absurd (true = false). discriminate.
+ exact (H 0).
+ destruct p. intro H. absurd (ad_z = ad_x p). discriminate.
+ exact (ad_faithful_1 (ad_x p) (fun n:nat => H (S n))).
+ intros. absurd (true = false). discriminate.
+ exact (H 0).
+ trivial.
+Qed.
+
+Lemma ad_faithful_3 :
+ forall (a:ad) (p:positive),
+ (forall p':positive, eqf (ad_bit (ad_x p)) (ad_bit (ad_x p')) -> p = p') ->
+ eqf (ad_bit (ad_x (xO p))) (ad_bit a) -> ad_x (xO p) = a.
+Proof.
+ destruct a. intros. cut (eqf (ad_bit ad_z) (ad_bit (ad_x (xO p)))).
+ intro. rewrite (ad_faithful_1 (ad_x (xO p)) H1). reflexivity.
+ unfold eqf in |- *. intro. unfold eqf in H0. rewrite H0. reflexivity.
+ case p. intros. absurd (false = true). discriminate.
+ exact (H0 0).
+ intros. rewrite (H p0 (fun n:nat => H0 (S n))). reflexivity.
+ intros. absurd (false = true). discriminate.
+ exact (H0 0).
+Qed.
+
+Lemma ad_faithful_4 :
+ forall (a:ad) (p:positive),
+ (forall p':positive, eqf (ad_bit (ad_x p)) (ad_bit (ad_x p')) -> p = p') ->
+ eqf (ad_bit (ad_x (xI p))) (ad_bit a) -> ad_x (xI p) = a.
+Proof.
+ destruct a. intros. cut (eqf (ad_bit ad_z) (ad_bit (ad_x (xI p)))).
+ intro. rewrite (ad_faithful_1 (ad_x (xI p)) H1). reflexivity.
+ unfold eqf in |- *. intro. unfold eqf in H0. rewrite H0. reflexivity.
+ case p. intros. rewrite (H p0 (fun n:nat => H0 (S n))). reflexivity.
+ intros. absurd (true = false). discriminate.
+ exact (H0 0).
+ intros. absurd (ad_z = ad_x p0). discriminate.
+ cut (eqf (ad_bit (ad_x 1)) (ad_bit (ad_x (xI p0)))).
+ intro. exact (ad_faithful_1 (ad_x p0) (fun n:nat => H1 (S n))).
+ unfold eqf in |- *. unfold eqf in H0. intro. rewrite H0. reflexivity.
+Qed.
+
+Lemma ad_faithful : forall a a':ad, eqf (ad_bit a) (ad_bit a') -> a = a'.
+Proof.
+ destruct a. exact ad_faithful_1.
+ induction p. intros a' H. apply ad_faithful_4. intros. cut (ad_x p = ad_x p').
+ intro. inversion H1. reflexivity.
+ exact (IHp (ad_x p') H0).
+ assumption.
+ intros. apply ad_faithful_3. intros. cut (ad_x p = ad_x p'). intro. inversion H1. reflexivity.
+ exact (IHp (ad_x p') H0).
+ assumption.
+ exact ad_faithful_2.
+Qed.
+
+Definition adf_xor (f g:nat -> bool) (n:nat) := xorb (f n) (g n).
+
+Lemma ad_xor_sem_1 : forall a':ad, ad_bit (ad_xor ad_z a') 0 = ad_bit a' 0.
+Proof.
+ trivial.
+Qed.
+
+Lemma ad_xor_sem_2 :
+ forall a':ad, ad_bit (ad_xor (ad_x 1) a') 0 = negb (ad_bit a' 0).
+Proof.
+ intro. case a'. trivial.
+ simpl in |- *. intro.
+ case p; trivial.
+Qed.
+
+Lemma ad_xor_sem_3 :
+ forall (p:positive) (a':ad),
+ ad_bit (ad_xor (ad_x (xO p)) a') 0 = ad_bit a' 0.
+Proof.
+ intros. case a'. trivial.
+ simpl in |- *. intro.
+ case p0; trivial. intro.
+ case (p_xor p p1); trivial.
+ intro. case (p_xor p p1); trivial.
+Qed.
+
+Lemma ad_xor_sem_4 :
+ forall (p:positive) (a':ad),
+ ad_bit (ad_xor (ad_x (xI p)) a') 0 = negb (ad_bit a' 0).
+Proof.
+ intros. case a'. trivial.
+ simpl in |- *. intro. case p0; trivial. intro.
+ case (p_xor p p1); trivial.
+ intro.
+ case (p_xor p p1); trivial.
+Qed.
+
+Lemma ad_xor_sem_5 :
+ forall a a':ad, ad_bit (ad_xor a a') 0 = adf_xor (ad_bit a) (ad_bit a') 0.
+Proof.
+ destruct a. intro. change (ad_bit a' 0 = xorb false (ad_bit a' 0)) in |- *. rewrite false_xorb. trivial.
+ case p. exact ad_xor_sem_4.
+ intros. change (ad_bit (ad_xor (ad_x (xO p0)) a') 0 = xorb false (ad_bit a' 0))
+ in |- *.
+ rewrite false_xorb. apply ad_xor_sem_3. exact ad_xor_sem_2.
+Qed.
+
+Lemma ad_xor_sem_6 :
+ forall n:nat,
+ (forall a a':ad, ad_bit (ad_xor a a') n = adf_xor (ad_bit a) (ad_bit a') n) ->
+ forall a a':ad,
+ ad_bit (ad_xor a a') (S n) = adf_xor (ad_bit a) (ad_bit a') (S n).
+Proof.
+ intros. case a. unfold adf_xor in |- *. unfold ad_bit at 2 in |- *. rewrite false_xorb. reflexivity.
+ case a'. unfold adf_xor in |- *. unfold ad_bit at 3 in |- *. intro. rewrite xorb_false. reflexivity.
+ intros. case p0. case p. intros.
+ change
+ (ad_bit (ad_xor (ad_x (xI p2)) (ad_x (xI p1))) (S n) =
+ adf_xor (ad_bit (ad_x p2)) (ad_bit (ad_x p1)) n)
+ in |- *.
+ rewrite <- H. simpl in |- *.
+ case (p_xor p2 p1); trivial.
+ intros.
+ change
+ (ad_bit (ad_xor (ad_x (xI p2)) (ad_x (xO p1))) (S n) =
+ adf_xor (ad_bit (ad_x p2)) (ad_bit (ad_x p1)) n)
+ in |- *.
+ rewrite <- H. simpl in |- *.
+ case (p_xor p2 p1); trivial.
+ intro. unfold adf_xor in |- *. unfold ad_bit at 3 in |- *. unfold ad_bit_1 in |- *. rewrite xorb_false. reflexivity.
+ case p. intros.
+ change
+ (ad_bit (ad_xor (ad_x (xO p2)) (ad_x (xI p1))) (S n) =
+ adf_xor (ad_bit (ad_x p2)) (ad_bit (ad_x p1)) n)
+ in |- *.
+ rewrite <- H. simpl in |- *.
+ case (p_xor p2 p1); trivial.
+ intros.
+ change
+ (ad_bit (ad_xor (ad_x (xO p2)) (ad_x (xO p1))) (S n) =
+ adf_xor (ad_bit (ad_x p2)) (ad_bit (ad_x p1)) n)
+ in |- *.
+ rewrite <- H. simpl in |- *.
+ case (p_xor p2 p1); trivial.
+ intro. unfold adf_xor in |- *. unfold ad_bit at 3 in |- *. unfold ad_bit_1 in |- *. rewrite xorb_false. reflexivity.
+ unfold adf_xor in |- *. unfold ad_bit at 2 in |- *. unfold ad_bit_1 in |- *. rewrite false_xorb. simpl in |- *. case p; trivial.
+Qed.
+
+Lemma ad_xor_semantics :
+ forall a a':ad, eqf (ad_bit (ad_xor a a')) (adf_xor (ad_bit a) (ad_bit a')).
+Proof.
+ unfold eqf in |- *. intros. generalize a a'. elim n. exact ad_xor_sem_5.
+ exact ad_xor_sem_6.
+Qed.
+
+Lemma eqf_sym : forall f f':nat -> bool, eqf f f' -> eqf f' f.
+Proof.
+ unfold eqf in |- *. intros. rewrite H. reflexivity.
+Qed.
+
+Lemma eqf_refl : forall f:nat -> bool, eqf f f.
+Proof.
+ unfold eqf in |- *. trivial.
+Qed.
+
+Lemma eqf_trans :
+ forall f f' f'':nat -> bool, eqf f f' -> eqf f' f'' -> eqf f f''.
+Proof.
+ unfold eqf in |- *. intros. rewrite H. exact (H0 n).
+Qed.
+
+Lemma adf_xor_eq :
+ forall f f':nat -> bool, eqf (adf_xor f f') (fun n:nat => false) -> eqf f f'.
+Proof.
+ unfold eqf in |- *. unfold adf_xor in |- *. intros. apply xorb_eq. apply H.
+Qed.
+
+Lemma ad_xor_eq : forall a a':ad, ad_xor a a' = ad_z -> a = a'.
+Proof.
+ intros. apply ad_faithful. apply adf_xor_eq. apply eqf_trans with (f' := ad_bit (ad_xor a a')).
+ apply eqf_sym. apply ad_xor_semantics.
+ rewrite H. unfold eqf in |- *. trivial.
+Qed.
+
+Lemma adf_xor_assoc :
+ forall f f' f'':nat -> bool,
+ eqf (adf_xor (adf_xor f f') f'') (adf_xor f (adf_xor f' f'')).
+Proof.
+ unfold eqf in |- *. unfold adf_xor in |- *. intros. apply xorb_assoc.
+Qed.
+
+Lemma eqf_xor_1 :
+ forall f f' f'' f''':nat -> bool,
+ eqf f f' -> eqf f'' f''' -> eqf (adf_xor f f'') (adf_xor f' f''').
+Proof.
+ unfold eqf in |- *. intros. unfold adf_xor in |- *. rewrite H. rewrite H0. reflexivity.
+Qed.
+
+Lemma ad_xor_assoc :
+ forall a a' a'':ad, ad_xor (ad_xor a a') a'' = ad_xor a (ad_xor a' a'').
+Proof.
+ intros. apply ad_faithful.
+ apply eqf_trans with
+ (f' := adf_xor (adf_xor (ad_bit a) (ad_bit a')) (ad_bit a'')).
+ apply eqf_trans with (f' := adf_xor (ad_bit (ad_xor a a')) (ad_bit a'')).
+ apply ad_xor_semantics.
+ apply eqf_xor_1. apply ad_xor_semantics.
+ apply eqf_refl.
+ apply eqf_trans with
+ (f' := adf_xor (ad_bit a) (adf_xor (ad_bit a') (ad_bit a''))).
+ apply adf_xor_assoc.
+ apply eqf_trans with (f' := adf_xor (ad_bit a) (ad_bit (ad_xor a' a''))).
+ apply eqf_xor_1. apply eqf_refl.
+ apply eqf_sym. apply ad_xor_semantics.
+ apply eqf_sym. apply ad_xor_semantics.
+Qed.
+
+Definition ad_double (a:ad) :=
+ match a with
+ | ad_z => ad_z
+ | ad_x p => ad_x (xO p)
+ end.
+
+Definition ad_double_plus_un (a:ad) :=
+ match a with
+ | ad_z => ad_x 1
+ | ad_x p => ad_x (xI p)
+ end.
+
+Definition ad_div_2 (a:ad) :=
+ match a with
+ | ad_z => ad_z
+ | ad_x xH => ad_z
+ | ad_x (xO p) => ad_x p
+ | ad_x (xI p) => ad_x p
+ end.
+
+Lemma ad_double_div_2 : forall a:ad, ad_div_2 (ad_double a) = a.
+Proof.
+ destruct a; trivial.
+Qed.
+
+Lemma ad_double_plus_un_div_2 :
+ forall a:ad, ad_div_2 (ad_double_plus_un a) = a.
+Proof.
+ destruct a; trivial.
+Qed.
+
+Lemma ad_double_inj : forall a0 a1:ad, ad_double a0 = ad_double a1 -> a0 = a1.
+Proof.
+ intros. rewrite <- (ad_double_div_2 a0). rewrite H. apply ad_double_div_2.
+Qed.
+
+Lemma ad_double_plus_un_inj :
+ forall a0 a1:ad, ad_double_plus_un a0 = ad_double_plus_un a1 -> a0 = a1.
+Proof.
+ intros. rewrite <- (ad_double_plus_un_div_2 a0). rewrite H. apply ad_double_plus_un_div_2.
+Qed.
+
+Definition ad_bit_0 (a:ad) :=
+ match a with
+ | ad_z => false
+ | ad_x (xO _) => false
+ | _ => true
+ end.
+
+Lemma ad_double_bit_0 : forall a:ad, ad_bit_0 (ad_double a) = false.
+Proof.
+ destruct a; trivial.
+Qed.
+
+Lemma ad_double_plus_un_bit_0 :
+ forall a:ad, ad_bit_0 (ad_double_plus_un a) = true.
+Proof.
+ destruct a; trivial.
+Qed.
+
+Lemma ad_div_2_double :
+ forall a:ad, ad_bit_0 a = false -> ad_double (ad_div_2 a) = a.
+Proof.
+ destruct a. trivial. destruct p. intro H. discriminate H.
+ intros. reflexivity.
+ intro H. discriminate H.
+Qed.
+
+Lemma ad_div_2_double_plus_un :
+ forall a:ad, ad_bit_0 a = true -> ad_double_plus_un (ad_div_2 a) = a.
+Proof.
+ destruct a. intro. discriminate H.
+ destruct p. intros. reflexivity.
+ intro H. discriminate H.
+ intro. reflexivity.
+Qed.
+
+Lemma ad_bit_0_correct : forall a:ad, ad_bit a 0 = ad_bit_0 a.
+Proof.
+ destruct a; trivial.
+ destruct p; trivial.
+Qed.
+
+Lemma ad_div_2_correct :
+ forall (a:ad) (n:nat), ad_bit (ad_div_2 a) n = ad_bit a (S n).
+Proof.
+ destruct a; trivial.
+ destruct p; trivial.
+Qed.
+
+Lemma ad_xor_bit_0 :
+ forall a a':ad, ad_bit_0 (ad_xor a a') = xorb (ad_bit_0 a) (ad_bit_0 a').
+Proof.
+ intros. rewrite <- ad_bit_0_correct. rewrite (ad_xor_semantics a a' 0).
+ unfold adf_xor in |- *. rewrite ad_bit_0_correct. rewrite ad_bit_0_correct. reflexivity.
+Qed.
+
+Lemma ad_xor_div_2 :
+ forall a a':ad, ad_div_2 (ad_xor a a') = ad_xor (ad_div_2 a) (ad_div_2 a').
+Proof.
+ intros. apply ad_faithful. unfold eqf in |- *. intro.
+ rewrite (ad_xor_semantics (ad_div_2 a) (ad_div_2 a') n).
+ rewrite ad_div_2_correct.
+ rewrite (ad_xor_semantics a a' (S n)).
+ unfold adf_xor in |- *. rewrite ad_div_2_correct. rewrite ad_div_2_correct.
+ reflexivity.
+Qed.
+
+Lemma ad_neg_bit_0 :
+ forall a a':ad,
+ ad_bit_0 (ad_xor a a') = true -> ad_bit_0 a = negb (ad_bit_0 a').
+Proof.
+ intros. rewrite <- true_xorb. rewrite <- H. rewrite ad_xor_bit_0.
+ rewrite xorb_assoc. rewrite xorb_nilpotent. rewrite xorb_false. reflexivity.
+Qed.
+
+Lemma ad_neg_bit_0_1 :
+ forall a a':ad, ad_xor a a' = ad_x 1 -> ad_bit_0 a = negb (ad_bit_0 a').
+Proof.
+ intros. apply ad_neg_bit_0. rewrite H. reflexivity.
+Qed.
+
+Lemma ad_neg_bit_0_2 :
+ forall (a a':ad) (p:positive),
+ ad_xor a a' = ad_x (xI p) -> ad_bit_0 a = negb (ad_bit_0 a').
+Proof.
+ intros. apply ad_neg_bit_0. rewrite H. reflexivity.
+Qed.
+
+Lemma ad_same_bit_0 :
+ forall (a a':ad) (p:positive),
+ ad_xor a a' = ad_x (xO p) -> ad_bit_0 a = ad_bit_0 a'.
+Proof.
+ intros. rewrite <- (xorb_false (ad_bit_0 a)). cut (ad_bit_0 (ad_x (xO p)) = false).
+ intro. rewrite <- H0. rewrite <- H. rewrite ad_xor_bit_0. rewrite <- xorb_assoc.
+ rewrite xorb_nilpotent. rewrite false_xorb. reflexivity.
+ reflexivity.
+Qed. \ No newline at end of file
diff --git a/theories/IntMap/Adist.v b/theories/IntMap/Adist.v
new file mode 100644
index 00000000..cdb4c885
--- /dev/null
+++ b/theories/IntMap/Adist.v
@@ -0,0 +1,336 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(*i $Id: Adist.v,v 1.9.2.1 2004/07/16 19:31:04 herbelin Exp $ i*)
+
+Require Import Bool.
+Require Import ZArith.
+Require Import Arith.
+Require Import Min.
+Require Import Addr.
+
+Fixpoint ad_plength_1 (p:positive) : nat :=
+ match p with
+ | xH => 0
+ | xI _ => 0
+ | xO p' => S (ad_plength_1 p')
+ end.
+
+Inductive natinf : Set :=
+ | infty : natinf
+ | ni : nat -> natinf.
+
+Definition ad_plength (a:ad) :=
+ match a with
+ | ad_z => infty
+ | ad_x p => ni (ad_plength_1 p)
+ end.
+
+Lemma ad_plength_infty : forall a:ad, ad_plength a = infty -> a = ad_z.
+Proof.
+ simple induction a; trivial.
+ unfold ad_plength in |- *; intros; discriminate H.
+Qed.
+
+Lemma ad_plength_zeros :
+ forall (a:ad) (n:nat),
+ ad_plength a = ni n -> forall k:nat, k < n -> ad_bit a k = false.
+Proof.
+ simple induction a; trivial.
+ simple induction p. simple induction n. intros. inversion H1.
+ simple induction k. simpl in H1. discriminate H1.
+ intros. simpl in H1. discriminate H1.
+ simple induction k. trivial.
+ generalize H0. case n. intros. inversion H3.
+ intros. simpl in |- *. unfold ad_bit in H. apply (H n0). simpl in H1. inversion H1. reflexivity.
+ exact (lt_S_n n1 n0 H3).
+ simpl in |- *. intros n H. inversion H. intros. inversion H0.
+Qed.
+
+Lemma ad_plength_one :
+ forall (a:ad) (n:nat), ad_plength a = ni n -> ad_bit a n = true.
+Proof.
+ simple induction a. intros. inversion H.
+ simple induction p. intros. simpl in H0. inversion H0. reflexivity.
+ intros. simpl in H0. inversion H0. simpl in |- *. unfold ad_bit in H. apply H. reflexivity.
+ intros. simpl in H. inversion H. reflexivity.
+Qed.
+
+Lemma ad_plength_first_one :
+ forall (a:ad) (n:nat),
+ (forall k:nat, k < n -> ad_bit a k = false) ->
+ ad_bit a n = true -> ad_plength a = ni n.
+Proof.
+ simple induction a. intros. simpl in H0. discriminate H0.
+ simple induction p. intros. generalize H0. case n. intros. reflexivity.
+ intros. absurd (ad_bit (ad_x (xI p0)) 0 = false). trivial with bool.
+ auto with bool arith.
+ intros. generalize H0 H1. case n. intros. simpl in H3. discriminate H3.
+ intros. simpl in |- *. unfold ad_plength in H.
+ cut (ni (ad_plength_1 p0) = ni n0). intro. inversion H4. reflexivity.
+ apply H. intros. change (ad_bit (ad_x (xO p0)) (S k) = false) in |- *. apply H2. apply lt_n_S. exact H4.
+ exact H3.
+ intro. case n. trivial.
+ intros. simpl in H0. discriminate H0.
+Qed.
+
+Definition ni_min (d d':natinf) :=
+ match d with
+ | infty => d'
+ | ni n => match d' with
+ | infty => d
+ | ni n' => ni (min n n')
+ end
+ end.
+
+Lemma ni_min_idemp : forall d:natinf, ni_min d d = d.
+Proof.
+ simple induction d; trivial.
+ unfold ni_min in |- *.
+ simple induction n; trivial.
+ intros.
+ simpl in |- *.
+ inversion H.
+ rewrite H1.
+ rewrite H1.
+ reflexivity.
+Qed.
+
+Lemma ni_min_comm : forall d d':natinf, ni_min d d' = ni_min d' d.
+Proof.
+ simple induction d. simple induction d'; trivial.
+ simple induction d'; trivial. elim n. simple induction n0; trivial.
+ intros. elim n1; trivial. intros. unfold ni_min in H. cut (min n0 n2 = min n2 n0).
+ intro. unfold ni_min in |- *. simpl in |- *. rewrite H1. reflexivity.
+ cut (ni (min n0 n2) = ni (min n2 n0)). intros.
+ inversion H1; trivial.
+ exact (H n2).
+Qed.
+
+Lemma ni_min_assoc :
+ forall d d' d'':natinf, ni_min (ni_min d d') d'' = ni_min d (ni_min d' d'').
+Proof.
+ simple induction d; trivial. simple induction d'; trivial.
+ simple induction d''; trivial.
+ unfold ni_min in |- *. intro. cut (min (min n n0) n1 = min n (min n0 n1)).
+ intro. rewrite H. reflexivity.
+ generalize n0 n1. elim n; trivial.
+ simple induction n3; trivial. simple induction n5; trivial.
+ intros. simpl in |- *. auto.
+Qed.
+
+Lemma ni_min_O_l : forall d:natinf, ni_min (ni 0) d = ni 0.
+Proof.
+ simple induction d; trivial.
+Qed.
+
+Lemma ni_min_O_r : forall d:natinf, ni_min d (ni 0) = ni 0.
+Proof.
+ intros. rewrite ni_min_comm. apply ni_min_O_l.
+Qed.
+
+Lemma ni_min_inf_l : forall d:natinf, ni_min infty d = d.
+Proof.
+ trivial.
+Qed.
+
+Lemma ni_min_inf_r : forall d:natinf, ni_min d infty = d.
+Proof.
+ simple induction d; trivial.
+Qed.
+
+Definition ni_le (d d':natinf) := ni_min d d' = d.
+
+Lemma ni_le_refl : forall d:natinf, ni_le d d.
+Proof.
+ exact ni_min_idemp.
+Qed.
+
+Lemma ni_le_antisym : forall d d':natinf, ni_le d d' -> ni_le d' d -> d = d'.
+Proof.
+ unfold ni_le in |- *. intros d d'. rewrite ni_min_comm. intro H. rewrite H. trivial.
+Qed.
+
+Lemma ni_le_trans :
+ forall d d' d'':natinf, ni_le d d' -> ni_le d' d'' -> ni_le d d''.
+Proof.
+ unfold ni_le in |- *. intros. rewrite <- H. rewrite ni_min_assoc. rewrite H0. reflexivity.
+Qed.
+
+Lemma ni_le_min_1 : forall d d':natinf, ni_le (ni_min d d') d.
+Proof.
+ unfold ni_le in |- *. intros. rewrite (ni_min_comm d d'). rewrite ni_min_assoc.
+ rewrite ni_min_idemp. reflexivity.
+Qed.
+
+Lemma ni_le_min_2 : forall d d':natinf, ni_le (ni_min d d') d'.
+Proof.
+ unfold ni_le in |- *. intros. rewrite ni_min_assoc. rewrite ni_min_idemp. reflexivity.
+Qed.
+
+Lemma ni_min_case : forall d d':natinf, ni_min d d' = d \/ ni_min d d' = d'.
+Proof.
+ simple induction d. intro. right. exact (ni_min_inf_l d').
+ simple induction d'. left. exact (ni_min_inf_r (ni n)).
+ unfold ni_min in |- *. cut (forall n0:nat, min n n0 = n \/ min n n0 = n0).
+ intros. case (H n0). intro. left. rewrite H0. reflexivity.
+ intro. right. rewrite H0. reflexivity.
+ elim n. intro. left. reflexivity.
+ simple induction n1. right. reflexivity.
+ intros. case (H n2). intro. left. simpl in |- *. rewrite H1. reflexivity.
+ intro. right. simpl in |- *. rewrite H1. reflexivity.
+Qed.
+
+Lemma ni_le_total : forall d d':natinf, ni_le d d' \/ ni_le d' d.
+Proof.
+ unfold ni_le in |- *. intros. rewrite (ni_min_comm d' d). apply ni_min_case.
+Qed.
+
+Lemma ni_le_min_induc :
+ forall d d' dm:natinf,
+ ni_le dm d ->
+ ni_le dm d' ->
+ (forall d'':natinf, ni_le d'' d -> ni_le d'' d' -> ni_le d'' dm) ->
+ ni_min d d' = dm.
+Proof.
+ intros. case (ni_min_case d d'). intro. rewrite H2.
+ apply ni_le_antisym. apply H1. apply ni_le_refl.
+ exact H2.
+ exact H.
+ intro. rewrite H2. apply ni_le_antisym. apply H1. unfold ni_le in |- *. rewrite ni_min_comm. exact H2.
+ apply ni_le_refl.
+ exact H0.
+Qed.
+
+Lemma le_ni_le : forall m n:nat, m <= n -> ni_le (ni m) (ni n).
+Proof.
+ cut (forall m n:nat, m <= n -> min m n = m).
+ intros. unfold ni_le, ni_min in |- *. rewrite (H m n H0). reflexivity.
+ simple induction m. trivial.
+ simple induction n0. intro. inversion H0.
+ intros. simpl in |- *. rewrite (H n1 (le_S_n n n1 H1)). reflexivity.
+Qed.
+
+Lemma ni_le_le : forall m n:nat, ni_le (ni m) (ni n) -> m <= n.
+Proof.
+ unfold ni_le in |- *. unfold ni_min in |- *. intros. inversion H. apply le_min_r.
+Qed.
+
+Lemma ad_plength_lb :
+ forall (a:ad) (n:nat),
+ (forall k:nat, k < n -> ad_bit a k = false) -> ni_le (ni n) (ad_plength a).
+Proof.
+ simple induction a. intros. exact (ni_min_inf_r (ni n)).
+ intros. unfold ad_plength in |- *. apply le_ni_le. case (le_or_lt n (ad_plength_1 p)). trivial.
+ intro. absurd (ad_bit (ad_x p) (ad_plength_1 p) = false).
+ rewrite
+ (ad_plength_one (ad_x p) (ad_plength_1 p)
+ (refl_equal (ad_plength (ad_x p)))).
+ discriminate.
+ apply H. exact H0.
+Qed.
+
+Lemma ad_plength_ub :
+ forall (a:ad) (n:nat), ad_bit a n = true -> ni_le (ad_plength a) (ni n).
+Proof.
+ simple induction a. intros. discriminate H.
+ intros. unfold ad_plength in |- *. apply le_ni_le. case (le_or_lt (ad_plength_1 p) n). trivial.
+ intro. absurd (ad_bit (ad_x p) n = true).
+ rewrite
+ (ad_plength_zeros (ad_x p) (ad_plength_1 p)
+ (refl_equal (ad_plength (ad_x p))) n H0).
+ discriminate.
+ exact H.
+Qed.
+
+
+(** We define an ultrametric distance between addresses:
+ $d(a,a')=1/2^pd(a,a')$,
+ where $pd(a,a')$ is the number of identical bits at the beginning
+ of $a$ and $a'$ (infinity if $a=a'$).
+ Instead of working with $d$, we work with $pd$, namely
+ [ad_pdist]: *)
+
+Definition ad_pdist (a a':ad) := ad_plength (ad_xor a a').
+
+(** d is a distance, so $d(a,a')=0$ iff $a=a'$; this means that
+ $pd(a,a')=infty$ iff $a=a'$: *)
+
+Lemma ad_pdist_eq_1 : forall a:ad, ad_pdist a a = infty.
+Proof.
+ intros. unfold ad_pdist in |- *. rewrite ad_xor_nilpotent. reflexivity.
+Qed.
+
+Lemma ad_pdist_eq_2 : forall a a':ad, ad_pdist a a' = infty -> a = a'.
+Proof.
+ intros. apply ad_xor_eq. apply ad_plength_infty. exact H.
+Qed.
+
+(** $d$ is a distance, so $d(a,a')=d(a',a)$: *)
+
+Lemma ad_pdist_comm : forall a a':ad, ad_pdist a a' = ad_pdist a' a.
+Proof.
+ unfold ad_pdist in |- *. intros. rewrite ad_xor_comm. reflexivity.
+Qed.
+
+(** $d$ is an ultrametric distance, that is, not only $d(a,a')\leq
+ d(a,a'')+d(a'',a')$,
+ but in fact $d(a,a')\leq max(d(a,a''),d(a'',a'))$.
+ This means that $min(pd(a,a''),pd(a'',a'))<=pd(a,a')$ (lemma [ad_pdist_ultra] below).
+ This follows from the fact that $a ~Ra~|a| = 1/2^{\texttt{ad\_plength}}(a))$
+ is an ultrametric norm, i.e. that $|a-a'| \leq max (|a-a''|, |a''-a'|)$,
+ or equivalently that $|a+b|<=max(|a|,|b|)$, i.e. that
+ min $(\texttt{ad\_plength}(a), \texttt{ad\_plength}(b)) \leq
+ \texttt{ad\_plength} (a~\texttt{xor}~ b)$
+ (lemma [ad_plength_ultra]).
+*)
+
+Lemma ad_plength_ultra_1 :
+ forall a a':ad,
+ ni_le (ad_plength a) (ad_plength a') ->
+ ni_le (ad_plength a) (ad_plength (ad_xor a a')).
+Proof.
+ simple induction a. intros. unfold ni_le in H. unfold ad_plength at 1 3 in H.
+ rewrite (ni_min_inf_l (ad_plength a')) in H.
+ rewrite (ad_plength_infty a' H). simpl in |- *. apply ni_le_refl.
+ intros. unfold ad_plength at 1 in |- *. apply ad_plength_lb. intros.
+ cut (forall a'':ad, ad_xor (ad_x p) a' = a'' -> ad_bit a'' k = false).
+ intros. apply H1. reflexivity.
+ intro a''. case a''. intro. reflexivity.
+ intros. rewrite <- H1. rewrite (ad_xor_semantics (ad_x p) a' k). unfold adf_xor in |- *.
+ rewrite
+ (ad_plength_zeros (ad_x p) (ad_plength_1 p)
+ (refl_equal (ad_plength (ad_x p))) k H0).
+ generalize H. case a'. trivial.
+ intros. cut (ad_bit (ad_x p1) k = false). intros. rewrite H3. reflexivity.
+ apply ad_plength_zeros with (n := ad_plength_1 p1). reflexivity.
+ apply (lt_le_trans k (ad_plength_1 p) (ad_plength_1 p1)). exact H0.
+ apply ni_le_le. exact H2.
+Qed.
+
+Lemma ad_plength_ultra :
+ forall a a':ad,
+ ni_le (ni_min (ad_plength a) (ad_plength a')) (ad_plength (ad_xor a a')).
+Proof.
+ intros. case (ni_le_total (ad_plength a) (ad_plength a')). intro.
+ cut (ni_min (ad_plength a) (ad_plength a') = ad_plength a).
+ intro. rewrite H0. apply ad_plength_ultra_1. exact H.
+ exact H.
+ intro. cut (ni_min (ad_plength a) (ad_plength a') = ad_plength a').
+ intro. rewrite H0. rewrite ad_xor_comm. apply ad_plength_ultra_1. exact H.
+ rewrite ni_min_comm. exact H.
+Qed.
+
+Lemma ad_pdist_ultra :
+ forall a a' a'':ad,
+ ni_le (ni_min (ad_pdist a a'') (ad_pdist a'' a')) (ad_pdist a a').
+Proof.
+ intros. unfold ad_pdist in |- *. cut (ad_xor (ad_xor a a'') (ad_xor a'' a') = ad_xor a a').
+ intro. rewrite <- H. apply ad_plength_ultra.
+ rewrite ad_xor_assoc. rewrite <- (ad_xor_assoc a'' a'' a'). rewrite ad_xor_nilpotent.
+ rewrite ad_xor_neutral_left. reflexivity.
+Qed. \ No newline at end of file
diff --git a/theories/IntMap/Allmaps.v b/theories/IntMap/Allmaps.v
new file mode 100644
index 00000000..68744220
--- /dev/null
+++ b/theories/IntMap/Allmaps.v
@@ -0,0 +1,26 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(*i $Id: Allmaps.v,v 1.3.2.1 2004/07/16 19:31:04 herbelin Exp $ i*)
+
+Require Export Addr.
+Require Export Adist.
+Require Export Addec.
+Require Export Map.
+
+Require Export Fset.
+Require Export Mapaxioms.
+Require Export Mapiter.
+
+Require Export Mapsubset.
+Require Export Lsort.
+Require Export Mapfold.
+Require Export Mapcard.
+Require Export Mapcanon.
+Require Export Mapc.
+Require Export Maplists.
+Require Export Adalloc. \ No newline at end of file
diff --git a/theories/IntMap/Fset.v b/theories/IntMap/Fset.v
new file mode 100644
index 00000000..8d217be9
--- /dev/null
+++ b/theories/IntMap/Fset.v
@@ -0,0 +1,371 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(*i $Id: Fset.v,v 1.5.2.1 2004/07/16 19:31:04 herbelin Exp $ i*)
+
+(*s Sets operations on maps *)
+
+Require Import Bool.
+Require Import Sumbool.
+Require Import ZArith.
+Require Import Addr.
+Require Import Adist.
+Require Import Addec.
+Require Import Map.
+
+Section Dom.
+
+ Variables A B : Set.
+
+ Fixpoint MapDomRestrTo (m:Map A) : Map B -> Map A :=
+ match m with
+ | M0 => fun _:Map B => M0 A
+ | M1 a y =>
+ fun m':Map B => match MapGet B m' a with
+ | NONE => M0 A
+ | _ => m
+ end
+ | M2 m1 m2 =>
+ fun m':Map B =>
+ match m' with
+ | M0 => M0 A
+ | M1 a' y' =>
+ match MapGet A m a' with
+ | NONE => M0 A
+ | SOME y => M1 A a' y
+ end
+ | M2 m'1 m'2 =>
+ makeM2 A (MapDomRestrTo m1 m'1) (MapDomRestrTo m2 m'2)
+ end
+ end.
+
+ Lemma MapDomRestrTo_semantics :
+ forall (m:Map A) (m':Map B),
+ eqm A (MapGet A (MapDomRestrTo m m'))
+ (fun a0:ad =>
+ match MapGet B m' a0 with
+ | NONE => NONE A
+ | _ => MapGet A m a0
+ end).
+ Proof.
+ unfold eqm in |- *. simple induction m. simpl in |- *. intros. case (MapGet B m' a); trivial.
+ intros. simpl in |- *. elim (sumbool_of_bool (ad_eq a a1)). intro H. rewrite H.
+ rewrite <- (ad_eq_complete _ _ H). case (MapGet B m' a). reflexivity.
+ intro. apply M1_semantics_1.
+ intro H. rewrite H. case (MapGet B m' a).
+ case (MapGet B m' a1); reflexivity.
+ case (MapGet B m' a1); intros; exact (M1_semantics_2 A a a1 a0 H).
+ simple induction m'. trivial.
+ unfold MapDomRestrTo in |- *. intros. elim (sumbool_of_bool (ad_eq a a1)).
+ intro H1.
+ rewrite (ad_eq_complete _ _ H1). rewrite (M1_semantics_1 B a1 a0).
+ case (MapGet A (M2 A m0 m1) a1). reflexivity.
+ intro. apply M1_semantics_1.
+ intro H1. rewrite (M1_semantics_2 B a a1 a0 H1). case (MapGet A (M2 A m0 m1) a). reflexivity.
+ intro. exact (M1_semantics_2 A a a1 a2 H1).
+ intros. change
+ (MapGet A (makeM2 A (MapDomRestrTo m0 m2) (MapDomRestrTo m1 m3)) a =
+ match MapGet B (M2 B m2 m3) a with
+ | NONE => NONE A
+ | SOME _ => MapGet A (M2 A m0 m1) a
+ end) in |- *.
+ rewrite (makeM2_M2 A (MapDomRestrTo m0 m2) (MapDomRestrTo m1 m3) a).
+ rewrite MapGet_M2_bit_0_if. rewrite (H0 m3 (ad_div_2 a)). rewrite (H m2 (ad_div_2 a)).
+ rewrite (MapGet_M2_bit_0_if B m2 m3 a). rewrite (MapGet_M2_bit_0_if A m0 m1 a).
+ case (ad_bit_0 a); reflexivity.
+ Qed.
+
+ Fixpoint MapDomRestrBy (m:Map A) : Map B -> Map A :=
+ match m with
+ | M0 => fun _:Map B => M0 A
+ | M1 a y =>
+ fun m':Map B => match MapGet B m' a with
+ | NONE => m
+ | _ => M0 A
+ end
+ | M2 m1 m2 =>
+ fun m':Map B =>
+ match m' with
+ | M0 => m
+ | M1 a' y' => MapRemove A m a'
+ | M2 m'1 m'2 =>
+ makeM2 A (MapDomRestrBy m1 m'1) (MapDomRestrBy m2 m'2)
+ end
+ end.
+
+ Lemma MapDomRestrBy_semantics :
+ forall (m:Map A) (m':Map B),
+ eqm A (MapGet A (MapDomRestrBy m m'))
+ (fun a0:ad =>
+ match MapGet B m' a0 with
+ | NONE => MapGet A m a0
+ | _ => NONE A
+ end).
+ Proof.
+ unfold eqm in |- *. simple induction m. simpl in |- *. intros. case (MapGet B m' a); trivial.
+ intros. simpl in |- *. elim (sumbool_of_bool (ad_eq a a1)). intro H. rewrite H.
+ rewrite (ad_eq_complete _ _ H). case (MapGet B m' a1). apply M1_semantics_1.
+ trivial.
+ intro H. rewrite H. case (MapGet B m' a). rewrite (M1_semantics_2 A a a1 a0 H).
+ case (MapGet B m' a1); trivial.
+ case (MapGet B m' a1); trivial.
+ simple induction m'. trivial.
+ unfold MapDomRestrBy in |- *. intros. rewrite (MapRemove_semantics A (M2 A m0 m1) a a1).
+ elim (sumbool_of_bool (ad_eq a a1)). intro H1. rewrite H1. rewrite (ad_eq_complete _ _ H1).
+ rewrite (M1_semantics_1 B a1 a0). reflexivity.
+ intro H1. rewrite H1. rewrite (M1_semantics_2 B a a1 a0 H1). reflexivity.
+ intros. change
+ (MapGet A (makeM2 A (MapDomRestrBy m0 m2) (MapDomRestrBy m1 m3)) a =
+ match MapGet B (M2 B m2 m3) a with
+ | NONE => MapGet A (M2 A m0 m1) a
+ | SOME _ => NONE A
+ end) in |- *.
+ rewrite (makeM2_M2 A (MapDomRestrBy m0 m2) (MapDomRestrBy m1 m3) a).
+ rewrite MapGet_M2_bit_0_if. rewrite (H0 m3 (ad_div_2 a)). rewrite (H m2 (ad_div_2 a)).
+ rewrite (MapGet_M2_bit_0_if B m2 m3 a). rewrite (MapGet_M2_bit_0_if A m0 m1 a).
+ case (ad_bit_0 a); reflexivity.
+ Qed.
+
+ Definition in_dom (a:ad) (m:Map A) :=
+ match MapGet A m a with
+ | NONE => false
+ | _ => true
+ end.
+
+ Lemma in_dom_M0 : forall a:ad, in_dom a (M0 A) = false.
+ Proof.
+ trivial.
+ Qed.
+
+ Lemma in_dom_M1 : forall (a a0:ad) (y:A), in_dom a0 (M1 A a y) = ad_eq a a0.
+ Proof.
+ unfold in_dom in |- *. intros. simpl in |- *. case (ad_eq a a0); reflexivity.
+ Qed.
+
+ Lemma in_dom_M1_1 : forall (a:ad) (y:A), in_dom a (M1 A a y) = true.
+ Proof.
+ intros. rewrite in_dom_M1. apply ad_eq_correct.
+ Qed.
+
+ Lemma in_dom_M1_2 :
+ forall (a a0:ad) (y:A), in_dom a0 (M1 A a y) = true -> a = a0.
+ Proof.
+ intros. apply (ad_eq_complete a a0). rewrite (in_dom_M1 a a0 y) in H. assumption.
+ Qed.
+
+ Lemma in_dom_some :
+ forall (m:Map A) (a:ad),
+ in_dom a m = true -> {y : A | MapGet A m a = SOME A y}.
+ Proof.
+ unfold in_dom in |- *. intros. elim (option_sum _ (MapGet A m a)). trivial.
+ intro H0. rewrite H0 in H. discriminate H.
+ Qed.
+
+ Lemma in_dom_none :
+ forall (m:Map A) (a:ad), in_dom a m = false -> MapGet A m a = NONE A.
+ Proof.
+ unfold in_dom in |- *. intros. elim (option_sum _ (MapGet A m a)). intro H0. elim H0.
+ intros y H1. rewrite H1 in H. discriminate H.
+ trivial.
+ Qed.
+
+ Lemma in_dom_put :
+ forall (m:Map A) (a0:ad) (y0:A) (a:ad),
+ in_dom a (MapPut A m a0 y0) = orb (ad_eq a a0) (in_dom a m).
+ Proof.
+ unfold in_dom in |- *. intros. rewrite (MapPut_semantics A m a0 y0 a).
+ elim (sumbool_of_bool (ad_eq a a0)). intro H. rewrite H. rewrite (ad_eq_comm a a0) in H.
+ rewrite H. rewrite orb_true_b. reflexivity.
+ intro H. rewrite H. rewrite (ad_eq_comm a a0) in H. rewrite H. rewrite orb_false_b.
+ reflexivity.
+ Qed.
+
+ Lemma in_dom_put_behind :
+ forall (m:Map A) (a0:ad) (y0:A) (a:ad),
+ in_dom a (MapPut_behind A m a0 y0) = orb (ad_eq a a0) (in_dom a m).
+ Proof.
+ unfold in_dom in |- *. intros. rewrite (MapPut_behind_semantics A m a0 y0 a).
+ elim (sumbool_of_bool (ad_eq a a0)). intro H. rewrite H. rewrite (ad_eq_comm a a0) in H.
+ rewrite H. case (MapGet A m a); reflexivity.
+ intro H. rewrite H. rewrite (ad_eq_comm a a0) in H. rewrite H. case (MapGet A m a); trivial.
+ Qed.
+
+ Lemma in_dom_remove :
+ forall (m:Map A) (a0 a:ad),
+ in_dom a (MapRemove A m a0) = andb (negb (ad_eq a a0)) (in_dom a m).
+ Proof.
+ unfold in_dom in |- *. intros. rewrite (MapRemove_semantics A m a0 a).
+ elim (sumbool_of_bool (ad_eq a a0)). intro H. rewrite H. rewrite (ad_eq_comm a a0) in H.
+ rewrite H. reflexivity.
+ intro H. rewrite H. rewrite (ad_eq_comm a a0) in H. rewrite H.
+ case (MapGet A m a); reflexivity.
+ Qed.
+
+ Lemma in_dom_merge :
+ forall (m m':Map A) (a:ad),
+ in_dom a (MapMerge A m m') = orb (in_dom a m) (in_dom a m').
+ Proof.
+ unfold in_dom in |- *. intros. rewrite (MapMerge_semantics A m m' a).
+ elim (option_sum A (MapGet A m' a)). intro H. elim H. intros y H0. rewrite H0.
+ case (MapGet A m a); reflexivity.
+ intro H. rewrite H. rewrite orb_b_false. reflexivity.
+ Qed.
+
+ Lemma in_dom_delta :
+ forall (m m':Map A) (a:ad),
+ in_dom a (MapDelta A m m') = xorb (in_dom a m) (in_dom a m').
+ Proof.
+ unfold in_dom in |- *. intros. rewrite (MapDelta_semantics A m m' a).
+ elim (option_sum A (MapGet A m' a)). intro H. elim H. intros y H0. rewrite H0.
+ case (MapGet A m a); reflexivity.
+ intro H. rewrite H. case (MapGet A m a); reflexivity.
+ Qed.
+
+End Dom.
+
+Section InDom.
+
+ Variables A B : Set.
+
+ Lemma in_dom_restrto :
+ forall (m:Map A) (m':Map B) (a:ad),
+ in_dom A a (MapDomRestrTo A B m m') =
+ andb (in_dom A a m) (in_dom B a m').
+ Proof.
+ unfold in_dom in |- *. intros. rewrite (MapDomRestrTo_semantics A B m m' a).
+ elim (option_sum B (MapGet B m' a)). intro H. elim H. intros y H0. rewrite H0.
+ rewrite andb_b_true. reflexivity.
+ intro H. rewrite H. rewrite andb_b_false. reflexivity.
+ Qed.
+
+ Lemma in_dom_restrby :
+ forall (m:Map A) (m':Map B) (a:ad),
+ in_dom A a (MapDomRestrBy A B m m') =
+ andb (in_dom A a m) (negb (in_dom B a m')).
+ Proof.
+ unfold in_dom in |- *. intros. rewrite (MapDomRestrBy_semantics A B m m' a).
+ elim (option_sum B (MapGet B m' a)). intro H. elim H. intros y H0. rewrite H0.
+ unfold negb in |- *. rewrite andb_b_false. reflexivity.
+ intro H. rewrite H. unfold negb in |- *. rewrite andb_b_true. reflexivity.
+ Qed.
+
+End InDom.
+
+Definition FSet := Map unit.
+
+Section FSetDefs.
+
+ Variable A : Set.
+
+ Definition in_FSet : ad -> FSet -> bool := in_dom unit.
+
+ Fixpoint MapDom (m:Map A) : FSet :=
+ match m with
+ | M0 => M0 unit
+ | M1 a _ => M1 unit a tt
+ | M2 m m' => M2 unit (MapDom m) (MapDom m')
+ end.
+
+ Lemma MapDom_semantics_1 :
+ forall (m:Map A) (a:ad) (y:A),
+ MapGet A m a = SOME A y -> in_FSet a (MapDom m) = true.
+ Proof.
+ simple induction m. intros. discriminate H.
+ unfold MapDom in |- *. unfold in_FSet in |- *. unfold in_dom in |- *. unfold MapGet in |- *. intros a y a0 y0.
+ case (ad_eq a a0). trivial.
+ intro. discriminate H.
+ intros m0 H m1 H0 a y. rewrite (MapGet_M2_bit_0_if A m0 m1 a). simpl in |- *. unfold in_FSet in |- *.
+ unfold in_dom in |- *. rewrite (MapGet_M2_bit_0_if unit (MapDom m0) (MapDom m1) a).
+ case (ad_bit_0 a). unfold in_FSet, in_dom in H0. intro. apply H0 with (y := y). assumption.
+ unfold in_FSet, in_dom in H. intro. apply H with (y := y). assumption.
+ Qed.
+
+ Lemma MapDom_semantics_2 :
+ forall (m:Map A) (a:ad),
+ in_FSet a (MapDom m) = true -> {y : A | MapGet A m a = SOME A y}.
+ Proof.
+ simple induction m. intros. discriminate H.
+ unfold MapDom in |- *. unfold in_FSet in |- *. unfold in_dom in |- *. unfold MapGet in |- *. intros a y a0. case (ad_eq a a0).
+ intro. split with y. reflexivity.
+ intro. discriminate H.
+ intros m0 H m1 H0 a. rewrite (MapGet_M2_bit_0_if A m0 m1 a). simpl in |- *. unfold in_FSet in |- *.
+ unfold in_dom in |- *. rewrite (MapGet_M2_bit_0_if unit (MapDom m0) (MapDom m1) a).
+ case (ad_bit_0 a). unfold in_FSet, in_dom in H0. intro. apply H0. assumption.
+ unfold in_FSet, in_dom in H. intro. apply H. assumption.
+ Qed.
+
+ Lemma MapDom_semantics_3 :
+ forall (m:Map A) (a:ad),
+ MapGet A m a = NONE A -> in_FSet a (MapDom m) = false.
+ Proof.
+ intros. elim (sumbool_of_bool (in_FSet a (MapDom m))). intro H0.
+ elim (MapDom_semantics_2 m a H0). intros y H1. rewrite H in H1. discriminate H1.
+ trivial.
+ Qed.
+
+ Lemma MapDom_semantics_4 :
+ forall (m:Map A) (a:ad),
+ in_FSet a (MapDom m) = false -> MapGet A m a = NONE A.
+ Proof.
+ intros. elim (option_sum A (MapGet A m a)). intro H0. elim H0. intros y H1.
+ rewrite (MapDom_semantics_1 m a y H1) in H. discriminate H.
+ trivial.
+ Qed.
+
+ Lemma MapDom_Dom :
+ forall (m:Map A) (a:ad), in_dom A a m = in_FSet a (MapDom m).
+ Proof.
+ intros. elim (sumbool_of_bool (in_FSet a (MapDom m))). intro H.
+ elim (MapDom_semantics_2 m a H). intros y H0. rewrite H. unfold in_dom in |- *. rewrite H0.
+ reflexivity.
+ intro H. rewrite H. unfold in_dom in |- *. rewrite (MapDom_semantics_4 m a H). reflexivity.
+ Qed.
+
+ Definition FSetUnion (s s':FSet) : FSet := MapMerge unit s s'.
+
+ Lemma in_FSet_union :
+ forall (s s':FSet) (a:ad),
+ in_FSet a (FSetUnion s s') = orb (in_FSet a s) (in_FSet a s').
+ Proof.
+ exact (in_dom_merge unit).
+ Qed.
+
+ Definition FSetInter (s s':FSet) : FSet := MapDomRestrTo unit unit s s'.
+
+ Lemma in_FSet_inter :
+ forall (s s':FSet) (a:ad),
+ in_FSet a (FSetInter s s') = andb (in_FSet a s) (in_FSet a s').
+ Proof.
+ exact (in_dom_restrto unit unit).
+ Qed.
+
+ Definition FSetDiff (s s':FSet) : FSet := MapDomRestrBy unit unit s s'.
+
+ Lemma in_FSet_diff :
+ forall (s s':FSet) (a:ad),
+ in_FSet a (FSetDiff s s') = andb (in_FSet a s) (negb (in_FSet a s')).
+ Proof.
+ exact (in_dom_restrby unit unit).
+ Qed.
+
+ Definition FSetDelta (s s':FSet) : FSet := MapDelta unit s s'.
+
+ Lemma in_FSet_delta :
+ forall (s s':FSet) (a:ad),
+ in_FSet a (FSetDelta s s') = xorb (in_FSet a s) (in_FSet a s').
+ Proof.
+ exact (in_dom_delta unit).
+ Qed.
+
+End FSetDefs.
+
+Lemma FSet_Dom : forall s:FSet, MapDom unit s = s.
+Proof.
+ simple induction s. trivial.
+ simpl in |- *. intros a t. elim t. reflexivity.
+ intros. simpl in |- *. rewrite H. rewrite H0. reflexivity.
+Qed. \ No newline at end of file
diff --git a/theories/IntMap/Lsort.v b/theories/IntMap/Lsort.v
new file mode 100644
index 00000000..48972872
--- /dev/null
+++ b/theories/IntMap/Lsort.v
@@ -0,0 +1,628 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(*i $Id: Lsort.v,v 1.4.2.1 2004/07/16 19:31:04 herbelin Exp $ i*)
+
+Require Import Bool.
+Require Import Sumbool.
+Require Import Arith.
+Require Import ZArith.
+Require Import Addr.
+Require Import Adist.
+Require Import Addec.
+Require Import Map.
+Require Import List.
+Require Import Mapiter.
+
+Section LSort.
+
+ Variable A : Set.
+
+ Fixpoint ad_less_1 (a a':ad) (p:positive) {struct p} : bool :=
+ match p with
+ | xO p' => ad_less_1 (ad_div_2 a) (ad_div_2 a') p'
+ | _ => andb (negb (ad_bit_0 a)) (ad_bit_0 a')
+ end.
+
+ Definition ad_less (a a':ad) :=
+ match ad_xor a a' with
+ | ad_z => false
+ | ad_x p => ad_less_1 a a' p
+ end.
+
+ Lemma ad_bit_0_less :
+ forall a a':ad,
+ ad_bit_0 a = false -> ad_bit_0 a' = true -> ad_less a a' = true.
+ Proof.
+ intros. elim (ad_sum (ad_xor a a')). intro H1. elim H1. intros p H2. unfold ad_less in |- *.
+ rewrite H2. generalize H2. elim p. intros. simpl in |- *. rewrite H. rewrite H0. reflexivity.
+ intros. cut (ad_bit_0 (ad_xor a a') = false). intro. rewrite (ad_xor_bit_0 a a') in H5.
+ rewrite H in H5. rewrite H0 in H5. discriminate H5.
+ rewrite H4. reflexivity.
+ intro. simpl in |- *. rewrite H. rewrite H0. reflexivity.
+ intro H1. cut (ad_bit_0 (ad_xor a a') = false). intro. rewrite (ad_xor_bit_0 a a') in H2.
+ rewrite H in H2. rewrite H0 in H2. discriminate H2.
+ rewrite H1. reflexivity.
+ Qed.
+
+ Lemma ad_bit_0_gt :
+ forall a a':ad,
+ ad_bit_0 a = true -> ad_bit_0 a' = false -> ad_less a a' = false.
+ Proof.
+ intros. elim (ad_sum (ad_xor a a')). intro H1. elim H1. intros p H2. unfold ad_less in |- *.
+ rewrite H2. generalize H2. elim p. intros. simpl in |- *. rewrite H. rewrite H0. reflexivity.
+ intros. cut (ad_bit_0 (ad_xor a a') = false). intro. rewrite (ad_xor_bit_0 a a') in H5.
+ rewrite H in H5. rewrite H0 in H5. discriminate H5.
+ rewrite H4. reflexivity.
+ intro. simpl in |- *. rewrite H. rewrite H0. reflexivity.
+ intro H1. unfold ad_less in |- *. rewrite H1. reflexivity.
+ Qed.
+
+ Lemma ad_less_not_refl : forall a:ad, ad_less a a = false.
+ Proof.
+ intro. unfold ad_less in |- *. rewrite (ad_xor_nilpotent a). reflexivity.
+ Qed.
+
+ Lemma ad_ind_double :
+ forall (a:ad) (P:ad -> Prop),
+ P ad_z ->
+ (forall a:ad, P a -> P (ad_double a)) ->
+ (forall a:ad, P a -> P (ad_double_plus_un a)) -> P a.
+ Proof.
+ intros; elim a. trivial.
+ simple induction p. intros.
+ apply (H1 (ad_x p0)); trivial.
+ intros; apply (H0 (ad_x p0)); trivial.
+ intros; apply (H1 ad_z); assumption.
+ Qed.
+
+ Lemma ad_rec_double :
+ forall (a:ad) (P:ad -> Set),
+ P ad_z ->
+ (forall a:ad, P a -> P (ad_double a)) ->
+ (forall a:ad, P a -> P (ad_double_plus_un a)) -> P a.
+ Proof.
+ intros; elim a. trivial.
+ simple induction p. intros.
+ apply (H1 (ad_x p0)); trivial.
+ intros; apply (H0 (ad_x p0)); trivial.
+ intros; apply (H1 ad_z); assumption.
+ Qed.
+
+ Lemma ad_less_def_1 :
+ forall a a':ad, ad_less (ad_double a) (ad_double a') = ad_less a a'.
+ Proof.
+ simple induction a. simple induction a'. reflexivity.
+ trivial.
+ simple induction a'. unfold ad_less in |- *. simpl in |- *. elim p; trivial.
+ unfold ad_less in |- *. simpl in |- *. intro. case (p_xor p p0). reflexivity.
+ trivial.
+ Qed.
+
+ Lemma ad_less_def_2 :
+ forall a a':ad,
+ ad_less (ad_double_plus_un a) (ad_double_plus_un a') = ad_less a a'.
+ Proof.
+ simple induction a. simple induction a'. reflexivity.
+ trivial.
+ simple induction a'. unfold ad_less in |- *. simpl in |- *. elim p; trivial.
+ unfold ad_less in |- *. simpl in |- *. intro. case (p_xor p p0). reflexivity.
+ trivial.
+ Qed.
+
+ Lemma ad_less_def_3 :
+ forall a a':ad, ad_less (ad_double a) (ad_double_plus_un a') = true.
+ Proof.
+ intros. apply ad_bit_0_less. apply ad_double_bit_0.
+ apply ad_double_plus_un_bit_0.
+ Qed.
+
+ Lemma ad_less_def_4 :
+ forall a a':ad, ad_less (ad_double_plus_un a) (ad_double a') = false.
+ Proof.
+ intros. apply ad_bit_0_gt. apply ad_double_plus_un_bit_0.
+ apply ad_double_bit_0.
+ Qed.
+
+ Lemma ad_less_z : forall a:ad, ad_less a ad_z = false.
+ Proof.
+ simple induction a. reflexivity.
+ unfold ad_less in |- *. intro. rewrite (ad_xor_neutral_right (ad_x p)). elim p; trivial.
+ Qed.
+
+ Lemma ad_z_less_1 :
+ forall a:ad, ad_less ad_z a = true -> {p : positive | a = ad_x p}.
+ Proof.
+ simple induction a. intro. discriminate H.
+ intros. split with p. reflexivity.
+ Qed.
+
+ Lemma ad_z_less_2 : forall a:ad, ad_less ad_z a = false -> a = ad_z.
+ Proof.
+ simple induction a. trivial.
+ unfold ad_less in |- *. simpl in |- *. cut (forall p:positive, ad_less_1 ad_z (ad_x p) p = false -> False).
+ intros. elim (H p H0).
+ simple induction p. intros. discriminate H0.
+ intros. exact (H H0).
+ intro. discriminate H.
+ Qed.
+
+ Lemma ad_less_trans :
+ forall a a' a'':ad,
+ ad_less a a' = true -> ad_less a' a'' = true -> ad_less a a'' = true.
+ Proof.
+ intro a. apply ad_ind_double with
+ (P := fun a:ad =>
+ forall a' a'':ad,
+ ad_less a a' = true ->
+ ad_less a' a'' = true -> ad_less a a'' = true).
+ intros. elim (sumbool_of_bool (ad_less ad_z a'')). trivial.
+ intro H1. rewrite (ad_z_less_2 a'' H1) in H0. rewrite (ad_less_z a') in H0. discriminate H0.
+ intros a0 H a'. apply ad_ind_double with
+ (P := fun a':ad =>
+ forall a'':ad,
+ ad_less (ad_double a0) a' = true ->
+ ad_less a' a'' = true -> ad_less (ad_double a0) a'' = true).
+ intros. rewrite (ad_less_z (ad_double a0)) in H0. discriminate H0.
+ intros a1 H0 a'' H1. rewrite (ad_less_def_1 a0 a1) in H1.
+ apply ad_ind_double with
+ (P := fun a'':ad =>
+ ad_less (ad_double a1) a'' = true ->
+ ad_less (ad_double a0) a'' = true).
+ intro. rewrite (ad_less_z (ad_double a1)) in H2. discriminate H2.
+ intros. rewrite (ad_less_def_1 a1 a2) in H3. rewrite (ad_less_def_1 a0 a2).
+ exact (H a1 a2 H1 H3).
+ intros. apply ad_less_def_3.
+ intros a1 H0 a'' H1. apply ad_ind_double with
+ (P := fun a'':ad =>
+ ad_less (ad_double_plus_un a1) a'' = true ->
+ ad_less (ad_double a0) a'' = true).
+ intro. rewrite (ad_less_z (ad_double_plus_un a1)) in H2. discriminate H2.
+ intros. rewrite (ad_less_def_4 a1 a2) in H3. discriminate H3.
+ intros. apply ad_less_def_3.
+ intros a0 H a'. apply ad_ind_double with
+ (P := fun a':ad =>
+ forall a'':ad,
+ ad_less (ad_double_plus_un a0) a' = true ->
+ ad_less a' a'' = true ->
+ ad_less (ad_double_plus_un a0) a'' = true).
+ intros. rewrite (ad_less_z (ad_double_plus_un a0)) in H0. discriminate H0.
+ intros. rewrite (ad_less_def_4 a0 a1) in H1. discriminate H1.
+ intros a1 H0 a'' H1. apply ad_ind_double with
+ (P := fun a'':ad =>
+ ad_less (ad_double_plus_un a1) a'' = true ->
+ ad_less (ad_double_plus_un a0) a'' = true).
+ intro. rewrite (ad_less_z (ad_double_plus_un a1)) in H2. discriminate H2.
+ intros. rewrite (ad_less_def_4 a1 a2) in H3. discriminate H3.
+ rewrite (ad_less_def_2 a0 a1) in H1. intros. rewrite (ad_less_def_2 a1 a2) in H3.
+ rewrite (ad_less_def_2 a0 a2). exact (H a1 a2 H1 H3).
+ Qed.
+
+ Fixpoint alist_sorted (l:alist A) : bool :=
+ match l with
+ | nil => true
+ | (a, _) :: l' =>
+ match l' with
+ | nil => true
+ | (a', y') :: l'' => andb (ad_less a a') (alist_sorted l')
+ end
+ end.
+
+ Fixpoint alist_nth_ad (n:nat) (l:alist A) {struct l} : ad :=
+ match l with
+ | nil => ad_z (* dummy *)
+ | (a, y) :: l' => match n with
+ | O => a
+ | S n' => alist_nth_ad n' l'
+ end
+ end.
+
+ Definition alist_sorted_1 (l:alist A) :=
+ forall n:nat,
+ S (S n) <= length l ->
+ ad_less (alist_nth_ad n l) (alist_nth_ad (S n) l) = true.
+
+ Lemma alist_sorted_imp_1 :
+ forall l:alist A, alist_sorted l = true -> alist_sorted_1 l.
+ Proof.
+ unfold alist_sorted_1 in |- *. simple induction l. intros. elim (le_Sn_O (S n) H0).
+ intro r. elim r. intros a y. simple induction l0. intros. simpl in H1.
+ elim (le_Sn_O n (le_S_n (S n) 0 H1)).
+ intro r0. elim r0. intros a0 y0. simple induction n. intros. simpl in |- *. simpl in H1.
+ exact (proj1 (andb_prop _ _ H1)).
+ intros. change
+ (ad_less (alist_nth_ad n0 ((a0, y0) :: l1))
+ (alist_nth_ad (S n0) ((a0, y0) :: l1)) = true)
+ in |- *.
+ apply H0. exact (proj2 (andb_prop _ _ H1)).
+ apply le_S_n. exact H3.
+ Qed.
+
+ Definition alist_sorted_2 (l:alist A) :=
+ forall m n:nat,
+ m < n ->
+ S n <= length l -> ad_less (alist_nth_ad m l) (alist_nth_ad n l) = true.
+
+ Lemma alist_sorted_1_imp_2 :
+ forall l:alist A, alist_sorted_1 l -> alist_sorted_2 l.
+ Proof.
+ unfold alist_sorted_1, alist_sorted_2, lt in |- *. intros l H m n H0. elim H0. exact (H m).
+ intros. apply ad_less_trans with (a' := alist_nth_ad m0 l). apply H2. apply le_Sn_le.
+ assumption.
+ apply H. assumption.
+ Qed.
+
+ Lemma alist_sorted_2_imp :
+ forall l:alist A, alist_sorted_2 l -> alist_sorted l = true.
+ Proof.
+ unfold alist_sorted_2, lt in |- *. simple induction l. trivial.
+ intro r. elim r. intros a y. simple induction l0. trivial.
+ intro r0. elim r0. intros a0 y0. intros.
+ change (andb (ad_less a a0) (alist_sorted ((a0, y0) :: l1)) = true)
+ in |- *.
+ apply andb_true_intro. split. apply (H1 0 1). apply le_n.
+ simpl in |- *. apply le_n_S. apply le_n_S. apply le_O_n.
+ apply H0. intros. apply (H1 (S m) (S n)). apply le_n_S. assumption.
+ exact (le_n_S _ _ H3).
+ Qed.
+
+ Lemma app_length :
+ forall (C:Set) (l l':list C), length (l ++ l') = length l + length l'.
+ Proof.
+ simple induction l. trivial.
+ intros. simpl in |- *. rewrite (H l'). reflexivity.
+ Qed.
+
+ Lemma aapp_length :
+ forall l l':alist A, length (aapp A l l') = length l + length l'.
+ Proof.
+ exact (app_length (ad * A)).
+ Qed.
+
+ Lemma alist_nth_ad_aapp_1 :
+ forall (l l':alist A) (n:nat),
+ S n <= length l -> alist_nth_ad n (aapp A l l') = alist_nth_ad n l.
+ Proof.
+ simple induction l. intros. elim (le_Sn_O n H).
+ intro r. elim r. intros a y l' H l''. simple induction n. trivial.
+ intros. simpl in |- *. apply H. apply le_S_n. exact H1.
+ Qed.
+
+ Lemma alist_nth_ad_aapp_2 :
+ forall (l l':alist A) (n:nat),
+ S n <= length l' ->
+ alist_nth_ad (length l + n) (aapp A l l') = alist_nth_ad n l'.
+ Proof.
+ simple induction l. trivial.
+ intro r. elim r. intros a y l' H l'' n H0. simpl in |- *. apply H. exact H0.
+ Qed.
+
+ Lemma interval_split :
+ forall p q n:nat,
+ S n <= p + q -> {n' : nat | S n' <= q /\ n = p + n'} + {S n <= p}.
+ Proof.
+ simple induction p. simpl in |- *. intros. left. split with n. split; [ assumption | reflexivity ].
+ intros p' H q. simple induction n. intros. right. apply le_n_S. apply le_O_n.
+ intros. elim (H _ _ (le_S_n _ _ H1)). intro H2. left. elim H2. intros n' H3.
+ elim H3. intros H4 H5. split with n'. split; [ assumption | rewrite H5; reflexivity ].
+ intro H2. right. apply le_n_S. assumption.
+ Qed.
+
+ Lemma alist_conc_sorted :
+ forall l l':alist A,
+ alist_sorted_2 l ->
+ alist_sorted_2 l' ->
+ (forall n n':nat,
+ S n <= length l ->
+ S n' <= length l' ->
+ ad_less (alist_nth_ad n l) (alist_nth_ad n' l') = true) ->
+ alist_sorted_2 (aapp A l l').
+ Proof.
+ unfold alist_sorted_2, lt in |- *. intros. rewrite (aapp_length l l') in H3.
+ elim
+ (interval_split (length l) (length l') m
+ (le_trans _ _ _ (le_n_S _ _ (lt_le_weak m n H2)) H3)).
+ intro H4. elim H4. intros m' H5. elim H5. intros. rewrite H7.
+ rewrite (alist_nth_ad_aapp_2 l l' m' H6). elim (interval_split (length l) (length l') n H3).
+ intro H8. elim H8. intros n' H9. elim H9. intros. rewrite H11.
+ rewrite (alist_nth_ad_aapp_2 l l' n' H10). apply H0. rewrite H7 in H2. rewrite H11 in H2.
+ change (S (length l) + m' <= length l + n') in H2.
+ rewrite (plus_Snm_nSm (length l) m') in H2. exact ((fun p n m:nat => plus_le_reg_l n m p) (length l) (S m') n' H2).
+ exact H10.
+ intro H8. rewrite H7 in H2. cut (S (length l) <= length l). intros. elim (le_Sn_n _ H9).
+ apply le_trans with (m := S n). apply le_n_S. apply le_trans with (m := S (length l + m')).
+ apply le_trans with (m := length l + m'). apply le_plus_l.
+ apply le_n_Sn.
+ exact H2.
+ exact H8.
+ intro H4. rewrite (alist_nth_ad_aapp_1 l l' m H4).
+ elim (interval_split (length l) (length l') n H3). intro H5. elim H5. intros n' H6. elim H6.
+ intros. rewrite H8. rewrite (alist_nth_ad_aapp_2 l l' n' H7). exact (H1 m n' H4 H7).
+ intro H5. rewrite (alist_nth_ad_aapp_1 l l' n H5). exact (H m n H2 H5).
+ Qed.
+
+ Lemma alist_nth_ad_semantics :
+ forall (l:alist A) (n:nat),
+ S n <= length l ->
+ {y : A | alist_semantics A l (alist_nth_ad n l) = SOME A y}.
+ Proof.
+ simple induction l. intros. elim (le_Sn_O _ H).
+ intro r. elim r. intros a y l0 H. simple induction n. simpl in |- *. intro. split with y.
+ rewrite (ad_eq_correct a). reflexivity.
+ intros. elim (H _ (le_S_n _ _ H1)). intros y0 H2.
+ elim (sumbool_of_bool (ad_eq a (alist_nth_ad n0 l0))). intro H3. split with y.
+ rewrite (ad_eq_complete _ _ H3). simpl in |- *. rewrite (ad_eq_correct (alist_nth_ad n0 l0)).
+ reflexivity.
+ intro H3. split with y0. simpl in |- *. rewrite H3. assumption.
+ Qed.
+
+ Lemma alist_of_Map_nth_ad :
+ forall (m:Map A) (pf:ad -> ad) (l:alist A),
+ l =
+ MapFold1 A (alist A) (anil A) (aapp A)
+ (fun (a0:ad) (y:A) => acons A (a0, y) (anil A)) pf m ->
+ forall n:nat, S n <= length l -> {a' : ad | alist_nth_ad n l = pf a'}.
+ Proof.
+ intros. elim (alist_nth_ad_semantics l n H0). intros y H1.
+ apply (alist_of_Map_semantics_1_1 A m pf (alist_nth_ad n l) y).
+ rewrite <- H. assumption.
+ Qed.
+
+ Definition ad_monotonic (pf:ad -> ad) :=
+ forall a a':ad, ad_less a a' = true -> ad_less (pf a) (pf a') = true.
+
+ Lemma ad_double_monotonic : ad_monotonic ad_double.
+ Proof.
+ unfold ad_monotonic in |- *. intros. rewrite ad_less_def_1. assumption.
+ Qed.
+
+ Lemma ad_double_plus_un_monotonic : ad_monotonic ad_double_plus_un.
+ Proof.
+ unfold ad_monotonic in |- *. intros. rewrite ad_less_def_2. assumption.
+ Qed.
+
+ Lemma ad_comp_monotonic :
+ forall pf pf':ad -> ad,
+ ad_monotonic pf ->
+ ad_monotonic pf' -> ad_monotonic (fun a0:ad => pf (pf' a0)).
+ Proof.
+ unfold ad_monotonic in |- *. intros. apply H. apply H0. exact H1.
+ Qed.
+
+ Lemma ad_comp_double_monotonic :
+ forall pf:ad -> ad,
+ ad_monotonic pf -> ad_monotonic (fun a0:ad => pf (ad_double a0)).
+ Proof.
+ intros. apply ad_comp_monotonic. assumption.
+ exact ad_double_monotonic.
+ Qed.
+
+ Lemma ad_comp_double_plus_un_monotonic :
+ forall pf:ad -> ad,
+ ad_monotonic pf -> ad_monotonic (fun a0:ad => pf (ad_double_plus_un a0)).
+ Proof.
+ intros. apply ad_comp_monotonic. assumption.
+ exact ad_double_plus_un_monotonic.
+ Qed.
+
+ Lemma alist_of_Map_sorts_1 :
+ forall (m:Map A) (pf:ad -> ad),
+ ad_monotonic pf ->
+ alist_sorted_2
+ (MapFold1 A (alist A) (anil A) (aapp A)
+ (fun (a:ad) (y:A) => acons A (a, y) (anil A)) pf m).
+ Proof.
+ simple induction m. simpl in |- *. intros. apply alist_sorted_1_imp_2. apply alist_sorted_imp_1. reflexivity.
+ intros. simpl in |- *. apply alist_sorted_1_imp_2. apply alist_sorted_imp_1. reflexivity.
+ intros. simpl in |- *. apply alist_conc_sorted.
+ exact
+ (H (fun a0:ad => pf (ad_double a0)) (ad_comp_double_monotonic pf H1)).
+ exact
+ (H0 (fun a0:ad => pf (ad_double_plus_un a0))
+ (ad_comp_double_plus_un_monotonic pf H1)).
+ intros. elim
+ (alist_of_Map_nth_ad m0 (fun a0:ad => pf (ad_double a0))
+ (MapFold1 A (alist A) (anil A) (aapp A)
+ (fun (a0:ad) (y:A) => acons A (a0, y) (anil A))
+ (fun a0:ad => pf (ad_double a0)) m0) (refl_equal _) n H2).
+ intros a H4. rewrite H4. elim
+ (alist_of_Map_nth_ad m1 (fun a0:ad => pf (ad_double_plus_un a0))
+ (MapFold1 A (alist A) (anil A) (aapp A)
+ (fun (a0:ad) (y:A) => acons A (a0, y) (anil A))
+ (fun a0:ad => pf (ad_double_plus_un a0)) m1) (
+ refl_equal _) n' H3).
+ intros a' H5. rewrite H5. unfold ad_monotonic in H1. apply H1. apply ad_less_def_3.
+ Qed.
+
+ Lemma alist_of_Map_sorts :
+ forall m:Map A, alist_sorted (alist_of_Map A m) = true.
+ Proof.
+ intro. apply alist_sorted_2_imp.
+ exact
+ (alist_of_Map_sorts_1 m (fun a0:ad => a0)
+ (fun (a a':ad) (p:ad_less a a' = true) => p)).
+ Qed.
+
+ Lemma alist_of_Map_sorts1 :
+ forall m:Map A, alist_sorted_1 (alist_of_Map A m).
+ Proof.
+ intro. apply alist_sorted_imp_1. apply alist_of_Map_sorts.
+ Qed.
+
+ Lemma alist_of_Map_sorts2 :
+ forall m:Map A, alist_sorted_2 (alist_of_Map A m).
+ Proof.
+ intro. apply alist_sorted_1_imp_2. apply alist_of_Map_sorts1.
+ Qed.
+
+ Lemma ad_less_total :
+ forall a a':ad, {ad_less a a' = true} + {ad_less a' a = true} + {a = a'}.
+ Proof.
+ intro a. refine
+ (ad_rec_double a
+ (fun a:ad =>
+ forall a':ad,
+ {ad_less a a' = true} + {ad_less a' a = true} + {a = a'}) _ _ _).
+ intro. elim (sumbool_of_bool (ad_less ad_z a')). intro H. left. left. assumption.
+ intro H. right. rewrite (ad_z_less_2 a' H). reflexivity.
+ intros a0 H a'. refine
+ (ad_rec_double a'
+ (fun a':ad =>
+ {ad_less (ad_double a0) a' = true} +
+ {ad_less a' (ad_double a0) = true} + {ad_double a0 = a'}) _ _ _).
+ elim (sumbool_of_bool (ad_less ad_z (ad_double a0))). intro H0. left. right. assumption.
+ intro H0. right. exact (ad_z_less_2 _ H0).
+ intros a1 H0. rewrite ad_less_def_1. rewrite ad_less_def_1. elim (H a1). intro H1.
+ left. assumption.
+ intro H1. right. rewrite H1. reflexivity.
+ intros a1 H0. left. left. apply ad_less_def_3.
+ intros a0 H a'. refine
+ (ad_rec_double a'
+ (fun a':ad =>
+ {ad_less (ad_double_plus_un a0) a' = true} +
+ {ad_less a' (ad_double_plus_un a0) = true} +
+ {ad_double_plus_un a0 = a'}) _ _ _).
+ left. right. case a0; reflexivity.
+ intros a1 H0. left. right. apply ad_less_def_3.
+ intros a1 H0. rewrite ad_less_def_2. rewrite ad_less_def_2. elim (H a1). intro H1.
+ left. assumption.
+ intro H1. right. rewrite H1. reflexivity.
+ Qed.
+
+ Lemma alist_too_low :
+ forall (l:alist A) (a a':ad) (y:A),
+ ad_less a a' = true ->
+ alist_sorted_2 ((a', y) :: l) ->
+ alist_semantics A ((a', y) :: l) a = NONE A.
+ Proof.
+ simple induction l. intros. simpl in |- *. elim (sumbool_of_bool (ad_eq a' a)). intro H1.
+ rewrite (ad_eq_complete _ _ H1) in H. rewrite (ad_less_not_refl a) in H. discriminate H.
+ intro H1. rewrite H1. reflexivity.
+ intro r. elim r. intros a y l0 H a0 a1 y0 H0 H1.
+ change
+ (match ad_eq a1 a0 with
+ | true => SOME A y0
+ | false => alist_semantics A ((a, y) :: l0) a0
+ end = NONE A) in |- *.
+ elim (sumbool_of_bool (ad_eq a1 a0)). intro H2. rewrite (ad_eq_complete _ _ H2) in H0.
+ rewrite (ad_less_not_refl a0) in H0. discriminate H0.
+ intro H2. rewrite H2. apply H. apply ad_less_trans with (a' := a1). assumption.
+ unfold alist_sorted_2 in H1. apply (H1 0 1). apply lt_n_Sn.
+ simpl in |- *. apply le_n_S. apply le_n_S. apply le_O_n.
+ apply alist_sorted_1_imp_2. apply alist_sorted_imp_1.
+ cut (alist_sorted ((a1, y0) :: (a, y) :: l0) = true). intro H3.
+ exact (proj2 (andb_prop _ _ H3)).
+ apply alist_sorted_2_imp. assumption.
+ Qed.
+
+ Lemma alist_semantics_nth_ad :
+ forall (l:alist A) (a:ad) (y:A),
+ alist_semantics A l a = SOME A y ->
+ {n : nat | S n <= length l /\ alist_nth_ad n l = a}.
+ Proof.
+ simple induction l. intros. discriminate H.
+ intro r. elim r. intros a y l0 H a0 y0 H0. simpl in H0. elim (sumbool_of_bool (ad_eq a a0)).
+ intro H1. rewrite H1 in H0. split with 0. split. simpl in |- *. apply le_n_S. apply le_O_n.
+ simpl in |- *. exact (ad_eq_complete _ _ H1).
+ intro H1. rewrite H1 in H0. elim (H a0 y0 H0). intros n' H2. split with (S n'). split.
+ simpl in |- *. apply le_n_S. exact (proj1 H2).
+ exact (proj2 H2).
+ Qed.
+
+ Lemma alist_semantics_tail :
+ forall (l:alist A) (a:ad) (y:A),
+ alist_sorted_2 ((a, y) :: l) ->
+ eqm A (alist_semantics A l)
+ (fun a0:ad =>
+ if ad_eq a a0 then NONE A else alist_semantics A ((a, y) :: l) a0).
+ Proof.
+ unfold eqm in |- *. intros. elim (sumbool_of_bool (ad_eq a a0)). intro H0. rewrite H0.
+ rewrite <- (ad_eq_complete _ _ H0). unfold alist_sorted_2 in H.
+ elim (option_sum A (alist_semantics A l a)). intro H1. elim H1. intros y0 H2.
+ elim (alist_semantics_nth_ad l a y0 H2). intros n H3. elim H3. intros.
+ cut
+ (ad_less (alist_nth_ad 0 ((a, y) :: l))
+ (alist_nth_ad (S n) ((a, y) :: l)) = true).
+ intro. simpl in H6. rewrite H5 in H6. rewrite (ad_less_not_refl a) in H6. discriminate H6.
+ apply H. apply lt_O_Sn.
+ simpl in |- *. apply le_n_S. assumption.
+ trivial.
+ intro H0. simpl in |- *. rewrite H0. reflexivity.
+ Qed.
+
+ Lemma alist_semantics_same_tail :
+ forall (l l':alist A) (a:ad) (y:A),
+ alist_sorted_2 ((a, y) :: l) ->
+ alist_sorted_2 ((a, y) :: l') ->
+ eqm A (alist_semantics A ((a, y) :: l))
+ (alist_semantics A ((a, y) :: l')) ->
+ eqm A (alist_semantics A l) (alist_semantics A l').
+ Proof.
+ unfold eqm in |- *. intros. rewrite (alist_semantics_tail _ _ _ H a0).
+ rewrite (alist_semantics_tail _ _ _ H0 a0). case (ad_eq a a0). reflexivity.
+ exact (H1 a0).
+ Qed.
+
+ Lemma alist_sorted_tail :
+ forall (l:alist A) (a:ad) (y:A),
+ alist_sorted_2 ((a, y) :: l) -> alist_sorted_2 l.
+ Proof.
+ unfold alist_sorted_2 in |- *. intros. apply (H (S m) (S n)). apply lt_n_S. assumption.
+ simpl in |- *. apply le_n_S. assumption.
+ Qed.
+
+ Lemma alist_canonical :
+ forall l l':alist A,
+ eqm A (alist_semantics A l) (alist_semantics A l') ->
+ alist_sorted_2 l -> alist_sorted_2 l' -> l = l'.
+ Proof.
+ unfold eqm in |- *. simple induction l. simple induction l'. trivial.
+ intro r. elim r. intros a y l0 H H0 H1 H2. simpl in H0.
+ cut
+ (NONE A =
+ match ad_eq a a with
+ | true => SOME A y
+ | false => alist_semantics A l0 a
+ end).
+ rewrite (ad_eq_correct a). intro. discriminate H3.
+ exact (H0 a).
+ intro r. elim r. intros a y l0 H. simple induction l'. intros. simpl in H0.
+ cut
+ (match ad_eq a a with
+ | true => SOME A y
+ | false => alist_semantics A l0 a
+ end = NONE A).
+ rewrite (ad_eq_correct a). intro. discriminate H3.
+ exact (H0 a).
+ intro r'. elim r'. intros a' y' l'0 H0 H1 H2 H3. elim (ad_less_total a a'). intro H4.
+ elim H4. intro H5.
+ cut
+ (alist_semantics A ((a, y) :: l0) a =
+ alist_semantics A ((a', y') :: l'0) a).
+ intro. rewrite (alist_too_low l'0 a a' y' H5 H3) in H6. simpl in H6.
+ rewrite (ad_eq_correct a) in H6. discriminate H6.
+ exact (H1 a).
+ intro H5. cut
+ (alist_semantics A ((a, y) :: l0) a' =
+ alist_semantics A ((a', y') :: l'0) a').
+ intro. rewrite (alist_too_low l0 a' a y H5 H2) in H6. simpl in H6.
+ rewrite (ad_eq_correct a') in H6. discriminate H6.
+ exact (H1 a').
+ intro H4. rewrite H4.
+ cut
+ (alist_semantics A ((a, y) :: l0) a =
+ alist_semantics A ((a', y') :: l'0) a).
+ intro. simpl in H5. rewrite H4 in H5. rewrite (ad_eq_correct a') in H5. inversion H5.
+ rewrite H4 in H1. rewrite H7 in H1. cut (l0 = l'0). intro. rewrite H6. reflexivity.
+ apply H. rewrite H4 in H2. rewrite H7 in H2.
+ exact (alist_semantics_same_tail l0 l'0 a' y' H2 H3 H1).
+ exact (alist_sorted_tail _ _ _ H2).
+ exact (alist_sorted_tail _ _ _ H3).
+ exact (H1 a).
+ Qed.
+
+End LSort. \ No newline at end of file
diff --git a/theories/IntMap/Map.v b/theories/IntMap/Map.v
new file mode 100644
index 00000000..da1fa99e
--- /dev/null
+++ b/theories/IntMap/Map.v
@@ -0,0 +1,865 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(*i $Id: Map.v,v 1.7.2.1 2004/07/16 19:31:04 herbelin Exp $ i*)
+
+(** Definition of finite sets as trees indexed by adresses *)
+
+Require Import Bool.
+Require Import Sumbool.
+Require Import ZArith.
+Require Import Addr.
+Require Import Adist.
+Require Import Addec.
+
+
+Section MapDefs.
+
+(** We define maps from ad to A. *)
+ Variable A : Set.
+
+ Inductive Map : Set :=
+ | M0 : Map
+ | M1 : ad -> A -> Map
+ | M2 : Map -> Map -> Map.
+
+ Inductive option : Set :=
+ | NONE : option
+ | SOME : A -> option.
+
+ Lemma option_sum : forall o:option, {y : A | o = SOME y} + {o = NONE}.
+ Proof.
+ simple induction o. right. reflexivity.
+ left. split with a. reflexivity.
+ Qed.
+
+ (** The semantics of maps is given by the function [MapGet].
+ The semantics of a map [m] is a partial, finite function from
+ [ad] to [A]: *)
+
+ Fixpoint MapGet (m:Map) : ad -> option :=
+ match m with
+ | M0 => fun a:ad => NONE
+ | M1 x y => fun a:ad => if ad_eq x a then SOME y else NONE
+ | M2 m1 m2 =>
+ fun a:ad =>
+ match a with
+ | ad_z => MapGet m1 ad_z
+ | ad_x xH => MapGet m2 ad_z
+ | ad_x (xO p) => MapGet m1 (ad_x p)
+ | ad_x (xI p) => MapGet m2 (ad_x p)
+ end
+ end.
+
+ Definition newMap := M0.
+
+ Definition MapSingleton := M1.
+
+ Definition eqm (g g':ad -> option) := forall a:ad, g a = g' a.
+
+ Lemma newMap_semantics : eqm (MapGet newMap) (fun a:ad => NONE).
+ Proof.
+ simpl in |- *. unfold eqm in |- *. trivial.
+ Qed.
+
+ Lemma MapSingleton_semantics :
+ forall (a:ad) (y:A),
+ eqm (MapGet (MapSingleton a y))
+ (fun a':ad => if ad_eq a a' then SOME y else NONE).
+ Proof.
+ simpl in |- *. unfold eqm in |- *. trivial.
+ Qed.
+
+ Lemma M1_semantics_1 : forall (a:ad) (y:A), MapGet (M1 a y) a = SOME y.
+ Proof.
+ unfold MapGet in |- *. intros. rewrite (ad_eq_correct a). reflexivity.
+ Qed.
+
+ Lemma M1_semantics_2 :
+ forall (a a':ad) (y:A), ad_eq a a' = false -> MapGet (M1 a y) a' = NONE.
+ Proof.
+ intros. simpl in |- *. rewrite H. reflexivity.
+ Qed.
+
+ Lemma Map2_semantics_1 :
+ forall m m':Map,
+ eqm (MapGet m) (fun a:ad => MapGet (M2 m m') (ad_double a)).
+ Proof.
+ unfold eqm in |- *. simple induction a; trivial.
+ Qed.
+
+ Lemma Map2_semantics_1_eq :
+ forall (m m':Map) (f:ad -> option),
+ eqm (MapGet (M2 m m')) f -> eqm (MapGet m) (fun a:ad => f (ad_double a)).
+ Proof.
+ unfold eqm in |- *.
+ intros.
+ rewrite <- (H (ad_double a)).
+ exact (Map2_semantics_1 m m' a).
+ Qed.
+
+ Lemma Map2_semantics_2 :
+ forall m m':Map,
+ eqm (MapGet m') (fun a:ad => MapGet (M2 m m') (ad_double_plus_un a)).
+ Proof.
+ unfold eqm in |- *. simple induction a; trivial.
+ Qed.
+
+ Lemma Map2_semantics_2_eq :
+ forall (m m':Map) (f:ad -> option),
+ eqm (MapGet (M2 m m')) f ->
+ eqm (MapGet m') (fun a:ad => f (ad_double_plus_un a)).
+ Proof.
+ unfold eqm in |- *.
+ intros.
+ rewrite <- (H (ad_double_plus_un a)).
+ exact (Map2_semantics_2 m m' a).
+ Qed.
+
+ Lemma MapGet_M2_bit_0_0 :
+ forall a:ad,
+ ad_bit_0 a = false ->
+ forall m m':Map, MapGet (M2 m m') a = MapGet m (ad_div_2 a).
+ Proof.
+ simple induction a; trivial. simple induction p. intros. discriminate H0.
+ trivial.
+ intros. discriminate H.
+ Qed.
+
+ Lemma MapGet_M2_bit_0_1 :
+ forall a:ad,
+ ad_bit_0 a = true ->
+ forall m m':Map, MapGet (M2 m m') a = MapGet m' (ad_div_2 a).
+ Proof.
+ simple induction a. intros. discriminate H.
+ simple induction p. trivial.
+ intros. discriminate H0.
+ trivial.
+ Qed.
+
+ Lemma MapGet_M2_bit_0_if :
+ forall (m m':Map) (a:ad),
+ MapGet (M2 m m') a =
+ (if ad_bit_0 a then MapGet m' (ad_div_2 a) else MapGet m (ad_div_2 a)).
+ Proof.
+ intros. elim (sumbool_of_bool (ad_bit_0 a)). intro H. rewrite H.
+ apply MapGet_M2_bit_0_1; assumption.
+ intro H. rewrite H. apply MapGet_M2_bit_0_0; assumption.
+ Qed.
+
+ Lemma MapGet_M2_bit_0 :
+ forall (m m' m'':Map) (a:ad),
+ (if ad_bit_0 a then MapGet (M2 m' m) a else MapGet (M2 m m'') a) =
+ MapGet m (ad_div_2 a).
+ Proof.
+ intros. elim (sumbool_of_bool (ad_bit_0 a)). intro H. rewrite H.
+ apply MapGet_M2_bit_0_1; assumption.
+ intro H. rewrite H. apply MapGet_M2_bit_0_0; assumption.
+ Qed.
+
+ Lemma Map2_semantics_3 :
+ forall m m':Map,
+ eqm (MapGet (M2 m m'))
+ (fun a:ad =>
+ match ad_bit_0 a with
+ | false => MapGet m (ad_div_2 a)
+ | true => MapGet m' (ad_div_2 a)
+ end).
+ Proof.
+ unfold eqm in |- *.
+ simple induction a; trivial.
+ simple induction p; trivial.
+ Qed.
+
+ Lemma Map2_semantics_3_eq :
+ forall (m m':Map) (f f':ad -> option),
+ eqm (MapGet m) f ->
+ eqm (MapGet m') f' ->
+ eqm (MapGet (M2 m m'))
+ (fun a:ad =>
+ match ad_bit_0 a with
+ | false => f (ad_div_2 a)
+ | true => f' (ad_div_2 a)
+ end).
+ Proof.
+ unfold eqm in |- *.
+ intros.
+ rewrite <- (H (ad_div_2 a)).
+ rewrite <- (H0 (ad_div_2 a)).
+ exact (Map2_semantics_3 m m' a).
+ Qed.
+
+ Fixpoint MapPut1 (a:ad) (y:A) (a':ad) (y':A) (p:positive) {struct p} :
+ Map :=
+ match p with
+ | xO p' =>
+ let m := MapPut1 (ad_div_2 a) y (ad_div_2 a') y' p' in
+ match ad_bit_0 a with
+ | false => M2 m M0
+ | true => M2 M0 m
+ end
+ | _ =>
+ match ad_bit_0 a with
+ | false => M2 (M1 (ad_div_2 a) y) (M1 (ad_div_2 a') y')
+ | true => M2 (M1 (ad_div_2 a') y') (M1 (ad_div_2 a) y)
+ end
+ end.
+
+ Lemma MapGet_if_commute :
+ forall (b:bool) (m m':Map) (a:ad),
+ MapGet (if b then m else m') a = (if b then MapGet m a else MapGet m' a).
+ Proof.
+ intros. case b; trivial.
+ Qed.
+
+ (*i
+ Lemma MapGet_M2_bit_0_1' : (m,m',m'',m''':Map)
+ (a:ad) (MapGet (if (ad_bit_0 a) then (M2 m m') else (M2 m'' m''')) a)=
+ (MapGet (if (ad_bit_0 a) then m' else m'') (ad_div_2 a)).
+ Proof.
+ Intros. Rewrite (MapGet_if_commute (ad_bit_0 a)). Rewrite (MapGet_if_commute (ad_bit_0 a)).
+ Cut (ad_bit_0 a)=false\/(ad_bit_0 a)=true. Intros. Elim H. Intros. Rewrite H0.
+ Apply MapGet_M2_bit_0_0. Assumption.
+ Intros. Rewrite H0. Apply MapGet_M2_bit_0_1. Assumption.
+ Case (ad_bit_0 a); Auto.
+ Qed.
+ i*)
+
+ Lemma MapGet_if_same :
+ forall (m:Map) (b:bool) (a:ad), MapGet (if b then m else m) a = MapGet m a.
+ Proof.
+ simple induction b; trivial.
+ Qed.
+
+ Lemma MapGet_M2_bit_0_2 :
+ forall (m m' m'':Map) (a:ad),
+ MapGet (if ad_bit_0 a then M2 m m' else M2 m' m'') a =
+ MapGet m' (ad_div_2 a).
+ Proof.
+ intros. rewrite MapGet_if_commute. apply MapGet_M2_bit_0.
+ Qed.
+
+ Lemma MapPut1_semantics_1 :
+ forall (p:positive) (a a':ad) (y y':A),
+ ad_xor a a' = ad_x p -> MapGet (MapPut1 a y a' y' p) a = SOME y.
+ Proof.
+ simple induction p. intros. unfold MapPut1 in |- *. rewrite MapGet_M2_bit_0_2. apply M1_semantics_1.
+ intros. simpl in |- *. rewrite MapGet_M2_bit_0_2. apply H. rewrite <- ad_xor_div_2. rewrite H0.
+ reflexivity.
+ intros. unfold MapPut1 in |- *. rewrite MapGet_M2_bit_0_2. apply M1_semantics_1.
+ Qed.
+
+ Lemma MapPut1_semantics_2 :
+ forall (p:positive) (a a':ad) (y y':A),
+ ad_xor a a' = ad_x p -> MapGet (MapPut1 a y a' y' p) a' = SOME y'.
+ Proof.
+ simple induction p. intros. unfold MapPut1 in |- *. rewrite (ad_neg_bit_0_2 a a' p0 H0).
+ rewrite if_negb. rewrite MapGet_M2_bit_0_2. apply M1_semantics_1.
+ intros. simpl in |- *. rewrite (ad_same_bit_0 a a' p0 H0). rewrite MapGet_M2_bit_0_2.
+ apply H. rewrite <- ad_xor_div_2. rewrite H0. reflexivity.
+ intros. unfold MapPut1 in |- *. rewrite (ad_neg_bit_0_1 a a' H). rewrite if_negb.
+ rewrite MapGet_M2_bit_0_2. apply M1_semantics_1.
+ Qed.
+
+ Lemma MapGet_M2_both_NONE :
+ forall (m m':Map) (a:ad),
+ MapGet m (ad_div_2 a) = NONE ->
+ MapGet m' (ad_div_2 a) = NONE -> MapGet (M2 m m') a = NONE.
+ Proof.
+ intros. rewrite (Map2_semantics_3 m m' a).
+ case (ad_bit_0 a); assumption.
+ Qed.
+
+ Lemma MapPut1_semantics_3 :
+ forall (p:positive) (a a' a0:ad) (y y':A),
+ ad_xor a a' = ad_x p ->
+ ad_eq a a0 = false ->
+ ad_eq a' a0 = false -> MapGet (MapPut1 a y a' y' p) a0 = NONE.
+ Proof.
+ simple induction p. intros. unfold MapPut1 in |- *. elim (ad_neq a a0 H1). intro. rewrite H3. rewrite if_negb.
+ rewrite MapGet_M2_bit_0_2. apply M1_semantics_2. apply ad_div_bit_neq. assumption.
+ rewrite (ad_neg_bit_0_2 a a' p0 H0) in H3. rewrite (negb_intro (ad_bit_0 a')).
+ rewrite (negb_intro (ad_bit_0 a0)). rewrite H3. reflexivity.
+ intro. elim (ad_neq a' a0 H2). intro. rewrite (ad_neg_bit_0_2 a a' p0 H0). rewrite H4.
+ rewrite (negb_elim (ad_bit_0 a0)). rewrite MapGet_M2_bit_0_2.
+ apply M1_semantics_2; assumption.
+ intro; case (ad_bit_0 a); apply MapGet_M2_both_NONE; apply M1_semantics_2;
+ assumption.
+ intros. simpl in |- *. elim (ad_neq a a0 H1). intro. rewrite H3. rewrite if_negb.
+ rewrite MapGet_M2_bit_0_2. reflexivity.
+ intro. elim (ad_neq a' a0 H2). intro. rewrite (ad_same_bit_0 a a' p0 H0). rewrite H4.
+ rewrite if_negb. rewrite MapGet_M2_bit_0_2. reflexivity.
+ intro. cut (ad_xor (ad_div_2 a) (ad_div_2 a') = ad_x p0). intro.
+ case (ad_bit_0 a); apply MapGet_M2_both_NONE; trivial; apply H;
+ assumption.
+ rewrite <- ad_xor_div_2. rewrite H0. reflexivity.
+ intros. simpl in |- *. elim (ad_neq a a0 H0). intro. rewrite H2. rewrite if_negb.
+ rewrite MapGet_M2_bit_0_2. apply M1_semantics_2. apply ad_div_bit_neq. assumption.
+ rewrite (ad_neg_bit_0_1 a a' H) in H2. rewrite (negb_intro (ad_bit_0 a')).
+ rewrite (negb_intro (ad_bit_0 a0)). rewrite H2. reflexivity.
+ intro. elim (ad_neq a' a0 H1). intro. rewrite (ad_neg_bit_0_1 a a' H). rewrite H3.
+ rewrite (negb_elim (ad_bit_0 a0)). rewrite MapGet_M2_bit_0_2.
+ apply M1_semantics_2; assumption.
+ intro. case (ad_bit_0 a); apply MapGet_M2_both_NONE; apply M1_semantics_2;
+ assumption.
+ Qed.
+
+ Lemma MapPut1_semantics :
+ forall (p:positive) (a a':ad) (y y':A),
+ ad_xor a a' = ad_x p ->
+ eqm (MapGet (MapPut1 a y a' y' p))
+ (fun a0:ad =>
+ if ad_eq a a0
+ then SOME y
+ else if ad_eq a' a0 then SOME y' else NONE).
+ Proof.
+ unfold eqm in |- *. intros. elim (sumbool_of_bool (ad_eq a a0)). intro H0. rewrite H0.
+ rewrite <- (ad_eq_complete _ _ H0). exact (MapPut1_semantics_1 p a a' y y' H).
+ intro H0. rewrite H0. elim (sumbool_of_bool (ad_eq a' a0)). intro H1.
+ rewrite <- (ad_eq_complete _ _ H1). rewrite (ad_eq_correct a').
+ exact (MapPut1_semantics_2 p a a' y y' H).
+ intro H1. rewrite H1. exact (MapPut1_semantics_3 p a a' a0 y y' H H0 H1).
+ Qed.
+
+ Lemma MapPut1_semantics' :
+ forall (p:positive) (a a':ad) (y y':A),
+ ad_xor a a' = ad_x p ->
+ eqm (MapGet (MapPut1 a y a' y' p))
+ (fun a0:ad =>
+ if ad_eq a' a0
+ then SOME y'
+ else if ad_eq a a0 then SOME y else NONE).
+ Proof.
+ unfold eqm in |- *. intros. rewrite (MapPut1_semantics p a a' y y' H a0).
+ elim (sumbool_of_bool (ad_eq a a0)). intro H0. rewrite H0.
+ rewrite <- (ad_eq_complete a a0 H0). rewrite (ad_eq_comm a' a).
+ rewrite (ad_xor_eq_false a a' p H). reflexivity.
+ intro H0. rewrite H0. reflexivity.
+ Qed.
+
+ Fixpoint MapPut (m:Map) : ad -> A -> Map :=
+ match m with
+ | M0 => M1
+ | M1 a y =>
+ fun (a':ad) (y':A) =>
+ match ad_xor a a' with
+ | ad_z => M1 a' y'
+ | ad_x p => MapPut1 a y a' y' p
+ end
+ | M2 m1 m2 =>
+ fun (a:ad) (y:A) =>
+ match a with
+ | ad_z => M2 (MapPut m1 ad_z y) m2
+ | ad_x xH => M2 m1 (MapPut m2 ad_z y)
+ | ad_x (xO p) => M2 (MapPut m1 (ad_x p) y) m2
+ | ad_x (xI p) => M2 m1 (MapPut m2 (ad_x p) y)
+ end
+ end.
+
+ Lemma MapPut_semantics_1 :
+ forall (a:ad) (y:A) (a0:ad),
+ MapGet (MapPut M0 a y) a0 = MapGet (M1 a y) a0.
+ Proof.
+ trivial.
+ Qed.
+
+ Lemma MapPut_semantics_2_1 :
+ forall (a:ad) (y y':A) (a0:ad),
+ MapGet (MapPut (M1 a y) a y') a0 =
+ (if ad_eq a a0 then SOME y' else NONE).
+ Proof.
+ simpl in |- *. intros. rewrite (ad_xor_nilpotent a). trivial.
+ Qed.
+
+ Lemma MapPut_semantics_2_2 :
+ forall (a a':ad) (y y':A) (a0 a'':ad),
+ ad_xor a a' = a'' ->
+ MapGet (MapPut (M1 a y) a' y') a0 =
+ (if ad_eq a' a0 then SOME y' else if ad_eq a a0 then SOME y else NONE).
+ Proof.
+ simple induction a''. intro. rewrite (ad_xor_eq _ _ H). rewrite MapPut_semantics_2_1.
+ case (ad_eq a' a0); trivial.
+ intros. simpl in |- *. rewrite H. rewrite (MapPut1_semantics p a a' y y' H a0).
+ elim (sumbool_of_bool (ad_eq a a0)). intro H0. rewrite H0. rewrite <- (ad_eq_complete _ _ H0).
+ rewrite (ad_eq_comm a' a). rewrite (ad_xor_eq_false _ _ _ H). reflexivity.
+ intro H0. rewrite H0. reflexivity.
+ Qed.
+
+ Lemma MapPut_semantics_2 :
+ forall (a a':ad) (y y':A) (a0:ad),
+ MapGet (MapPut (M1 a y) a' y') a0 =
+ (if ad_eq a' a0 then SOME y' else if ad_eq a a0 then SOME y else NONE).
+ Proof.
+ intros. apply MapPut_semantics_2_2 with (a'' := ad_xor a a'); trivial.
+ Qed.
+
+ Lemma MapPut_semantics_3_1 :
+ forall (m m':Map) (a:ad) (y:A),
+ MapPut (M2 m m') a y =
+ (if ad_bit_0 a
+ then M2 m (MapPut m' (ad_div_2 a) y)
+ else M2 (MapPut m (ad_div_2 a) y) m').
+ Proof.
+ simple induction a. trivial.
+ simple induction p; trivial.
+ Qed.
+
+ Lemma MapPut_semantics :
+ forall (m:Map) (a:ad) (y:A),
+ eqm (MapGet (MapPut m a y))
+ (fun a':ad => if ad_eq a a' then SOME y else MapGet m a').
+ Proof.
+ unfold eqm in |- *. simple induction m. exact MapPut_semantics_1.
+ intros. unfold MapGet at 2 in |- *. apply MapPut_semantics_2; assumption.
+ intros. rewrite MapPut_semantics_3_1. rewrite (MapGet_M2_bit_0_if m0 m1 a0).
+ elim (sumbool_of_bool (ad_bit_0 a)). intro H1. rewrite H1. rewrite MapGet_M2_bit_0_if.
+ elim (sumbool_of_bool (ad_bit_0 a0)). intro H2. rewrite H2.
+ rewrite (H0 (ad_div_2 a) y (ad_div_2 a0)). elim (sumbool_of_bool (ad_eq a a0)).
+ intro H3. rewrite H3. rewrite (ad_div_eq _ _ H3). reflexivity.
+ intro H3. rewrite H3. rewrite <- H2 in H1. rewrite (ad_div_bit_neq _ _ H3 H1). reflexivity.
+ intro H2. rewrite H2. rewrite (ad_eq_comm a a0). rewrite (ad_bit_0_neq a0 a H2 H1).
+ reflexivity.
+ intro H1. rewrite H1. rewrite MapGet_M2_bit_0_if. elim (sumbool_of_bool (ad_bit_0 a0)).
+ intro H2. rewrite H2. rewrite (ad_bit_0_neq a a0 H1 H2). reflexivity.
+ intro H2. rewrite H2. rewrite (H (ad_div_2 a) y (ad_div_2 a0)).
+ elim (sumbool_of_bool (ad_eq a a0)). intro H3. rewrite H3.
+ rewrite (ad_div_eq a a0 H3). reflexivity.
+ intro H3. rewrite H3. rewrite <- H2 in H1. rewrite (ad_div_bit_neq a a0 H3 H1). reflexivity.
+ Qed.
+
+ Fixpoint MapPut_behind (m:Map) : ad -> A -> Map :=
+ match m with
+ | M0 => M1
+ | M1 a y =>
+ fun (a':ad) (y':A) =>
+ match ad_xor a a' with
+ | ad_z => m
+ | ad_x p => MapPut1 a y a' y' p
+ end
+ | M2 m1 m2 =>
+ fun (a:ad) (y:A) =>
+ match a with
+ | ad_z => M2 (MapPut_behind m1 ad_z y) m2
+ | ad_x xH => M2 m1 (MapPut_behind m2 ad_z y)
+ | ad_x (xO p) => M2 (MapPut_behind m1 (ad_x p) y) m2
+ | ad_x (xI p) => M2 m1 (MapPut_behind m2 (ad_x p) y)
+ end
+ end.
+
+ Lemma MapPut_behind_semantics_3_1 :
+ forall (m m':Map) (a:ad) (y:A),
+ MapPut_behind (M2 m m') a y =
+ (if ad_bit_0 a
+ then M2 m (MapPut_behind m' (ad_div_2 a) y)
+ else M2 (MapPut_behind m (ad_div_2 a) y) m').
+ Proof.
+ simple induction a. trivial.
+ simple induction p; trivial.
+ Qed.
+
+ Lemma MapPut_behind_as_before_1 :
+ forall a a' a0:ad,
+ ad_eq a' a0 = false ->
+ forall y y':A,
+ MapGet (MapPut (M1 a y) a' y') a0 =
+ MapGet (MapPut_behind (M1 a y) a' y') a0.
+ Proof.
+ intros a a' a0. simpl in |- *. intros H y y'. elim (ad_sum (ad_xor a a')). intro H0. elim H0.
+ intros p H1. rewrite H1. reflexivity.
+ intro H0. rewrite H0. rewrite (ad_xor_eq _ _ H0). rewrite (M1_semantics_2 a' a0 y H).
+ exact (M1_semantics_2 a' a0 y' H).
+ Qed.
+
+ Lemma MapPut_behind_as_before :
+ forall (m:Map) (a:ad) (y:A) (a0:ad),
+ ad_eq a a0 = false ->
+ MapGet (MapPut m a y) a0 = MapGet (MapPut_behind m a y) a0.
+ Proof.
+ simple induction m. trivial.
+ intros a y a' y' a0 H. exact (MapPut_behind_as_before_1 a a' a0 H y y').
+ intros. rewrite MapPut_semantics_3_1. rewrite MapPut_behind_semantics_3_1.
+ elim (sumbool_of_bool (ad_bit_0 a)). intro H2. rewrite H2. rewrite MapGet_M2_bit_0_if.
+ rewrite MapGet_M2_bit_0_if. elim (sumbool_of_bool (ad_bit_0 a0)). intro H3.
+ rewrite H3. apply H0. rewrite <- H3 in H2. exact (ad_div_bit_neq a a0 H1 H2).
+ intro H3. rewrite H3. reflexivity.
+ intro H2. rewrite H2. rewrite MapGet_M2_bit_0_if. rewrite MapGet_M2_bit_0_if.
+ elim (sumbool_of_bool (ad_bit_0 a0)). intro H3. rewrite H3. reflexivity.
+ intro H3. rewrite H3. apply H. rewrite <- H3 in H2. exact (ad_div_bit_neq a a0 H1 H2).
+ Qed.
+
+ Lemma MapPut_behind_new :
+ forall (m:Map) (a:ad) (y:A),
+ MapGet (MapPut_behind m a y) a =
+ match MapGet m a with
+ | SOME y' => SOME y'
+ | _ => SOME y
+ end.
+ Proof.
+ simple induction m. simpl in |- *. intros. rewrite (ad_eq_correct a). reflexivity.
+ intros. elim (ad_sum (ad_xor a a1)). intro H. elim H. intros p H0. simpl in |- *.
+ rewrite H0. rewrite (ad_xor_eq_false a a1 p). exact (MapPut1_semantics_2 p a a1 a0 y H0).
+ assumption.
+ intro H. simpl in |- *. rewrite H. rewrite <- (ad_xor_eq _ _ H). rewrite (ad_eq_correct a).
+ exact (M1_semantics_1 a a0).
+ intros. rewrite MapPut_behind_semantics_3_1. rewrite (MapGet_M2_bit_0_if m0 m1 a).
+ elim (sumbool_of_bool (ad_bit_0 a)). intro H1. rewrite H1. rewrite (MapGet_M2_bit_0_1 a H1).
+ exact (H0 (ad_div_2 a) y).
+ intro H1. rewrite H1. rewrite (MapGet_M2_bit_0_0 a H1). exact (H (ad_div_2 a) y).
+ Qed.
+
+ Lemma MapPut_behind_semantics :
+ forall (m:Map) (a:ad) (y:A),
+ eqm (MapGet (MapPut_behind m a y))
+ (fun a':ad =>
+ match MapGet m a' with
+ | SOME y' => SOME y'
+ | _ => if ad_eq a a' then SOME y else NONE
+ end).
+ Proof.
+ unfold eqm in |- *. intros. elim (sumbool_of_bool (ad_eq a a0)). intro H. rewrite H.
+ rewrite (ad_eq_complete _ _ H). apply MapPut_behind_new.
+ intro H. rewrite H. rewrite <- (MapPut_behind_as_before m a y a0 H).
+ rewrite (MapPut_semantics m a y a0). rewrite H. case (MapGet m a0); trivial.
+ Qed.
+
+ Definition makeM2 (m m':Map) :=
+ match m, m' with
+ | M0, M0 => M0
+ | M0, M1 a y => M1 (ad_double_plus_un a) y
+ | M1 a y, M0 => M1 (ad_double a) y
+ | _, _ => M2 m m'
+ end.
+
+ Lemma makeM2_M2 :
+ forall m m':Map, eqm (MapGet (makeM2 m m')) (MapGet (M2 m m')).
+ Proof.
+ unfold eqm in |- *. intros. elim (sumbool_of_bool (ad_bit_0 a)). intro H.
+ rewrite (MapGet_M2_bit_0_1 a H m m'). case m'. case m. reflexivity.
+ intros a0 y. simpl in |- *. rewrite (ad_bit_0_1_not_double a H a0). reflexivity.
+ intros m1 m2. unfold makeM2 in |- *. rewrite MapGet_M2_bit_0_1. reflexivity.
+ assumption.
+ case m. intros a0 y. simpl in |- *. elim (sumbool_of_bool (ad_eq a0 (ad_div_2 a))).
+ intro H0. rewrite H0. rewrite (ad_eq_complete _ _ H0). rewrite (ad_div_2_double_plus_un a H).
+ rewrite (ad_eq_correct a). reflexivity.
+ intro H0. rewrite H0. rewrite (ad_eq_comm a0 (ad_div_2 a)) in H0.
+ rewrite (ad_not_div_2_not_double_plus_un a a0 H0). reflexivity.
+ intros a0 y0 a1 y1. unfold makeM2 in |- *. rewrite MapGet_M2_bit_0_1. reflexivity.
+ assumption.
+ intros m1 m2 a0 y. unfold makeM2 in |- *. rewrite MapGet_M2_bit_0_1. reflexivity.
+ assumption.
+ intros m1 m2. unfold makeM2 in |- *.
+ cut (MapGet (M2 m (M2 m1 m2)) a = MapGet (M2 m1 m2) (ad_div_2 a)).
+ case m; trivial.
+ exact (MapGet_M2_bit_0_1 a H m (M2 m1 m2)).
+ intro H. rewrite (MapGet_M2_bit_0_0 a H m m'). case m. case m'. reflexivity.
+ intros a0 y. simpl in |- *. rewrite (ad_bit_0_0_not_double_plus_un a H a0). reflexivity.
+ intros m1 m2. unfold makeM2 in |- *. rewrite MapGet_M2_bit_0_0. reflexivity.
+ assumption.
+ case m'. intros a0 y. simpl in |- *. elim (sumbool_of_bool (ad_eq a0 (ad_div_2 a))). intro H0.
+ rewrite H0. rewrite (ad_eq_complete _ _ H0). rewrite (ad_div_2_double a H).
+ rewrite (ad_eq_correct a). reflexivity.
+ intro H0. rewrite H0. rewrite (ad_eq_comm (ad_double a0) a).
+ rewrite (ad_eq_comm a0 (ad_div_2 a)) in H0. rewrite (ad_not_div_2_not_double a a0 H0).
+ reflexivity.
+ intros a0 y0 a1 y1. unfold makeM2 in |- *. rewrite MapGet_M2_bit_0_0. reflexivity.
+ assumption.
+ intros m1 m2 a0 y. unfold makeM2 in |- *. rewrite MapGet_M2_bit_0_0. reflexivity.
+ assumption.
+ intros m1 m2. unfold makeM2 in |- *. exact (MapGet_M2_bit_0_0 a H (M2 m1 m2) m').
+ Qed.
+
+ Fixpoint MapRemove (m:Map) : ad -> Map :=
+ match m with
+ | M0 => fun _:ad => M0
+ | M1 a y =>
+ fun a':ad => match ad_eq a a' with
+ | true => M0
+ | false => m
+ end
+ | M2 m1 m2 =>
+ fun a:ad =>
+ if ad_bit_0 a
+ then makeM2 m1 (MapRemove m2 (ad_div_2 a))
+ else makeM2 (MapRemove m1 (ad_div_2 a)) m2
+ end.
+
+ Lemma MapRemove_semantics :
+ forall (m:Map) (a:ad),
+ eqm (MapGet (MapRemove m a))
+ (fun a':ad => if ad_eq a a' then NONE else MapGet m a').
+ Proof.
+ unfold eqm in |- *. simple induction m. simpl in |- *. intros. case (ad_eq a a0); trivial.
+ intros. simpl in |- *. elim (sumbool_of_bool (ad_eq a1 a2)). intro H. rewrite H.
+ elim (sumbool_of_bool (ad_eq a a1)). intro H0. rewrite H0. reflexivity.
+ intro H0. rewrite H0. rewrite (ad_eq_complete _ _ H) in H0. exact (M1_semantics_2 a a2 a0 H0).
+ intro H. elim (sumbool_of_bool (ad_eq a a1)). intro H0. rewrite H0. rewrite H.
+ rewrite <- (ad_eq_complete _ _ H0) in H. rewrite H. reflexivity.
+ intro H0. rewrite H0. rewrite H. reflexivity.
+ intros. change
+ (MapGet
+ (if ad_bit_0 a
+ then makeM2 m0 (MapRemove m1 (ad_div_2 a))
+ else makeM2 (MapRemove m0 (ad_div_2 a)) m1) a0 =
+ (if ad_eq a a0 then NONE else MapGet (M2 m0 m1) a0))
+ in |- *.
+ elim (sumbool_of_bool (ad_bit_0 a)). intro H1. rewrite H1.
+ rewrite (makeM2_M2 m0 (MapRemove m1 (ad_div_2 a)) a0). elim (sumbool_of_bool (ad_bit_0 a0)).
+ intro H2. rewrite MapGet_M2_bit_0_1. rewrite (H0 (ad_div_2 a) (ad_div_2 a0)).
+ elim (sumbool_of_bool (ad_eq a a0)). intro H3. rewrite H3. rewrite (ad_div_eq _ _ H3).
+ reflexivity.
+ intro H3. rewrite H3. rewrite <- H2 in H1. rewrite (ad_div_bit_neq _ _ H3 H1).
+ rewrite (MapGet_M2_bit_0_1 a0 H2 m0 m1). reflexivity.
+ assumption.
+ intro H2. rewrite (MapGet_M2_bit_0_0 a0 H2 m0 (MapRemove m1 (ad_div_2 a))).
+ rewrite (ad_eq_comm a a0). rewrite (ad_bit_0_neq _ _ H2 H1).
+ rewrite (MapGet_M2_bit_0_0 a0 H2 m0 m1). reflexivity.
+ intro H1. rewrite H1. rewrite (makeM2_M2 (MapRemove m0 (ad_div_2 a)) m1 a0).
+ elim (sumbool_of_bool (ad_bit_0 a0)). intro H2. rewrite MapGet_M2_bit_0_1.
+ rewrite (MapGet_M2_bit_0_1 a0 H2 m0 m1). rewrite (ad_bit_0_neq a a0 H1 H2). reflexivity.
+ assumption.
+ intro H2. rewrite MapGet_M2_bit_0_0. rewrite (H (ad_div_2 a) (ad_div_2 a0)).
+ rewrite (MapGet_M2_bit_0_0 a0 H2 m0 m1). elim (sumbool_of_bool (ad_eq a a0)). intro H3.
+ rewrite H3. rewrite (ad_div_eq _ _ H3). reflexivity.
+ intro H3. rewrite H3. rewrite <- H2 in H1. rewrite (ad_div_bit_neq _ _ H3 H1). reflexivity.
+ assumption.
+ Qed.
+
+ Fixpoint MapCard (m:Map) : nat :=
+ match m with
+ | M0 => 0
+ | M1 _ _ => 1
+ | M2 m m' => MapCard m + MapCard m'
+ end.
+
+ Fixpoint MapMerge (m:Map) : Map -> Map :=
+ match m with
+ | M0 => fun m':Map => m'
+ | M1 a y => fun m':Map => MapPut_behind m' a y
+ | M2 m1 m2 =>
+ fun m':Map =>
+ match m' with
+ | M0 => m
+ | M1 a' y' => MapPut m a' y'
+ | M2 m'1 m'2 => M2 (MapMerge m1 m'1) (MapMerge m2 m'2)
+ end
+ end.
+
+ Lemma MapMerge_semantics :
+ forall m m':Map,
+ eqm (MapGet (MapMerge m m'))
+ (fun a0:ad =>
+ match MapGet m' a0 with
+ | SOME y' => SOME y'
+ | NONE => MapGet m a0
+ end).
+ Proof.
+ unfold eqm in |- *. simple induction m. intros. simpl in |- *. case (MapGet m' a); trivial.
+ intros. simpl in |- *. rewrite (MapPut_behind_semantics m' a a0 a1). reflexivity.
+ simple induction m'. trivial.
+ intros. unfold MapMerge in |- *. rewrite (MapPut_semantics (M2 m0 m1) a a0 a1).
+ elim (sumbool_of_bool (ad_eq a a1)). intro H1. rewrite H1. rewrite (ad_eq_complete _ _ H1).
+ rewrite (M1_semantics_1 a1 a0). reflexivity.
+ intro H1. rewrite H1. rewrite (M1_semantics_2 a a1 a0 H1). reflexivity.
+ intros. cut (MapMerge (M2 m0 m1) (M2 m2 m3) = M2 (MapMerge m0 m2) (MapMerge m1 m3)).
+ intro. rewrite H3. rewrite MapGet_M2_bit_0_if. rewrite (H0 m3 (ad_div_2 a)).
+ rewrite (H m2 (ad_div_2 a)). rewrite (MapGet_M2_bit_0_if m2 m3 a).
+ rewrite (MapGet_M2_bit_0_if m0 m1 a). case (ad_bit_0 a); trivial.
+ reflexivity.
+ Qed.
+
+ (** [MapInter], [MapRngRestrTo], [MapRngRestrBy], [MapInverse]
+ not implemented: need a decidable equality on [A]. *)
+
+ Fixpoint MapDelta (m:Map) : Map -> Map :=
+ match m with
+ | M0 => fun m':Map => m'
+ | M1 a y =>
+ fun m':Map =>
+ match MapGet m' a with
+ | NONE => MapPut m' a y
+ | _ => MapRemove m' a
+ end
+ | M2 m1 m2 =>
+ fun m':Map =>
+ match m' with
+ | M0 => m
+ | M1 a' y' =>
+ match MapGet m a' with
+ | NONE => MapPut m a' y'
+ | _ => MapRemove m a'
+ end
+ | M2 m'1 m'2 => makeM2 (MapDelta m1 m'1) (MapDelta m2 m'2)
+ end
+ end.
+
+ Lemma MapDelta_semantics_comm :
+ forall m m':Map, eqm (MapGet (MapDelta m m')) (MapGet (MapDelta m' m)).
+ Proof.
+ unfold eqm in |- *. simple induction m. simple induction m'; reflexivity.
+ simple induction m'. reflexivity.
+ unfold MapDelta in |- *. intros. elim (sumbool_of_bool (ad_eq a a1)). intro H.
+ rewrite <- (ad_eq_complete _ _ H). rewrite (M1_semantics_1 a a2).
+ rewrite (M1_semantics_1 a a0). simpl in |- *. rewrite (ad_eq_correct a). reflexivity.
+ intro H. rewrite (M1_semantics_2 a a1 a0 H). rewrite (ad_eq_comm a a1) in H.
+ rewrite (M1_semantics_2 a1 a a2 H). rewrite (MapPut_semantics (M1 a a0) a1 a2 a3).
+ rewrite (MapPut_semantics (M1 a1 a2) a a0 a3). elim (sumbool_of_bool (ad_eq a a3)).
+ intro H0. rewrite H0. rewrite (ad_eq_complete _ _ H0) in H. rewrite H.
+ rewrite (ad_eq_complete _ _ H0). rewrite (M1_semantics_1 a3 a0). reflexivity.
+ intro H0. rewrite H0. rewrite (M1_semantics_2 a a3 a0 H0).
+ elim (sumbool_of_bool (ad_eq a1 a3)). intro H1. rewrite H1.
+ rewrite (ad_eq_complete _ _ H1). exact (M1_semantics_1 a3 a2).
+ intro H1. rewrite H1. exact (M1_semantics_2 a1 a3 a2 H1).
+ intros. reflexivity.
+ simple induction m'. reflexivity.
+ reflexivity.
+ intros. simpl in |- *. rewrite (makeM2_M2 (MapDelta m0 m2) (MapDelta m1 m3) a).
+ rewrite (makeM2_M2 (MapDelta m2 m0) (MapDelta m3 m1) a).
+ rewrite (MapGet_M2_bit_0_if (MapDelta m0 m2) (MapDelta m1 m3) a).
+ rewrite (MapGet_M2_bit_0_if (MapDelta m2 m0) (MapDelta m3 m1) a).
+ rewrite (H0 m3 (ad_div_2 a)). rewrite (H m2 (ad_div_2 a)). reflexivity.
+ Qed.
+
+ Lemma MapDelta_semantics_1_1 :
+ forall (a:ad) (y:A) (m':Map) (a0:ad),
+ MapGet (M1 a y) a0 = NONE ->
+ MapGet m' a0 = NONE -> MapGet (MapDelta (M1 a y) m') a0 = NONE.
+ Proof.
+ intros. unfold MapDelta in |- *. elim (sumbool_of_bool (ad_eq a a0)). intro H1.
+ rewrite (ad_eq_complete _ _ H1) in H. rewrite (M1_semantics_1 a0 y) in H. discriminate H.
+ intro H1. case (MapGet m' a). rewrite (MapPut_semantics m' a y a0). rewrite H1. assumption.
+ rewrite (MapRemove_semantics m' a a0). rewrite H1. trivial.
+ Qed.
+
+ Lemma MapDelta_semantics_1 :
+ forall (m m':Map) (a:ad),
+ MapGet m a = NONE ->
+ MapGet m' a = NONE -> MapGet (MapDelta m m') a = NONE.
+ Proof.
+ simple induction m. trivial.
+ exact MapDelta_semantics_1_1.
+ simple induction m'. trivial.
+ intros. rewrite (MapDelta_semantics_comm (M2 m0 m1) (M1 a a0) a1).
+ apply MapDelta_semantics_1_1; trivial.
+ intros. simpl in |- *. rewrite (makeM2_M2 (MapDelta m0 m2) (MapDelta m1 m3) a).
+ rewrite MapGet_M2_bit_0_if. elim (sumbool_of_bool (ad_bit_0 a)). intro H5. rewrite H5.
+ apply H0. rewrite (MapGet_M2_bit_0_1 a H5 m0 m1) in H3. exact H3.
+ rewrite (MapGet_M2_bit_0_1 a H5 m2 m3) in H4. exact H4.
+ intro H5. rewrite H5. apply H. rewrite (MapGet_M2_bit_0_0 a H5 m0 m1) in H3. exact H3.
+ rewrite (MapGet_M2_bit_0_0 a H5 m2 m3) in H4. exact H4.
+ Qed.
+
+ Lemma MapDelta_semantics_2_1 :
+ forall (a:ad) (y:A) (m':Map) (a0:ad) (y0:A),
+ MapGet (M1 a y) a0 = NONE ->
+ MapGet m' a0 = SOME y0 -> MapGet (MapDelta (M1 a y) m') a0 = SOME y0.
+ Proof.
+ intros. unfold MapDelta in |- *. elim (sumbool_of_bool (ad_eq a a0)). intro H1.
+ rewrite (ad_eq_complete _ _ H1) in H. rewrite (M1_semantics_1 a0 y) in H. discriminate H.
+ intro H1. case (MapGet m' a). rewrite (MapPut_semantics m' a y a0). rewrite H1. assumption.
+ rewrite (MapRemove_semantics m' a a0). rewrite H1. trivial.
+ Qed.
+
+ Lemma MapDelta_semantics_2_2 :
+ forall (a:ad) (y:A) (m':Map) (a0:ad) (y0:A),
+ MapGet (M1 a y) a0 = SOME y0 ->
+ MapGet m' a0 = NONE -> MapGet (MapDelta (M1 a y) m') a0 = SOME y0.
+ Proof.
+ intros. unfold MapDelta in |- *. elim (sumbool_of_bool (ad_eq a a0)). intro H1.
+ rewrite (ad_eq_complete _ _ H1) in H. rewrite (ad_eq_complete _ _ H1).
+ rewrite H0. rewrite (MapPut_semantics m' a0 y a0). rewrite (ad_eq_correct a0).
+ rewrite (M1_semantics_1 a0 y) in H. simple inversion H. assumption.
+ intro H1. rewrite (M1_semantics_2 a a0 y H1) in H. discriminate H.
+ Qed.
+
+ Lemma MapDelta_semantics_2 :
+ forall (m m':Map) (a:ad) (y:A),
+ MapGet m a = NONE ->
+ MapGet m' a = SOME y -> MapGet (MapDelta m m') a = SOME y.
+ Proof.
+ simple induction m. trivial.
+ exact MapDelta_semantics_2_1.
+ simple induction m'. intros. discriminate H2.
+ intros. rewrite (MapDelta_semantics_comm (M2 m0 m1) (M1 a a0) a1).
+ apply MapDelta_semantics_2_2; assumption.
+ intros. simpl in |- *. rewrite (makeM2_M2 (MapDelta m0 m2) (MapDelta m1 m3) a).
+ rewrite MapGet_M2_bit_0_if. elim (sumbool_of_bool (ad_bit_0 a)). intro H5. rewrite H5.
+ apply H0. rewrite <- (MapGet_M2_bit_0_1 a H5 m0 m1). assumption.
+ rewrite <- (MapGet_M2_bit_0_1 a H5 m2 m3). assumption.
+ intro H5. rewrite H5. apply H. rewrite <- (MapGet_M2_bit_0_0 a H5 m0 m1). assumption.
+ rewrite <- (MapGet_M2_bit_0_0 a H5 m2 m3). assumption.
+ Qed.
+
+ Lemma MapDelta_semantics_3_1 :
+ forall (a0:ad) (y0:A) (m':Map) (a:ad) (y y':A),
+ MapGet (M1 a0 y0) a = SOME y ->
+ MapGet m' a = SOME y' -> MapGet (MapDelta (M1 a0 y0) m') a = NONE.
+ Proof.
+ intros. unfold MapDelta in |- *. elim (sumbool_of_bool (ad_eq a0 a)). intro H1.
+ rewrite (ad_eq_complete a0 a H1). rewrite H0. rewrite (MapRemove_semantics m' a a).
+ rewrite (ad_eq_correct a). reflexivity.
+ intro H1. rewrite (M1_semantics_2 a0 a y0 H1) in H. discriminate H.
+ Qed.
+
+ Lemma MapDelta_semantics_3 :
+ forall (m m':Map) (a:ad) (y y':A),
+ MapGet m a = SOME y ->
+ MapGet m' a = SOME y' -> MapGet (MapDelta m m') a = NONE.
+ Proof.
+ simple induction m. intros. discriminate H.
+ exact MapDelta_semantics_3_1.
+ simple induction m'. intros. discriminate H2.
+ intros. rewrite (MapDelta_semantics_comm (M2 m0 m1) (M1 a a0) a1).
+ exact (MapDelta_semantics_3_1 a a0 (M2 m0 m1) a1 y' y H2 H1).
+ intros. simpl in |- *. rewrite (makeM2_M2 (MapDelta m0 m2) (MapDelta m1 m3) a).
+ rewrite MapGet_M2_bit_0_if. elim (sumbool_of_bool (ad_bit_0 a)). intro H5. rewrite H5.
+ apply (H0 m3 (ad_div_2 a) y y'). rewrite <- (MapGet_M2_bit_0_1 a H5 m0 m1). assumption.
+ rewrite <- (MapGet_M2_bit_0_1 a H5 m2 m3). assumption.
+ intro H5. rewrite H5. apply (H m2 (ad_div_2 a) y y').
+ rewrite <- (MapGet_M2_bit_0_0 a H5 m0 m1). assumption.
+ rewrite <- (MapGet_M2_bit_0_0 a H5 m2 m3). assumption.
+ Qed.
+
+ Lemma MapDelta_semantics :
+ forall m m':Map,
+ eqm (MapGet (MapDelta m m'))
+ (fun a0:ad =>
+ match MapGet m a0, MapGet m' a0 with
+ | NONE, SOME y' => SOME y'
+ | SOME y, NONE => SOME y
+ | _, _ => NONE
+ end).
+ Proof.
+ unfold eqm in |- *. intros. elim (option_sum (MapGet m' a)). intro H. elim H. intros a0 H0.
+ rewrite H0. elim (option_sum (MapGet m a)). intro H1. elim H1. intros a1 H2. rewrite H2.
+ exact (MapDelta_semantics_3 m m' a a1 a0 H2 H0).
+ intro H1. rewrite H1. exact (MapDelta_semantics_2 m m' a a0 H1 H0).
+ intro H. rewrite H. elim (option_sum (MapGet m a)). intro H0. elim H0. intros a0 H1.
+ rewrite H1. rewrite (MapDelta_semantics_comm m m' a).
+ exact (MapDelta_semantics_2 m' m a a0 H H1).
+ intro H0. rewrite H0. exact (MapDelta_semantics_1 m m' a H0 H).
+ Qed.
+
+ Definition MapEmptyp (m:Map) := match m with
+ | M0 => true
+ | _ => false
+ end.
+
+ Lemma MapEmptyp_correct : MapEmptyp M0 = true.
+ Proof.
+ reflexivity.
+ Qed.
+
+ Lemma MapEmptyp_complete : forall m:Map, MapEmptyp m = true -> m = M0.
+ Proof.
+ simple induction m; trivial. intros. discriminate H.
+ intros. discriminate H1.
+ Qed.
+
+ (** [MapSplit] not implemented: not the preferred way of recursing over Maps
+ (use [MapSweep], [MapCollect], or [MapFold] in Mapiter.v. *)
+
+End MapDefs. \ No newline at end of file
diff --git a/theories/IntMap/Mapaxioms.v b/theories/IntMap/Mapaxioms.v
new file mode 100644
index 00000000..9d09f2a9
--- /dev/null
+++ b/theories/IntMap/Mapaxioms.v
@@ -0,0 +1,763 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(*i $Id: Mapaxioms.v,v 1.4.2.1 2004/07/16 19:31:04 herbelin Exp $ i*)
+
+Require Import Bool.
+Require Import Sumbool.
+Require Import ZArith.
+Require Import Addr.
+Require Import Adist.
+Require Import Addec.
+Require Import Map.
+Require Import Fset.
+
+Section MapAxioms.
+
+ Variables A B C : Set.
+
+ Lemma eqm_sym : forall f f':ad -> option A, eqm A f f' -> eqm A f' f.
+ Proof.
+ unfold eqm in |- *. intros. rewrite H. reflexivity.
+ Qed.
+
+ Lemma eqm_refl : forall f:ad -> option A, eqm A f f.
+ Proof.
+ unfold eqm in |- *. trivial.
+ Qed.
+
+ Lemma eqm_trans :
+ forall f f' f'':ad -> option A, eqm A f f' -> eqm A f' f'' -> eqm A f f''.
+ Proof.
+ unfold eqm in |- *. intros. rewrite H. exact (H0 a).
+ Qed.
+
+ Definition eqmap (m m':Map A) := eqm A (MapGet A m) (MapGet A m').
+
+ Lemma eqmap_sym : forall m m':Map A, eqmap m m' -> eqmap m' m.
+ Proof.
+ intros. unfold eqmap in |- *. apply eqm_sym. assumption.
+ Qed.
+
+ Lemma eqmap_refl : forall m:Map A, eqmap m m.
+ Proof.
+ intros. unfold eqmap in |- *. apply eqm_refl.
+ Qed.
+
+ Lemma eqmap_trans :
+ forall m m' m'':Map A, eqmap m m' -> eqmap m' m'' -> eqmap m m''.
+ Proof.
+ intros. exact (eqm_trans (MapGet A m) (MapGet A m') (MapGet A m'') H H0).
+ Qed.
+
+ Lemma MapPut_as_Merge :
+ forall (m:Map A) (a:ad) (y:A),
+ eqmap (MapPut A m a y) (MapMerge A m (M1 A a y)).
+ Proof.
+ unfold eqmap, eqm in |- *. intros. rewrite (MapPut_semantics A m a y a0).
+ rewrite (MapMerge_semantics A m (M1 A a y) a0). unfold MapGet at 2 in |- *.
+ elim (sumbool_of_bool (ad_eq a a0)); intro H; rewrite H; reflexivity.
+ Qed.
+
+ Lemma MapPut_ext :
+ forall m m':Map A,
+ eqmap m m' ->
+ forall (a:ad) (y:A), eqmap (MapPut A m a y) (MapPut A m' a y).
+ Proof.
+ unfold eqmap, eqm in |- *. intros. rewrite (MapPut_semantics A m' a y a0).
+ rewrite (MapPut_semantics A m a y a0).
+ case (ad_eq a a0); [ reflexivity | apply H ].
+ Qed.
+
+ Lemma MapPut_behind_as_Merge :
+ forall (m:Map A) (a:ad) (y:A),
+ eqmap (MapPut_behind A m a y) (MapMerge A (M1 A a y) m).
+ Proof.
+ unfold eqmap, eqm in |- *. intros. rewrite (MapPut_behind_semantics A m a y a0).
+ rewrite (MapMerge_semantics A (M1 A a y) m a0). reflexivity.
+ Qed.
+
+ Lemma MapPut_behind_ext :
+ forall m m':Map A,
+ eqmap m m' ->
+ forall (a:ad) (y:A),
+ eqmap (MapPut_behind A m a y) (MapPut_behind A m' a y).
+ Proof.
+ unfold eqmap, eqm in |- *. intros. rewrite (MapPut_behind_semantics A m' a y a0).
+ rewrite (MapPut_behind_semantics A m a y a0). rewrite (H a0). reflexivity.
+ Qed.
+
+ Lemma MapMerge_empty_m_1 : forall m:Map A, MapMerge A (M0 A) m = m.
+ Proof.
+ trivial.
+ Qed.
+
+ Lemma MapMerge_empty_m : forall m:Map A, eqmap (MapMerge A (M0 A) m) m.
+ Proof.
+ unfold eqmap, eqm in |- *. trivial.
+ Qed.
+
+ Lemma MapMerge_m_empty_1 : forall m:Map A, MapMerge A m (M0 A) = m.
+ Proof.
+ simple induction m; trivial.
+ Qed.
+
+ Lemma MapMerge_m_empty : forall m:Map A, eqmap (MapMerge A m (M0 A)) m.
+ Proof.
+ unfold eqmap, eqm in |- *. intros. rewrite MapMerge_m_empty_1. reflexivity.
+ Qed.
+
+ Lemma MapMerge_empty_l :
+ forall m m':Map A, eqmap (MapMerge A m m') (M0 A) -> eqmap m (M0 A).
+ Proof.
+ unfold eqmap, eqm in |- *. intros. cut (MapGet A (MapMerge A m m') a = MapGet A (M0 A) a).
+ rewrite (MapMerge_semantics A m m' a). case (MapGet A m' a). trivial.
+ intros. discriminate H0.
+ exact (H a).
+ Qed.
+
+ Lemma MapMerge_empty_r :
+ forall m m':Map A, eqmap (MapMerge A m m') (M0 A) -> eqmap m' (M0 A).
+ Proof.
+ unfold eqmap, eqm in |- *. intros. cut (MapGet A (MapMerge A m m') a = MapGet A (M0 A) a).
+ rewrite (MapMerge_semantics A m m' a). case (MapGet A m' a). trivial.
+ intros. discriminate H0.
+ exact (H a).
+ Qed.
+
+ Lemma MapMerge_assoc :
+ forall m m' m'':Map A,
+ eqmap (MapMerge A (MapMerge A m m') m'')
+ (MapMerge A m (MapMerge A m' m'')).
+ Proof.
+ unfold eqmap, eqm in |- *. intros. rewrite (MapMerge_semantics A (MapMerge A m m') m'' a).
+ rewrite (MapMerge_semantics A m (MapMerge A m' m'') a). rewrite (MapMerge_semantics A m m' a).
+ rewrite (MapMerge_semantics A m' m'' a).
+ case (MapGet A m'' a); case (MapGet A m' a); trivial.
+ Qed.
+
+ Lemma MapMerge_idempotent : forall m:Map A, eqmap (MapMerge A m m) m.
+ Proof.
+ unfold eqmap, eqm in |- *. intros. rewrite (MapMerge_semantics A m m a).
+ case (MapGet A m a); trivial.
+ Qed.
+
+ Lemma MapMerge_ext :
+ forall m1 m2 m'1 m'2:Map A,
+ eqmap m1 m'1 ->
+ eqmap m2 m'2 -> eqmap (MapMerge A m1 m2) (MapMerge A m'1 m'2).
+ Proof.
+ unfold eqmap, eqm in |- *. intros. rewrite (MapMerge_semantics A m1 m2 a).
+ rewrite (MapMerge_semantics A m'1 m'2 a). rewrite (H a). rewrite (H0 a). reflexivity.
+ Qed.
+
+ Lemma MapMerge_ext_l :
+ forall m1 m'1 m2:Map A,
+ eqmap m1 m'1 -> eqmap (MapMerge A m1 m2) (MapMerge A m'1 m2).
+ Proof.
+ intros. apply MapMerge_ext. assumption.
+ apply eqmap_refl.
+ Qed.
+
+ Lemma MapMerge_ext_r :
+ forall m1 m2 m'2:Map A,
+ eqmap m2 m'2 -> eqmap (MapMerge A m1 m2) (MapMerge A m1 m'2).
+ Proof.
+ intros. apply MapMerge_ext. apply eqmap_refl.
+ assumption.
+ Qed.
+
+ Lemma MapMerge_RestrTo_l :
+ forall m m' m'':Map A,
+ eqmap (MapMerge A (MapDomRestrTo A A m m') m'')
+ (MapDomRestrTo A A (MapMerge A m m'') (MapMerge A m' m'')).
+ Proof.
+ unfold eqmap, eqm in |- *. intros. rewrite (MapMerge_semantics A (MapDomRestrTo A A m m') m'' a).
+ rewrite (MapDomRestrTo_semantics A A m m' a).
+ rewrite
+ (MapDomRestrTo_semantics A A (MapMerge A m m'') (MapMerge A m' m'') a)
+ .
+ rewrite (MapMerge_semantics A m' m'' a). rewrite (MapMerge_semantics A m m'' a).
+ case (MapGet A m'' a); case (MapGet A m' a); reflexivity.
+ Qed.
+
+ Lemma MapRemove_as_RestrBy :
+ forall (m:Map A) (a:ad) (y:B),
+ eqmap (MapRemove A m a) (MapDomRestrBy A B m (M1 B a y)).
+ Proof.
+ unfold eqmap, eqm in |- *. intros. rewrite (MapRemove_semantics A m a a0).
+ rewrite (MapDomRestrBy_semantics A B m (M1 B a y) a0). elim (sumbool_of_bool (ad_eq a a0)).
+ intro H. rewrite H. rewrite (ad_eq_complete a a0 H). rewrite (M1_semantics_1 B a0 y).
+ reflexivity.
+ intro H. rewrite H. rewrite (M1_semantics_2 B a a0 y H). reflexivity.
+ Qed.
+
+ Lemma MapRemove_ext :
+ forall m m':Map A,
+ eqmap m m' -> forall a:ad, eqmap (MapRemove A m a) (MapRemove A m' a).
+ Proof.
+ unfold eqmap, eqm in |- *. intros. rewrite (MapRemove_semantics A m' a a0).
+ rewrite (MapRemove_semantics A m a a0).
+ case (ad_eq a a0); [ reflexivity | apply H ].
+ Qed.
+
+ Lemma MapDomRestrTo_empty_m_1 :
+ forall m:Map B, MapDomRestrTo A B (M0 A) m = M0 A.
+ Proof.
+ trivial.
+ Qed.
+
+ Lemma MapDomRestrTo_empty_m :
+ forall m:Map B, eqmap (MapDomRestrTo A B (M0 A) m) (M0 A).
+ Proof.
+ unfold eqmap, eqm in |- *. trivial.
+ Qed.
+
+ Lemma MapDomRestrTo_m_empty_1 :
+ forall m:Map A, MapDomRestrTo A B m (M0 B) = M0 A.
+ Proof.
+ simple induction m; trivial.
+ Qed.
+
+ Lemma MapDomRestrTo_m_empty :
+ forall m:Map A, eqmap (MapDomRestrTo A B m (M0 B)) (M0 A).
+ Proof.
+ unfold eqmap, eqm in |- *. intros. rewrite (MapDomRestrTo_m_empty_1 m). reflexivity.
+ Qed.
+
+ Lemma MapDomRestrTo_assoc :
+ forall (m:Map A) (m':Map B) (m'':Map C),
+ eqmap (MapDomRestrTo A C (MapDomRestrTo A B m m') m'')
+ (MapDomRestrTo A B m (MapDomRestrTo B C m' m'')).
+ Proof.
+ unfold eqmap, eqm in |- *. intros.
+ rewrite (MapDomRestrTo_semantics A C (MapDomRestrTo A B m m') m'' a).
+ rewrite (MapDomRestrTo_semantics A B m m' a).
+ rewrite (MapDomRestrTo_semantics A B m (MapDomRestrTo B C m' m'') a).
+ rewrite (MapDomRestrTo_semantics B C m' m'' a).
+ case (MapGet C m'' a); case (MapGet B m' a); trivial.
+ Qed.
+
+ Lemma MapDomRestrTo_idempotent :
+ forall m:Map A, eqmap (MapDomRestrTo A A m m) m.
+ Proof.
+ unfold eqmap, eqm in |- *. intros. rewrite (MapDomRestrTo_semantics A A m m a).
+ case (MapGet A m a); trivial.
+ Qed.
+
+ Lemma MapDomRestrTo_Dom :
+ forall (m:Map A) (m':Map B),
+ eqmap (MapDomRestrTo A B m m') (MapDomRestrTo A unit m (MapDom B m')).
+ Proof.
+ unfold eqmap, eqm in |- *. intros. rewrite (MapDomRestrTo_semantics A B m m' a).
+ rewrite (MapDomRestrTo_semantics A unit m (MapDom B m') a).
+ elim (sumbool_of_bool (in_FSet a (MapDom B m'))). intro H.
+ elim (MapDom_semantics_2 B m' a H). intros y H0. rewrite H0. unfold in_FSet, in_dom in H.
+ generalize H. case (MapGet unit (MapDom B m') a); trivial. intro H1. discriminate H1.
+ intro H. rewrite (MapDom_semantics_4 B m' a H). unfold in_FSet, in_dom in H.
+ generalize H. case (MapGet unit (MapDom B m') a). trivial.
+ intros H0 H1. discriminate H1.
+ Qed.
+
+ Lemma MapDomRestrBy_empty_m_1 :
+ forall m:Map B, MapDomRestrBy A B (M0 A) m = M0 A.
+ Proof.
+ trivial.
+ Qed.
+
+ Lemma MapDomRestrBy_empty_m :
+ forall m:Map B, eqmap (MapDomRestrBy A B (M0 A) m) (M0 A).
+ Proof.
+ unfold eqmap, eqm in |- *. trivial.
+ Qed.
+
+ Lemma MapDomRestrBy_m_empty_1 :
+ forall m:Map A, MapDomRestrBy A B m (M0 B) = m.
+ Proof.
+ simple induction m; trivial.
+ Qed.
+
+ Lemma MapDomRestrBy_m_empty :
+ forall m:Map A, eqmap (MapDomRestrBy A B m (M0 B)) m.
+ Proof.
+ unfold eqmap, eqm in |- *. intros. rewrite (MapDomRestrBy_m_empty_1 m). reflexivity.
+ Qed.
+
+ Lemma MapDomRestrBy_Dom :
+ forall (m:Map A) (m':Map B),
+ eqmap (MapDomRestrBy A B m m') (MapDomRestrBy A unit m (MapDom B m')).
+ Proof.
+ unfold eqmap, eqm in |- *. intros. rewrite (MapDomRestrBy_semantics A B m m' a).
+ rewrite (MapDomRestrBy_semantics A unit m (MapDom B m') a).
+ elim (sumbool_of_bool (in_FSet a (MapDom B m'))). intro H.
+ elim (MapDom_semantics_2 B m' a H). intros y H0. rewrite H0.
+ unfold in_FSet, in_dom in H. generalize H. case (MapGet unit (MapDom B m') a); trivial.
+ intro H1. discriminate H1.
+ intro H. rewrite (MapDom_semantics_4 B m' a H). unfold in_FSet, in_dom in H.
+ generalize H. case (MapGet unit (MapDom B m') a). trivial.
+ intros H0 H1. discriminate H1.
+ Qed.
+
+ Lemma MapDomRestrBy_m_m_1 :
+ forall m:Map A, eqmap (MapDomRestrBy A A m m) (M0 A).
+ Proof.
+ unfold eqmap, eqm in |- *. intros. rewrite (MapDomRestrBy_semantics A A m m a).
+ case (MapGet A m a); trivial.
+ Qed.
+
+ Lemma MapDomRestrBy_By :
+ forall (m:Map A) (m' m'':Map B),
+ eqmap (MapDomRestrBy A B (MapDomRestrBy A B m m') m'')
+ (MapDomRestrBy A B m (MapMerge B m' m'')).
+ Proof.
+ unfold eqmap, eqm in |- *. intros.
+ rewrite (MapDomRestrBy_semantics A B (MapDomRestrBy A B m m') m'' a).
+ rewrite (MapDomRestrBy_semantics A B m m' a).
+ rewrite (MapDomRestrBy_semantics A B m (MapMerge B m' m'') a).
+ rewrite (MapMerge_semantics B m' m'' a).
+ case (MapGet B m'' a); case (MapGet B m' a); trivial.
+ Qed.
+
+ Lemma MapDomRestrBy_By_comm :
+ forall (m:Map A) (m':Map B) (m'':Map C),
+ eqmap (MapDomRestrBy A C (MapDomRestrBy A B m m') m'')
+ (MapDomRestrBy A B (MapDomRestrBy A C m m'') m').
+ Proof.
+ unfold eqmap, eqm in |- *. intros.
+ rewrite (MapDomRestrBy_semantics A C (MapDomRestrBy A B m m') m'' a).
+ rewrite (MapDomRestrBy_semantics A B m m' a).
+ rewrite (MapDomRestrBy_semantics A B (MapDomRestrBy A C m m'') m' a).
+ rewrite (MapDomRestrBy_semantics A C m m'' a).
+ case (MapGet C m'' a); case (MapGet B m' a); trivial.
+ Qed.
+
+ Lemma MapDomRestrBy_To :
+ forall (m:Map A) (m':Map B) (m'':Map C),
+ eqmap (MapDomRestrBy A C (MapDomRestrTo A B m m') m'')
+ (MapDomRestrTo A B m (MapDomRestrBy B C m' m'')).
+ Proof.
+ unfold eqmap, eqm in |- *. intros.
+ rewrite (MapDomRestrBy_semantics A C (MapDomRestrTo A B m m') m'' a).
+ rewrite (MapDomRestrTo_semantics A B m m' a).
+ rewrite (MapDomRestrTo_semantics A B m (MapDomRestrBy B C m' m'') a).
+ rewrite (MapDomRestrBy_semantics B C m' m'' a).
+ case (MapGet C m'' a); case (MapGet B m' a); trivial.
+ Qed.
+
+ Lemma MapDomRestrBy_To_comm :
+ forall (m:Map A) (m':Map B) (m'':Map C),
+ eqmap (MapDomRestrBy A C (MapDomRestrTo A B m m') m'')
+ (MapDomRestrTo A B (MapDomRestrBy A C m m'') m').
+ Proof.
+ unfold eqmap, eqm in |- *. intros.
+ rewrite (MapDomRestrBy_semantics A C (MapDomRestrTo A B m m') m'' a).
+ rewrite (MapDomRestrTo_semantics A B m m' a).
+ rewrite (MapDomRestrTo_semantics A B (MapDomRestrBy A C m m'') m' a).
+ rewrite (MapDomRestrBy_semantics A C m m'' a).
+ case (MapGet C m'' a); case (MapGet B m' a); trivial.
+ Qed.
+
+ Lemma MapDomRestrTo_By :
+ forall (m:Map A) (m':Map B) (m'':Map C),
+ eqmap (MapDomRestrTo A C (MapDomRestrBy A B m m') m'')
+ (MapDomRestrTo A C m (MapDomRestrBy C B m'' m')).
+ Proof.
+ unfold eqmap, eqm in |- *. intros.
+ rewrite (MapDomRestrTo_semantics A C (MapDomRestrBy A B m m') m'' a).
+ rewrite (MapDomRestrBy_semantics A B m m' a).
+ rewrite (MapDomRestrTo_semantics A C m (MapDomRestrBy C B m'' m') a).
+ rewrite (MapDomRestrBy_semantics C B m'' m' a).
+ case (MapGet C m'' a); case (MapGet B m' a); trivial.
+ Qed.
+
+ Lemma MapDomRestrTo_By_comm :
+ forall (m:Map A) (m':Map B) (m'':Map C),
+ eqmap (MapDomRestrTo A C (MapDomRestrBy A B m m') m'')
+ (MapDomRestrBy A B (MapDomRestrTo A C m m'') m').
+ Proof.
+ unfold eqmap, eqm in |- *. intros.
+ rewrite (MapDomRestrTo_semantics A C (MapDomRestrBy A B m m') m'' a).
+ rewrite (MapDomRestrBy_semantics A B m m' a).
+ rewrite (MapDomRestrBy_semantics A B (MapDomRestrTo A C m m'') m' a).
+ rewrite (MapDomRestrTo_semantics A C m m'' a).
+ case (MapGet C m'' a); case (MapGet B m' a); trivial.
+ Qed.
+
+ Lemma MapDomRestrTo_To_comm :
+ forall (m:Map A) (m':Map B) (m'':Map C),
+ eqmap (MapDomRestrTo A C (MapDomRestrTo A B m m') m'')
+ (MapDomRestrTo A B (MapDomRestrTo A C m m'') m').
+ Proof.
+ unfold eqmap, eqm in |- *. intros.
+ rewrite (MapDomRestrTo_semantics A C (MapDomRestrTo A B m m') m'' a).
+ rewrite (MapDomRestrTo_semantics A B m m' a).
+ rewrite (MapDomRestrTo_semantics A B (MapDomRestrTo A C m m'') m' a).
+ rewrite (MapDomRestrTo_semantics A C m m'' a).
+ case (MapGet C m'' a); case (MapGet B m' a); trivial.
+ Qed.
+
+ Lemma MapMerge_DomRestrTo :
+ forall (m m':Map A) (m'':Map B),
+ eqmap (MapDomRestrTo A B (MapMerge A m m') m'')
+ (MapMerge A (MapDomRestrTo A B m m'') (MapDomRestrTo A B m' m'')).
+ Proof.
+ unfold eqmap, eqm in |- *. intros.
+ rewrite (MapDomRestrTo_semantics A B (MapMerge A m m') m'' a).
+ rewrite (MapMerge_semantics A m m' a).
+ rewrite
+ (MapMerge_semantics A (MapDomRestrTo A B m m'')
+ (MapDomRestrTo A B m' m'') a).
+ rewrite (MapDomRestrTo_semantics A B m' m'' a).
+ rewrite (MapDomRestrTo_semantics A B m m'' a).
+ case (MapGet B m'' a); case (MapGet A m' a); trivial.
+ Qed.
+
+ Lemma MapMerge_DomRestrBy :
+ forall (m m':Map A) (m'':Map B),
+ eqmap (MapDomRestrBy A B (MapMerge A m m') m'')
+ (MapMerge A (MapDomRestrBy A B m m'') (MapDomRestrBy A B m' m'')).
+ Proof.
+ unfold eqmap, eqm in |- *. intros.
+ rewrite (MapDomRestrBy_semantics A B (MapMerge A m m') m'' a).
+ rewrite (MapMerge_semantics A m m' a).
+ rewrite
+ (MapMerge_semantics A (MapDomRestrBy A B m m'')
+ (MapDomRestrBy A B m' m'') a).
+ rewrite (MapDomRestrBy_semantics A B m' m'' a).
+ rewrite (MapDomRestrBy_semantics A B m m'' a).
+ case (MapGet B m'' a); case (MapGet A m' a); trivial.
+ Qed.
+
+ Lemma MapDelta_empty_m_1 : forall m:Map A, MapDelta A (M0 A) m = m.
+ Proof.
+ trivial.
+ Qed.
+
+ Lemma MapDelta_empty_m : forall m:Map A, eqmap (MapDelta A (M0 A) m) m.
+ Proof.
+ unfold eqmap, eqm in |- *. trivial.
+ Qed.
+
+ Lemma MapDelta_m_empty_1 : forall m:Map A, MapDelta A m (M0 A) = m.
+ Proof.
+ simple induction m; trivial.
+ Qed.
+
+ Lemma MapDelta_m_empty : forall m:Map A, eqmap (MapDelta A m (M0 A)) m.
+ Proof.
+ unfold eqmap, eqm in |- *. intros. rewrite MapDelta_m_empty_1. reflexivity.
+ Qed.
+
+ Lemma MapDelta_nilpotent : forall m:Map A, eqmap (MapDelta A m m) (M0 A).
+ Proof.
+ unfold eqmap, eqm in |- *. intros. rewrite (MapDelta_semantics A m m a).
+ case (MapGet A m a); trivial.
+ Qed.
+
+ Lemma MapDelta_as_Merge :
+ forall m m':Map A,
+ eqmap (MapDelta A m m')
+ (MapMerge A (MapDomRestrBy A A m m') (MapDomRestrBy A A m' m)).
+ Proof.
+ unfold eqmap, eqm in |- *. intros.
+ rewrite (MapDelta_semantics A m m' a).
+ rewrite
+ (MapMerge_semantics A (MapDomRestrBy A A m m') (
+ MapDomRestrBy A A m' m) a).
+ rewrite (MapDomRestrBy_semantics A A m' m a).
+ rewrite (MapDomRestrBy_semantics A A m m' a).
+ case (MapGet A m a); case (MapGet A m' a); trivial.
+ Qed.
+
+ Lemma MapDelta_as_DomRestrBy :
+ forall m m':Map A,
+ eqmap (MapDelta A m m')
+ (MapDomRestrBy A A (MapMerge A m m') (MapDomRestrTo A A m m')).
+ Proof.
+ unfold eqmap, eqm in |- *. intros. rewrite (MapDelta_semantics A m m' a).
+ rewrite
+ (MapDomRestrBy_semantics A A (MapMerge A m m') (
+ MapDomRestrTo A A m m') a).
+ rewrite (MapDomRestrTo_semantics A A m m' a). rewrite (MapMerge_semantics A m m' a).
+ case (MapGet A m a); case (MapGet A m' a); trivial.
+ Qed.
+
+ Lemma MapDelta_as_DomRestrBy_2 :
+ forall m m':Map A,
+ eqmap (MapDelta A m m')
+ (MapDomRestrBy A A (MapMerge A m m') (MapDomRestrTo A A m' m)).
+ Proof.
+ unfold eqmap, eqm in |- *. intros. rewrite (MapDelta_semantics A m m' a).
+ rewrite
+ (MapDomRestrBy_semantics A A (MapMerge A m m') (
+ MapDomRestrTo A A m' m) a).
+ rewrite (MapDomRestrTo_semantics A A m' m a). rewrite (MapMerge_semantics A m m' a).
+ case (MapGet A m a); case (MapGet A m' a); trivial.
+ Qed.
+
+ Lemma MapDelta_sym :
+ forall m m':Map A, eqmap (MapDelta A m m') (MapDelta A m' m).
+ Proof.
+ unfold eqmap, eqm in |- *. intros. rewrite (MapDelta_semantics A m m' a).
+ rewrite (MapDelta_semantics A m' m a).
+ case (MapGet A m a); case (MapGet A m' a); trivial.
+ Qed.
+
+ Lemma MapDelta_ext :
+ forall m1 m2 m'1 m'2:Map A,
+ eqmap m1 m'1 ->
+ eqmap m2 m'2 -> eqmap (MapDelta A m1 m2) (MapDelta A m'1 m'2).
+ Proof.
+ unfold eqmap, eqm in |- *. intros. rewrite (MapDelta_semantics A m1 m2 a).
+ rewrite (MapDelta_semantics A m'1 m'2 a). rewrite (H a). rewrite (H0 a). reflexivity.
+ Qed.
+
+ Lemma MapDelta_ext_l :
+ forall m1 m'1 m2:Map A,
+ eqmap m1 m'1 -> eqmap (MapDelta A m1 m2) (MapDelta A m'1 m2).
+ Proof.
+ intros. apply MapDelta_ext. assumption.
+ apply eqmap_refl.
+ Qed.
+
+ Lemma MapDelta_ext_r :
+ forall m1 m2 m'2:Map A,
+ eqmap m2 m'2 -> eqmap (MapDelta A m1 m2) (MapDelta A m1 m'2).
+ Proof.
+ intros. apply MapDelta_ext. apply eqmap_refl.
+ assumption.
+ Qed.
+
+ Lemma MapDom_Split_1 :
+ forall (m:Map A) (m':Map B),
+ eqmap m (MapMerge A (MapDomRestrTo A B m m') (MapDomRestrBy A B m m')).
+ Proof.
+ unfold eqmap, eqm in |- *. intros.
+ rewrite
+ (MapMerge_semantics A (MapDomRestrTo A B m m') (
+ MapDomRestrBy A B m m') a).
+ rewrite (MapDomRestrBy_semantics A B m m' a).
+ rewrite (MapDomRestrTo_semantics A B m m' a).
+ case (MapGet B m' a); case (MapGet A m a); trivial.
+ Qed.
+
+ Lemma MapDom_Split_2 :
+ forall (m:Map A) (m':Map B),
+ eqmap m (MapMerge A (MapDomRestrBy A B m m') (MapDomRestrTo A B m m')).
+ Proof.
+ unfold eqmap, eqm in |- *. intros.
+ rewrite
+ (MapMerge_semantics A (MapDomRestrBy A B m m') (
+ MapDomRestrTo A B m m') a).
+ rewrite (MapDomRestrBy_semantics A B m m' a).
+ rewrite (MapDomRestrTo_semantics A B m m' a).
+ case (MapGet B m' a); case (MapGet A m a); trivial.
+ Qed.
+
+ Lemma MapDom_Split_3 :
+ forall (m:Map A) (m':Map B),
+ eqmap
+ (MapDomRestrTo A A (MapDomRestrTo A B m m') (MapDomRestrBy A B m m'))
+ (M0 A).
+ Proof.
+ unfold eqmap, eqm in |- *. intros.
+ rewrite
+ (MapDomRestrTo_semantics A A (MapDomRestrTo A B m m')
+ (MapDomRestrBy A B m m') a).
+ rewrite (MapDomRestrBy_semantics A B m m' a).
+ rewrite (MapDomRestrTo_semantics A B m m' a).
+ case (MapGet B m' a); case (MapGet A m a); trivial.
+ Qed.
+
+End MapAxioms.
+
+Lemma MapDomRestrTo_ext :
+ forall (A B:Set) (m1:Map A) (m2:Map B) (m'1:Map A)
+ (m'2:Map B),
+ eqmap A m1 m'1 ->
+ eqmap B m2 m'2 ->
+ eqmap A (MapDomRestrTo A B m1 m2) (MapDomRestrTo A B m'1 m'2).
+Proof.
+ unfold eqmap, eqm in |- *. intros. rewrite (MapDomRestrTo_semantics A B m1 m2 a).
+ rewrite (MapDomRestrTo_semantics A B m'1 m'2 a). rewrite (H a). rewrite (H0 a). reflexivity.
+Qed.
+
+Lemma MapDomRestrTo_ext_l :
+ forall (A B:Set) (m1:Map A) (m2:Map B) (m'1:Map A),
+ eqmap A m1 m'1 ->
+ eqmap A (MapDomRestrTo A B m1 m2) (MapDomRestrTo A B m'1 m2).
+Proof.
+ intros. apply MapDomRestrTo_ext; [ assumption | apply eqmap_refl ].
+Qed.
+
+Lemma MapDomRestrTo_ext_r :
+ forall (A B:Set) (m1:Map A) (m2 m'2:Map B),
+ eqmap B m2 m'2 ->
+ eqmap A (MapDomRestrTo A B m1 m2) (MapDomRestrTo A B m1 m'2).
+Proof.
+ intros. apply MapDomRestrTo_ext; [ apply eqmap_refl | assumption ].
+Qed.
+
+Lemma MapDomRestrBy_ext :
+ forall (A B:Set) (m1:Map A) (m2:Map B) (m'1:Map A)
+ (m'2:Map B),
+ eqmap A m1 m'1 ->
+ eqmap B m2 m'2 ->
+ eqmap A (MapDomRestrBy A B m1 m2) (MapDomRestrBy A B m'1 m'2).
+Proof.
+ unfold eqmap, eqm in |- *. intros. rewrite (MapDomRestrBy_semantics A B m1 m2 a).
+ rewrite (MapDomRestrBy_semantics A B m'1 m'2 a). rewrite (H a). rewrite (H0 a). reflexivity.
+Qed.
+
+Lemma MapDomRestrBy_ext_l :
+ forall (A B:Set) (m1:Map A) (m2:Map B) (m'1:Map A),
+ eqmap A m1 m'1 ->
+ eqmap A (MapDomRestrBy A B m1 m2) (MapDomRestrBy A B m'1 m2).
+Proof.
+ intros. apply MapDomRestrBy_ext; [ assumption | apply eqmap_refl ].
+Qed.
+
+Lemma MapDomRestrBy_ext_r :
+ forall (A B:Set) (m1:Map A) (m2 m'2:Map B),
+ eqmap B m2 m'2 ->
+ eqmap A (MapDomRestrBy A B m1 m2) (MapDomRestrBy A B m1 m'2).
+Proof.
+ intros. apply MapDomRestrBy_ext; [ apply eqmap_refl | assumption ].
+Qed.
+
+Lemma MapDomRestrBy_m_m :
+ forall (A:Set) (m:Map A),
+ eqmap A (MapDomRestrBy A unit m (MapDom A m)) (M0 A).
+Proof.
+ intros. apply eqmap_trans with (m' := MapDomRestrBy A A m m). apply eqmap_sym.
+ apply MapDomRestrBy_Dom.
+ apply MapDomRestrBy_m_m_1.
+Qed.
+
+Lemma FSetDelta_assoc :
+ forall s s' s'':FSet,
+ eqmap unit (MapDelta _ (MapDelta _ s s') s'')
+ (MapDelta _ s (MapDelta _ s' s'')).
+Proof.
+ unfold eqmap, eqm in |- *. intros. rewrite (MapDelta_semantics unit (MapDelta unit s s') s'' a).
+ rewrite (MapDelta_semantics unit s s' a).
+ rewrite (MapDelta_semantics unit s (MapDelta unit s' s'') a).
+ rewrite (MapDelta_semantics unit s' s'' a).
+ case (MapGet _ s a); case (MapGet _ s' a); case (MapGet _ s'' a); trivial.
+ intros. elim u. elim u1. reflexivity.
+Qed.
+
+Lemma FSet_ext :
+ forall s s':FSet,
+ (forall a:ad, in_FSet a s = in_FSet a s') -> eqmap unit s s'.
+Proof.
+ unfold in_FSet, eqmap, eqm in |- *. intros. elim (sumbool_of_bool (in_dom _ a s)). intro H0.
+ elim (in_dom_some _ s a H0). intros y H1. rewrite (H a) in H0. elim (in_dom_some _ s' a H0).
+ intros y' H2. rewrite H1. rewrite H2. elim y. elim y'. reflexivity.
+ intro H0. rewrite (in_dom_none _ s a H0). rewrite (H a) in H0. rewrite (in_dom_none _ s' a H0).
+ reflexivity.
+Qed.
+
+Lemma FSetUnion_comm :
+ forall s s':FSet, eqmap unit (FSetUnion s s') (FSetUnion s' s).
+Proof.
+ intros. apply FSet_ext. intro. rewrite in_FSet_union. rewrite in_FSet_union. apply orb_comm.
+Qed.
+
+Lemma FSetUnion_assoc :
+ forall s s' s'':FSet,
+ eqmap unit (FSetUnion (FSetUnion s s') s'')
+ (FSetUnion s (FSetUnion s' s'')).
+Proof.
+ exact (MapMerge_assoc unit).
+Qed.
+
+Lemma FSetUnion_M0_s : forall s:FSet, eqmap unit (FSetUnion (M0 unit) s) s.
+Proof.
+ exact (MapMerge_empty_m unit).
+Qed.
+
+Lemma FSetUnion_s_M0 : forall s:FSet, eqmap unit (FSetUnion s (M0 unit)) s.
+Proof.
+ exact (MapMerge_m_empty unit).
+Qed.
+
+Lemma FSetUnion_idempotent : forall s:FSet, eqmap unit (FSetUnion s s) s.
+Proof.
+ exact (MapMerge_idempotent unit).
+Qed.
+
+Lemma FSetInter_comm :
+ forall s s':FSet, eqmap unit (FSetInter s s') (FSetInter s' s).
+Proof.
+ intros. apply FSet_ext. intro. rewrite in_FSet_inter. rewrite in_FSet_inter. apply andb_comm.
+Qed.
+
+Lemma FSetInter_assoc :
+ forall s s' s'':FSet,
+ eqmap unit (FSetInter (FSetInter s s') s'')
+ (FSetInter s (FSetInter s' s'')).
+Proof.
+ exact (MapDomRestrTo_assoc unit unit unit).
+Qed.
+
+Lemma FSetInter_M0_s :
+ forall s:FSet, eqmap unit (FSetInter (M0 unit) s) (M0 unit).
+Proof.
+ exact (MapDomRestrTo_empty_m unit unit).
+Qed.
+
+Lemma FSetInter_s_M0 :
+ forall s:FSet, eqmap unit (FSetInter s (M0 unit)) (M0 unit).
+Proof.
+ exact (MapDomRestrTo_m_empty unit unit).
+Qed.
+
+Lemma FSetInter_idempotent : forall s:FSet, eqmap unit (FSetInter s s) s.
+Proof.
+ exact (MapDomRestrTo_idempotent unit).
+Qed.
+
+Lemma FSetUnion_Inter_l :
+ forall s s' s'':FSet,
+ eqmap unit (FSetUnion (FSetInter s s') s'')
+ (FSetInter (FSetUnion s s'') (FSetUnion s' s'')).
+Proof.
+ intros. apply FSet_ext. intro. rewrite in_FSet_union. rewrite in_FSet_inter.
+ rewrite in_FSet_inter. rewrite in_FSet_union. rewrite in_FSet_union.
+ case (in_FSet a s); case (in_FSet a s'); case (in_FSet a s''); reflexivity.
+Qed.
+
+Lemma FSetUnion_Inter_r :
+ forall s s' s'':FSet,
+ eqmap unit (FSetUnion s (FSetInter s' s''))
+ (FSetInter (FSetUnion s s') (FSetUnion s s'')).
+Proof.
+ intros. apply FSet_ext. intro. rewrite in_FSet_union. rewrite in_FSet_inter.
+ rewrite in_FSet_inter. rewrite in_FSet_union. rewrite in_FSet_union.
+ case (in_FSet a s); case (in_FSet a s'); case (in_FSet a s''); reflexivity.
+Qed.
+
+Lemma FSetInter_Union_l :
+ forall s s' s'':FSet,
+ eqmap unit (FSetInter (FSetUnion s s') s'')
+ (FSetUnion (FSetInter s s'') (FSetInter s' s'')).
+Proof.
+ intros. apply FSet_ext. intro. rewrite in_FSet_inter. rewrite in_FSet_union.
+ rewrite in_FSet_union. rewrite in_FSet_inter. rewrite in_FSet_inter.
+ case (in_FSet a s); case (in_FSet a s'); case (in_FSet a s''); reflexivity.
+Qed.
+
+Lemma FSetInter_Union_r :
+ forall s s' s'':FSet,
+ eqmap unit (FSetInter s (FSetUnion s' s''))
+ (FSetUnion (FSetInter s s') (FSetInter s s'')).
+Proof.
+ intros. apply FSet_ext. intro. rewrite in_FSet_inter. rewrite in_FSet_union.
+ rewrite in_FSet_union. rewrite in_FSet_inter. rewrite in_FSet_inter.
+ case (in_FSet a s); case (in_FSet a s'); case (in_FSet a s''); reflexivity.
+Qed. \ No newline at end of file
diff --git a/theories/IntMap/Mapc.v b/theories/IntMap/Mapc.v
new file mode 100644
index 00000000..7a394abb
--- /dev/null
+++ b/theories/IntMap/Mapc.v
@@ -0,0 +1,542 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(*i $Id: Mapc.v,v 1.4.2.1 2004/07/16 19:31:04 herbelin Exp $ i*)
+
+Require Import Bool.
+Require Import Sumbool.
+Require Import Arith.
+Require Import ZArith.
+Require Import Addr.
+Require Import Adist.
+Require Import Addec.
+Require Import Map.
+Require Import Mapaxioms.
+Require Import Fset.
+Require Import Mapiter.
+Require Import Mapsubset.
+Require Import List.
+Require Import Lsort.
+Require Import Mapcard.
+Require Import Mapcanon.
+
+Section MapC.
+
+ Variables A B C : Set.
+
+ Lemma MapPut_as_Merge_c :
+ forall m:Map A,
+ mapcanon A m ->
+ forall (a:ad) (y:A), MapPut A m a y = MapMerge A m (M1 A a y).
+ Proof.
+ intros. apply mapcanon_unique. exact (MapPut_canon A m H a y).
+ apply MapMerge_canon. assumption.
+ apply M1_canon.
+ apply MapPut_as_Merge.
+ Qed.
+
+ Lemma MapPut_behind_as_Merge_c :
+ forall m:Map A,
+ mapcanon A m ->
+ forall (a:ad) (y:A), MapPut_behind A m a y = MapMerge A (M1 A a y) m.
+ Proof.
+ intros. apply mapcanon_unique. exact (MapPut_behind_canon A m H a y).
+ apply MapMerge_canon. apply M1_canon.
+ assumption.
+ apply MapPut_behind_as_Merge.
+ Qed.
+
+ Lemma MapMerge_empty_m_c : forall m:Map A, MapMerge A (M0 A) m = m.
+ Proof.
+ trivial.
+ Qed.
+
+ Lemma MapMerge_assoc_c :
+ forall m m' m'':Map A,
+ mapcanon A m ->
+ mapcanon A m' ->
+ mapcanon A m'' ->
+ MapMerge A (MapMerge A m m') m'' = MapMerge A m (MapMerge A m' m'').
+ Proof.
+ intros. apply mapcanon_unique.
+ apply MapMerge_canon; try assumption. apply MapMerge_canon; try assumption.
+ apply MapMerge_canon; try assumption. apply MapMerge_canon; try assumption.
+ apply MapMerge_assoc.
+ Qed.
+
+ Lemma MapMerge_idempotent_c :
+ forall m:Map A, mapcanon A m -> MapMerge A m m = m.
+ Proof.
+ intros. apply mapcanon_unique. apply MapMerge_canon; assumption.
+ assumption.
+ apply MapMerge_idempotent.
+ Qed.
+
+ Lemma MapMerge_RestrTo_l_c :
+ forall m m' m'':Map A,
+ mapcanon A m ->
+ mapcanon A m'' ->
+ MapMerge A (MapDomRestrTo A A m m') m'' =
+ MapDomRestrTo A A (MapMerge A m m'') (MapMerge A m' m'').
+ Proof.
+ intros. apply mapcanon_unique. apply MapMerge_canon. apply MapDomRestrTo_canon; assumption.
+ assumption.
+ apply MapDomRestrTo_canon; apply MapMerge_canon; assumption.
+ apply MapMerge_RestrTo_l.
+ Qed.
+
+ Lemma MapRemove_as_RestrBy_c :
+ forall m:Map A,
+ mapcanon A m ->
+ forall (a:ad) (y:B), MapRemove A m a = MapDomRestrBy A B m (M1 B a y).
+ Proof.
+ intros. apply mapcanon_unique. apply MapRemove_canon; assumption.
+ apply MapDomRestrBy_canon; assumption.
+ apply MapRemove_as_RestrBy.
+ Qed.
+
+ Lemma MapDomRestrTo_assoc_c :
+ forall (m:Map A) (m':Map B) (m'':Map C),
+ mapcanon A m ->
+ MapDomRestrTo A C (MapDomRestrTo A B m m') m'' =
+ MapDomRestrTo A B m (MapDomRestrTo B C m' m'').
+ Proof.
+ intros. apply mapcanon_unique. apply MapDomRestrTo_canon; try assumption.
+ apply MapDomRestrTo_canon; try assumption.
+ apply MapDomRestrTo_canon; try assumption.
+ apply MapDomRestrTo_assoc.
+ Qed.
+
+ Lemma MapDomRestrTo_idempotent_c :
+ forall m:Map A, mapcanon A m -> MapDomRestrTo A A m m = m.
+ Proof.
+ intros. apply mapcanon_unique. apply MapDomRestrTo_canon; assumption.
+ assumption.
+ apply MapDomRestrTo_idempotent.
+ Qed.
+
+ Lemma MapDomRestrTo_Dom_c :
+ forall (m:Map A) (m':Map B),
+ mapcanon A m ->
+ MapDomRestrTo A B m m' = MapDomRestrTo A unit m (MapDom B m').
+ Proof.
+ intros. apply mapcanon_unique. apply MapDomRestrTo_canon; assumption.
+ apply MapDomRestrTo_canon; assumption.
+ apply MapDomRestrTo_Dom.
+ Qed.
+
+ Lemma MapDomRestrBy_Dom_c :
+ forall (m:Map A) (m':Map B),
+ mapcanon A m ->
+ MapDomRestrBy A B m m' = MapDomRestrBy A unit m (MapDom B m').
+ Proof.
+ intros. apply mapcanon_unique. apply MapDomRestrBy_canon; assumption.
+ apply MapDomRestrBy_canon; assumption.
+ apply MapDomRestrBy_Dom.
+ Qed.
+
+ Lemma MapDomRestrBy_By_c :
+ forall (m:Map A) (m' m'':Map B),
+ mapcanon A m ->
+ MapDomRestrBy A B (MapDomRestrBy A B m m') m'' =
+ MapDomRestrBy A B m (MapMerge B m' m'').
+ Proof.
+ intros. apply mapcanon_unique. apply MapDomRestrBy_canon; try assumption.
+ apply MapDomRestrBy_canon; try assumption.
+ apply MapDomRestrBy_canon; try assumption.
+ apply MapDomRestrBy_By.
+ Qed.
+
+ Lemma MapDomRestrBy_By_comm_c :
+ forall (m:Map A) (m':Map B) (m'':Map C),
+ mapcanon A m ->
+ MapDomRestrBy A C (MapDomRestrBy A B m m') m'' =
+ MapDomRestrBy A B (MapDomRestrBy A C m m'') m'.
+ Proof.
+ intros. apply mapcanon_unique. apply MapDomRestrBy_canon.
+ apply MapDomRestrBy_canon; assumption.
+ apply MapDomRestrBy_canon. apply MapDomRestrBy_canon; assumption.
+ apply MapDomRestrBy_By_comm.
+ Qed.
+
+ Lemma MapDomRestrBy_To_c :
+ forall (m:Map A) (m':Map B) (m'':Map C),
+ mapcanon A m ->
+ MapDomRestrBy A C (MapDomRestrTo A B m m') m'' =
+ MapDomRestrTo A B m (MapDomRestrBy B C m' m'').
+ Proof.
+ intros. apply mapcanon_unique. apply MapDomRestrBy_canon.
+ apply MapDomRestrTo_canon; assumption.
+ apply MapDomRestrTo_canon; assumption.
+ apply MapDomRestrBy_To.
+ Qed.
+
+ Lemma MapDomRestrBy_To_comm_c :
+ forall (m:Map A) (m':Map B) (m'':Map C),
+ mapcanon A m ->
+ MapDomRestrBy A C (MapDomRestrTo A B m m') m'' =
+ MapDomRestrTo A B (MapDomRestrBy A C m m'') m'.
+ Proof.
+ intros. apply mapcanon_unique. apply MapDomRestrBy_canon.
+ apply MapDomRestrTo_canon; assumption.
+ apply MapDomRestrTo_canon. apply MapDomRestrBy_canon; assumption.
+ apply MapDomRestrBy_To_comm.
+ Qed.
+
+ Lemma MapDomRestrTo_By_c :
+ forall (m:Map A) (m':Map B) (m'':Map C),
+ mapcanon A m ->
+ MapDomRestrTo A C (MapDomRestrBy A B m m') m'' =
+ MapDomRestrTo A C m (MapDomRestrBy C B m'' m').
+ Proof.
+ intros. apply mapcanon_unique. apply MapDomRestrTo_canon.
+ apply MapDomRestrBy_canon; assumption.
+ apply MapDomRestrTo_canon; assumption.
+ apply MapDomRestrTo_By.
+ Qed.
+
+ Lemma MapDomRestrTo_By_comm_c :
+ forall (m:Map A) (m':Map B) (m'':Map C),
+ mapcanon A m ->
+ MapDomRestrTo A C (MapDomRestrBy A B m m') m'' =
+ MapDomRestrBy A B (MapDomRestrTo A C m m'') m'.
+ Proof.
+ intros. apply mapcanon_unique. apply MapDomRestrTo_canon.
+ apply MapDomRestrBy_canon; assumption.
+ apply MapDomRestrBy_canon. apply MapDomRestrTo_canon; assumption.
+ apply MapDomRestrTo_By_comm.
+ Qed.
+
+ Lemma MapDomRestrTo_To_comm_c :
+ forall (m:Map A) (m':Map B) (m'':Map C),
+ mapcanon A m ->
+ MapDomRestrTo A C (MapDomRestrTo A B m m') m'' =
+ MapDomRestrTo A B (MapDomRestrTo A C m m'') m'.
+ Proof.
+ intros. apply mapcanon_unique. apply MapDomRestrTo_canon.
+ apply MapDomRestrTo_canon; assumption.
+ apply MapDomRestrTo_canon. apply MapDomRestrTo_canon; assumption.
+ apply MapDomRestrTo_To_comm.
+ Qed.
+
+ Lemma MapMerge_DomRestrTo_c :
+ forall (m m':Map A) (m'':Map B),
+ mapcanon A m ->
+ mapcanon A m' ->
+ MapDomRestrTo A B (MapMerge A m m') m'' =
+ MapMerge A (MapDomRestrTo A B m m'') (MapDomRestrTo A B m' m'').
+ Proof.
+ intros. apply mapcanon_unique. apply MapDomRestrTo_canon.
+ apply MapMerge_canon; assumption.
+ apply MapMerge_canon. apply MapDomRestrTo_canon; assumption.
+ apply MapDomRestrTo_canon; assumption.
+ apply MapMerge_DomRestrTo.
+ Qed.
+
+ Lemma MapMerge_DomRestrBy_c :
+ forall (m m':Map A) (m'':Map B),
+ mapcanon A m ->
+ mapcanon A m' ->
+ MapDomRestrBy A B (MapMerge A m m') m'' =
+ MapMerge A (MapDomRestrBy A B m m'') (MapDomRestrBy A B m' m'').
+ Proof.
+ intros. apply mapcanon_unique. apply MapDomRestrBy_canon. apply MapMerge_canon; assumption.
+ apply MapMerge_canon. apply MapDomRestrBy_canon; assumption.
+ apply MapDomRestrBy_canon; assumption.
+ apply MapMerge_DomRestrBy.
+ Qed.
+
+ Lemma MapDelta_nilpotent_c :
+ forall m:Map A, mapcanon A m -> MapDelta A m m = M0 A.
+ Proof.
+ intros. apply mapcanon_unique. apply MapDelta_canon; assumption.
+ apply M0_canon.
+ apply MapDelta_nilpotent.
+ Qed.
+
+ Lemma MapDelta_as_Merge_c :
+ forall m m':Map A,
+ mapcanon A m ->
+ mapcanon A m' ->
+ MapDelta A m m' =
+ MapMerge A (MapDomRestrBy A A m m') (MapDomRestrBy A A m' m).
+ Proof.
+ intros. apply mapcanon_unique. apply MapDelta_canon; assumption.
+ apply MapMerge_canon; apply MapDomRestrBy_canon; assumption.
+ apply MapDelta_as_Merge.
+ Qed.
+
+ Lemma MapDelta_as_DomRestrBy_c :
+ forall m m':Map A,
+ mapcanon A m ->
+ mapcanon A m' ->
+ MapDelta A m m' =
+ MapDomRestrBy A A (MapMerge A m m') (MapDomRestrTo A A m m').
+ Proof.
+ intros. apply mapcanon_unique. apply MapDelta_canon; assumption.
+ apply MapDomRestrBy_canon. apply MapMerge_canon; assumption.
+ apply MapDelta_as_DomRestrBy.
+ Qed.
+
+ Lemma MapDelta_as_DomRestrBy_2_c :
+ forall m m':Map A,
+ mapcanon A m ->
+ mapcanon A m' ->
+ MapDelta A m m' =
+ MapDomRestrBy A A (MapMerge A m m') (MapDomRestrTo A A m' m).
+ Proof.
+ intros. apply mapcanon_unique. apply MapDelta_canon; assumption.
+ apply MapDomRestrBy_canon. apply MapMerge_canon; assumption.
+ apply MapDelta_as_DomRestrBy_2.
+ Qed.
+
+ Lemma MapDelta_sym_c :
+ forall m m':Map A,
+ mapcanon A m -> mapcanon A m' -> MapDelta A m m' = MapDelta A m' m.
+ Proof.
+ intros. apply mapcanon_unique. apply MapDelta_canon; assumption.
+ apply MapDelta_canon; assumption. apply MapDelta_sym.
+ Qed.
+
+ Lemma MapDom_Split_1_c :
+ forall (m:Map A) (m':Map B),
+ mapcanon A m ->
+ m = MapMerge A (MapDomRestrTo A B m m') (MapDomRestrBy A B m m').
+ Proof.
+ intros. apply mapcanon_unique. assumption.
+ apply MapMerge_canon. apply MapDomRestrTo_canon; assumption.
+ apply MapDomRestrBy_canon; assumption.
+ apply MapDom_Split_1.
+ Qed.
+
+ Lemma MapDom_Split_2_c :
+ forall (m:Map A) (m':Map B),
+ mapcanon A m ->
+ m = MapMerge A (MapDomRestrBy A B m m') (MapDomRestrTo A B m m').
+ Proof.
+ intros. apply mapcanon_unique. assumption.
+ apply MapMerge_canon. apply MapDomRestrBy_canon; assumption.
+ apply MapDomRestrTo_canon; assumption.
+ apply MapDom_Split_2.
+ Qed.
+
+ Lemma MapDom_Split_3_c :
+ forall (m:Map A) (m':Map B),
+ mapcanon A m ->
+ MapDomRestrTo A A (MapDomRestrTo A B m m') (MapDomRestrBy A B m m') =
+ M0 A.
+ Proof.
+ intros. apply mapcanon_unique. apply MapDomRestrTo_canon.
+ apply MapDomRestrTo_canon; assumption.
+ apply M0_canon.
+ apply MapDom_Split_3.
+ Qed.
+
+ Lemma Map_of_alist_of_Map_c :
+ forall m:Map A, mapcanon A m -> Map_of_alist A (alist_of_Map A m) = m.
+ Proof.
+ intros. apply mapcanon_unique; try assumption. apply Map_of_alist_canon.
+ apply Map_of_alist_of_Map.
+ Qed.
+
+ Lemma alist_of_Map_of_alist_c :
+ forall l:alist A,
+ alist_sorted_2 A l -> alist_of_Map A (Map_of_alist A l) = l.
+ Proof.
+ intros. apply alist_canonical. apply alist_of_Map_of_alist.
+ apply alist_of_Map_sorts2.
+ assumption.
+ Qed.
+
+ Lemma MapSubset_antisym_c :
+ forall (m:Map A) (m':Map B),
+ mapcanon A m ->
+ mapcanon B m' ->
+ MapSubset A B m m' -> MapSubset B A m' m -> MapDom A m = MapDom B m'.
+ Proof.
+ intros. apply (mapcanon_unique unit). apply MapDom_canon; assumption.
+ apply MapDom_canon; assumption.
+ apply MapSubset_antisym; assumption.
+ Qed.
+
+ Lemma FSubset_antisym_c :
+ forall s s':FSet,
+ mapcanon unit s ->
+ mapcanon unit s' -> MapSubset _ _ s s' -> MapSubset _ _ s' s -> s = s'.
+ Proof.
+ intros. apply (mapcanon_unique unit); try assumption. apply FSubset_antisym; assumption.
+ Qed.
+
+ Lemma MapDisjoint_empty_c :
+ forall m:Map A, mapcanon A m -> MapDisjoint A A m m -> m = M0 A.
+ Proof.
+ intros. apply mapcanon_unique; try assumption; try apply M0_canon.
+ apply MapDisjoint_empty; assumption.
+ Qed.
+
+ Lemma MapDelta_disjoint_c :
+ forall m m':Map A,
+ mapcanon A m ->
+ mapcanon A m' ->
+ MapDisjoint A A m m' -> MapDelta A m m' = MapMerge A m m'.
+ Proof.
+ intros. apply mapcanon_unique. apply MapDelta_canon; assumption.
+ apply MapMerge_canon; assumption. apply MapDelta_disjoint; assumption.
+ Qed.
+
+End MapC.
+
+Lemma FSetDelta_assoc_c :
+ forall s s' s'':FSet,
+ mapcanon unit s ->
+ mapcanon unit s' ->
+ mapcanon unit s'' ->
+ MapDelta _ (MapDelta _ s s') s'' = MapDelta _ s (MapDelta _ s' s'').
+Proof.
+ intros. apply (mapcanon_unique unit). apply MapDelta_canon. apply MapDelta_canon; assumption.
+ assumption.
+ apply MapDelta_canon. assumption.
+ apply MapDelta_canon; assumption.
+ apply FSetDelta_assoc; assumption.
+Qed.
+
+Lemma FSet_ext_c :
+ forall s s':FSet,
+ mapcanon unit s ->
+ mapcanon unit s' -> (forall a:ad, in_FSet a s = in_FSet a s') -> s = s'.
+Proof.
+ intros. apply (mapcanon_unique unit); try assumption. apply FSet_ext. assumption.
+Qed.
+
+Lemma FSetUnion_comm_c :
+ forall s s':FSet,
+ mapcanon unit s -> mapcanon unit s' -> FSetUnion s s' = FSetUnion s' s.
+Proof.
+ intros.
+ apply (mapcanon_unique unit);
+ try (unfold FSetUnion in |- *; apply MapMerge_canon; assumption).
+ apply FSetUnion_comm.
+Qed.
+
+Lemma FSetUnion_assoc_c :
+ forall s s' s'':FSet,
+ mapcanon unit s ->
+ mapcanon unit s' ->
+ mapcanon unit s'' ->
+ FSetUnion (FSetUnion s s') s'' = FSetUnion s (FSetUnion s' s'').
+Proof.
+ exact (MapMerge_assoc_c unit).
+Qed.
+
+Lemma FSetUnion_M0_s_c : forall s:FSet, FSetUnion (M0 unit) s = s.
+Proof.
+ exact (MapMerge_empty_m_c unit).
+Qed.
+
+Lemma FSetUnion_s_M0_c : forall s:FSet, FSetUnion s (M0 unit) = s.
+Proof.
+ exact (MapMerge_m_empty_1 unit).
+Qed.
+
+Lemma FSetUnion_idempotent :
+ forall s:FSet, mapcanon unit s -> FSetUnion s s = s.
+Proof.
+ exact (MapMerge_idempotent_c unit).
+Qed.
+
+Lemma FSetInter_comm_c :
+ forall s s':FSet,
+ mapcanon unit s -> mapcanon unit s' -> FSetInter s s' = FSetInter s' s.
+Proof.
+ intros.
+ apply (mapcanon_unique unit);
+ try (unfold FSetInter in |- *; apply MapDomRestrTo_canon; assumption).
+ apply FSetInter_comm.
+Qed.
+
+Lemma FSetInter_assoc_c :
+ forall s s' s'':FSet,
+ mapcanon unit s ->
+ FSetInter (FSetInter s s') s'' = FSetInter s (FSetInter s' s'').
+Proof.
+ exact (MapDomRestrTo_assoc_c unit unit unit).
+Qed.
+
+Lemma FSetInter_M0_s_c : forall s:FSet, FSetInter (M0 unit) s = M0 unit.
+Proof.
+ trivial.
+Qed.
+
+Lemma FSetInter_s_M0_c : forall s:FSet, FSetInter s (M0 unit) = M0 unit.
+Proof.
+ exact (MapDomRestrTo_m_empty_1 unit unit).
+Qed.
+
+Lemma FSetInter_idempotent :
+ forall s:FSet, mapcanon unit s -> FSetInter s s = s.
+Proof.
+ exact (MapDomRestrTo_idempotent_c unit).
+Qed.
+
+Lemma FSetUnion_Inter_l_c :
+ forall s s' s'':FSet,
+ mapcanon unit s ->
+ mapcanon unit s'' ->
+ FSetUnion (FSetInter s s') s'' =
+ FSetInter (FSetUnion s s'') (FSetUnion s' s'').
+Proof.
+ intros. apply (mapcanon_unique unit). unfold FSetUnion in |- *. apply MapMerge_canon; try assumption.
+ unfold FSetInter in |- *. apply MapDomRestrTo_canon; assumption.
+ unfold FSetInter in |- *; unfold FSetUnion in |- *;
+ apply MapDomRestrTo_canon; apply MapMerge_canon;
+ assumption.
+ apply FSetUnion_Inter_l.
+Qed.
+
+Lemma FSetUnion_Inter_r :
+ forall s s' s'':FSet,
+ mapcanon unit s ->
+ mapcanon unit s' ->
+ FSetUnion s (FSetInter s' s'') =
+ FSetInter (FSetUnion s s') (FSetUnion s s'').
+Proof.
+ intros. apply (mapcanon_unique unit). unfold FSetUnion in |- *. apply MapMerge_canon; try assumption.
+ unfold FSetInter in |- *. apply MapDomRestrTo_canon; assumption.
+ unfold FSetInter in |- *; unfold FSetUnion in |- *;
+ apply MapDomRestrTo_canon; apply MapMerge_canon;
+ assumption.
+ apply FSetUnion_Inter_r.
+Qed.
+
+Lemma FSetInter_Union_l_c :
+ forall s s' s'':FSet,
+ mapcanon unit s ->
+ mapcanon unit s' ->
+ FSetInter (FSetUnion s s') s'' =
+ FSetUnion (FSetInter s s'') (FSetInter s' s'').
+Proof.
+ intros. apply (mapcanon_unique unit). unfold FSetInter in |- *.
+ apply MapDomRestrTo_canon; try assumption. unfold FSetUnion in |- *.
+ apply MapMerge_canon; assumption.
+ unfold FSetUnion in |- *; unfold FSetInter in |- *; apply MapMerge_canon;
+ apply MapDomRestrTo_canon; assumption.
+ apply FSetInter_Union_l.
+Qed.
+
+Lemma FSetInter_Union_r :
+ forall s s' s'':FSet,
+ mapcanon unit s ->
+ mapcanon unit s' ->
+ FSetInter s (FSetUnion s' s'') =
+ FSetUnion (FSetInter s s') (FSetInter s s'').
+Proof.
+ intros. apply (mapcanon_unique unit). unfold FSetInter in |- *.
+ apply MapDomRestrTo_canon; try assumption.
+ unfold FSetUnion in |- *. apply MapMerge_canon; unfold FSetInter in |- *; apply MapDomRestrTo_canon;
+ assumption.
+ apply FSetInter_Union_r.
+Qed. \ No newline at end of file
diff --git a/theories/IntMap/Mapcanon.v b/theories/IntMap/Mapcanon.v
new file mode 100644
index 00000000..868fbe5e
--- /dev/null
+++ b/theories/IntMap/Mapcanon.v
@@ -0,0 +1,399 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(*i $Id: Mapcanon.v,v 1.4.2.1 2004/07/16 19:31:04 herbelin Exp $ i*)
+
+Require Import Bool.
+Require Import Sumbool.
+Require Import Arith.
+Require Import ZArith.
+Require Import Addr.
+Require Import Adist.
+Require Import Addec.
+Require Import Map.
+Require Import Mapaxioms.
+Require Import Mapiter.
+Require Import Fset.
+Require Import List.
+Require Import Lsort.
+Require Import Mapsubset.
+Require Import Mapcard.
+
+Section MapCanon.
+
+ Variable A : Set.
+
+ Inductive mapcanon : Map A -> Prop :=
+ | M0_canon : mapcanon (M0 A)
+ | M1_canon : forall (a:ad) (y:A), mapcanon (M1 A a y)
+ | M2_canon :
+ forall m1 m2:Map A,
+ mapcanon m1 ->
+ mapcanon m2 -> 2 <= MapCard A (M2 A m1 m2) -> mapcanon (M2 A m1 m2).
+
+ Lemma mapcanon_M2 :
+ forall m1 m2:Map A, mapcanon (M2 A m1 m2) -> 2 <= MapCard A (M2 A m1 m2).
+ Proof.
+ intros. inversion H. assumption.
+ Qed.
+
+ Lemma mapcanon_M2_1 :
+ forall m1 m2:Map A, mapcanon (M2 A m1 m2) -> mapcanon m1.
+ Proof.
+ intros. inversion H. assumption.
+ Qed.
+
+ Lemma mapcanon_M2_2 :
+ forall m1 m2:Map A, mapcanon (M2 A m1 m2) -> mapcanon m2.
+ Proof.
+ intros. inversion H. assumption.
+ Qed.
+
+ Lemma M2_eqmap_1 :
+ forall m0 m1 m2 m3:Map A,
+ eqmap A (M2 A m0 m1) (M2 A m2 m3) -> eqmap A m0 m2.
+ Proof.
+ unfold eqmap, eqm in |- *. intros. rewrite <- (ad_double_div_2 a).
+ rewrite <- (MapGet_M2_bit_0_0 A _ (ad_double_bit_0 a) m0 m1).
+ rewrite <- (MapGet_M2_bit_0_0 A _ (ad_double_bit_0 a) m2 m3).
+ exact (H (ad_double a)).
+ Qed.
+
+ Lemma M2_eqmap_2 :
+ forall m0 m1 m2 m3:Map A,
+ eqmap A (M2 A m0 m1) (M2 A m2 m3) -> eqmap A m1 m3.
+ Proof.
+ unfold eqmap, eqm in |- *. intros. rewrite <- (ad_double_plus_un_div_2 a).
+ rewrite <- (MapGet_M2_bit_0_1 A _ (ad_double_plus_un_bit_0 a) m0 m1).
+ rewrite <- (MapGet_M2_bit_0_1 A _ (ad_double_plus_un_bit_0 a) m2 m3).
+ exact (H (ad_double_plus_un a)).
+ Qed.
+
+ Lemma mapcanon_unique :
+ forall m m':Map A, mapcanon m -> mapcanon m' -> eqmap A m m' -> m = m'.
+ Proof.
+ simple induction m. simple induction m'. trivial.
+ intros a y H H0 H1. cut (NONE A = MapGet A (M1 A a y) a). simpl in |- *. rewrite (ad_eq_correct a).
+ intro. discriminate H2.
+ exact (H1 a).
+ intros. cut (2 <= MapCard A (M0 A)). intro. elim (le_Sn_O _ H4).
+ rewrite (MapCard_ext A _ _ H3). exact (mapcanon_M2 _ _ H2).
+ intros a y. simple induction m'. intros. cut (MapGet A (M1 A a y) a = NONE A). simpl in |- *.
+ rewrite (ad_eq_correct a). intro. discriminate H2.
+ exact (H1 a).
+ intros a0 y0 H H0 H1. cut (MapGet A (M1 A a y) a = MapGet A (M1 A a0 y0) a). simpl in |- *.
+ rewrite (ad_eq_correct a). intro. elim (sumbool_of_bool (ad_eq a0 a)). intro H3.
+ rewrite H3 in H2. inversion H2. rewrite (ad_eq_complete _ _ H3). reflexivity.
+ intro H3. rewrite H3 in H2. discriminate H2.
+ exact (H1 a).
+ intros. cut (2 <= MapCard A (M1 A a y)). intro. elim (le_Sn_O _ (le_S_n _ _ H4)).
+ rewrite (MapCard_ext A _ _ H3). exact (mapcanon_M2 _ _ H2).
+ simple induction m'. intros. cut (2 <= MapCard A (M0 A)). intro. elim (le_Sn_O _ H4).
+ rewrite <- (MapCard_ext A _ _ H3). exact (mapcanon_M2 _ _ H1).
+ intros a y H1 H2 H3. cut (2 <= MapCard A (M1 A a y)). intro.
+ elim (le_Sn_O _ (le_S_n _ _ H4)).
+ rewrite <- (MapCard_ext A _ _ H3). exact (mapcanon_M2 _ _ H1).
+ intros. rewrite (H m2). rewrite (H0 m3). reflexivity.
+ exact (mapcanon_M2_2 _ _ H3).
+ exact (mapcanon_M2_2 _ _ H4).
+ exact (M2_eqmap_2 _ _ _ _ H5).
+ exact (mapcanon_M2_1 _ _ H3).
+ exact (mapcanon_M2_1 _ _ H4).
+ exact (M2_eqmap_1 _ _ _ _ H5).
+ Qed.
+
+ Lemma MapPut1_canon :
+ forall (p:positive) (a a':ad) (y y':A), mapcanon (MapPut1 A a y a' y' p).
+ Proof.
+ simple induction p. simpl in |- *. intros. case (ad_bit_0 a). apply M2_canon. apply M1_canon.
+ apply M1_canon.
+ apply le_n.
+ apply M2_canon. apply M1_canon.
+ apply M1_canon.
+ apply le_n.
+ simpl in |- *. intros. case (ad_bit_0 a). apply M2_canon. apply M0_canon.
+ apply H.
+ simpl in |- *. rewrite MapCard_Put1_equals_2. apply le_n.
+ apply M2_canon. apply H.
+ apply M0_canon.
+ simpl in |- *. rewrite MapCard_Put1_equals_2. apply le_n.
+ simpl in |- *. simpl in |- *. intros. case (ad_bit_0 a). apply M2_canon. apply M1_canon.
+ apply M1_canon.
+ simpl in |- *. apply le_n.
+ apply M2_canon. apply M1_canon.
+ apply M1_canon.
+ simpl in |- *. apply le_n.
+ Qed.
+
+ Lemma MapPut_canon :
+ forall m:Map A,
+ mapcanon m -> forall (a:ad) (y:A), mapcanon (MapPut A m a y).
+ Proof.
+ simple induction m. intros. simpl in |- *. apply M1_canon.
+ intros a0 y0 H a y. simpl in |- *. case (ad_xor a0 a). apply M1_canon.
+ intro. apply MapPut1_canon.
+ intros. simpl in |- *. elim a. apply M2_canon. apply H. exact (mapcanon_M2_1 m0 m1 H1).
+ exact (mapcanon_M2_2 m0 m1 H1).
+ simpl in |- *. apply le_trans with (m := MapCard A m0 + MapCard A m1). exact (mapcanon_M2 _ _ H1).
+ apply plus_le_compat. exact (MapCard_Put_lb A m0 ad_z y).
+ apply le_n.
+ intro. case p. intro. apply M2_canon. exact (mapcanon_M2_1 m0 m1 H1).
+ apply H0. exact (mapcanon_M2_2 m0 m1 H1).
+ simpl in |- *. apply le_trans with (m := MapCard A m0 + MapCard A m1).
+ exact (mapcanon_M2 m0 m1 H1).
+ apply plus_le_compat_l. exact (MapCard_Put_lb A m1 (ad_x p0) y).
+ intro. apply M2_canon. apply H. exact (mapcanon_M2_1 m0 m1 H1).
+ exact (mapcanon_M2_2 m0 m1 H1).
+ simpl in |- *. apply le_trans with (m := MapCard A m0 + MapCard A m1).
+ exact (mapcanon_M2 m0 m1 H1).
+ apply plus_le_compat_r. exact (MapCard_Put_lb A m0 (ad_x p0) y).
+ apply M2_canon. apply (mapcanon_M2_1 m0 m1 H1).
+ apply H0. apply (mapcanon_M2_2 m0 m1 H1).
+ simpl in |- *. apply le_trans with (m := MapCard A m0 + MapCard A m1).
+ exact (mapcanon_M2 m0 m1 H1).
+ apply plus_le_compat_l. exact (MapCard_Put_lb A m1 ad_z y).
+ Qed.
+
+ Lemma MapPut_behind_canon :
+ forall m:Map A,
+ mapcanon m -> forall (a:ad) (y:A), mapcanon (MapPut_behind A m a y).
+ Proof.
+ simple induction m. intros. simpl in |- *. apply M1_canon.
+ intros a0 y0 H a y. simpl in |- *. case (ad_xor a0 a). apply M1_canon.
+ intro. apply MapPut1_canon.
+ intros. simpl in |- *. elim a. apply M2_canon. apply H. exact (mapcanon_M2_1 m0 m1 H1).
+ exact (mapcanon_M2_2 m0 m1 H1).
+ simpl in |- *. apply le_trans with (m := MapCard A m0 + MapCard A m1). exact (mapcanon_M2 _ _ H1).
+ apply plus_le_compat. rewrite MapCard_Put_behind_Put. exact (MapCard_Put_lb A m0 ad_z y).
+ apply le_n.
+ intro. case p. intro. apply M2_canon. exact (mapcanon_M2_1 m0 m1 H1).
+ apply H0. exact (mapcanon_M2_2 m0 m1 H1).
+ simpl in |- *. apply le_trans with (m := MapCard A m0 + MapCard A m1).
+ exact (mapcanon_M2 m0 m1 H1).
+ apply plus_le_compat_l. rewrite MapCard_Put_behind_Put. exact (MapCard_Put_lb A m1 (ad_x p0) y).
+ intro. apply M2_canon. apply H. exact (mapcanon_M2_1 m0 m1 H1).
+ exact (mapcanon_M2_2 m0 m1 H1).
+ simpl in |- *. apply le_trans with (m := MapCard A m0 + MapCard A m1).
+ exact (mapcanon_M2 m0 m1 H1).
+ apply plus_le_compat_r. rewrite MapCard_Put_behind_Put. exact (MapCard_Put_lb A m0 (ad_x p0) y).
+ apply M2_canon. apply (mapcanon_M2_1 m0 m1 H1).
+ apply H0. apply (mapcanon_M2_2 m0 m1 H1).
+ simpl in |- *. apply le_trans with (m := MapCard A m0 + MapCard A m1).
+ exact (mapcanon_M2 m0 m1 H1).
+ apply plus_le_compat_l. rewrite MapCard_Put_behind_Put. exact (MapCard_Put_lb A m1 ad_z y).
+ Qed.
+
+ Lemma makeM2_canon :
+ forall m m':Map A, mapcanon m -> mapcanon m' -> mapcanon (makeM2 A m m').
+ Proof.
+ intro. case m. intro. case m'. intros. exact M0_canon.
+ intros a y H H0. exact (M1_canon (ad_double_plus_un a) y).
+ intros. simpl in |- *. apply M2_canon; try assumption. exact (mapcanon_M2 m0 m1 H0).
+ intros a y m'. case m'. intros. exact (M1_canon (ad_double a) y).
+ intros a0 y0 H H0. simpl in |- *. apply M2_canon; try assumption. apply le_n.
+ intros. simpl in |- *. apply M2_canon; try assumption.
+ apply le_trans with (m := MapCard A (M2 A m0 m1)). exact (mapcanon_M2 _ _ H0).
+ exact (le_plus_r (MapCard A (M1 A a y)) (MapCard A (M2 A m0 m1))).
+ simpl in |- *. intros. apply M2_canon; try assumption.
+ apply le_trans with (m := MapCard A (M2 A m0 m1)). exact (mapcanon_M2 _ _ H).
+ exact (le_plus_l (MapCard A (M2 A m0 m1)) (MapCard A m')).
+ Qed.
+
+ Fixpoint MapCanonicalize (m:Map A) : Map A :=
+ match m with
+ | M2 m0 m1 => makeM2 A (MapCanonicalize m0) (MapCanonicalize m1)
+ | _ => m
+ end.
+
+ Lemma mapcanon_exists_1 : forall m:Map A, eqmap A m (MapCanonicalize m).
+ Proof.
+ simple induction m. apply eqmap_refl.
+ intros. apply eqmap_refl.
+ intros. simpl in |- *. unfold eqmap, eqm in |- *. intro.
+ rewrite (makeM2_M2 A (MapCanonicalize m0) (MapCanonicalize m1) a).
+ rewrite MapGet_M2_bit_0_if. rewrite MapGet_M2_bit_0_if.
+ rewrite <- (H (ad_div_2 a)). rewrite <- (H0 (ad_div_2 a)). reflexivity.
+ Qed.
+
+ Lemma mapcanon_exists_2 : forall m:Map A, mapcanon (MapCanonicalize m).
+ Proof.
+ simple induction m. apply M0_canon.
+ intros. simpl in |- *. apply M1_canon.
+ intros. simpl in |- *. apply makeM2_canon; assumption.
+ Qed.
+
+ Lemma mapcanon_exists :
+ forall m:Map A, {m' : Map A | eqmap A m m' /\ mapcanon m'}.
+ Proof.
+ intro. split with (MapCanonicalize m). split. apply mapcanon_exists_1.
+ apply mapcanon_exists_2.
+ Qed.
+
+ Lemma MapRemove_canon :
+ forall m:Map A, mapcanon m -> forall a:ad, mapcanon (MapRemove A m a).
+ Proof.
+ simple induction m. intros. exact M0_canon.
+ intros a y H a0. simpl in |- *. case (ad_eq a a0). exact M0_canon.
+ assumption.
+ intros. simpl in |- *. case (ad_bit_0 a). apply makeM2_canon. exact (mapcanon_M2_1 _ _ H1).
+ apply H0. exact (mapcanon_M2_2 _ _ H1).
+ apply makeM2_canon. apply H. exact (mapcanon_M2_1 _ _ H1).
+ exact (mapcanon_M2_2 _ _ H1).
+ Qed.
+
+ Lemma MapMerge_canon :
+ forall m m':Map A, mapcanon m -> mapcanon m' -> mapcanon (MapMerge A m m').
+ Proof.
+ simple induction m. intros. exact H0.
+ simpl in |- *. intros a y m' H H0. exact (MapPut_behind_canon m' H0 a y).
+ simple induction m'. intros. exact H1.
+ intros a y H1 H2. unfold MapMerge in |- *. exact (MapPut_canon _ H1 a y).
+ intros. simpl in |- *. apply M2_canon. apply H. exact (mapcanon_M2_1 _ _ H3).
+ exact (mapcanon_M2_1 _ _ H4).
+ apply H0. exact (mapcanon_M2_2 _ _ H3).
+ exact (mapcanon_M2_2 _ _ H4).
+ change (2 <= MapCard A (MapMerge A (M2 A m0 m1) (M2 A m2 m3))) in |- *.
+ apply le_trans with (m := MapCard A (M2 A m0 m1)). exact (mapcanon_M2 _ _ H3).
+ exact (MapMerge_Card_lb_l A (M2 A m0 m1) (M2 A m2 m3)).
+ Qed.
+
+ Lemma MapDelta_canon :
+ forall m m':Map A, mapcanon m -> mapcanon m' -> mapcanon (MapDelta A m m').
+ Proof.
+ simple induction m. intros. exact H0.
+ simpl in |- *. intros a y m' H H0. case (MapGet A m' a). exact (MapPut_canon m' H0 a y).
+ intro. exact (MapRemove_canon m' H0 a).
+ simple induction m'. intros. exact H1.
+ unfold MapDelta in |- *. intros a y H1 H2. case (MapGet A (M2 A m0 m1) a).
+ exact (MapPut_canon _ H1 a y).
+ intro. exact (MapRemove_canon _ H1 a).
+ intros. simpl in |- *. apply makeM2_canon. apply H. exact (mapcanon_M2_1 _ _ H3).
+ exact (mapcanon_M2_1 _ _ H4).
+ apply H0. exact (mapcanon_M2_2 _ _ H3).
+ exact (mapcanon_M2_2 _ _ H4).
+ Qed.
+
+ Variable B : Set.
+
+ Lemma MapDomRestrTo_canon :
+ forall m:Map A,
+ mapcanon m -> forall m':Map B, mapcanon (MapDomRestrTo A B m m').
+ Proof.
+ simple induction m. intros. exact M0_canon.
+ simpl in |- *. intros a y H m'. case (MapGet B m' a). exact M0_canon.
+ intro. apply M1_canon.
+ simple induction m'. exact M0_canon.
+ unfold MapDomRestrTo in |- *. intros a y. case (MapGet A (M2 A m0 m1) a). exact M0_canon.
+ intro. apply M1_canon.
+ intros. simpl in |- *. apply makeM2_canon. apply H. exact (mapcanon_M2_1 m0 m1 H1).
+ apply H0. exact (mapcanon_M2_2 m0 m1 H1).
+ Qed.
+
+ Lemma MapDomRestrBy_canon :
+ forall m:Map A,
+ mapcanon m -> forall m':Map B, mapcanon (MapDomRestrBy A B m m').
+ Proof.
+ simple induction m. intros. exact M0_canon.
+ simpl in |- *. intros a y H m'. case (MapGet B m' a). assumption.
+ intro. exact M0_canon.
+ simple induction m'. exact H1.
+ intros a y. simpl in |- *. case (ad_bit_0 a). apply makeM2_canon. exact (mapcanon_M2_1 _ _ H1).
+ apply MapRemove_canon. exact (mapcanon_M2_2 _ _ H1).
+ apply makeM2_canon. apply MapRemove_canon. exact (mapcanon_M2_1 _ _ H1).
+ exact (mapcanon_M2_2 _ _ H1).
+ intros. simpl in |- *. apply makeM2_canon. apply H. exact (mapcanon_M2_1 _ _ H1).
+ apply H0. exact (mapcanon_M2_2 _ _ H1).
+ Qed.
+
+ Lemma Map_of_alist_canon : forall l:alist A, mapcanon (Map_of_alist A l).
+ Proof.
+ simple induction l. exact M0_canon.
+ intro r. elim r. intros a y l0 H. simpl in |- *. apply MapPut_canon. assumption.
+ Qed.
+
+ Lemma MapSubset_c_1 :
+ forall (m:Map A) (m':Map B),
+ mapcanon m -> MapSubset A B m m' -> MapDomRestrBy A B m m' = M0 A.
+ Proof.
+ intros. apply mapcanon_unique. apply MapDomRestrBy_canon. assumption.
+ apply M0_canon.
+ exact (MapSubset_imp_2 _ _ m m' H0).
+ Qed.
+
+ Lemma MapSubset_c_2 :
+ forall (m:Map A) (m':Map B),
+ MapDomRestrBy A B m m' = M0 A -> MapSubset A B m m'.
+ Proof.
+ intros. apply MapSubset_2_imp. unfold MapSubset_2 in |- *. rewrite H. apply eqmap_refl.
+ Qed.
+
+End MapCanon.
+
+Section FSetCanon.
+
+ Variable A : Set.
+
+ Lemma MapDom_canon :
+ forall m:Map A, mapcanon A m -> mapcanon unit (MapDom A m).
+ Proof.
+ simple induction m. intro. exact (M0_canon unit).
+ intros a y H. exact (M1_canon unit a _).
+ intros. simpl in |- *. apply M2_canon. apply H. exact (mapcanon_M2_1 A _ _ H1).
+ apply H0. exact (mapcanon_M2_2 A _ _ H1).
+ change (2 <= MapCard unit (MapDom A (M2 A m0 m1))) in |- *. rewrite <- MapCard_Dom.
+ exact (mapcanon_M2 A _ _ H1).
+ Qed.
+
+End FSetCanon.
+
+Section MapFoldCanon.
+
+ Variables A B : Set.
+
+ Lemma MapFold_canon_1 :
+ forall m0:Map B,
+ mapcanon B m0 ->
+ forall op:Map B -> Map B -> Map B,
+ (forall m1:Map B,
+ mapcanon B m1 ->
+ forall m2:Map B, mapcanon B m2 -> mapcanon B (op m1 m2)) ->
+ forall f:ad -> A -> Map B,
+ (forall (a:ad) (y:A), mapcanon B (f a y)) ->
+ forall (m:Map A) (pf:ad -> ad),
+ mapcanon B (MapFold1 A (Map B) m0 op f pf m).
+ Proof.
+ simple induction m. intro. exact H.
+ intros a y pf. simpl in |- *. apply H1.
+ intros. simpl in |- *. apply H0. apply H2.
+ apply H3.
+ Qed.
+
+ Lemma MapFold_canon :
+ forall m0:Map B,
+ mapcanon B m0 ->
+ forall op:Map B -> Map B -> Map B,
+ (forall m1:Map B,
+ mapcanon B m1 ->
+ forall m2:Map B, mapcanon B m2 -> mapcanon B (op m1 m2)) ->
+ forall f:ad -> A -> Map B,
+ (forall (a:ad) (y:A), mapcanon B (f a y)) ->
+ forall m:Map A, mapcanon B (MapFold A (Map B) m0 op f m).
+ Proof.
+ intros. exact (MapFold_canon_1 m0 H op H0 f H1 m (fun a:ad => a)).
+ Qed.
+
+ Lemma MapCollect_canon :
+ forall f:ad -> A -> Map B,
+ (forall (a:ad) (y:A), mapcanon B (f a y)) ->
+ forall m:Map A, mapcanon B (MapCollect A B f m).
+ Proof.
+ intros. rewrite MapCollect_as_Fold. apply MapFold_canon. apply M0_canon.
+ intros. exact (MapMerge_canon B m1 m2 H0 H1).
+ assumption.
+ Qed.
+
+End MapFoldCanon. \ No newline at end of file
diff --git a/theories/IntMap/Mapcard.v b/theories/IntMap/Mapcard.v
new file mode 100644
index 00000000..49f9fe91
--- /dev/null
+++ b/theories/IntMap/Mapcard.v
@@ -0,0 +1,764 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(*i $Id: Mapcard.v,v 1.5.2.1 2004/07/16 19:31:04 herbelin Exp $ i*)
+
+Require Import Bool.
+Require Import Sumbool.
+Require Import Arith.
+Require Import ZArith.
+Require Import Addr.
+Require Import Adist.
+Require Import Addec.
+Require Import Map.
+Require Import Mapaxioms.
+Require Import Mapiter.
+Require Import Fset.
+Require Import Mapsubset.
+Require Import List.
+Require Import Lsort.
+Require Import Peano_dec.
+
+Section MapCard.
+
+ Variables A B : Set.
+
+ Lemma MapCard_M0 : MapCard A (M0 A) = 0.
+ Proof.
+ trivial.
+ Qed.
+
+ Lemma MapCard_M1 : forall (a:ad) (y:A), MapCard A (M1 A a y) = 1.
+ Proof.
+ trivial.
+ Qed.
+
+ Lemma MapCard_is_O :
+ forall m:Map A, MapCard A m = 0 -> forall a:ad, MapGet A m a = NONE A.
+ Proof.
+ simple induction m. trivial.
+ intros a y H. discriminate H.
+ intros. simpl in H1. elim (plus_is_O _ _ H1). intros. rewrite (MapGet_M2_bit_0_if A m0 m1 a).
+ case (ad_bit_0 a). apply H0. assumption.
+ apply H. assumption.
+ Qed.
+
+ Lemma MapCard_is_not_O :
+ forall (m:Map A) (a:ad) (y:A),
+ MapGet A m a = SOME A y -> {n : nat | MapCard A m = S n}.
+ Proof.
+ simple induction m. intros. discriminate H.
+ intros a y a0 y0 H. simpl in H. elim (sumbool_of_bool (ad_eq a a0)). intro H0. split with 0.
+ reflexivity.
+ intro H0. rewrite H0 in H. discriminate H.
+ intros. elim (sumbool_of_bool (ad_bit_0 a)). intro H2.
+ rewrite (MapGet_M2_bit_0_1 A a H2 m0 m1) in H1. elim (H0 (ad_div_2 a) y H1). intros n H3.
+ simpl in |- *. rewrite H3. split with (MapCard A m0 + n).
+ rewrite <- (plus_Snm_nSm (MapCard A m0) n). reflexivity.
+ intro H2. rewrite (MapGet_M2_bit_0_0 A a H2 m0 m1) in H1. elim (H (ad_div_2 a) y H1).
+ intros n H3. simpl in |- *. rewrite H3. split with (n + MapCard A m1). reflexivity.
+ Qed.
+
+ Lemma MapCard_is_one :
+ forall m:Map A,
+ MapCard A m = 1 -> {a : ad & {y : A | MapGet A m a = SOME A y}}.
+ Proof.
+ simple induction m. intro. discriminate H.
+ intros a y H. split with a. split with y. apply M1_semantics_1.
+ intros. simpl in H1. elim (plus_is_one (MapCard A m0) (MapCard A m1) H1).
+ intro H2. elim H2. intros. elim (H0 H4). intros a H5. split with (ad_double_plus_un a).
+ rewrite (MapGet_M2_bit_0_1 A _ (ad_double_plus_un_bit_0 a) m0 m1).
+ rewrite ad_double_plus_un_div_2. exact H5.
+ intro H2. elim H2. intros. elim (H H3). intros a H5. split with (ad_double a).
+ rewrite (MapGet_M2_bit_0_0 A _ (ad_double_bit_0 a) m0 m1).
+ rewrite ad_double_div_2. exact H5.
+ Qed.
+
+ Lemma MapCard_is_one_unique :
+ forall m:Map A,
+ MapCard A m = 1 ->
+ forall (a a':ad) (y y':A),
+ MapGet A m a = SOME A y ->
+ MapGet A m a' = SOME A y' -> a = a' /\ y = y'.
+ Proof.
+ simple induction m. intro. discriminate H.
+ intros. elim (sumbool_of_bool (ad_eq a a1)). intro H2. rewrite (ad_eq_complete _ _ H2) in H0.
+ rewrite (M1_semantics_1 A a1 a0) in H0. inversion H0. elim (sumbool_of_bool (ad_eq a a')).
+ intro H5. rewrite (ad_eq_complete _ _ H5) in H1. rewrite (M1_semantics_1 A a' a0) in H1.
+ inversion H1. rewrite <- (ad_eq_complete _ _ H2). rewrite <- (ad_eq_complete _ _ H5).
+ rewrite <- H4. rewrite <- H6. split; reflexivity.
+ intro H5. rewrite (M1_semantics_2 A a a' a0 H5) in H1. discriminate H1.
+ intro H2. rewrite (M1_semantics_2 A a a1 a0 H2) in H0. discriminate H0.
+ intros. simpl in H1. elim (plus_is_one _ _ H1). intro H4. elim H4. intros.
+ rewrite (MapGet_M2_bit_0_if A m0 m1 a) in H2. elim (sumbool_of_bool (ad_bit_0 a)).
+ intro H7. rewrite H7 in H2. rewrite (MapGet_M2_bit_0_if A m0 m1 a') in H3.
+ elim (sumbool_of_bool (ad_bit_0 a')). intro H8. rewrite H8 in H3. elim (H0 H6 _ _ _ _ H2 H3).
+ intros. split. rewrite <- (ad_div_2_double_plus_un a H7).
+ rewrite <- (ad_div_2_double_plus_un a' H8). rewrite H9. reflexivity.
+ assumption.
+ intro H8. rewrite H8 in H3. rewrite (MapCard_is_O m0 H5 (ad_div_2 a')) in H3.
+ discriminate H3.
+ intro H7. rewrite H7 in H2. rewrite (MapCard_is_O m0 H5 (ad_div_2 a)) in H2.
+ discriminate H2.
+ intro H4. elim H4. intros. rewrite (MapGet_M2_bit_0_if A m0 m1 a) in H2.
+ elim (sumbool_of_bool (ad_bit_0 a)). intro H7. rewrite H7 in H2.
+ rewrite (MapCard_is_O m1 H6 (ad_div_2 a)) in H2. discriminate H2.
+ intro H7. rewrite H7 in H2. rewrite (MapGet_M2_bit_0_if A m0 m1 a') in H3.
+ elim (sumbool_of_bool (ad_bit_0 a')). intro H8. rewrite H8 in H3.
+ rewrite (MapCard_is_O m1 H6 (ad_div_2 a')) in H3. discriminate H3.
+ intro H8. rewrite H8 in H3. elim (H H5 _ _ _ _ H2 H3). intros. split.
+ rewrite <- (ad_div_2_double a H7). rewrite <- (ad_div_2_double a' H8).
+ rewrite H9. reflexivity.
+ assumption.
+ Qed.
+
+ Lemma length_as_fold :
+ forall (C:Set) (l:list C),
+ length l = fold_right (fun (_:C) (n:nat) => S n) 0 l.
+ Proof.
+ simple induction l. reflexivity.
+ intros. simpl in |- *. rewrite H. reflexivity.
+ Qed.
+
+ Lemma length_as_fold_2 :
+ forall l:alist A,
+ length l =
+ fold_right (fun (r:ad * A) (n:nat) => let (a, y) := r in 1 + n) 0 l.
+ Proof.
+ simple induction l. reflexivity.
+ intros. simpl in |- *. rewrite H. elim a; reflexivity.
+ Qed.
+
+ Lemma MapCard_as_Fold_1 :
+ forall (m:Map A) (pf:ad -> ad),
+ MapCard A m = MapFold1 A nat 0 plus (fun (_:ad) (_:A) => 1) pf m.
+ Proof.
+ simple induction m. trivial.
+ trivial.
+ intros. simpl in |- *. rewrite <- (H (fun a0:ad => pf (ad_double a0))).
+ rewrite <- (H0 (fun a0:ad => pf (ad_double_plus_un a0))). reflexivity.
+ Qed.
+
+ Lemma MapCard_as_Fold :
+ forall m:Map A,
+ MapCard A m = MapFold A nat 0 plus (fun (_:ad) (_:A) => 1) m.
+ Proof.
+ intro. exact (MapCard_as_Fold_1 m (fun a0:ad => a0)).
+ Qed.
+
+ Lemma MapCard_as_length :
+ forall m:Map A, MapCard A m = length (alist_of_Map A m).
+ Proof.
+ intro. rewrite MapCard_as_Fold. rewrite length_as_fold_2.
+ apply MapFold_as_fold with
+ (op := plus) (neutral := 0) (f := fun (_:ad) (_:A) => 1). exact plus_assoc_reverse.
+ trivial.
+ intro. rewrite <- plus_n_O. reflexivity.
+ Qed.
+
+ Lemma MapCard_Put1_equals_2 :
+ forall (p:positive) (a a':ad) (y y':A),
+ MapCard A (MapPut1 A a y a' y' p) = 2.
+ Proof.
+ simple induction p. intros. simpl in |- *. case (ad_bit_0 a); reflexivity.
+ intros. simpl in |- *. case (ad_bit_0 a). exact (H (ad_div_2 a) (ad_div_2 a') y y').
+ simpl in |- *. rewrite <- plus_n_O. exact (H (ad_div_2 a) (ad_div_2 a') y y').
+ intros. simpl in |- *. case (ad_bit_0 a); reflexivity.
+ Qed.
+
+ Lemma MapCard_Put_sum :
+ forall (m m':Map A) (a:ad) (y:A) (n n':nat),
+ m' = MapPut A m a y ->
+ n = MapCard A m -> n' = MapCard A m' -> {n' = n} + {n' = S n}.
+ Proof.
+ simple induction m. simpl in |- *. intros. rewrite H in H1. simpl in H1. right.
+ rewrite H0. rewrite H1. reflexivity.
+ intros a y m' a0 y0 n n' H H0 H1. simpl in H. elim (ad_sum (ad_xor a a0)). intro H2.
+ elim H2. intros p H3. rewrite H3 in H. rewrite H in H1.
+ rewrite (MapCard_Put1_equals_2 p a a0 y y0) in H1. simpl in H0. right.
+ rewrite H0. rewrite H1. reflexivity.
+ intro H2. rewrite H2 in H. rewrite H in H1. simpl in H1. simpl in H0. left.
+ rewrite H0. rewrite H1. reflexivity.
+ intros. simpl in H2. rewrite (MapPut_semantics_3_1 A m0 m1 a y) in H1.
+ elim (sumbool_of_bool (ad_bit_0 a)). intro H4. rewrite H4 in H1.
+ elim
+ (H0 (MapPut A m1 (ad_div_2 a) y) (ad_div_2 a) y (
+ MapCard A m1) (MapCard A (MapPut A m1 (ad_div_2 a) y)) (
+ refl_equal _) (refl_equal _) (refl_equal _)).
+ intro H5. rewrite H1 in H3. simpl in H3. rewrite H5 in H3. rewrite <- H2 in H3. left.
+ assumption.
+ intro H5. rewrite H1 in H3. simpl in H3. rewrite H5 in H3.
+ rewrite <- (plus_Snm_nSm (MapCard A m0) (MapCard A m1)) in H3.
+ simpl in H3. rewrite <- H2 in H3. right. assumption.
+ intro H4. rewrite H4 in H1.
+ elim
+ (H (MapPut A m0 (ad_div_2 a) y) (ad_div_2 a) y (
+ MapCard A m0) (MapCard A (MapPut A m0 (ad_div_2 a) y)) (
+ refl_equal _) (refl_equal _) (refl_equal _)).
+ intro H5. rewrite H1 in H3. simpl in H3. rewrite H5 in H3. rewrite <- H2 in H3.
+ left. assumption.
+ intro H5. rewrite H1 in H3. simpl in H3. rewrite H5 in H3. simpl in H3. rewrite <- H2 in H3.
+ right. assumption.
+ Qed.
+
+ Lemma MapCard_Put_lb :
+ forall (m:Map A) (a:ad) (y:A), MapCard A (MapPut A m a y) >= MapCard A m.
+ Proof.
+ unfold ge in |- *. intros.
+ elim
+ (MapCard_Put_sum m (MapPut A m a y) a y (MapCard A m)
+ (MapCard A (MapPut A m a y)) (refl_equal _) (
+ refl_equal _) (refl_equal _)).
+ intro H. rewrite H. apply le_n.
+ intro H. rewrite H. apply le_n_Sn.
+ Qed.
+
+ Lemma MapCard_Put_ub :
+ forall (m:Map A) (a:ad) (y:A),
+ MapCard A (MapPut A m a y) <= S (MapCard A m).
+ Proof.
+ intros.
+ elim
+ (MapCard_Put_sum m (MapPut A m a y) a y (MapCard A m)
+ (MapCard A (MapPut A m a y)) (refl_equal _) (
+ refl_equal _) (refl_equal _)).
+ intro H. rewrite H. apply le_n_Sn.
+ intro H. rewrite H. apply le_n.
+ Qed.
+
+ Lemma MapCard_Put_1 :
+ forall (m:Map A) (a:ad) (y:A),
+ MapCard A (MapPut A m a y) = MapCard A m ->
+ {y : A | MapGet A m a = SOME A y}.
+ Proof.
+ simple induction m. intros. discriminate H.
+ intros a y a0 y0 H. simpl in H. elim (ad_sum (ad_xor a a0)). intro H0. elim H0.
+ intros p H1. rewrite H1 in H. rewrite (MapCard_Put1_equals_2 p a a0 y y0) in H.
+ discriminate H.
+ intro H0. rewrite H0 in H. rewrite (ad_xor_eq _ _ H0). split with y. apply M1_semantics_1.
+ intros. rewrite (MapPut_semantics_3_1 A m0 m1 a y) in H1. elim (sumbool_of_bool (ad_bit_0 a)).
+ intro H2. rewrite H2 in H1. simpl in H1. elim (H0 (ad_div_2 a) y ((fun n m p:nat => plus_reg_l m p n) _ _ _ H1)).
+ intros y0 H3. split with y0. rewrite <- H3. exact (MapGet_M2_bit_0_1 A a H2 m0 m1).
+ intro H2. rewrite H2 in H1. simpl in H1.
+ rewrite
+ (plus_comm (MapCard A (MapPut A m0 (ad_div_2 a) y)) (MapCard A m1))
+ in H1.
+ rewrite (plus_comm (MapCard A m0) (MapCard A m1)) in H1.
+ elim (H (ad_div_2 a) y ((fun n m p:nat => plus_reg_l m p n) _ _ _ H1)). intros y0 H3. split with y0.
+ rewrite <- H3. exact (MapGet_M2_bit_0_0 A a H2 m0 m1).
+ Qed.
+
+ Lemma MapCard_Put_2 :
+ forall (m:Map A) (a:ad) (y:A),
+ MapCard A (MapPut A m a y) = S (MapCard A m) -> MapGet A m a = NONE A.
+ Proof.
+ simple induction m. trivial.
+ intros. simpl in H. elim (sumbool_of_bool (ad_eq a a1)). intro H0.
+ rewrite (ad_eq_complete _ _ H0) in H. rewrite (ad_xor_nilpotent a1) in H. discriminate H.
+ intro H0. exact (M1_semantics_2 A a a1 a0 H0).
+ intros. elim (sumbool_of_bool (ad_bit_0 a)). intro H2.
+ rewrite (MapGet_M2_bit_0_1 A a H2 m0 m1). apply (H0 (ad_div_2 a) y).
+ apply (fun n m p:nat => plus_reg_l m p n) with (n := MapCard A m0).
+ rewrite <- (plus_Snm_nSm (MapCard A m0) (MapCard A m1)). simpl in H1. simpl in |- *. rewrite <- H1.
+ clear H1.
+ induction a. discriminate H2.
+ induction p. reflexivity.
+ discriminate H2.
+ reflexivity.
+ intro H2. rewrite (MapGet_M2_bit_0_0 A a H2 m0 m1). apply (H (ad_div_2 a) y).
+ cut
+ (MapCard A (MapPut A m0 (ad_div_2 a) y) + MapCard A m1 =
+ S (MapCard A m0) + MapCard A m1).
+ intro. rewrite (plus_comm (MapCard A (MapPut A m0 (ad_div_2 a) y)) (MapCard A m1))
+ in H3.
+ rewrite (plus_comm (S (MapCard A m0)) (MapCard A m1)) in H3. exact ((fun n m p:nat => plus_reg_l m p n) _ _ _ H3).
+ simpl in |- *. simpl in H1. rewrite <- H1. induction a. trivial.
+ induction p. discriminate H2.
+ reflexivity.
+ discriminate H2.
+ Qed.
+
+ Lemma MapCard_Put_1_conv :
+ forall (m:Map A) (a:ad) (y y':A),
+ MapGet A m a = SOME A y -> MapCard A (MapPut A m a y') = MapCard A m.
+ Proof.
+ intros.
+ elim
+ (MapCard_Put_sum m (MapPut A m a y') a y' (MapCard A m)
+ (MapCard A (MapPut A m a y')) (refl_equal _) (
+ refl_equal _) (refl_equal _)).
+ trivial.
+ intro H0. rewrite (MapCard_Put_2 m a y' H0) in H. discriminate H.
+ Qed.
+
+ Lemma MapCard_Put_2_conv :
+ forall (m:Map A) (a:ad) (y:A),
+ MapGet A m a = NONE A -> MapCard A (MapPut A m a y) = S (MapCard A m).
+ Proof.
+ intros.
+ elim
+ (MapCard_Put_sum m (MapPut A m a y) a y (MapCard A m)
+ (MapCard A (MapPut A m a y)) (refl_equal _) (
+ refl_equal _) (refl_equal _)).
+ intro H0. elim (MapCard_Put_1 m a y H0). intros y' H1. rewrite H1 in H. discriminate H.
+ trivial.
+ Qed.
+
+ Lemma MapCard_ext :
+ forall m m':Map A,
+ eqm A (MapGet A m) (MapGet A m') -> MapCard A m = MapCard A m'.
+ Proof.
+ unfold eqm in |- *. intros. rewrite (MapCard_as_length m). rewrite (MapCard_as_length m').
+ rewrite (alist_canonical A (alist_of_Map A m) (alist_of_Map A m')). reflexivity.
+ unfold eqm in |- *. intro. rewrite (Map_of_alist_semantics A (alist_of_Map A m) a).
+ rewrite (Map_of_alist_semantics A (alist_of_Map A m') a). rewrite (Map_of_alist_of_Map A m' a).
+ rewrite (Map_of_alist_of_Map A m a). exact (H a).
+ apply alist_of_Map_sorts2.
+ apply alist_of_Map_sorts2.
+ Qed.
+
+ Lemma MapCard_Dom : forall m:Map A, MapCard A m = MapCard unit (MapDom A m).
+ Proof.
+ simple induction m; trivial. intros. simpl in |- *. rewrite H. rewrite H0. reflexivity.
+ Qed.
+
+ Lemma MapCard_Dom_Put_behind :
+ forall (m:Map A) (a:ad) (y:A),
+ MapDom A (MapPut_behind A m a y) = MapDom A (MapPut A m a y).
+ Proof.
+ simple induction m. trivial.
+ intros a y a0 y0. simpl in |- *. elim (ad_sum (ad_xor a a0)). intro H. elim H.
+ intros p H0. rewrite H0. reflexivity.
+ intro H. rewrite H. rewrite (ad_xor_eq _ _ H). reflexivity.
+ intros. simpl in |- *. elim (ad_sum a). intro H1. elim H1. intros p H2. rewrite H2. case p.
+ intro p0. simpl in |- *. rewrite H0. reflexivity.
+ intro p0. simpl in |- *. rewrite H. reflexivity.
+ simpl in |- *. rewrite H0. reflexivity.
+ intro H1. rewrite H1. simpl in |- *. rewrite H. reflexivity.
+ Qed.
+
+ Lemma MapCard_Put_behind_Put :
+ forall (m:Map A) (a:ad) (y:A),
+ MapCard A (MapPut_behind A m a y) = MapCard A (MapPut A m a y).
+ Proof.
+ intros. rewrite MapCard_Dom. rewrite MapCard_Dom. rewrite MapCard_Dom_Put_behind.
+ reflexivity.
+ Qed.
+
+ Lemma MapCard_Put_behind_sum :
+ forall (m m':Map A) (a:ad) (y:A) (n n':nat),
+ m' = MapPut_behind A m a y ->
+ n = MapCard A m -> n' = MapCard A m' -> {n' = n} + {n' = S n}.
+ Proof.
+ intros. apply (MapCard_Put_sum m (MapPut A m a y) a y n n'); trivial.
+ rewrite <- MapCard_Put_behind_Put. rewrite <- H. assumption.
+ Qed.
+
+ Lemma MapCard_makeM2 :
+ forall m m':Map A, MapCard A (makeM2 A m m') = MapCard A m + MapCard A m'.
+ Proof.
+ intros. rewrite (MapCard_ext _ _ (makeM2_M2 A m m')). reflexivity.
+ Qed.
+
+ Lemma MapCard_Remove_sum :
+ forall (m m':Map A) (a:ad) (n n':nat),
+ m' = MapRemove A m a ->
+ n = MapCard A m -> n' = MapCard A m' -> {n = n'} + {n = S n'}.
+ Proof.
+ simple induction m. simpl in |- *. intros. rewrite H in H1. simpl in H1. left. rewrite H1. assumption.
+ simpl in |- *. intros. elim (sumbool_of_bool (ad_eq a a1)). intro H2. rewrite H2 in H.
+ rewrite H in H1. simpl in H1. right. rewrite H1. assumption.
+ intro H2. rewrite H2 in H. rewrite H in H1. simpl in H1. left. rewrite H1. assumption.
+ intros. simpl in H1. simpl in H2. elim (sumbool_of_bool (ad_bit_0 a)). intro H4.
+ rewrite H4 in H1. rewrite H1 in H3.
+ rewrite (MapCard_makeM2 m0 (MapRemove A m1 (ad_div_2 a))) in H3.
+ elim
+ (H0 (MapRemove A m1 (ad_div_2 a)) (ad_div_2 a) (
+ MapCard A m1) (MapCard A (MapRemove A m1 (ad_div_2 a)))
+ (refl_equal _) (refl_equal _) (refl_equal _)).
+ intro H5. rewrite H5 in H2. left. rewrite H3. exact H2.
+ intro H5. rewrite H5 in H2.
+ rewrite <-
+ (plus_Snm_nSm (MapCard A m0) (MapCard A (MapRemove A m1 (ad_div_2 a))))
+ in H2.
+ right. rewrite H3. exact H2.
+ intro H4. rewrite H4 in H1. rewrite H1 in H3.
+ rewrite (MapCard_makeM2 (MapRemove A m0 (ad_div_2 a)) m1) in H3.
+ elim
+ (H (MapRemove A m0 (ad_div_2 a)) (ad_div_2 a) (
+ MapCard A m0) (MapCard A (MapRemove A m0 (ad_div_2 a)))
+ (refl_equal _) (refl_equal _) (refl_equal _)).
+ intro H5. rewrite H5 in H2. left. rewrite H3. exact H2.
+ intro H5. rewrite H5 in H2. right. rewrite H3. exact H2.
+ Qed.
+
+ Lemma MapCard_Remove_ub :
+ forall (m:Map A) (a:ad), MapCard A (MapRemove A m a) <= MapCard A m.
+ Proof.
+ intros.
+ elim
+ (MapCard_Remove_sum m (MapRemove A m a) a (MapCard A m)
+ (MapCard A (MapRemove A m a)) (refl_equal _) (
+ refl_equal _) (refl_equal _)).
+ intro H. rewrite H. apply le_n.
+ intro H. rewrite H. apply le_n_Sn.
+ Qed.
+
+ Lemma MapCard_Remove_lb :
+ forall (m:Map A) (a:ad), S (MapCard A (MapRemove A m a)) >= MapCard A m.
+ Proof.
+ unfold ge in |- *. intros.
+ elim
+ (MapCard_Remove_sum m (MapRemove A m a) a (MapCard A m)
+ (MapCard A (MapRemove A m a)) (refl_equal _) (
+ refl_equal _) (refl_equal _)).
+ intro H. rewrite H. apply le_n_Sn.
+ intro H. rewrite H. apply le_n.
+ Qed.
+
+ Lemma MapCard_Remove_1 :
+ forall (m:Map A) (a:ad),
+ MapCard A (MapRemove A m a) = MapCard A m -> MapGet A m a = NONE A.
+ Proof.
+ simple induction m. trivial.
+ simpl in |- *. intros a y a0 H. elim (sumbool_of_bool (ad_eq a a0)). intro H0.
+ rewrite H0 in H. discriminate H.
+ intro H0. rewrite H0. reflexivity.
+ intros. simpl in H1. elim (sumbool_of_bool (ad_bit_0 a)). intro H2. rewrite H2 in H1.
+ rewrite (MapCard_makeM2 m0 (MapRemove A m1 (ad_div_2 a))) in H1.
+ rewrite (MapGet_M2_bit_0_1 A a H2 m0 m1). apply H0. exact ((fun n m p:nat => plus_reg_l m p n) _ _ _ H1).
+ intro H2. rewrite H2 in H1.
+ rewrite (MapCard_makeM2 (MapRemove A m0 (ad_div_2 a)) m1) in H1.
+ rewrite (MapGet_M2_bit_0_0 A a H2 m0 m1). apply H.
+ rewrite
+ (plus_comm (MapCard A (MapRemove A m0 (ad_div_2 a))) (MapCard A m1))
+ in H1.
+ rewrite (plus_comm (MapCard A m0) (MapCard A m1)) in H1. exact ((fun n m p:nat => plus_reg_l m p n) _ _ _ H1).
+ Qed.
+
+ Lemma MapCard_Remove_2 :
+ forall (m:Map A) (a:ad),
+ S (MapCard A (MapRemove A m a)) = MapCard A m ->
+ {y : A | MapGet A m a = SOME A y}.
+ Proof.
+ simple induction m. intros. discriminate H.
+ intros a y a0 H. simpl in H. elim (sumbool_of_bool (ad_eq a a0)). intro H0.
+ rewrite (ad_eq_complete _ _ H0). split with y. exact (M1_semantics_1 A a0 y).
+ intro H0. rewrite H0 in H. discriminate H.
+ intros. simpl in H1. elim (sumbool_of_bool (ad_bit_0 a)). intro H2. rewrite H2 in H1.
+ rewrite (MapCard_makeM2 m0 (MapRemove A m1 (ad_div_2 a))) in H1.
+ rewrite (MapGet_M2_bit_0_1 A a H2 m0 m1). apply H0.
+ change
+ (S (MapCard A m0) + MapCard A (MapRemove A m1 (ad_div_2 a)) =
+ MapCard A m0 + MapCard A m1) in H1.
+ rewrite
+ (plus_Snm_nSm (MapCard A m0) (MapCard A (MapRemove A m1 (ad_div_2 a))))
+ in H1.
+ exact ((fun n m p:nat => plus_reg_l m p n) _ _ _ H1).
+ intro H2. rewrite H2 in H1. rewrite (MapGet_M2_bit_0_0 A a H2 m0 m1). apply H.
+ rewrite (MapCard_makeM2 (MapRemove A m0 (ad_div_2 a)) m1) in H1.
+ change
+ (S (MapCard A (MapRemove A m0 (ad_div_2 a))) + MapCard A m1 =
+ MapCard A m0 + MapCard A m1) in H1.
+ rewrite
+ (plus_comm (S (MapCard A (MapRemove A m0 (ad_div_2 a)))) (MapCard A m1))
+ in H1.
+ rewrite (plus_comm (MapCard A m0) (MapCard A m1)) in H1. exact ((fun n m p:nat => plus_reg_l m p n) _ _ _ H1).
+ Qed.
+
+ Lemma MapCard_Remove_1_conv :
+ forall (m:Map A) (a:ad),
+ MapGet A m a = NONE A -> MapCard A (MapRemove A m a) = MapCard A m.
+ Proof.
+ intros.
+ elim
+ (MapCard_Remove_sum m (MapRemove A m a) a (MapCard A m)
+ (MapCard A (MapRemove A m a)) (refl_equal _) (
+ refl_equal _) (refl_equal _)).
+ intro H0. rewrite H0. reflexivity.
+ intro H0. elim (MapCard_Remove_2 m a (sym_eq H0)). intros y H1. rewrite H1 in H.
+ discriminate H.
+ Qed.
+
+ Lemma MapCard_Remove_2_conv :
+ forall (m:Map A) (a:ad) (y:A),
+ MapGet A m a = SOME A y -> S (MapCard A (MapRemove A m a)) = MapCard A m.
+ Proof.
+ intros.
+ elim
+ (MapCard_Remove_sum m (MapRemove A m a) a (MapCard A m)
+ (MapCard A (MapRemove A m a)) (refl_equal _) (
+ refl_equal _) (refl_equal _)).
+ intro H0. rewrite (MapCard_Remove_1 m a (sym_eq H0)) in H. discriminate H.
+ intro H0. rewrite H0. reflexivity.
+ Qed.
+
+ Lemma MapMerge_Restr_Card :
+ forall m m':Map A,
+ MapCard A m + MapCard A m' =
+ MapCard A (MapMerge A m m') + MapCard A (MapDomRestrTo A A m m').
+ Proof.
+ simple induction m. simpl in |- *. intro. apply plus_n_O.
+ simpl in |- *. intros a y m'. elim (option_sum A (MapGet A m' a)). intro H. elim H. intros y0 H0.
+ rewrite H0. rewrite MapCard_Put_behind_Put. rewrite (MapCard_Put_1_conv m' a y0 y H0).
+ simpl in |- *. rewrite <- plus_Snm_nSm. apply plus_n_O.
+ intro H. rewrite H. rewrite MapCard_Put_behind_Put. rewrite (MapCard_Put_2_conv m' a y H).
+ apply plus_n_O.
+ intros.
+ change
+ (MapCard A m0 + MapCard A m1 + MapCard A m' =
+ MapCard A (MapMerge A (M2 A m0 m1) m') +
+ MapCard A (MapDomRestrTo A A (M2 A m0 m1) m'))
+ in |- *.
+ elim m'. reflexivity.
+ intros a y. unfold MapMerge in |- *. unfold MapDomRestrTo in |- *.
+ elim (option_sum A (MapGet A (M2 A m0 m1) a)). intro H1. elim H1. intros y0 H2. rewrite H2.
+ rewrite (MapCard_Put_1_conv (M2 A m0 m1) a y0 y H2). reflexivity.
+ intro H1. rewrite H1. rewrite (MapCard_Put_2_conv (M2 A m0 m1) a y H1). simpl in |- *.
+ rewrite <- (plus_Snm_nSm (MapCard A m0 + MapCard A m1) 0). reflexivity.
+ intros. simpl in |- *.
+ rewrite
+ (plus_permute_2_in_4 (MapCard A m0) (MapCard A m1) (
+ MapCard A m2) (MapCard A m3)).
+ rewrite (H m2). rewrite (H0 m3).
+ rewrite
+ (MapCard_makeM2 (MapDomRestrTo A A m0 m2) (MapDomRestrTo A A m1 m3))
+ .
+ apply plus_permute_2_in_4.
+ Qed.
+
+ Lemma MapMerge_disjoint_Card :
+ forall m m':Map A,
+ MapDisjoint A A m m' ->
+ MapCard A (MapMerge A m m') = MapCard A m + MapCard A m'.
+ Proof.
+ intros. rewrite (MapMerge_Restr_Card m m').
+ rewrite (MapCard_ext _ _ (MapDisjoint_imp_2 _ _ _ _ H)). apply plus_n_O.
+ Qed.
+
+ Lemma MapSplit_Card :
+ forall (m:Map A) (m':Map B),
+ MapCard A m =
+ MapCard A (MapDomRestrTo A B m m') + MapCard A (MapDomRestrBy A B m m').
+ Proof.
+ intros. rewrite (MapCard_ext _ _ (MapDom_Split_1 A B m m')). apply MapMerge_disjoint_Card.
+ apply MapDisjoint_2_imp. unfold MapDisjoint_2 in |- *. apply MapDom_Split_3.
+ Qed.
+
+ Lemma MapMerge_Card_ub :
+ forall m m':Map A,
+ MapCard A (MapMerge A m m') <= MapCard A m + MapCard A m'.
+ Proof.
+ intros. rewrite MapMerge_Restr_Card. apply le_plus_l.
+ Qed.
+
+ Lemma MapDomRestrTo_Card_ub_l :
+ forall (m:Map A) (m':Map B),
+ MapCard A (MapDomRestrTo A B m m') <= MapCard A m.
+ Proof.
+ intros. rewrite (MapSplit_Card m m'). apply le_plus_l.
+ Qed.
+
+ Lemma MapDomRestrBy_Card_ub_l :
+ forall (m:Map A) (m':Map B),
+ MapCard A (MapDomRestrBy A B m m') <= MapCard A m.
+ Proof.
+ intros. rewrite (MapSplit_Card m m'). apply le_plus_r.
+ Qed.
+
+ Lemma MapMerge_Card_disjoint :
+ forall m m':Map A,
+ MapCard A (MapMerge A m m') = MapCard A m + MapCard A m' ->
+ MapDisjoint A A m m'.
+ Proof.
+ simple induction m. intros. apply Map_M0_disjoint.
+ simpl in |- *. intros. rewrite (MapCard_Put_behind_Put m' a a0) in H. unfold MapDisjoint, in_dom in |- *.
+ simpl in |- *. intros. elim (sumbool_of_bool (ad_eq a a1)). intro H2.
+ rewrite (ad_eq_complete _ _ H2) in H. rewrite (MapCard_Put_2 m' a1 a0 H) in H1.
+ discriminate H1.
+ intro H2. rewrite H2 in H0. discriminate H0.
+ simple induction m'. intros. apply Map_disjoint_M0.
+ intros a y H1. rewrite <- (MapCard_ext _ _ (MapPut_as_Merge A (M2 A m0 m1) a y)) in H1.
+ unfold MapCard at 3 in H1. rewrite <- (plus_Snm_nSm (MapCard A (M2 A m0 m1)) 0) in H1.
+ rewrite <- (plus_n_O (S (MapCard A (M2 A m0 m1)))) in H1. unfold MapDisjoint, in_dom in |- *.
+ unfold MapGet at 2 in |- *. intros. elim (sumbool_of_bool (ad_eq a a0)). intro H4.
+ rewrite <- (ad_eq_complete _ _ H4) in H2. rewrite (MapCard_Put_2 _ _ _ H1) in H2.
+ discriminate H2.
+ intro H4. rewrite H4 in H3. discriminate H3.
+ intros. unfold MapDisjoint in |- *. intros. elim (sumbool_of_bool (ad_bit_0 a)). intro H6.
+ unfold MapDisjoint in H0. apply H0 with (m' := m3) (a := ad_div_2 a). apply le_antisym.
+ apply MapMerge_Card_ub.
+ apply (fun p n m:nat => plus_le_reg_l n m p) with
+ (p := MapCard A m0 + MapCard A m2).
+ rewrite
+ (plus_permute_2_in_4 (MapCard A m0) (MapCard A m2) (
+ MapCard A m1) (MapCard A m3)).
+ change
+ (MapCard A (M2 A (MapMerge A m0 m2) (MapMerge A m1 m3)) =
+ MapCard A m0 + MapCard A m1 + (MapCard A m2 + MapCard A m3))
+ in H3.
+ rewrite <- H3. simpl in |- *. apply plus_le_compat_r. apply MapMerge_Card_ub.
+ elim (in_dom_some _ _ _ H4). intros y H7. rewrite (MapGet_M2_bit_0_1 _ a H6 m0 m1) in H7.
+ unfold in_dom in |- *. rewrite H7. reflexivity.
+ elim (in_dom_some _ _ _ H5). intros y H7. rewrite (MapGet_M2_bit_0_1 _ a H6 m2 m3) in H7.
+ unfold in_dom in |- *. rewrite H7. reflexivity.
+ intro H6. unfold MapDisjoint in H. apply H with (m' := m2) (a := ad_div_2 a). apply le_antisym.
+ apply MapMerge_Card_ub.
+ apply (fun p n m:nat => plus_le_reg_l n m p) with
+ (p := MapCard A m1 + MapCard A m3).
+ rewrite
+ (plus_comm (MapCard A m1 + MapCard A m3) (MapCard A m0 + MapCard A m2))
+ .
+ rewrite
+ (plus_permute_2_in_4 (MapCard A m0) (MapCard A m2) (
+ MapCard A m1) (MapCard A m3)).
+ rewrite
+ (plus_comm (MapCard A m1 + MapCard A m3) (MapCard A (MapMerge A m0 m2)))
+ .
+ change
+ (MapCard A (MapMerge A m0 m2) + MapCard A (MapMerge A m1 m3) =
+ MapCard A m0 + MapCard A m1 + (MapCard A m2 + MapCard A m3))
+ in H3.
+ rewrite <- H3. apply plus_le_compat_l. apply MapMerge_Card_ub.
+ elim (in_dom_some _ _ _ H4). intros y H7. rewrite (MapGet_M2_bit_0_0 _ a H6 m0 m1) in H7.
+ unfold in_dom in |- *. rewrite H7. reflexivity.
+ elim (in_dom_some _ _ _ H5). intros y H7. rewrite (MapGet_M2_bit_0_0 _ a H6 m2 m3) in H7.
+ unfold in_dom in |- *. rewrite H7. reflexivity.
+ Qed.
+
+ Lemma MapCard_is_Sn :
+ forall (m:Map A) (n:nat),
+ MapCard _ m = S n -> {a : ad | in_dom _ a m = true}.
+ Proof.
+ simple induction m. intros. discriminate H.
+ intros a y n H. split with a. unfold in_dom in |- *. rewrite (M1_semantics_1 _ a y). reflexivity.
+ intros. simpl in H1. elim (O_or_S (MapCard _ m0)). intro H2. elim H2. intros m2 H3.
+ elim (H _ (sym_eq H3)). intros a H4. split with (ad_double a). unfold in_dom in |- *.
+ rewrite (MapGet_M2_bit_0_0 A (ad_double a) (ad_double_bit_0 a) m0 m1).
+ rewrite (ad_double_div_2 a). elim (in_dom_some _ _ _ H4). intros y H5. rewrite H5. reflexivity.
+ intro H2. rewrite <- H2 in H1. simpl in H1. elim (H0 _ H1). intros a H3.
+ split with (ad_double_plus_un a). unfold in_dom in |- *.
+ rewrite
+ (MapGet_M2_bit_0_1 A (ad_double_plus_un a) (ad_double_plus_un_bit_0 a)
+ m0 m1).
+ rewrite (ad_double_plus_un_div_2 a). elim (in_dom_some _ _ _ H3). intros y H4. rewrite H4.
+ reflexivity.
+ Qed.
+
+End MapCard.
+
+Section MapCard2.
+
+ Variables A B : Set.
+
+ Lemma MapSubset_card_eq_1 :
+ forall (n:nat) (m:Map A) (m':Map B),
+ MapSubset _ _ m m' ->
+ MapCard _ m = n -> MapCard _ m' = n -> MapSubset _ _ m' m.
+ Proof.
+ simple induction n. intros. unfold MapSubset, in_dom in |- *. intro. rewrite (MapCard_is_O _ m H0 a).
+ rewrite (MapCard_is_O _ m' H1 a). intro H2. discriminate H2.
+ intros. elim (MapCard_is_Sn A m n0 H1). intros a H3. elim (in_dom_some _ _ _ H3).
+ intros y H4. elim (in_dom_some _ _ _ (H0 _ H3)). intros y' H6.
+ cut (eqmap _ (MapPut _ (MapRemove _ m a) a y) m). intro.
+ cut (eqmap _ (MapPut _ (MapRemove _ m' a) a y') m'). intro.
+ apply MapSubset_ext with
+ (m0 := MapPut _ (MapRemove _ m' a) a y')
+ (m2 := MapPut _ (MapRemove _ m a) a y).
+ assumption.
+ assumption.
+ apply MapSubset_Put_mono. apply H. apply MapSubset_Remove_mono. assumption.
+ rewrite <- (MapCard_Remove_2_conv _ m a y H4) in H1. inversion_clear H1. reflexivity.
+ rewrite <- (MapCard_Remove_2_conv _ m' a y' H6) in H2. inversion_clear H2. reflexivity.
+ unfold eqmap, eqm in |- *. intro. rewrite (MapPut_semantics _ (MapRemove B m' a) a y' a0).
+ elim (sumbool_of_bool (ad_eq a a0)). intro H7. rewrite H7. rewrite <- (ad_eq_complete _ _ H7).
+ apply sym_eq. assumption.
+ intro H7. rewrite H7. rewrite (MapRemove_semantics _ m' a a0). rewrite H7. reflexivity.
+ unfold eqmap, eqm in |- *. intro. rewrite (MapPut_semantics _ (MapRemove A m a) a y a0).
+ elim (sumbool_of_bool (ad_eq a a0)). intro H7. rewrite H7. rewrite <- (ad_eq_complete _ _ H7).
+ apply sym_eq. assumption.
+ intro H7. rewrite H7. rewrite (MapRemove_semantics A m a a0). rewrite H7. reflexivity.
+ Qed.
+
+ Lemma MapDomRestrTo_Card_ub_r :
+ forall (m:Map A) (m':Map B),
+ MapCard A (MapDomRestrTo A B m m') <= MapCard B m'.
+ Proof.
+ simple induction m. intro. simpl in |- *. apply le_O_n.
+ intros a y m'. simpl in |- *. elim (option_sum B (MapGet B m' a)). intro H. elim H. intros y0 H0.
+ rewrite H0. elim (MapCard_is_not_O B m' a y0 H0). intros n H1. rewrite H1. simpl in |- *.
+ apply le_n_S. apply le_O_n.
+ intro H. rewrite H. simpl in |- *. apply le_O_n.
+ simple induction m'. simpl in |- *. apply le_O_n.
+
+ intros a y. unfold MapDomRestrTo in |- *. case (MapGet A (M2 A m0 m1) a). simpl in |- *. apply le_O_n.
+ intro. simpl in |- *. apply le_n.
+ intros. simpl in |- *. rewrite
+ (MapCard_makeM2 A (MapDomRestrTo A B m0 m2) (MapDomRestrTo A B m1 m3))
+ .
+ apply plus_le_compat. apply H.
+ apply H0.
+ Qed.
+
+End MapCard2.
+
+Section MapCard3.
+
+ Variables A B : Set.
+
+ Lemma MapMerge_Card_lb_l :
+ forall m m':Map A, MapCard A (MapMerge A m m') >= MapCard A m.
+ Proof.
+ unfold ge in |- *. intros. apply ((fun p n m:nat => plus_le_reg_l n m p) (MapCard A m')).
+ rewrite (plus_comm (MapCard A m') (MapCard A m)).
+ rewrite (plus_comm (MapCard A m') (MapCard A (MapMerge A m m'))).
+ rewrite (MapMerge_Restr_Card A m m'). apply plus_le_compat_l. apply MapDomRestrTo_Card_ub_r.
+ Qed.
+
+ Lemma MapMerge_Card_lb_r :
+ forall m m':Map A, MapCard A (MapMerge A m m') >= MapCard A m'.
+ Proof.
+ unfold ge in |- *. intros. apply ((fun p n m:nat => plus_le_reg_l n m p) (MapCard A m)). rewrite (MapMerge_Restr_Card A m m').
+ rewrite
+ (plus_comm (MapCard A (MapMerge A m m'))
+ (MapCard A (MapDomRestrTo A A m m'))).
+ apply plus_le_compat_r. apply MapDomRestrTo_Card_ub_l.
+ Qed.
+
+ Lemma MapDomRestrBy_Card_lb :
+ forall (m:Map A) (m':Map B),
+ MapCard B m' + MapCard A (MapDomRestrBy A B m m') >= MapCard A m.
+ Proof.
+ unfold ge in |- *. intros. rewrite (MapSplit_Card A B m m'). apply plus_le_compat_r.
+ apply MapDomRestrTo_Card_ub_r.
+ Qed.
+
+ Lemma MapSubset_Card_le :
+ forall (m:Map A) (m':Map B),
+ MapSubset A B m m' -> MapCard A m <= MapCard B m'.
+ Proof.
+ intros. apply le_trans with (m := MapCard B m' + MapCard A (MapDomRestrBy A B m m')).
+ exact (MapDomRestrBy_Card_lb m m').
+ rewrite (MapCard_ext _ _ _ (MapSubset_imp_2 _ _ _ _ H)). simpl in |- *. rewrite <- plus_n_O.
+ apply le_n.
+ Qed.
+
+ Lemma MapSubset_card_eq :
+ forall (m:Map A) (m':Map B),
+ MapSubset _ _ m m' ->
+ MapCard _ m' <= MapCard _ m -> eqmap _ (MapDom _ m) (MapDom _ m').
+ Proof.
+ intros. apply MapSubset_antisym. assumption.
+ cut (MapCard B m' = MapCard A m). intro. apply (MapSubset_card_eq_1 A B (MapCard A m)).
+ assumption.
+ reflexivity.
+ assumption.
+ apply le_antisym. assumption.
+ apply MapSubset_Card_le. assumption.
+ Qed.
+
+End MapCard3. \ No newline at end of file
diff --git a/theories/IntMap/Mapfold.v b/theories/IntMap/Mapfold.v
new file mode 100644
index 00000000..641529ee
--- /dev/null
+++ b/theories/IntMap/Mapfold.v
@@ -0,0 +1,424 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(*i $Id: Mapfold.v,v 1.4.2.1 2004/07/16 19:31:04 herbelin Exp $ i*)
+
+Require Import Bool.
+Require Import Sumbool.
+Require Import ZArith.
+Require Import Addr.
+Require Import Adist.
+Require Import Addec.
+Require Import Map.
+Require Import Fset.
+Require Import Mapaxioms.
+Require Import Mapiter.
+Require Import Lsort.
+Require Import Mapsubset.
+Require Import List.
+
+Section MapFoldResults.
+
+ Variable A : Set.
+
+ Variable M : Set.
+ Variable neutral : M.
+ Variable op : M -> M -> M.
+
+ Variable nleft : forall a:M, op neutral a = a.
+ Variable nright : forall a:M, op a neutral = a.
+ Variable assoc : forall a b c:M, op (op a b) c = op a (op b c).
+
+ Lemma MapFold_ext :
+ forall (f:ad -> A -> M) (m m':Map A),
+ eqmap A m m' -> MapFold _ _ neutral op f m = MapFold _ _ neutral op f m'.
+ Proof.
+ intros. rewrite (MapFold_as_fold A M neutral op assoc nleft nright f m).
+ rewrite (MapFold_as_fold A M neutral op assoc nleft nright f m').
+ cut (alist_of_Map A m = alist_of_Map A m'). intro. rewrite H0. reflexivity.
+ apply alist_canonical. unfold eqmap in H. apply eqm_trans with (f' := MapGet A m).
+ apply eqm_sym. apply alist_of_Map_semantics.
+ apply eqm_trans with (f' := MapGet A m'). assumption.
+ apply alist_of_Map_semantics.
+ apply alist_of_Map_sorts2.
+ apply alist_of_Map_sorts2.
+ Qed.
+
+ Lemma MapFold_ext_f_1 :
+ forall (m:Map A) (f g:ad -> A -> M) (pf:ad -> ad),
+ (forall (a:ad) (y:A), MapGet _ m a = SOME _ y -> f (pf a) y = g (pf a) y) ->
+ MapFold1 _ _ neutral op f pf m = MapFold1 _ _ neutral op g pf m.
+ Proof.
+ simple induction m. trivial.
+ simpl in |- *. intros. apply H. rewrite (ad_eq_correct a). reflexivity.
+ intros. simpl in |- *. rewrite (H f g (fun a0:ad => pf (ad_double a0))).
+ rewrite (H0 f g (fun a0:ad => pf (ad_double_plus_un a0))). reflexivity.
+ intros. apply H1. rewrite MapGet_M2_bit_0_1. rewrite ad_double_plus_un_div_2. assumption.
+ apply ad_double_plus_un_bit_0.
+ intros. apply H1. rewrite MapGet_M2_bit_0_0. rewrite ad_double_div_2. assumption.
+ apply ad_double_bit_0.
+ Qed.
+
+ Lemma MapFold_ext_f :
+ forall (f g:ad -> A -> M) (m:Map A),
+ (forall (a:ad) (y:A), MapGet _ m a = SOME _ y -> f a y = g a y) ->
+ MapFold _ _ neutral op f m = MapFold _ _ neutral op g m.
+ Proof.
+ intros. exact (MapFold_ext_f_1 m f g (fun a0:ad => a0) H).
+ Qed.
+
+ Lemma MapFold1_as_Fold_1 :
+ forall (m:Map A) (f f':ad -> A -> M) (pf pf':ad -> ad),
+ (forall (a:ad) (y:A), f (pf a) y = f' (pf' a) y) ->
+ MapFold1 _ _ neutral op f pf m = MapFold1 _ _ neutral op f' pf' m.
+ Proof.
+ simple induction m. trivial.
+ intros. simpl in |- *. apply H.
+ intros. simpl in |- *.
+ rewrite
+ (H f f' (fun a0:ad => pf (ad_double a0))
+ (fun a0:ad => pf' (ad_double a0))).
+ rewrite
+ (H0 f f' (fun a0:ad => pf (ad_double_plus_un a0))
+ (fun a0:ad => pf' (ad_double_plus_un a0))).
+ reflexivity.
+ intros. apply H1.
+ intros. apply H1.
+ Qed.
+
+ Lemma MapFold1_as_Fold :
+ forall (f:ad -> A -> M) (pf:ad -> ad) (m:Map A),
+ MapFold1 _ _ neutral op f pf m =
+ MapFold _ _ neutral op (fun (a:ad) (y:A) => f (pf a) y) m.
+ Proof.
+ intros. unfold MapFold in |- *. apply MapFold1_as_Fold_1. trivial.
+ Qed.
+
+ Lemma MapFold1_ext :
+ forall (f:ad -> A -> M) (m m':Map A),
+ eqmap A m m' ->
+ forall pf:ad -> ad,
+ MapFold1 _ _ neutral op f pf m = MapFold1 _ _ neutral op f pf m'.
+ Proof.
+ intros. rewrite MapFold1_as_Fold. rewrite MapFold1_as_Fold. apply MapFold_ext. assumption.
+ Qed.
+
+ Variable comm : forall a b:M, op a b = op b a.
+
+ Lemma MapFold_Put_disjoint_1 :
+ forall (p:positive) (f:ad -> A -> M) (pf:ad -> ad)
+ (a1 a2:ad) (y1 y2:A),
+ ad_xor a1 a2 = ad_x p ->
+ MapFold1 A M neutral op f pf (MapPut1 A a1 y1 a2 y2 p) =
+ op (f (pf a1) y1) (f (pf a2) y2).
+ Proof.
+ simple induction p. intros. simpl in |- *. elim (sumbool_of_bool (ad_bit_0 a1)). intro H1. rewrite H1.
+ simpl in |- *. rewrite ad_div_2_double_plus_un. rewrite ad_div_2_double. apply comm.
+ change (ad_bit_0 a2 = negb true) in |- *. rewrite <- H1. rewrite (ad_neg_bit_0_2 _ _ _ H0).
+ rewrite negb_elim. reflexivity.
+ assumption.
+ intro H1. rewrite H1. simpl in |- *. rewrite ad_div_2_double. rewrite ad_div_2_double_plus_un.
+ reflexivity.
+ change (ad_bit_0 a2 = negb false) in |- *. rewrite <- H1. rewrite (ad_neg_bit_0_2 _ _ _ H0).
+ rewrite negb_elim. reflexivity.
+ assumption.
+ simpl in |- *. intros. elim (sumbool_of_bool (ad_bit_0 a1)). intro H1. rewrite H1. simpl in |- *.
+ rewrite nleft.
+ rewrite
+ (H f (fun a0:ad => pf (ad_double_plus_un a0)) (
+ ad_div_2 a1) (ad_div_2 a2) y1 y2).
+ rewrite ad_div_2_double_plus_un. rewrite ad_div_2_double_plus_un. reflexivity.
+ rewrite <- (ad_same_bit_0 _ _ _ H0). assumption.
+ assumption.
+ rewrite <- ad_xor_div_2. rewrite H0. reflexivity.
+ intro H1. rewrite H1. simpl in |- *. rewrite nright.
+ rewrite
+ (H f (fun a0:ad => pf (ad_double a0)) (ad_div_2 a1) (ad_div_2 a2) y1 y2)
+ .
+ rewrite ad_div_2_double. rewrite ad_div_2_double. reflexivity.
+ rewrite <- (ad_same_bit_0 _ _ _ H0). assumption.
+ assumption.
+ rewrite <- ad_xor_div_2. rewrite H0. reflexivity.
+ intros. simpl in |- *. elim (sumbool_of_bool (ad_bit_0 a1)). intro H0. rewrite H0. simpl in |- *.
+ rewrite ad_div_2_double. rewrite ad_div_2_double_plus_un. apply comm.
+ assumption.
+ change (ad_bit_0 a2 = negb true) in |- *. rewrite <- H0. rewrite (ad_neg_bit_0_1 _ _ H).
+ rewrite negb_elim. reflexivity.
+ intro H0. rewrite H0. simpl in |- *. rewrite ad_div_2_double. rewrite ad_div_2_double_plus_un.
+ reflexivity.
+ change (ad_bit_0 a2 = negb false) in |- *. rewrite <- H0. rewrite (ad_neg_bit_0_1 _ _ H).
+ rewrite negb_elim. reflexivity.
+ assumption.
+ Qed.
+
+ Lemma MapFold_Put_disjoint_2 :
+ forall (f:ad -> A -> M) (m:Map A) (a:ad) (y:A) (pf:ad -> ad),
+ MapGet A m a = NONE A ->
+ MapFold1 A M neutral op f pf (MapPut A m a y) =
+ op (f (pf a) y) (MapFold1 A M neutral op f pf m).
+ Proof.
+ simple induction m. intros. simpl in |- *. rewrite (nright (f (pf a) y)). reflexivity.
+ intros a1 y1 a2 y2 pf H. simpl in |- *. elim (ad_sum (ad_xor a1 a2)). intro H0. elim H0.
+ intros p H1. rewrite H1. rewrite comm. exact (MapFold_Put_disjoint_1 p f pf a1 a2 y1 y2 H1).
+ intro H0. rewrite (ad_eq_complete _ _ (ad_xor_eq_true _ _ H0)) in H.
+ rewrite (M1_semantics_1 A a2 y1) in H. discriminate H.
+ intros. elim (sumbool_of_bool (ad_bit_0 a)). intro H2.
+ cut (MapPut A (M2 A m0 m1) a y = M2 A m0 (MapPut A m1 (ad_div_2 a) y)). intro.
+ rewrite H3. simpl in |- *. rewrite (H0 (ad_div_2 a) y (fun a0:ad => pf (ad_double_plus_un a0))).
+ rewrite ad_div_2_double_plus_un. rewrite <- assoc.
+ rewrite
+ (comm (MapFold1 A M neutral op f (fun a0:ad => pf (ad_double a0)) m0)
+ (f (pf a) y)).
+ rewrite assoc. reflexivity.
+ assumption.
+ rewrite (MapGet_M2_bit_0_1 A a H2 m0 m1) in H1. assumption.
+ simpl in |- *. elim (ad_sum a). intro H3. elim H3. intro p. elim p. intros p0 H4 H5. rewrite H5.
+ reflexivity.
+ intros p0 H4 H5. rewrite H5 in H2. discriminate H2.
+ intro H4. rewrite H4. reflexivity.
+ intro H3. rewrite H3 in H2. discriminate H2.
+ intro H2. cut (MapPut A (M2 A m0 m1) a y = M2 A (MapPut A m0 (ad_div_2 a) y) m1).
+ intro. rewrite H3. simpl in |- *. rewrite (H (ad_div_2 a) y (fun a0:ad => pf (ad_double a0))).
+ rewrite ad_div_2_double. rewrite <- assoc. reflexivity.
+ assumption.
+ rewrite (MapGet_M2_bit_0_0 A a H2 m0 m1) in H1. assumption.
+ simpl in |- *. elim (ad_sum a). intro H3. elim H3. intro p. elim p. intros p0 H4 H5. rewrite H5 in H2.
+ discriminate H2.
+ intros p0 H4 H5. rewrite H5. reflexivity.
+ intro H4. rewrite H4 in H2. discriminate H2.
+ intro H3. rewrite H3. reflexivity.
+ Qed.
+
+ Lemma MapFold_Put_disjoint :
+ forall (f:ad -> A -> M) (m:Map A) (a:ad) (y:A),
+ MapGet A m a = NONE A ->
+ MapFold A M neutral op f (MapPut A m a y) =
+ op (f a y) (MapFold A M neutral op f m).
+ Proof.
+ intros. exact (MapFold_Put_disjoint_2 f m a y (fun a0:ad => a0) H).
+ Qed.
+
+ Lemma MapFold_Put_behind_disjoint_2 :
+ forall (f:ad -> A -> M) (m:Map A) (a:ad) (y:A) (pf:ad -> ad),
+ MapGet A m a = NONE A ->
+ MapFold1 A M neutral op f pf (MapPut_behind A m a y) =
+ op (f (pf a) y) (MapFold1 A M neutral op f pf m).
+ Proof.
+ intros. cut (eqmap A (MapPut_behind A m a y) (MapPut A m a y)). intro.
+ rewrite (MapFold1_ext f _ _ H0 pf). apply MapFold_Put_disjoint_2. assumption.
+ apply eqmap_trans with (m' := MapMerge A (M1 A a y) m). apply MapPut_behind_as_Merge.
+ apply eqmap_trans with (m' := MapMerge A m (M1 A a y)).
+ apply eqmap_trans with (m' := MapDelta A (M1 A a y) m). apply eqmap_sym. apply MapDelta_disjoint.
+ unfold MapDisjoint in |- *. unfold in_dom in |- *. simpl in |- *. intros. elim (sumbool_of_bool (ad_eq a a0)).
+ intro H2. rewrite (ad_eq_complete _ _ H2) in H. rewrite H in H1. discriminate H1.
+ intro H2. rewrite H2 in H0. discriminate H0.
+ apply eqmap_trans with (m' := MapDelta A m (M1 A a y)). apply MapDelta_sym.
+ apply MapDelta_disjoint. unfold MapDisjoint in |- *. unfold in_dom in |- *. simpl in |- *. intros.
+ elim (sumbool_of_bool (ad_eq a a0)). intro H2. rewrite (ad_eq_complete _ _ H2) in H.
+ rewrite H in H0. discriminate H0.
+ intro H2. rewrite H2 in H1. discriminate H1.
+ apply eqmap_sym. apply MapPut_as_Merge.
+ Qed.
+
+ Lemma MapFold_Put_behind_disjoint :
+ forall (f:ad -> A -> M) (m:Map A) (a:ad) (y:A),
+ MapGet A m a = NONE A ->
+ MapFold A M neutral op f (MapPut_behind A m a y) =
+ op (f a y) (MapFold A M neutral op f m).
+ Proof.
+ intros. exact (MapFold_Put_behind_disjoint_2 f m a y (fun a0:ad => a0) H).
+ Qed.
+
+ Lemma MapFold_Merge_disjoint_1 :
+ forall (f:ad -> A -> M) (m1 m2:Map A) (pf:ad -> ad),
+ MapDisjoint A A m1 m2 ->
+ MapFold1 A M neutral op f pf (MapMerge A m1 m2) =
+ op (MapFold1 A M neutral op f pf m1) (MapFold1 A M neutral op f pf m2).
+ Proof.
+ simple induction m1. simpl in |- *. intros. rewrite nleft. reflexivity.
+ intros. unfold MapMerge in |- *. apply (MapFold_Put_behind_disjoint_2 f m2 a a0 pf).
+ apply in_dom_none. exact (MapDisjoint_M1_l _ _ m2 a a0 H).
+ simple induction m2. intros. simpl in |- *. rewrite nright. reflexivity.
+ intros. unfold MapMerge in |- *. rewrite (MapFold_Put_disjoint_2 f (M2 A m m0) a a0 pf). apply comm.
+ apply in_dom_none. exact (MapDisjoint_M1_r _ _ (M2 A m m0) a a0 H1).
+ intros. simpl in |- *. rewrite (H m3 (fun a0:ad => pf (ad_double a0))).
+ rewrite (H0 m4 (fun a0:ad => pf (ad_double_plus_un a0))).
+ cut (forall a b c d:M, op (op a b) (op c d) = op (op a c) (op b d)). intro. apply H4.
+ intros. rewrite assoc. rewrite <- (assoc b c d). rewrite (comm b c). rewrite (assoc c b d).
+ rewrite assoc. reflexivity.
+ exact (MapDisjoint_M2_r _ _ _ _ _ _ H3).
+ exact (MapDisjoint_M2_l _ _ _ _ _ _ H3).
+ Qed.
+
+ Lemma MapFold_Merge_disjoint :
+ forall (f:ad -> A -> M) (m1 m2:Map A),
+ MapDisjoint A A m1 m2 ->
+ MapFold A M neutral op f (MapMerge A m1 m2) =
+ op (MapFold A M neutral op f m1) (MapFold A M neutral op f m2).
+ Proof.
+ intros. exact (MapFold_Merge_disjoint_1 f m1 m2 (fun a0:ad => a0) H).
+ Qed.
+
+End MapFoldResults.
+
+Section MapFoldDistr.
+
+ Variable A : Set.
+
+ Variable M : Set.
+ Variable neutral : M.
+ Variable op : M -> M -> M.
+
+ Variable M' : Set.
+ Variable neutral' : M'.
+ Variable op' : M' -> M' -> M'.
+
+ Variable N : Set.
+
+ Variable times : M -> N -> M'.
+
+ Variable absorb : forall c:N, times neutral c = neutral'.
+ Variable
+ distr :
+ forall (a b:M) (c:N), times (op a b) c = op' (times a c) (times b c).
+
+ Lemma MapFold_distr_r_1 :
+ forall (f:ad -> A -> M) (m:Map A) (c:N) (pf:ad -> ad),
+ times (MapFold1 A M neutral op f pf m) c =
+ MapFold1 A M' neutral' op' (fun (a:ad) (y:A) => times (f a y) c) pf m.
+ Proof.
+ simple induction m. intros. exact (absorb c).
+ trivial.
+ intros. simpl in |- *. rewrite distr. rewrite H. rewrite H0. reflexivity.
+ Qed.
+
+ Lemma MapFold_distr_r :
+ forall (f:ad -> A -> M) (m:Map A) (c:N),
+ times (MapFold A M neutral op f m) c =
+ MapFold A M' neutral' op' (fun (a:ad) (y:A) => times (f a y) c) m.
+ Proof.
+ intros. exact (MapFold_distr_r_1 f m c (fun a:ad => a)).
+ Qed.
+
+End MapFoldDistr.
+
+Section MapFoldDistrL.
+
+ Variable A : Set.
+
+ Variable M : Set.
+ Variable neutral : M.
+ Variable op : M -> M -> M.
+
+ Variable M' : Set.
+ Variable neutral' : M'.
+ Variable op' : M' -> M' -> M'.
+
+ Variable N : Set.
+
+ Variable times : N -> M -> M'.
+
+ Variable absorb : forall c:N, times c neutral = neutral'.
+ Variable
+ distr :
+ forall (a b:M) (c:N), times c (op a b) = op' (times c a) (times c b).
+
+ Lemma MapFold_distr_l :
+ forall (f:ad -> A -> M) (m:Map A) (c:N),
+ times c (MapFold A M neutral op f m) =
+ MapFold A M' neutral' op' (fun (a:ad) (y:A) => times c (f a y)) m.
+ Proof.
+ intros. apply MapFold_distr_r with (times := fun (a:M) (b:N) => times b a);
+ assumption.
+ Qed.
+
+End MapFoldDistrL.
+
+Section MapFoldExists.
+
+ Variable A : Set.
+
+ Lemma MapFold_orb_1 :
+ forall (f:ad -> A -> bool) (m:Map A) (pf:ad -> ad),
+ MapFold1 A bool false orb f pf m =
+ match MapSweep1 A f pf m with
+ | SOME _ => true
+ | _ => false
+ end.
+ Proof.
+ simple induction m. trivial.
+ intros a y pf. simpl in |- *. unfold MapSweep2 in |- *. case (f (pf a) y); reflexivity.
+ intros. simpl in |- *. rewrite (H (fun a0:ad => pf (ad_double a0))).
+ rewrite (H0 (fun a0:ad => pf (ad_double_plus_un a0))).
+ case (MapSweep1 A f (fun a0:ad => pf (ad_double a0)) m0); reflexivity.
+ Qed.
+
+ Lemma MapFold_orb :
+ forall (f:ad -> A -> bool) (m:Map A),
+ MapFold A bool false orb f m =
+ match MapSweep A f m with
+ | SOME _ => true
+ | _ => false
+ end.
+ Proof.
+ intros. exact (MapFold_orb_1 f m (fun a:ad => a)).
+ Qed.
+
+End MapFoldExists.
+
+Section DMergeDef.
+
+ Variable A : Set.
+
+ Definition DMerge :=
+ MapFold (Map A) (Map A) (M0 A) (MapMerge A) (fun (_:ad) (m:Map A) => m).
+
+ Lemma in_dom_DMerge_1 :
+ forall (m:Map (Map A)) (a:ad),
+ in_dom A a (DMerge m) =
+ match MapSweep _ (fun (_:ad) (m0:Map A) => in_dom A a m0) m with
+ | SOME _ => true
+ | _ => false
+ end.
+ Proof.
+ unfold DMerge in |- *. intros.
+ rewrite
+ (MapFold_distr_l (Map A) (Map A) (M0 A) (MapMerge A) bool false orb ad
+ (in_dom A) (fun c:ad => refl_equal _) (in_dom_merge A))
+ .
+ apply MapFold_orb.
+ Qed.
+
+ Lemma in_dom_DMerge_2 :
+ forall (m:Map (Map A)) (a:ad),
+ in_dom A a (DMerge m) = true ->
+ {b : ad &
+ {m0 : Map A | MapGet _ m b = SOME _ m0 /\ in_dom A a m0 = true}}.
+ Proof.
+ intros m a. rewrite in_dom_DMerge_1.
+ elim
+ (option_sum _
+ (MapSweep (Map A) (fun (_:ad) (m0:Map A) => in_dom A a m0) m)).
+ intro H. elim H. intro r. elim r. intros b m0 H0. intro. split with b. split with m0.
+ split. exact (MapSweep_semantics_2 _ _ _ _ _ H0).
+ exact (MapSweep_semantics_1 _ _ _ _ _ H0).
+ intro H. rewrite H. intro. discriminate H0.
+ Qed.
+
+ Lemma in_dom_DMerge_3 :
+ forall (m:Map (Map A)) (a b:ad) (m0:Map A),
+ MapGet _ m a = SOME _ m0 ->
+ in_dom A b m0 = true -> in_dom A b (DMerge m) = true.
+ Proof.
+ intros m a b m0 H H0. rewrite in_dom_DMerge_1.
+ elim
+ (MapSweep_semantics_4 _ (fun (_:ad) (m'0:Map A) => in_dom A b m'0) _ _ _
+ H H0).
+ intros a' H1. elim H1. intros m'0 H2. rewrite H2. reflexivity.
+ Qed.
+
+End DMergeDef. \ No newline at end of file
diff --git a/theories/IntMap/Mapiter.v b/theories/IntMap/Mapiter.v
new file mode 100644
index 00000000..f5d443cc
--- /dev/null
+++ b/theories/IntMap/Mapiter.v
@@ -0,0 +1,620 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(*i $Id: Mapiter.v,v 1.4.2.1 2004/07/16 19:31:04 herbelin Exp $ i*)
+
+Require Import Bool.
+Require Import Sumbool.
+Require Import ZArith.
+Require Import Addr.
+Require Import Adist.
+Require Import Addec.
+Require Import Map.
+Require Import Mapaxioms.
+Require Import Fset.
+Require Import List.
+
+Section MapIter.
+
+ Variable A : Set.
+
+ Section MapSweepDef.
+
+ Variable f : ad -> A -> bool.
+
+ Definition MapSweep2 (a0:ad) (y:A) :=
+ if f a0 y then SOME _ (a0, y) else NONE _.
+
+ Fixpoint MapSweep1 (pf:ad -> ad) (m:Map A) {struct m} :
+ option (ad * A) :=
+ match m with
+ | M0 => NONE _
+ | M1 a y => MapSweep2 (pf a) y
+ | M2 m m' =>
+ match MapSweep1 (fun a:ad => pf (ad_double a)) m with
+ | SOME r => SOME _ r
+ | NONE => MapSweep1 (fun a:ad => pf (ad_double_plus_un a)) m'
+ end
+ end.
+
+ Definition MapSweep (m:Map A) := MapSweep1 (fun a:ad => a) m.
+
+ Lemma MapSweep_semantics_1_1 :
+ forall (m:Map A) (pf:ad -> ad) (a:ad) (y:A),
+ MapSweep1 pf m = SOME _ (a, y) -> f a y = true.
+ Proof.
+ simple induction m. intros. discriminate H.
+ simpl in |- *. intros a y pf a0 y0. elim (sumbool_of_bool (f (pf a) y)). intro H. unfold MapSweep2 in |- *.
+ rewrite H. intro H0. inversion H0. rewrite <- H3. assumption.
+ intro H. unfold MapSweep2 in |- *. rewrite H. intro H0. discriminate H0.
+ simpl in |- *. intros. elim (option_sum (ad * A) (MapSweep1 (fun a0:ad => pf (ad_double a0)) m0)).
+ intro H2. elim H2. intros r H3. rewrite H3 in H1. inversion H1. rewrite H5 in H3.
+ exact (H (fun a0:ad => pf (ad_double a0)) a y H3).
+ intro H2. rewrite H2 in H1. exact (H0 (fun a0:ad => pf (ad_double_plus_un a0)) a y H1).
+ Qed.
+
+ Lemma MapSweep_semantics_1 :
+ forall (m:Map A) (a:ad) (y:A), MapSweep m = SOME _ (a, y) -> f a y = true.
+ Proof.
+ intros. exact (MapSweep_semantics_1_1 m (fun a:ad => a) a y H).
+ Qed.
+
+ Lemma MapSweep_semantics_2_1 :
+ forall (m:Map A) (pf:ad -> ad) (a:ad) (y:A),
+ MapSweep1 pf m = SOME _ (a, y) -> {a' : ad | a = pf a'}.
+ Proof.
+ simple induction m. intros. discriminate H.
+ simpl in |- *. unfold MapSweep2 in |- *. intros a y pf a0 y0. case (f (pf a) y). intros. split with a.
+ inversion H. reflexivity.
+ intro. discriminate H.
+ intros m0 H m1 H0 pf a y. simpl in |- *.
+ elim
+ (option_sum (ad * A) (MapSweep1 (fun a0:ad => pf (ad_double a0)) m0)). intro H1. elim H1.
+ intros r H2. rewrite H2. intro H3. inversion H3. rewrite H5 in H2.
+ elim (H (fun a0:ad => pf (ad_double a0)) a y H2). intros a0 H6. split with (ad_double a0).
+ assumption.
+ intro H1. rewrite H1. intro H2. elim (H0 (fun a0:ad => pf (ad_double_plus_un a0)) a y H2).
+ intros a0 H3. split with (ad_double_plus_un a0). assumption.
+ Qed.
+
+ Lemma MapSweep_semantics_2_2 :
+ forall (m:Map A) (pf fp:ad -> ad),
+ (forall a0:ad, fp (pf a0) = a0) ->
+ forall (a:ad) (y:A),
+ MapSweep1 pf m = SOME _ (a, y) -> MapGet A m (fp a) = SOME _ y.
+ Proof.
+ simple induction m. intros. discriminate H0.
+ simpl in |- *. intros a y pf fp H a0 y0. unfold MapSweep2 in |- *. elim (sumbool_of_bool (f (pf a) y)).
+ intro H0. rewrite H0. intro H1. inversion H1. rewrite (H a). rewrite (ad_eq_correct a).
+ reflexivity.
+ intro H0. rewrite H0. intro H1. discriminate H1.
+ intros. rewrite (MapGet_M2_bit_0_if A m0 m1 (fp a)). elim (sumbool_of_bool (ad_bit_0 (fp a))).
+ intro H3. rewrite H3. elim (option_sum (ad * A) (MapSweep1 (fun a0:ad => pf (ad_double a0)) m0)).
+ intro H4. simpl in H2. apply
+ (H0 (fun a0:ad => pf (ad_double_plus_un a0))
+ (fun a0:ad => ad_div_2 (fp a0))).
+ intro. rewrite H1. apply ad_double_plus_un_div_2.
+ elim
+ (option_sum (ad * A) (MapSweep1 (fun a0:ad => pf (ad_double a0)) m0)). intro H5. elim H5.
+ intros r H6. rewrite H6 in H2. inversion H2. rewrite H8 in H6.
+ elim (MapSweep_semantics_2_1 m0 (fun a0:ad => pf (ad_double a0)) a y H6). intros a0 H9.
+ rewrite H9 in H3. rewrite (H1 (ad_double a0)) in H3. rewrite (ad_double_bit_0 a0) in H3.
+ discriminate H3.
+ intro H5. rewrite H5 in H2. assumption.
+ intro H4. simpl in H2. rewrite H4 in H2.
+ apply
+ (H0 (fun a0:ad => pf (ad_double_plus_un a0))
+ (fun a0:ad => ad_div_2 (fp a0))). intro.
+ rewrite H1. apply ad_double_plus_un_div_2.
+ assumption.
+ intro H3. rewrite H3. simpl in H2.
+ elim
+ (option_sum (ad * A) (MapSweep1 (fun a0:ad => pf (ad_double a0)) m0)). intro H4. elim H4.
+ intros r H5. rewrite H5 in H2. inversion H2. rewrite H7 in H5.
+ apply
+ (H (fun a0:ad => pf (ad_double a0)) (fun a0:ad => ad_div_2 (fp a0))). intro. rewrite H1.
+ apply ad_double_div_2.
+ assumption.
+ intro H4. rewrite H4 in H2.
+ elim
+ (MapSweep_semantics_2_1 m1 (fun a0:ad => pf (ad_double_plus_un a0)) a y
+ H2).
+ intros a0 H5. rewrite H5 in H3. rewrite (H1 (ad_double_plus_un a0)) in H3.
+ rewrite (ad_double_plus_un_bit_0 a0) in H3. discriminate H3.
+ Qed.
+
+ Lemma MapSweep_semantics_2 :
+ forall (m:Map A) (a:ad) (y:A),
+ MapSweep m = SOME _ (a, y) -> MapGet A m a = SOME _ y.
+ Proof.
+ intros.
+ exact
+ (MapSweep_semantics_2_2 m (fun a0:ad => a0) (fun a0:ad => a0)
+ (fun a0:ad => refl_equal a0) a y H).
+ Qed.
+
+ Lemma MapSweep_semantics_3_1 :
+ forall (m:Map A) (pf:ad -> ad),
+ MapSweep1 pf m = NONE _ ->
+ forall (a:ad) (y:A), MapGet A m a = SOME _ y -> f (pf a) y = false.
+ Proof.
+ simple induction m. intros. discriminate H0.
+ simpl in |- *. unfold MapSweep2 in |- *. intros a y pf. elim (sumbool_of_bool (f (pf a) y)). intro H.
+ rewrite H. intro. discriminate H0.
+ intro H. rewrite H. intros H0 a0 y0. elim (sumbool_of_bool (ad_eq a a0)). intro H1. rewrite H1.
+ intro H2. inversion H2. rewrite <- H4. rewrite <- (ad_eq_complete _ _ H1). assumption.
+ intro H1. rewrite H1. intro. discriminate H2.
+ intros. simpl in H1. elim (option_sum (ad * A) (MapSweep1 (fun a:ad => pf (ad_double a)) m0)).
+ intro H3. elim H3. intros r H4. rewrite H4 in H1. discriminate H1.
+ intro H3. rewrite H3 in H1. elim (sumbool_of_bool (ad_bit_0 a)). intro H4.
+ rewrite (MapGet_M2_bit_0_1 A a H4 m0 m1) in H2. rewrite <- (ad_div_2_double_plus_un a H4).
+ exact (H0 (fun a:ad => pf (ad_double_plus_un a)) H1 (ad_div_2 a) y H2).
+ intro H4. rewrite (MapGet_M2_bit_0_0 A a H4 m0 m1) in H2. rewrite <- (ad_div_2_double a H4).
+ exact (H (fun a:ad => pf (ad_double a)) H3 (ad_div_2 a) y H2).
+ Qed.
+
+ Lemma MapSweep_semantics_3 :
+ forall m:Map A,
+ MapSweep m = NONE _ ->
+ forall (a:ad) (y:A), MapGet A m a = SOME _ y -> f a y = false.
+ Proof.
+ intros.
+ exact (MapSweep_semantics_3_1 m (fun a0:ad => a0) H a y H0).
+ Qed.
+
+ Lemma MapSweep_semantics_4_1 :
+ forall (m:Map A) (pf:ad -> ad) (a:ad) (y:A),
+ MapGet A m a = SOME A y ->
+ f (pf a) y = true ->
+ {a' : ad & {y' : A | MapSweep1 pf m = SOME _ (a', y')}}.
+ Proof.
+ simple induction m. intros. discriminate H.
+ intros. elim (sumbool_of_bool (ad_eq a a1)). intro H1. split with (pf a1). split with y.
+ rewrite (ad_eq_complete _ _ H1). unfold MapSweep1, MapSweep2 in |- *.
+ rewrite (ad_eq_complete _ _ H1) in H. rewrite (M1_semantics_1 _ a1 a0) in H.
+ inversion H. rewrite H0. reflexivity.
+
+ intro H1. rewrite (M1_semantics_2 _ a a1 a0 H1) in H. discriminate H.
+
+ intros. elim (sumbool_of_bool (ad_bit_0 a)). intro H3.
+ rewrite (MapGet_M2_bit_0_1 _ _ H3 m0 m1) in H1.
+ rewrite <- (ad_div_2_double_plus_un a H3) in H2.
+ elim (H0 (fun a0:ad => pf (ad_double_plus_un a0)) (ad_div_2 a) y H1 H2). intros a'' H4. elim H4.
+ intros y'' H5. simpl in |- *. elim (option_sum _ (MapSweep1 (fun a:ad => pf (ad_double a)) m0)).
+ intro H6. elim H6. intro r. elim r. intros a''' y''' H7. rewrite H7. split with a'''.
+ split with y'''. reflexivity.
+ intro H6. rewrite H6. split with a''. split with y''. assumption.
+ intro H3. rewrite (MapGet_M2_bit_0_0 _ _ H3 m0 m1) in H1.
+ rewrite <- (ad_div_2_double a H3) in H2.
+ elim (H (fun a0:ad => pf (ad_double a0)) (ad_div_2 a) y H1 H2). intros a'' H4. elim H4.
+ intros y'' H5. split with a''. split with y''. simpl in |- *. rewrite H5. reflexivity.
+ Qed.
+
+ Lemma MapSweep_semantics_4 :
+ forall (m:Map A) (a:ad) (y:A),
+ MapGet A m a = SOME A y ->
+ f a y = true -> {a' : ad & {y' : A | MapSweep m = SOME _ (a', y')}}.
+ Proof.
+ intros. exact (MapSweep_semantics_4_1 m (fun a0:ad => a0) a y H H0).
+ Qed.
+
+ End MapSweepDef.
+
+ Variable B : Set.
+
+ Fixpoint MapCollect1 (f:ad -> A -> Map B) (pf:ad -> ad)
+ (m:Map A) {struct m} : Map B :=
+ match m with
+ | M0 => M0 B
+ | M1 a y => f (pf a) y
+ | M2 m1 m2 =>
+ MapMerge B (MapCollect1 f (fun a0:ad => pf (ad_double a0)) m1)
+ (MapCollect1 f (fun a0:ad => pf (ad_double_plus_un a0)) m2)
+ end.
+
+ Definition MapCollect (f:ad -> A -> Map B) (m:Map A) :=
+ MapCollect1 f (fun a:ad => a) m.
+
+ Section MapFoldDef.
+
+ Variable M : Set.
+ Variable neutral : M.
+ Variable op : M -> M -> M.
+
+ Fixpoint MapFold1 (f:ad -> A -> M) (pf:ad -> ad)
+ (m:Map A) {struct m} : M :=
+ match m with
+ | M0 => neutral
+ | M1 a y => f (pf a) y
+ | M2 m1 m2 =>
+ op (MapFold1 f (fun a0:ad => pf (ad_double a0)) m1)
+ (MapFold1 f (fun a0:ad => pf (ad_double_plus_un a0)) m2)
+ end.
+
+ Definition MapFold (f:ad -> A -> M) (m:Map A) :=
+ MapFold1 f (fun a:ad => a) m.
+
+ Lemma MapFold_empty : forall f:ad -> A -> M, MapFold f (M0 A) = neutral.
+ Proof.
+ trivial.
+ Qed.
+
+ Lemma MapFold_M1 :
+ forall (f:ad -> A -> M) (a:ad) (y:A), MapFold f (M1 A a y) = f a y.
+ Proof.
+ trivial.
+ Qed.
+
+ Variable State : Set.
+ Variable f : State -> ad -> A -> State * M.
+
+ Fixpoint MapFold1_state (state:State) (pf:ad -> ad)
+ (m:Map A) {struct m} : State * M :=
+ match m with
+ | M0 => (state, neutral)
+ | M1 a y => f state (pf a) y
+ | M2 m1 m2 =>
+ match MapFold1_state state (fun a0:ad => pf (ad_double a0)) m1 with
+ | (state1, x1) =>
+ match
+ MapFold1_state state1
+ (fun a0:ad => pf (ad_double_plus_un a0)) m2
+ with
+ | (state2, x2) => (state2, op x1 x2)
+ end
+ end
+ end.
+
+ Definition MapFold_state (state:State) :=
+ MapFold1_state state (fun a:ad => a).
+
+ Lemma pair_sp : forall (B C:Set) (x:B * C), x = (fst x, snd x).
+ Proof.
+ simple induction x. trivial.
+ Qed.
+
+ Lemma MapFold_state_stateless_1 :
+ forall (m:Map A) (g:ad -> A -> M) (pf:ad -> ad),
+ (forall (state:State) (a:ad) (y:A), snd (f state a y) = g a y) ->
+ forall state:State, snd (MapFold1_state state pf m) = MapFold1 g pf m.
+ Proof.
+ simple induction m. trivial.
+ intros. simpl in |- *. apply H.
+ intros. simpl in |- *. rewrite
+ (pair_sp _ _ (MapFold1_state state (fun a0:ad => pf (ad_double a0)) m0))
+ .
+ rewrite (H g (fun a0:ad => pf (ad_double a0)) H1 state).
+ rewrite
+ (pair_sp _ _
+ (MapFold1_state
+ (fst (MapFold1_state state (fun a0:ad => pf (ad_double a0)) m0))
+ (fun a0:ad => pf (ad_double_plus_un a0)) m1))
+ .
+ simpl in |- *.
+ rewrite
+ (H0 g (fun a0:ad => pf (ad_double_plus_un a0)) H1
+ (fst (MapFold1_state state (fun a0:ad => pf (ad_double a0)) m0)))
+ .
+ reflexivity.
+ Qed.
+
+ Lemma MapFold_state_stateless :
+ forall g:ad -> A -> M,
+ (forall (state:State) (a:ad) (y:A), snd (f state a y) = g a y) ->
+ forall (state:State) (m:Map A),
+ snd (MapFold_state state m) = MapFold g m.
+ Proof.
+ intros. exact (MapFold_state_stateless_1 m g (fun a0:ad => a0) H state).
+ Qed.
+
+ End MapFoldDef.
+
+ Lemma MapCollect_as_Fold :
+ forall (f:ad -> A -> Map B) (m:Map A),
+ MapCollect f m = MapFold (Map B) (M0 B) (MapMerge B) f m.
+ Proof.
+ simple induction m; trivial.
+ Qed.
+
+ Definition alist := list (ad * A).
+ Definition anil := nil (A:=(ad * A)).
+ Definition acons := cons (A:=(ad * A)).
+ Definition aapp := app (A:=(ad * A)).
+
+ Definition alist_of_Map :=
+ MapFold alist anil aapp (fun (a:ad) (y:A) => acons (a, y) anil).
+
+ Fixpoint alist_semantics (l:alist) : ad -> option A :=
+ match l with
+ | nil => fun _:ad => NONE A
+ | (a, y) :: l' =>
+ fun a0:ad => if ad_eq a a0 then SOME A y else alist_semantics l' a0
+ end.
+
+ Lemma alist_semantics_app :
+ forall (l l':alist) (a:ad),
+ alist_semantics (aapp l l') a =
+ match alist_semantics l a with
+ | NONE => alist_semantics l' a
+ | SOME y => SOME A y
+ end.
+ Proof.
+ unfold aapp in |- *. simple induction l. trivial.
+ intros. elim a. intros a1 y1. simpl in |- *. case (ad_eq a1 a0). reflexivity.
+ apply H.
+ Qed.
+
+ Lemma alist_of_Map_semantics_1_1 :
+ forall (m:Map A) (pf:ad -> ad) (a:ad) (y:A),
+ alist_semantics
+ (MapFold1 alist anil aapp (fun (a0:ad) (y:A) => acons (a0, y) anil) pf
+ m) a = SOME A y -> {a' : ad | a = pf a'}.
+ Proof.
+ simple induction m. simpl in |- *. intros. discriminate H.
+ simpl in |- *. intros a y pf a0 y0. elim (sumbool_of_bool (ad_eq (pf a) a0)). intro H. rewrite H.
+ intro H0. split with a. rewrite (ad_eq_complete _ _ H). reflexivity.
+ intro H. rewrite H. intro H0. discriminate H0.
+ intros. change
+ (alist_semantics
+ (aapp
+ (MapFold1 alist anil aapp (fun (a0:ad) (y:A) => acons (a0, y) anil)
+ (fun a0:ad => pf (ad_double a0)) m0)
+ (MapFold1 alist anil aapp (fun (a0:ad) (y:A) => acons (a0, y) anil)
+ (fun a0:ad => pf (ad_double_plus_un a0)) m1)) a =
+ SOME A y) in H1.
+ rewrite
+ (alist_semantics_app
+ (MapFold1 alist anil aapp (fun (a0:ad) (y0:A) => acons (a0, y0) anil)
+ (fun a0:ad => pf (ad_double a0)) m0)
+ (MapFold1 alist anil aapp (fun (a0:ad) (y0:A) => acons (a0, y0) anil)
+ (fun a0:ad => pf (ad_double_plus_un a0)) m1) a)
+ in H1.
+ elim
+ (option_sum A
+ (alist_semantics
+ (MapFold1 alist anil aapp
+ (fun (a0:ad) (y0:A) => acons (a0, y0) anil)
+ (fun a0:ad => pf (ad_double a0)) m0) a)).
+ intro H2. elim H2. intros y0 H3. elim (H (fun a0:ad => pf (ad_double a0)) a y0 H3). intros a0 H4.
+ split with (ad_double a0). assumption.
+ intro H2. rewrite H2 in H1. elim (H0 (fun a0:ad => pf (ad_double_plus_un a0)) a y H1).
+ intros a0 H3. split with (ad_double_plus_un a0). assumption.
+ Qed.
+
+ Definition ad_inj (pf:ad -> ad) :=
+ forall a0 a1:ad, pf a0 = pf a1 -> a0 = a1.
+
+ Lemma ad_comp_double_inj :
+ forall pf:ad -> ad, ad_inj pf -> ad_inj (fun a0:ad => pf (ad_double a0)).
+ Proof.
+ unfold ad_inj in |- *. intros. apply ad_double_inj. exact (H _ _ H0).
+ Qed.
+
+ Lemma ad_comp_double_plus_un_inj :
+ forall pf:ad -> ad,
+ ad_inj pf -> ad_inj (fun a0:ad => pf (ad_double_plus_un a0)).
+ Proof.
+ unfold ad_inj in |- *. intros. apply ad_double_plus_un_inj. exact (H _ _ H0).
+ Qed.
+
+ Lemma alist_of_Map_semantics_1 :
+ forall (m:Map A) (pf:ad -> ad),
+ ad_inj pf ->
+ forall a:ad,
+ MapGet A m a =
+ alist_semantics
+ (MapFold1 alist anil aapp (fun (a0:ad) (y:A) => acons (a0, y) anil)
+ pf m) (pf a).
+ Proof.
+ simple induction m. trivial.
+ simpl in |- *. intros. elim (sumbool_of_bool (ad_eq a a1)). intro H0. rewrite H0.
+ rewrite (ad_eq_complete _ _ H0). rewrite (ad_eq_correct (pf a1)). reflexivity.
+ intro H0. rewrite H0. elim (sumbool_of_bool (ad_eq (pf a) (pf a1))). intro H1.
+ rewrite (H a a1 (ad_eq_complete _ _ H1)) in H0. rewrite (ad_eq_correct a1) in H0.
+ discriminate H0.
+ intro H1. rewrite H1. reflexivity.
+ intros. change
+ (MapGet A (M2 A m0 m1) a =
+ alist_semantics
+ (aapp
+ (MapFold1 alist anil aapp (fun (a0:ad) (y:A) => acons (a0, y) anil)
+ (fun a0:ad => pf (ad_double a0)) m0)
+ (MapFold1 alist anil aapp (fun (a0:ad) (y:A) => acons (a0, y) anil)
+ (fun a0:ad => pf (ad_double_plus_un a0)) m1)) (
+ pf a)) in |- *.
+ rewrite alist_semantics_app. rewrite (MapGet_M2_bit_0_if A m0 m1 a).
+ elim (ad_double_or_double_plus_un a). intro H2. elim H2. intros a0 H3. rewrite H3.
+ rewrite (ad_double_bit_0 a0).
+ rewrite <-
+ (H (fun a1:ad => pf (ad_double a1)) (ad_comp_double_inj pf H1) a0)
+ .
+ rewrite ad_double_div_2. case (MapGet A m0 a0).
+ elim
+ (option_sum A
+ (alist_semantics
+ (MapFold1 alist anil aapp
+ (fun (a1:ad) (y:A) => acons (a1, y) anil)
+ (fun a1:ad => pf (ad_double_plus_un a1)) m1)
+ (pf (ad_double a0)))).
+ intro H4. elim H4. intros y H5.
+ elim
+ (alist_of_Map_semantics_1_1 m1 (fun a1:ad => pf (ad_double_plus_un a1))
+ (pf (ad_double a0)) y H5).
+ intros a1 H6. cut (ad_bit_0 (ad_double a0) = ad_bit_0 (ad_double_plus_un a1)).
+ intro. rewrite (ad_double_bit_0 a0) in H7. rewrite (ad_double_plus_un_bit_0 a1) in H7.
+ discriminate H7.
+ rewrite (H1 (ad_double a0) (ad_double_plus_un a1) H6). reflexivity.
+ intro H4. rewrite H4. reflexivity.
+ trivial.
+ intro H2. elim H2. intros a0 H3. rewrite H3. rewrite (ad_double_plus_un_bit_0 a0).
+ rewrite <-
+ (H0 (fun a1:ad => pf (ad_double_plus_un a1))
+ (ad_comp_double_plus_un_inj pf H1) a0).
+ rewrite ad_double_plus_un_div_2.
+ elim
+ (option_sum A
+ (alist_semantics
+ (MapFold1 alist anil aapp
+ (fun (a1:ad) (y:A) => acons (a1, y) anil)
+ (fun a1:ad => pf (ad_double a1)) m0)
+ (pf (ad_double_plus_un a0)))).
+ intro H4. elim H4. intros y H5.
+ elim
+ (alist_of_Map_semantics_1_1 m0 (fun a1:ad => pf (ad_double a1))
+ (pf (ad_double_plus_un a0)) y H5).
+ intros a1 H6. cut (ad_bit_0 (ad_double_plus_un a0) = ad_bit_0 (ad_double a1)).
+ intro H7. rewrite (ad_double_plus_un_bit_0 a0) in H7. rewrite (ad_double_bit_0 a1) in H7.
+ discriminate H7.
+ rewrite (H1 (ad_double_plus_un a0) (ad_double a1) H6). reflexivity.
+ intro H4. rewrite H4. reflexivity.
+ Qed.
+
+ Lemma alist_of_Map_semantics :
+ forall m:Map A, eqm A (MapGet A m) (alist_semantics (alist_of_Map m)).
+ Proof.
+ unfold eqm in |- *. intros. exact
+ (alist_of_Map_semantics_1 m (fun a0:ad => a0)
+ (fun (a0 a1:ad) (p:a0 = a1) => p) a).
+ Qed.
+
+ Fixpoint Map_of_alist (l:alist) : Map A :=
+ match l with
+ | nil => M0 A
+ | (a, y) :: l' => MapPut A (Map_of_alist l') a y
+ end.
+
+ Lemma Map_of_alist_semantics :
+ forall l:alist, eqm A (alist_semantics l) (MapGet A (Map_of_alist l)).
+ Proof.
+ unfold eqm in |- *. simple induction l. trivial.
+ intros r l0 H a. elim r. intros a0 y0. simpl in |- *. elim (sumbool_of_bool (ad_eq a0 a)).
+ intro H0. rewrite H0. rewrite (ad_eq_complete _ _ H0).
+ rewrite (MapPut_semantics A (Map_of_alist l0) a y0 a). rewrite (ad_eq_correct a).
+ reflexivity.
+ intro H0. rewrite H0. rewrite (MapPut_semantics A (Map_of_alist l0) a0 y0 a).
+ rewrite H0. apply H.
+ Qed.
+
+ Lemma Map_of_alist_of_Map :
+ forall m:Map A, eqmap A (Map_of_alist (alist_of_Map m)) m.
+ Proof.
+ unfold eqmap in |- *. intro. apply eqm_trans with (f' := alist_semantics (alist_of_Map m)).
+ apply eqm_sym. apply Map_of_alist_semantics.
+ apply eqm_sym. apply alist_of_Map_semantics.
+ Qed.
+
+ Lemma alist_of_Map_of_alist :
+ forall l:alist,
+ eqm A (alist_semantics (alist_of_Map (Map_of_alist l)))
+ (alist_semantics l).
+ Proof.
+ intro. apply eqm_trans with (f' := MapGet A (Map_of_alist l)).
+ apply eqm_sym. apply alist_of_Map_semantics.
+ apply eqm_sym. apply Map_of_alist_semantics.
+ Qed.
+
+ Lemma fold_right_aapp :
+ forall (M:Set) (neutral:M) (op:M -> M -> M),
+ (forall a b c:M, op (op a b) c = op a (op b c)) ->
+ (forall a:M, op neutral a = a) ->
+ forall (f:ad -> A -> M) (l l':alist),
+ fold_right (fun (r:ad * A) (m:M) => let (a, y) := r in op (f a y) m)
+ neutral (aapp l l') =
+ op
+ (fold_right
+ (fun (r:ad * A) (m:M) => let (a, y) := r in op (f a y) m) neutral
+ l)
+ (fold_right
+ (fun (r:ad * A) (m:M) => let (a, y) := r in op (f a y) m) neutral
+ l').
+ Proof.
+ simple induction l. simpl in |- *. intro. rewrite H0. reflexivity.
+ intros r l0 H1 l'. elim r. intros a y. simpl in |- *. rewrite H. rewrite (H1 l'). reflexivity.
+ Qed.
+
+ Lemma MapFold_as_fold_1 :
+ forall (M:Set) (neutral:M) (op:M -> M -> M),
+ (forall a b c:M, op (op a b) c = op a (op b c)) ->
+ (forall a:M, op neutral a = a) ->
+ (forall a:M, op a neutral = a) ->
+ forall (f:ad -> A -> M) (m:Map A) (pf:ad -> ad),
+ MapFold1 M neutral op f pf m =
+ fold_right (fun (r:ad * A) (m:M) => let (a, y) := r in op (f a y) m)
+ neutral
+ (MapFold1 alist anil aapp (fun (a:ad) (y:A) => acons (a, y) anil) pf
+ m).
+ Proof.
+ simple induction m. trivial.
+ intros. simpl in |- *. rewrite H1. reflexivity.
+ intros. simpl in |- *. rewrite (fold_right_aapp M neutral op H H0 f).
+ rewrite (H2 (fun a0:ad => pf (ad_double a0))). rewrite (H3 (fun a0:ad => pf (ad_double_plus_un a0))).
+ reflexivity.
+ Qed.
+
+ Lemma MapFold_as_fold :
+ forall (M:Set) (neutral:M) (op:M -> M -> M),
+ (forall a b c:M, op (op a b) c = op a (op b c)) ->
+ (forall a:M, op neutral a = a) ->
+ (forall a:M, op a neutral = a) ->
+ forall (f:ad -> A -> M) (m:Map A),
+ MapFold M neutral op f m =
+ fold_right (fun (r:ad * A) (m:M) => let (a, y) := r in op (f a y) m)
+ neutral (alist_of_Map m).
+ Proof.
+ intros. exact (MapFold_as_fold_1 M neutral op H H0 H1 f m (fun a0:ad => a0)).
+ Qed.
+
+ Lemma alist_MapMerge_semantics :
+ forall m m':Map A,
+ eqm A (alist_semantics (aapp (alist_of_Map m') (alist_of_Map m)))
+ (alist_semantics (alist_of_Map (MapMerge A m m'))).
+ Proof.
+ unfold eqm in |- *. intros. rewrite alist_semantics_app. rewrite <- (alist_of_Map_semantics m a).
+ rewrite <- (alist_of_Map_semantics m' a).
+ rewrite <- (alist_of_Map_semantics (MapMerge A m m') a).
+ rewrite (MapMerge_semantics A m m' a). reflexivity.
+ Qed.
+
+ Lemma alist_MapMerge_semantics_disjoint :
+ forall m m':Map A,
+ eqmap A (MapDomRestrTo A A m m') (M0 A) ->
+ eqm A (alist_semantics (aapp (alist_of_Map m) (alist_of_Map m')))
+ (alist_semantics (alist_of_Map (MapMerge A m m'))).
+ Proof.
+ unfold eqm in |- *. intros. rewrite alist_semantics_app. rewrite <- (alist_of_Map_semantics m a).
+ rewrite <- (alist_of_Map_semantics m' a).
+ rewrite <- (alist_of_Map_semantics (MapMerge A m m') a). rewrite (MapMerge_semantics A m m' a).
+ elim (option_sum _ (MapGet A m a)). intro H0. elim H0. intros y H1. rewrite H1.
+ elim (option_sum _ (MapGet A m' a)). intro H2. elim H2. intros y' H3.
+ cut (MapGet A (MapDomRestrTo A A m m') a = NONE A).
+ rewrite (MapDomRestrTo_semantics A A m m' a). rewrite H3. rewrite H1. intro. discriminate H4.
+ exact (H a).
+ intro H2. rewrite H2. reflexivity.
+ intro H0. rewrite H0. case (MapGet A m' a); trivial.
+ Qed.
+
+ Lemma alist_semantics_disjoint_comm :
+ forall l l':alist,
+ eqmap A (MapDomRestrTo A A (Map_of_alist l) (Map_of_alist l')) (M0 A) ->
+ eqm A (alist_semantics (aapp l l')) (alist_semantics (aapp l' l)).
+ Proof.
+ unfold eqm in |- *. intros. rewrite (alist_semantics_app l l' a). rewrite (alist_semantics_app l' l a).
+ rewrite <- (alist_of_Map_of_alist l a). rewrite <- (alist_of_Map_of_alist l' a).
+ rewrite <-
+ (alist_semantics_app (alist_of_Map (Map_of_alist l))
+ (alist_of_Map (Map_of_alist l')) a).
+ rewrite <-
+ (alist_semantics_app (alist_of_Map (Map_of_alist l'))
+ (alist_of_Map (Map_of_alist l)) a).
+ rewrite (alist_MapMerge_semantics (Map_of_alist l) (Map_of_alist l') a).
+ rewrite
+ (alist_MapMerge_semantics_disjoint (Map_of_alist l) (
+ Map_of_alist l') H a).
+ reflexivity.
+ Qed.
+
+End MapIter.
diff --git a/theories/IntMap/Maplists.v b/theories/IntMap/Maplists.v
new file mode 100644
index 00000000..645c3407
--- /dev/null
+++ b/theories/IntMap/Maplists.v
@@ -0,0 +1,437 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(*i $Id: Maplists.v,v 1.4.2.1 2004/07/16 19:31:04 herbelin Exp $ i*)
+
+Require Import Addr.
+Require Import Addec.
+Require Import Map.
+Require Import Fset.
+Require Import Mapaxioms.
+Require Import Mapsubset.
+Require Import Mapcard.
+Require Import Mapcanon.
+Require Import Mapc.
+Require Import Bool.
+Require Import Sumbool.
+Require Import List.
+Require Import Arith.
+Require Import Mapiter.
+Require Import Mapfold.
+
+Section MapLists.
+
+ Fixpoint ad_in_list (a:ad) (l:list ad) {struct l} : bool :=
+ match l with
+ | nil => false
+ | a' :: l' => orb (ad_eq a a') (ad_in_list a l')
+ end.
+
+ Fixpoint ad_list_stutters (l:list ad) : bool :=
+ match l with
+ | nil => false
+ | a :: l' => orb (ad_in_list a l') (ad_list_stutters l')
+ end.
+
+ Lemma ad_in_list_forms_circuit :
+ forall (x:ad) (l:list ad),
+ ad_in_list x l = true ->
+ {l1 : list ad & {l2 : list ad | l = l1 ++ x :: l2}}.
+ Proof.
+ simple induction l. intro. discriminate H.
+ intros. elim (sumbool_of_bool (ad_eq x a)). intro H1. simpl in H0. split with (nil (A:=ad)).
+ split with l0. rewrite (ad_eq_complete _ _ H1). reflexivity.
+ intro H2. simpl in H0. rewrite H2 in H0. simpl in H0. elim (H H0). intros l'1 H3.
+ split with (a :: l'1). elim H3. intros l2 H4. split with l2. rewrite H4. reflexivity.
+ Qed.
+
+ Lemma ad_list_stutters_has_circuit :
+ forall l:list ad,
+ ad_list_stutters l = true ->
+ {x : ad &
+ {l0 : list ad &
+ {l1 : list ad & {l2 : list ad | l = l0 ++ x :: l1 ++ x :: l2}}}}.
+ Proof.
+ simple induction l. intro. discriminate H.
+ intros. simpl in H0. elim (orb_true_elim _ _ H0). intro H1. split with a.
+ split with (nil (A:=ad)). simpl in |- *. elim (ad_in_list_forms_circuit a l0 H1). intros l1 H2.
+ split with l1. elim H2. intros l2 H3. split with l2. rewrite H3. reflexivity.
+ intro H1. elim (H H1). intros x H2. split with x. elim H2. intros l1 H3.
+ split with (a :: l1). elim H3. intros l2 H4. split with l2. elim H4. intros l3 H5.
+ split with l3. rewrite H5. reflexivity.
+ Qed.
+
+ Fixpoint Elems (l:list ad) : FSet :=
+ match l with
+ | nil => M0 unit
+ | a :: l' => MapPut _ (Elems l') a tt
+ end.
+
+ Lemma Elems_canon : forall l:list ad, mapcanon _ (Elems l).
+ Proof.
+ simple induction l. exact (M0_canon unit).
+ intros. simpl in |- *. apply MapPut_canon. assumption.
+ Qed.
+
+ Lemma Elems_app :
+ forall l l':list ad, Elems (l ++ l') = FSetUnion (Elems l) (Elems l').
+ Proof.
+ simple induction l. trivial.
+ intros. simpl in |- *. rewrite (MapPut_as_Merge_c unit (Elems l0)).
+ rewrite (MapPut_as_Merge_c unit (Elems (l0 ++ l'))).
+ change
+ (FSetUnion (Elems (l0 ++ l')) (M1 unit a tt) =
+ FSetUnion (FSetUnion (Elems l0) (M1 unit a tt)) (Elems l'))
+ in |- *.
+ rewrite FSetUnion_comm_c. rewrite (FSetUnion_comm_c (Elems l0) (M1 unit a tt)).
+ rewrite FSetUnion_assoc_c. rewrite (H l'). reflexivity.
+ apply M1_canon.
+ apply Elems_canon.
+ apply Elems_canon.
+ apply Elems_canon.
+ apply M1_canon.
+ apply Elems_canon.
+ apply M1_canon.
+ apply Elems_canon.
+ apply Elems_canon.
+ Qed.
+
+ Lemma Elems_rev : forall l:list ad, Elems (rev l) = Elems l.
+ Proof.
+ simple induction l. trivial.
+ intros. simpl in |- *. rewrite Elems_app. simpl in |- *. rewrite (MapPut_as_Merge_c unit (Elems l0)).
+ rewrite H. reflexivity.
+ apply Elems_canon.
+ Qed.
+
+ Lemma ad_in_elems_in_list :
+ forall (l:list ad) (a:ad), in_FSet a (Elems l) = ad_in_list a l.
+ Proof.
+ simple induction l. trivial.
+ simpl in |- *. unfold in_FSet in |- *. intros. rewrite (in_dom_put _ (Elems l0) a tt a0).
+ rewrite (H a0). reflexivity.
+ Qed.
+
+ Lemma ad_list_not_stutters_card :
+ forall l:list ad,
+ ad_list_stutters l = false -> length l = MapCard _ (Elems l).
+ Proof.
+ simple induction l. trivial.
+ simpl in |- *. intros. rewrite MapCard_Put_2_conv. rewrite H. reflexivity.
+ elim (orb_false_elim _ _ H0). trivial.
+ elim (sumbool_of_bool (in_FSet a (Elems l0))). rewrite ad_in_elems_in_list.
+ intro H1. rewrite H1 in H0. discriminate H0.
+ exact (in_dom_none unit (Elems l0) a).
+ Qed.
+
+ Lemma ad_list_card : forall l:list ad, MapCard _ (Elems l) <= length l.
+ Proof.
+ simple induction l. trivial.
+ intros. simpl in |- *. apply le_trans with (m := S (MapCard _ (Elems l0))). apply MapCard_Put_ub.
+ apply le_n_S. assumption.
+ Qed.
+
+ Lemma ad_list_stutters_card :
+ forall l:list ad,
+ ad_list_stutters l = true -> MapCard _ (Elems l) < length l.
+ Proof.
+ simple induction l. intro. discriminate H.
+ intros. simpl in |- *. simpl in H0. elim (orb_true_elim _ _ H0). intro H1.
+ rewrite <- (ad_in_elems_in_list l0 a) in H1. elim (in_dom_some _ _ _ H1). intros y H2.
+ rewrite (MapCard_Put_1_conv _ _ _ _ tt H2). apply le_lt_trans with (m := length l0).
+ apply ad_list_card.
+ apply lt_n_Sn.
+ intro H1. apply le_lt_trans with (m := S (MapCard _ (Elems l0))). apply MapCard_Put_ub.
+ apply lt_n_S. apply H. assumption.
+ Qed.
+
+ Lemma ad_list_not_stutters_card_conv :
+ forall l:list ad,
+ length l = MapCard _ (Elems l) -> ad_list_stutters l = false.
+ Proof.
+ intros. elim (sumbool_of_bool (ad_list_stutters l)). intro H0.
+ cut (MapCard _ (Elems l) < length l). intro. rewrite H in H1. elim (lt_irrefl _ H1).
+ exact (ad_list_stutters_card _ H0).
+ trivial.
+ Qed.
+
+ Lemma ad_list_stutters_card_conv :
+ forall l:list ad,
+ MapCard _ (Elems l) < length l -> ad_list_stutters l = true.
+ Proof.
+ intros. elim (sumbool_of_bool (ad_list_stutters l)). trivial.
+ intro H0. rewrite (ad_list_not_stutters_card _ H0) in H. elim (lt_irrefl _ H).
+ Qed.
+
+ Lemma ad_in_list_l :
+ forall (l l':list ad) (a:ad),
+ ad_in_list a l = true -> ad_in_list a (l ++ l') = true.
+ Proof.
+ simple induction l. intros. discriminate H.
+ intros. simpl in |- *. simpl in H0. elim (orb_true_elim _ _ H0). intro H1. rewrite H1. reflexivity.
+ intro H1. rewrite (H l' a0 H1). apply orb_b_true.
+ Qed.
+
+ Lemma ad_list_stutters_app_l :
+ forall l l':list ad,
+ ad_list_stutters l = true -> ad_list_stutters (l ++ l') = true.
+ Proof.
+ simple induction l. intros. discriminate H.
+ intros. simpl in |- *. simpl in H0. elim (orb_true_elim _ _ H0). intro H1.
+ rewrite (ad_in_list_l l0 l' a H1). reflexivity.
+ intro H1. rewrite (H l' H1). apply orb_b_true.
+ Qed.
+
+ Lemma ad_in_list_r :
+ forall (l l':list ad) (a:ad),
+ ad_in_list a l' = true -> ad_in_list a (l ++ l') = true.
+ Proof.
+ simple induction l. trivial.
+ intros. simpl in |- *. rewrite (H l' a0 H0). apply orb_b_true.
+ Qed.
+
+ Lemma ad_list_stutters_app_r :
+ forall l l':list ad,
+ ad_list_stutters l' = true -> ad_list_stutters (l ++ l') = true.
+ Proof.
+ simple induction l. trivial.
+ intros. simpl in |- *. rewrite (H l' H0). apply orb_b_true.
+ Qed.
+
+ Lemma ad_list_stutters_app_conv_l :
+ forall l l':list ad,
+ ad_list_stutters (l ++ l') = false -> ad_list_stutters l = false.
+ Proof.
+ intros. elim (sumbool_of_bool (ad_list_stutters l)). intro H0.
+ rewrite (ad_list_stutters_app_l l l' H0) in H. discriminate H.
+ trivial.
+ Qed.
+
+ Lemma ad_list_stutters_app_conv_r :
+ forall l l':list ad,
+ ad_list_stutters (l ++ l') = false -> ad_list_stutters l' = false.
+ Proof.
+ intros. elim (sumbool_of_bool (ad_list_stutters l')). intro H0.
+ rewrite (ad_list_stutters_app_r l l' H0) in H. discriminate H.
+ trivial.
+ Qed.
+
+ Lemma ad_in_list_app_1 :
+ forall (l l':list ad) (x:ad), ad_in_list x (l ++ x :: l') = true.
+ Proof.
+ simple induction l. simpl in |- *. intros. rewrite (ad_eq_correct x). reflexivity.
+ intros. simpl in |- *. rewrite (H l' x). apply orb_b_true.
+ Qed.
+
+ Lemma ad_in_list_app :
+ forall (l l':list ad) (x:ad),
+ ad_in_list x (l ++ l') = orb (ad_in_list x l) (ad_in_list x l').
+ Proof.
+ simple induction l. trivial.
+ intros. simpl in |- *. rewrite <- orb_assoc. rewrite (H l' x). reflexivity.
+ Qed.
+
+ Lemma ad_in_list_rev :
+ forall (l:list ad) (x:ad), ad_in_list x (rev l) = ad_in_list x l.
+ Proof.
+ simple induction l. trivial.
+ intros. simpl in |- *. rewrite ad_in_list_app. rewrite (H x). simpl in |- *. rewrite orb_b_false.
+ apply orb_comm.
+ Qed.
+
+ Lemma ad_list_has_circuit_stutters :
+ forall (l0 l1 l2:list ad) (x:ad),
+ ad_list_stutters (l0 ++ x :: l1 ++ x :: l2) = true.
+ Proof.
+ simple induction l0. simpl in |- *. intros. rewrite (ad_in_list_app_1 l1 l2 x). reflexivity.
+ intros. simpl in |- *. rewrite (H l1 l2 x). apply orb_b_true.
+ Qed.
+
+ Lemma ad_list_stutters_prev_l :
+ forall (l l':list ad) (x:ad),
+ ad_in_list x l = true -> ad_list_stutters (l ++ x :: l') = true.
+ Proof.
+ intros. elim (ad_in_list_forms_circuit _ _ H). intros l0 H0. elim H0. intros l1 H1.
+ rewrite H1. rewrite app_ass. simpl in |- *. apply ad_list_has_circuit_stutters.
+ Qed.
+
+ Lemma ad_list_stutters_prev_conv_l :
+ forall (l l':list ad) (x:ad),
+ ad_list_stutters (l ++ x :: l') = false -> ad_in_list x l = false.
+ Proof.
+ intros. elim (sumbool_of_bool (ad_in_list x l)). intro H0.
+ rewrite (ad_list_stutters_prev_l l l' x H0) in H. discriminate H.
+ trivial.
+ Qed.
+
+ Lemma ad_list_stutters_prev_r :
+ forall (l l':list ad) (x:ad),
+ ad_in_list x l' = true -> ad_list_stutters (l ++ x :: l') = true.
+ Proof.
+ intros. elim (ad_in_list_forms_circuit _ _ H). intros l0 H0. elim H0. intros l1 H1.
+ rewrite H1. apply ad_list_has_circuit_stutters.
+ Qed.
+
+ Lemma ad_list_stutters_prev_conv_r :
+ forall (l l':list ad) (x:ad),
+ ad_list_stutters (l ++ x :: l') = false -> ad_in_list x l' = false.
+ Proof.
+ intros. elim (sumbool_of_bool (ad_in_list x l')). intro H0.
+ rewrite (ad_list_stutters_prev_r l l' x H0) in H. discriminate H.
+ trivial.
+ Qed.
+
+ Lemma ad_list_Elems :
+ forall l l':list ad,
+ MapCard _ (Elems l) = MapCard _ (Elems l') ->
+ length l = length l' -> ad_list_stutters l = ad_list_stutters l'.
+ Proof.
+ intros. elim (sumbool_of_bool (ad_list_stutters l)). intro H1. rewrite H1. apply sym_eq.
+ apply ad_list_stutters_card_conv. rewrite <- H. rewrite <- H0. apply ad_list_stutters_card.
+ assumption.
+ intro H1. rewrite H1. apply sym_eq. apply ad_list_not_stutters_card_conv. rewrite <- H.
+ rewrite <- H0. apply ad_list_not_stutters_card. assumption.
+ Qed.
+
+ Lemma ad_list_app_length :
+ forall l l':list ad, length (l ++ l') = length l + length l'.
+ Proof.
+ simple induction l. trivial.
+ intros. simpl in |- *. rewrite (H l'). reflexivity.
+ Qed.
+
+ Lemma ad_list_stutters_permute :
+ forall l l':list ad,
+ ad_list_stutters (l ++ l') = ad_list_stutters (l' ++ l).
+ Proof.
+ intros. apply ad_list_Elems. rewrite Elems_app. rewrite Elems_app.
+ rewrite (FSetUnion_comm_c _ _ (Elems_canon l) (Elems_canon l')). reflexivity.
+ rewrite ad_list_app_length. rewrite ad_list_app_length. apply plus_comm.
+ Qed.
+
+ Lemma ad_list_rev_length : forall l:list ad, length (rev l) = length l.
+ Proof.
+ simple induction l. trivial.
+ intros. simpl in |- *. rewrite ad_list_app_length. simpl in |- *. rewrite H. rewrite <- plus_Snm_nSm.
+ rewrite <- plus_n_O. reflexivity.
+ Qed.
+
+ Lemma ad_list_stutters_rev :
+ forall l:list ad, ad_list_stutters (rev l) = ad_list_stutters l.
+ Proof.
+ intros. apply ad_list_Elems. rewrite Elems_rev. reflexivity.
+ apply ad_list_rev_length.
+ Qed.
+
+ Lemma ad_list_app_rev :
+ forall (l l':list ad) (x:ad), rev l ++ x :: l' = rev (x :: l) ++ l'.
+ Proof.
+ simple induction l. trivial.
+ intros. simpl in |- *. rewrite (app_ass (rev l0) (a :: nil) (x :: l')). simpl in |- *.
+ rewrite (H (x :: l') a). simpl in |- *.
+ rewrite (app_ass (rev l0) (a :: nil) (x :: nil)). simpl in |- *.
+ rewrite app_ass. simpl in |- *. rewrite app_ass. reflexivity.
+ Qed.
+
+ Section ListOfDomDef.
+
+ Variable A : Set.
+
+ Definition ad_list_of_dom :=
+ MapFold A (list ad) nil (app (A:=ad)) (fun (a:ad) (_:A) => a :: nil).
+
+ Lemma ad_in_list_of_dom_in_dom :
+ forall (m:Map A) (a:ad), ad_in_list a (ad_list_of_dom m) = in_dom A a m.
+ Proof.
+ unfold ad_list_of_dom in |- *. intros.
+ rewrite
+ (MapFold_distr_l A (list ad) nil (app (A:=ad)) bool false orb ad
+ (fun (a:ad) (l:list ad) => ad_in_list a l) (
+ fun c:ad => refl_equal _) ad_in_list_app
+ (fun (a0:ad) (_:A) => a0 :: nil) m a).
+ simpl in |- *. rewrite (MapFold_orb A (fun (a0:ad) (_:A) => orb (ad_eq a a0) false) m).
+ elim
+ (option_sum _
+ (MapSweep A (fun (a0:ad) (_:A) => orb (ad_eq a a0) false) m)). intro H. elim H.
+ intro r. elim r. intros a0 y H0. rewrite H0. unfold in_dom in |- *.
+ elim (orb_prop _ _ (MapSweep_semantics_1 _ _ _ _ _ H0)). intro H1.
+ rewrite (ad_eq_complete _ _ H1). rewrite (MapSweep_semantics_2 A _ _ _ _ H0). reflexivity.
+ intro H1. discriminate H1.
+ intro H. rewrite H. elim (sumbool_of_bool (in_dom A a m)). intro H0.
+ elim (in_dom_some A m a H0). intros y H1.
+ elim (orb_false_elim _ _ (MapSweep_semantics_3 _ _ _ H _ _ H1)). intro H2.
+ rewrite (ad_eq_correct a) in H2. discriminate H2.
+ exact (sym_eq (y:=_)).
+ Qed.
+
+ Lemma Elems_of_list_of_dom :
+ forall m:Map A, eqmap unit (Elems (ad_list_of_dom m)) (MapDom A m).
+ Proof.
+ unfold eqmap, eqm in |- *. intros. elim (sumbool_of_bool (in_FSet a (Elems (ad_list_of_dom m)))).
+ intro H. elim (in_dom_some _ _ _ H). intro t. elim t. intro H0.
+ rewrite (ad_in_elems_in_list (ad_list_of_dom m) a) in H.
+ rewrite (ad_in_list_of_dom_in_dom m a) in H. rewrite (MapDom_Dom A m a) in H.
+ elim (in_dom_some _ _ _ H). intro t'. elim t'. intro H1. rewrite H1. assumption.
+ intro H. rewrite (in_dom_none _ _ _ H).
+ rewrite (ad_in_elems_in_list (ad_list_of_dom m) a) in H.
+ rewrite (ad_in_list_of_dom_in_dom m a) in H. rewrite (MapDom_Dom A m a) in H.
+ rewrite (in_dom_none _ _ _ H). reflexivity.
+ Qed.
+
+ Lemma Elems_of_list_of_dom_c :
+ forall m:Map A, mapcanon A m -> Elems (ad_list_of_dom m) = MapDom A m.
+ Proof.
+ intros. apply (mapcanon_unique unit). apply Elems_canon.
+ apply MapDom_canon. assumption.
+ apply Elems_of_list_of_dom.
+ Qed.
+
+ Lemma ad_list_of_dom_card_1 :
+ forall (m:Map A) (pf:ad -> ad),
+ length
+ (MapFold1 A (list ad) nil (app (A:=ad)) (fun (a:ad) (_:A) => a :: nil)
+ pf m) = MapCard A m.
+ Proof.
+ simple induction m; try trivial. simpl in |- *. intros. rewrite ad_list_app_length.
+ rewrite (H (fun a0:ad => pf (ad_double a0))). rewrite (H0 (fun a0:ad => pf (ad_double_plus_un a0))).
+ reflexivity.
+ Qed.
+
+ Lemma ad_list_of_dom_card :
+ forall m:Map A, length (ad_list_of_dom m) = MapCard A m.
+ Proof.
+ exact (fun m:Map A => ad_list_of_dom_card_1 m (fun a:ad => a)).
+ Qed.
+
+ Lemma ad_list_of_dom_not_stutters :
+ forall m:Map A, ad_list_stutters (ad_list_of_dom m) = false.
+ Proof.
+ intro. apply ad_list_not_stutters_card_conv. rewrite ad_list_of_dom_card. apply sym_eq.
+ rewrite (MapCard_Dom A m). apply MapCard_ext. exact (Elems_of_list_of_dom m).
+ Qed.
+
+ End ListOfDomDef.
+
+ Lemma ad_list_of_dom_Dom_1 :
+ forall (A:Set) (m:Map A) (pf:ad -> ad),
+ MapFold1 A (list ad) nil (app (A:=ad)) (fun (a:ad) (_:A) => a :: nil) pf
+ m =
+ MapFold1 unit (list ad) nil (app (A:=ad))
+ (fun (a:ad) (_:unit) => a :: nil) pf (MapDom A m).
+ Proof.
+ simple induction m; try trivial. simpl in |- *. intros. rewrite (H (fun a0:ad => pf (ad_double a0))).
+ rewrite (H0 (fun a0:ad => pf (ad_double_plus_un a0))). reflexivity.
+ Qed.
+
+ Lemma ad_list_of_dom_Dom :
+ forall (A:Set) (m:Map A),
+ ad_list_of_dom A m = ad_list_of_dom unit (MapDom A m).
+ Proof.
+ intros. exact (ad_list_of_dom_Dom_1 A m (fun a0:ad => a0)).
+ Qed.
+
+End MapLists. \ No newline at end of file
diff --git a/theories/IntMap/Mapsubset.v b/theories/IntMap/Mapsubset.v
new file mode 100644
index 00000000..33b412e3
--- /dev/null
+++ b/theories/IntMap/Mapsubset.v
@@ -0,0 +1,606 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(*i $Id: Mapsubset.v,v 1.4.2.1 2004/07/16 19:31:05 herbelin Exp $ i*)
+
+Require Import Bool.
+Require Import Sumbool.
+Require Import Arith.
+Require Import ZArith.
+Require Import Addr.
+Require Import Adist.
+Require Import Addec.
+Require Import Map.
+Require Import Fset.
+Require Import Mapaxioms.
+Require Import Mapiter.
+
+Section MapSubsetDef.
+
+ Variables A B : Set.
+
+ Definition MapSubset (m:Map A) (m':Map B) :=
+ forall a:ad, in_dom A a m = true -> in_dom B a m' = true.
+
+ Definition MapSubset_1 (m:Map A) (m':Map B) :=
+ match MapSweep A (fun (a:ad) (_:A) => negb (in_dom B a m')) m with
+ | NONE => true
+ | _ => false
+ end.
+
+ Definition MapSubset_2 (m:Map A) (m':Map B) :=
+ eqmap A (MapDomRestrBy A B m m') (M0 A).
+
+ Lemma MapSubset_imp_1 :
+ forall (m:Map A) (m':Map B), MapSubset m m' -> MapSubset_1 m m' = true.
+ Proof.
+ unfold MapSubset, MapSubset_1 in |- *. intros.
+ elim
+ (option_sum _ (MapSweep A (fun (a:ad) (_:A) => negb (in_dom B a m')) m)).
+ intro H0. elim H0. intro r. elim r. intros a y H1. cut (negb (in_dom B a m') = true).
+ intro. cut (in_dom A a m = false). intro. unfold in_dom in H3.
+ rewrite (MapSweep_semantics_2 _ _ m a y H1) in H3. discriminate H3.
+ elim (sumbool_of_bool (in_dom A a m)). intro H3. rewrite (H a H3) in H2. discriminate H2.
+ trivial.
+ exact (MapSweep_semantics_1 _ _ m a y H1).
+ intro H0. rewrite H0. reflexivity.
+ Qed.
+
+ Lemma MapSubset_1_imp :
+ forall (m:Map A) (m':Map B), MapSubset_1 m m' = true -> MapSubset m m'.
+ Proof.
+ unfold MapSubset, MapSubset_1 in |- *. unfold in_dom at 2 in |- *. intros. elim (option_sum _ (MapGet A m a)).
+ intro H1. elim H1. intros y H2.
+ elim
+ (option_sum _ (MapSweep A (fun (a:ad) (_:A) => negb (in_dom B a m')) m)). intro H3.
+ elim H3. intro r. elim r. intros a' y' H4. rewrite H4 in H. discriminate H.
+ intro H3. cut (negb (in_dom B a m') = false). intro. rewrite (negb_intro (in_dom B a m')).
+ rewrite H4. reflexivity.
+ exact (MapSweep_semantics_3 _ _ m H3 a y H2).
+ intro H1. rewrite H1 in H0. discriminate H0.
+ Qed.
+
+ Lemma map_dom_empty_1 :
+ forall m:Map A, eqmap A m (M0 A) -> forall a:ad, in_dom _ a m = false.
+ Proof.
+ unfold eqmap, eqm, in_dom in |- *. intros. rewrite (H a). reflexivity.
+ Qed.
+
+ Lemma map_dom_empty_2 :
+ forall m:Map A, (forall a:ad, in_dom _ a m = false) -> eqmap A m (M0 A).
+ Proof.
+ unfold eqmap, eqm, in_dom in |- *. intros.
+ cut
+ (match MapGet A m a with
+ | NONE => false
+ | SOME _ => true
+ end = false).
+ case (MapGet A m a). trivial.
+ intros. discriminate H0.
+ exact (H a).
+ Qed.
+
+ Lemma MapSubset_imp_2 :
+ forall (m:Map A) (m':Map B), MapSubset m m' -> MapSubset_2 m m'.
+ Proof.
+ unfold MapSubset, MapSubset_2 in |- *. intros. apply map_dom_empty_2. intro. rewrite in_dom_restrby.
+ elim (sumbool_of_bool (in_dom A a m)). intro H0. rewrite H0. rewrite (H a H0). reflexivity.
+ intro H0. rewrite H0. reflexivity.
+ Qed.
+
+ Lemma MapSubset_2_imp :
+ forall (m:Map A) (m':Map B), MapSubset_2 m m' -> MapSubset m m'.
+ Proof.
+ unfold MapSubset, MapSubset_2 in |- *. intros. cut (in_dom _ a (MapDomRestrBy A B m m') = false).
+ rewrite in_dom_restrby. intro. elim (andb_false_elim _ _ H1). rewrite H0.
+ intro H2. discriminate H2.
+ intro H2. rewrite (negb_intro (in_dom B a m')). rewrite H2. reflexivity.
+ exact (map_dom_empty_1 _ H a).
+ Qed.
+
+End MapSubsetDef.
+
+Section MapSubsetOrder.
+
+ Variables A B C : Set.
+
+ Lemma MapSubset_refl : forall m:Map A, MapSubset A A m m.
+ Proof.
+ unfold MapSubset in |- *. trivial.
+ Qed.
+
+ Lemma MapSubset_antisym :
+ forall (m:Map A) (m':Map B),
+ MapSubset A B m m' ->
+ MapSubset B A m' m -> eqmap unit (MapDom A m) (MapDom B m').
+ Proof.
+ unfold MapSubset, eqmap, eqm in |- *. intros. elim (option_sum _ (MapGet _ (MapDom A m) a)).
+ intro H1. elim H1. intro t. elim t. intro H2. elim (option_sum _ (MapGet _ (MapDom B m') a)).
+ intro H3. elim H3. intro t'. elim t'. intro H4. rewrite H4. exact H2.
+ intro H3. cut (in_dom B a m' = true). intro. rewrite (MapDom_Dom B m' a) in H4.
+ unfold in_FSet, in_dom in H4. rewrite H3 in H4. discriminate H4.
+ apply H. rewrite (MapDom_Dom A m a). unfold in_FSet, in_dom in |- *. rewrite H2. reflexivity.
+ intro H1. elim (option_sum _ (MapGet _ (MapDom B m') a)). intro H2. elim H2. intros t H3.
+ cut (in_dom A a m = true). intro. rewrite (MapDom_Dom A m a) in H4. unfold in_FSet, in_dom in H4.
+ rewrite H1 in H4. discriminate H4.
+ apply H0. rewrite (MapDom_Dom B m' a). unfold in_FSet, in_dom in |- *. rewrite H3. reflexivity.
+ intro H2. rewrite H2. exact H1.
+ Qed.
+
+ Lemma MapSubset_trans :
+ forall (m:Map A) (m':Map B) (m'':Map C),
+ MapSubset A B m m' -> MapSubset B C m' m'' -> MapSubset A C m m''.
+ Proof.
+ unfold MapSubset in |- *. intros. apply H0. apply H. assumption.
+ Qed.
+
+End MapSubsetOrder.
+
+Section FSubsetOrder.
+
+ Lemma FSubset_refl : forall s:FSet, MapSubset _ _ s s.
+ Proof.
+ exact (MapSubset_refl unit).
+ Qed.
+
+ Lemma FSubset_antisym :
+ forall s s':FSet,
+ MapSubset _ _ s s' -> MapSubset _ _ s' s -> eqmap unit s s'.
+ Proof.
+ intros. rewrite <- (FSet_Dom s). rewrite <- (FSet_Dom s').
+ exact (MapSubset_antisym _ _ s s' H H0).
+ Qed.
+
+ Lemma FSubset_trans :
+ forall s s' s'':FSet,
+ MapSubset _ _ s s' -> MapSubset _ _ s' s'' -> MapSubset _ _ s s''.
+ Proof.
+ exact (MapSubset_trans unit unit unit).
+ Qed.
+
+End FSubsetOrder.
+
+Section MapSubsetExtra.
+
+ Variables A B : Set.
+
+ Lemma MapSubset_Dom_1 :
+ forall (m:Map A) (m':Map B),
+ MapSubset A B m m' -> MapSubset unit unit (MapDom A m) (MapDom B m').
+ Proof.
+ unfold MapSubset in |- *. intros. elim (MapDom_semantics_2 _ m a H0). intros y H1.
+ cut (in_dom A a m = true -> in_dom B a m' = true). intro. unfold in_dom in H2.
+ rewrite H1 in H2. elim (option_sum _ (MapGet B m' a)). intro H3. elim H3.
+ intros y' H4. exact (MapDom_semantics_1 _ m' a y' H4).
+ intro H3. rewrite H3 in H2. cut (false = true). intro. discriminate H4.
+ apply H2. reflexivity.
+ exact (H a).
+ Qed.
+
+ Lemma MapSubset_Dom_2 :
+ forall (m:Map A) (m':Map B),
+ MapSubset unit unit (MapDom A m) (MapDom B m') -> MapSubset A B m m'.
+ Proof.
+ unfold MapSubset in |- *. intros. unfold in_dom in H0. elim (option_sum _ (MapGet A m a)).
+ intro H1. elim H1. intros y H2.
+ elim (MapDom_semantics_2 _ _ _ (H a (MapDom_semantics_1 _ _ _ _ H2))). intros y' H3.
+ unfold in_dom in |- *. rewrite H3. reflexivity.
+ intro H1. rewrite H1 in H0. discriminate H0.
+ Qed.
+
+ Lemma MapSubset_1_Dom :
+ forall (m:Map A) (m':Map B),
+ MapSubset_1 A B m m' = MapSubset_1 unit unit (MapDom A m) (MapDom B m').
+ Proof.
+ intros. elim (sumbool_of_bool (MapSubset_1 A B m m')). intro H. rewrite H.
+ apply sym_eq. apply MapSubset_imp_1. apply MapSubset_Dom_1. exact (MapSubset_1_imp _ _ _ _ H).
+ intro H. rewrite H. elim (sumbool_of_bool (MapSubset_1 unit unit (MapDom A m) (MapDom B m'))).
+ intro H0.
+ rewrite
+ (MapSubset_imp_1 _ _ _ _
+ (MapSubset_Dom_2 _ _ (MapSubset_1_imp _ _ _ _ H0)))
+ in H.
+ discriminate H.
+ intro. apply sym_eq. assumption.
+ Qed.
+
+ Lemma MapSubset_Put :
+ forall (m:Map A) (a:ad) (y:A), MapSubset A A m (MapPut A m a y).
+ Proof.
+ unfold MapSubset in |- *. intros. rewrite in_dom_put. rewrite H. apply orb_b_true.
+ Qed.
+
+ Lemma MapSubset_Put_mono :
+ forall (m:Map A) (m':Map B) (a:ad) (y:A) (y':B),
+ MapSubset A B m m' -> MapSubset A B (MapPut A m a y) (MapPut B m' a y').
+ Proof.
+ unfold MapSubset in |- *. intros. rewrite in_dom_put. rewrite (in_dom_put A m a y a0) in H0.
+ elim (orb_true_elim _ _ H0). intro H1. rewrite H1. reflexivity.
+ intro H1. rewrite (H _ H1). apply orb_b_true.
+ Qed.
+
+ Lemma MapSubset_Put_behind :
+ forall (m:Map A) (a:ad) (y:A), MapSubset A A m (MapPut_behind A m a y).
+ Proof.
+ unfold MapSubset in |- *. intros. rewrite in_dom_put_behind. rewrite H. apply orb_b_true.
+ Qed.
+
+ Lemma MapSubset_Put_behind_mono :
+ forall (m:Map A) (m':Map B) (a:ad) (y:A) (y':B),
+ MapSubset A B m m' ->
+ MapSubset A B (MapPut_behind A m a y) (MapPut_behind B m' a y').
+ Proof.
+ unfold MapSubset in |- *. intros. rewrite in_dom_put_behind.
+ rewrite (in_dom_put_behind A m a y a0) in H0.
+ elim (orb_true_elim _ _ H0). intro H1. rewrite H1. reflexivity.
+ intro H1. rewrite (H _ H1). apply orb_b_true.
+ Qed.
+
+ Lemma MapSubset_Remove :
+ forall (m:Map A) (a:ad), MapSubset A A (MapRemove A m a) m.
+ Proof.
+ unfold MapSubset in |- *. intros. unfold MapSubset in |- *. intros. rewrite (in_dom_remove _ m a a0) in H.
+ elim (andb_prop _ _ H). trivial.
+ Qed.
+
+ Lemma MapSubset_Remove_mono :
+ forall (m:Map A) (m':Map B) (a:ad),
+ MapSubset A B m m' -> MapSubset A B (MapRemove A m a) (MapRemove B m' a).
+ Proof.
+ unfold MapSubset in |- *. intros. rewrite in_dom_remove. rewrite (in_dom_remove A m a a0) in H0.
+ elim (andb_prop _ _ H0). intros. rewrite H1. rewrite (H _ H2). reflexivity.
+ Qed.
+
+ Lemma MapSubset_Merge_l :
+ forall m m':Map A, MapSubset A A m (MapMerge A m m').
+ Proof.
+ unfold MapSubset in |- *. intros. rewrite in_dom_merge. rewrite H. reflexivity.
+ Qed.
+
+ Lemma MapSubset_Merge_r :
+ forall m m':Map A, MapSubset A A m' (MapMerge A m m').
+ Proof.
+ unfold MapSubset in |- *. intros. rewrite in_dom_merge. rewrite H. apply orb_b_true.
+ Qed.
+
+ Lemma MapSubset_Merge_mono :
+ forall (m m':Map A) (m'' m''':Map B),
+ MapSubset A B m m'' ->
+ MapSubset A B m' m''' ->
+ MapSubset A B (MapMerge A m m') (MapMerge B m'' m''').
+ Proof.
+ unfold MapSubset in |- *. intros. rewrite in_dom_merge. rewrite (in_dom_merge A m m' a) in H1.
+ elim (orb_true_elim _ _ H1). intro H2. rewrite (H _ H2). reflexivity.
+ intro H2. rewrite (H0 _ H2). apply orb_b_true.
+ Qed.
+
+ Lemma MapSubset_DomRestrTo_l :
+ forall (m:Map A) (m':Map B), MapSubset A A (MapDomRestrTo A B m m') m.
+ Proof.
+ unfold MapSubset in |- *. intros. rewrite (in_dom_restrto _ _ m m' a) in H. elim (andb_prop _ _ H).
+ trivial.
+ Qed.
+
+ Lemma MapSubset_DomRestrTo_r :
+ forall (m:Map A) (m':Map B), MapSubset A B (MapDomRestrTo A B m m') m'.
+ Proof.
+ unfold MapSubset in |- *. intros. rewrite (in_dom_restrto _ _ m m' a) in H. elim (andb_prop _ _ H).
+ trivial.
+ Qed.
+
+ Lemma MapSubset_ext :
+ forall (m0 m1:Map A) (m2 m3:Map B),
+ eqmap A m0 m1 ->
+ eqmap B m2 m3 -> MapSubset A B m0 m2 -> MapSubset A B m1 m3.
+ Proof.
+ intros. apply MapSubset_2_imp. unfold MapSubset_2 in |- *.
+ apply eqmap_trans with (m' := MapDomRestrBy A B m0 m2). apply MapDomRestrBy_ext. apply eqmap_sym.
+ assumption.
+ apply eqmap_sym. assumption.
+ exact (MapSubset_imp_2 _ _ _ _ H1).
+ Qed.
+
+ Variables C D : Set.
+
+ Lemma MapSubset_DomRestrTo_mono :
+ forall (m:Map A) (m':Map B) (m'':Map C) (m''':Map D),
+ MapSubset _ _ m m'' ->
+ MapSubset _ _ m' m''' ->
+ MapSubset _ _ (MapDomRestrTo _ _ m m') (MapDomRestrTo _ _ m'' m''').
+ Proof.
+ unfold MapSubset in |- *. intros. rewrite in_dom_restrto. rewrite (in_dom_restrto A B m m' a) in H1.
+ elim (andb_prop _ _ H1). intros. rewrite (H _ H2). rewrite (H0 _ H3). reflexivity.
+ Qed.
+
+ Lemma MapSubset_DomRestrBy_l :
+ forall (m:Map A) (m':Map B), MapSubset A A (MapDomRestrBy A B m m') m.
+ Proof.
+ unfold MapSubset in |- *. intros. rewrite (in_dom_restrby _ _ m m' a) in H. elim (andb_prop _ _ H).
+ trivial.
+ Qed.
+
+ Lemma MapSubset_DomRestrBy_mono :
+ forall (m:Map A) (m':Map B) (m'':Map C) (m''':Map D),
+ MapSubset _ _ m m'' ->
+ MapSubset _ _ m''' m' ->
+ MapSubset _ _ (MapDomRestrBy _ _ m m') (MapDomRestrBy _ _ m'' m''').
+ Proof.
+ unfold MapSubset in |- *. intros. rewrite in_dom_restrby. rewrite (in_dom_restrby A B m m' a) in H1.
+ elim (andb_prop _ _ H1). intros. rewrite (H _ H2). elim (sumbool_of_bool (in_dom D a m''')).
+ intro H4. rewrite (H0 _ H4) in H3. discriminate H3.
+ intro H4. rewrite H4. reflexivity.
+ Qed.
+
+End MapSubsetExtra.
+
+Section MapDisjointDef.
+
+ Variables A B : Set.
+
+ Definition MapDisjoint (m:Map A) (m':Map B) :=
+ forall a:ad, in_dom A a m = true -> in_dom B a m' = true -> False.
+
+ Definition MapDisjoint_1 (m:Map A) (m':Map B) :=
+ match MapSweep A (fun (a:ad) (_:A) => in_dom B a m') m with
+ | NONE => true
+ | _ => false
+ end.
+
+ Definition MapDisjoint_2 (m:Map A) (m':Map B) :=
+ eqmap A (MapDomRestrTo A B m m') (M0 A).
+
+ Lemma MapDisjoint_imp_1 :
+ forall (m:Map A) (m':Map B), MapDisjoint m m' -> MapDisjoint_1 m m' = true.
+ Proof.
+ unfold MapDisjoint, MapDisjoint_1 in |- *. intros.
+ elim (option_sum _ (MapSweep A (fun (a:ad) (_:A) => in_dom B a m') m)). intro H0. elim H0.
+ intro r. elim r. intros a y H1. cut (in_dom A a m = true -> in_dom B a m' = true -> False).
+ intro. unfold in_dom at 1 in H2. rewrite (MapSweep_semantics_2 _ _ _ _ _ H1) in H2.
+ rewrite (MapSweep_semantics_1 _ _ _ _ _ H1) in H2. elim (H2 (refl_equal _) (refl_equal _)).
+ exact (H a).
+ intro H0. rewrite H0. reflexivity.
+ Qed.
+
+ Lemma MapDisjoint_1_imp :
+ forall (m:Map A) (m':Map B), MapDisjoint_1 m m' = true -> MapDisjoint m m'.
+ Proof.
+ unfold MapDisjoint, MapDisjoint_1 in |- *. intros.
+ elim (option_sum _ (MapSweep A (fun (a:ad) (_:A) => in_dom B a m') m)). intro H2. elim H2.
+ intro r. elim r. intros a' y' H3. rewrite H3 in H. discriminate H.
+ intro H2. unfold in_dom in H0. elim (option_sum _ (MapGet A m a)). intro H3. elim H3.
+ intros y H4. rewrite (MapSweep_semantics_3 _ _ _ H2 a y H4) in H1. discriminate H1.
+ intro H3. rewrite H3 in H0. discriminate H0.
+ Qed.
+
+ Lemma MapDisjoint_imp_2 :
+ forall (m:Map A) (m':Map B), MapDisjoint m m' -> MapDisjoint_2 m m'.
+ Proof.
+ unfold MapDisjoint, MapDisjoint_2 in |- *. unfold eqmap, eqm in |- *. intros.
+ rewrite (MapDomRestrTo_semantics A B m m' a).
+ cut (in_dom A a m = true -> in_dom B a m' = true -> False). intro.
+ elim (option_sum _ (MapGet A m a)). intro H1. elim H1. intros y H2. unfold in_dom at 1 in H0.
+ elim (option_sum _ (MapGet B m' a)). intro H3. elim H3. intros y' H4. unfold in_dom at 1 in H0.
+ rewrite H4 in H0. rewrite H2 in H0. elim (H0 (refl_equal _) (refl_equal _)).
+ intro H3. rewrite H3. reflexivity.
+ intro H1. rewrite H1. case (MapGet B m' a); reflexivity.
+ exact (H a).
+ Qed.
+
+ Lemma MapDisjoint_2_imp :
+ forall (m:Map A) (m':Map B), MapDisjoint_2 m m' -> MapDisjoint m m'.
+ Proof.
+ unfold MapDisjoint, MapDisjoint_2 in |- *. unfold eqmap, eqm in |- *. intros. elim (in_dom_some _ _ _ H0).
+ intros y H2. elim (in_dom_some _ _ _ H1). intros y' H3.
+ cut (MapGet A (MapDomRestrTo A B m m') a = NONE A). intro.
+ rewrite (MapDomRestrTo_semantics _ _ m m' a) in H4. rewrite H3 in H4. rewrite H2 in H4.
+ discriminate H4.
+ exact (H a).
+ Qed.
+
+ Lemma Map_M0_disjoint : forall m:Map B, MapDisjoint (M0 A) m.
+ Proof.
+ unfold MapDisjoint, in_dom in |- *. intros. discriminate H.
+ Qed.
+
+ Lemma Map_disjoint_M0 : forall m:Map A, MapDisjoint m (M0 B).
+ Proof.
+ unfold MapDisjoint, in_dom in |- *. intros. discriminate H0.
+ Qed.
+
+End MapDisjointDef.
+
+Section MapDisjointExtra.
+
+ Variables A B : Set.
+
+ Lemma MapDisjoint_ext :
+ forall (m0 m1:Map A) (m2 m3:Map B),
+ eqmap A m0 m1 ->
+ eqmap B m2 m3 -> MapDisjoint A B m0 m2 -> MapDisjoint A B m1 m3.
+ Proof.
+ intros. apply MapDisjoint_2_imp. unfold MapDisjoint_2 in |- *.
+ apply eqmap_trans with (m' := MapDomRestrTo A B m0 m2). apply eqmap_sym. apply MapDomRestrTo_ext.
+ assumption.
+ assumption.
+ exact (MapDisjoint_imp_2 _ _ _ _ H1).
+ Qed.
+
+ Lemma MapMerge_disjoint :
+ forall m m':Map A,
+ MapDisjoint A A m m' ->
+ forall a:ad,
+ in_dom A a (MapMerge A m m') =
+ orb (andb (in_dom A a m) (negb (in_dom A a m')))
+ (andb (in_dom A a m') (negb (in_dom A a m))).
+ Proof.
+ unfold MapDisjoint in |- *. intros. rewrite in_dom_merge. elim (sumbool_of_bool (in_dom A a m)).
+ intro H0. rewrite H0. elim (sumbool_of_bool (in_dom A a m')). intro H1. elim (H a H0 H1).
+ intro H1. rewrite H1. reflexivity.
+ intro H0. rewrite H0. simpl in |- *. rewrite andb_b_true. reflexivity.
+ Qed.
+
+ Lemma MapDisjoint_M2_l :
+ forall (m0 m1:Map A) (m2 m3:Map B),
+ MapDisjoint A B (M2 A m0 m1) (M2 B m2 m3) -> MapDisjoint A B m0 m2.
+ Proof.
+ unfold MapDisjoint, in_dom in |- *. intros. elim (option_sum _ (MapGet A m0 a)). intro H2.
+ elim H2. intros y H3. elim (option_sum _ (MapGet B m2 a)). intro H4. elim H4.
+ intros y' H5. apply (H (ad_double a)).
+ rewrite (MapGet_M2_bit_0_0 _ (ad_double a) (ad_double_bit_0 a) m0 m1).
+ rewrite (ad_double_div_2 a). rewrite H3. reflexivity.
+ rewrite (MapGet_M2_bit_0_0 _ (ad_double a) (ad_double_bit_0 a) m2 m3).
+ rewrite (ad_double_div_2 a). rewrite H5. reflexivity.
+ intro H4. rewrite H4 in H1. discriminate H1.
+ intro H2. rewrite H2 in H0. discriminate H0.
+ Qed.
+
+ Lemma MapDisjoint_M2_r :
+ forall (m0 m1:Map A) (m2 m3:Map B),
+ MapDisjoint A B (M2 A m0 m1) (M2 B m2 m3) -> MapDisjoint A B m1 m3.
+ Proof.
+ unfold MapDisjoint, in_dom in |- *. intros. elim (option_sum _ (MapGet A m1 a)). intro H2.
+ elim H2. intros y H3. elim (option_sum _ (MapGet B m3 a)). intro H4. elim H4.
+ intros y' H5. apply (H (ad_double_plus_un a)).
+ rewrite
+ (MapGet_M2_bit_0_1 _ (ad_double_plus_un a) (ad_double_plus_un_bit_0 a)
+ m0 m1).
+ rewrite (ad_double_plus_un_div_2 a). rewrite H3. reflexivity.
+ rewrite
+ (MapGet_M2_bit_0_1 _ (ad_double_plus_un a) (ad_double_plus_un_bit_0 a)
+ m2 m3).
+ rewrite (ad_double_plus_un_div_2 a). rewrite H5. reflexivity.
+ intro H4. rewrite H4 in H1. discriminate H1.
+ intro H2. rewrite H2 in H0. discriminate H0.
+ Qed.
+
+ Lemma MapDisjoint_M2 :
+ forall (m0 m1:Map A) (m2 m3:Map B),
+ MapDisjoint A B m0 m2 ->
+ MapDisjoint A B m1 m3 -> MapDisjoint A B (M2 A m0 m1) (M2 B m2 m3).
+ Proof.
+ unfold MapDisjoint, in_dom in |- *. intros. elim (sumbool_of_bool (ad_bit_0 a)). intro H3.
+ rewrite (MapGet_M2_bit_0_1 A a H3 m0 m1) in H1.
+ rewrite (MapGet_M2_bit_0_1 B a H3 m2 m3) in H2. exact (H0 (ad_div_2 a) H1 H2).
+ intro H3. rewrite (MapGet_M2_bit_0_0 A a H3 m0 m1) in H1.
+ rewrite (MapGet_M2_bit_0_0 B a H3 m2 m3) in H2. exact (H (ad_div_2 a) H1 H2).
+ Qed.
+
+ Lemma MapDisjoint_M1_l :
+ forall (m:Map A) (a:ad) (y:B),
+ MapDisjoint B A (M1 B a y) m -> in_dom A a m = false.
+ Proof.
+ unfold MapDisjoint in |- *. intros. elim (sumbool_of_bool (in_dom A a m)). intro H0.
+ elim (H a (in_dom_M1_1 B a y) H0).
+ trivial.
+ Qed.
+
+ Lemma MapDisjoint_M1_r :
+ forall (m:Map A) (a:ad) (y:B),
+ MapDisjoint A B m (M1 B a y) -> in_dom A a m = false.
+ Proof.
+ unfold MapDisjoint in |- *. intros. elim (sumbool_of_bool (in_dom A a m)). intro H0.
+ elim (H a H0 (in_dom_M1_1 B a y)).
+ trivial.
+ Qed.
+
+ Lemma MapDisjoint_M1_conv_l :
+ forall (m:Map A) (a:ad) (y:B),
+ in_dom A a m = false -> MapDisjoint B A (M1 B a y) m.
+ Proof.
+ unfold MapDisjoint in |- *. intros. rewrite (in_dom_M1_2 B a a0 y H0) in H. rewrite H1 in H.
+ discriminate H.
+ Qed.
+
+ Lemma MapDisjoint_M1_conv_r :
+ forall (m:Map A) (a:ad) (y:B),
+ in_dom A a m = false -> MapDisjoint A B m (M1 B a y).
+ Proof.
+ unfold MapDisjoint in |- *. intros. rewrite (in_dom_M1_2 B a a0 y H1) in H. rewrite H0 in H.
+ discriminate H.
+ Qed.
+
+ Lemma MapDisjoint_sym :
+ forall (m:Map A) (m':Map B), MapDisjoint A B m m' -> MapDisjoint B A m' m.
+ Proof.
+ unfold MapDisjoint in |- *. intros. exact (H _ H1 H0).
+ Qed.
+
+ Lemma MapDisjoint_empty :
+ forall m:Map A, MapDisjoint A A m m -> eqmap A m (M0 A).
+ Proof.
+ unfold eqmap, eqm in |- *. intros. rewrite <- (MapDomRestrTo_idempotent A m a).
+ exact (MapDisjoint_imp_2 A A m m H a).
+ Qed.
+
+ Lemma MapDelta_disjoint :
+ forall m m':Map A,
+ MapDisjoint A A m m' -> eqmap A (MapDelta A m m') (MapMerge A m m').
+ Proof.
+ intros.
+ apply eqmap_trans with
+ (m' := MapDomRestrBy A A (MapMerge A m m') (MapDomRestrTo A A m m')).
+ apply MapDelta_as_DomRestrBy.
+ apply eqmap_trans with (m' := MapDomRestrBy A A (MapMerge A m m') (M0 A)).
+ apply MapDomRestrBy_ext. apply eqmap_refl.
+ exact (MapDisjoint_imp_2 A A m m' H).
+ apply MapDomRestrBy_m_empty.
+ Qed.
+
+ Variable C : Set.
+
+ Lemma MapDomRestr_disjoint :
+ forall (m:Map A) (m':Map B) (m'':Map C),
+ MapDisjoint A B (MapDomRestrTo A C m m'') (MapDomRestrBy B C m' m'').
+ Proof.
+ unfold MapDisjoint in |- *. intros m m' m'' a. rewrite in_dom_restrto. rewrite in_dom_restrby.
+ intros. elim (andb_prop _ _ H). elim (andb_prop _ _ H0). intros. rewrite H4 in H2.
+ discriminate H2.
+ Qed.
+
+ Lemma MapDelta_RestrTo_disjoint :
+ forall m m':Map A,
+ MapDisjoint A A (MapDelta A m m') (MapDomRestrTo A A m m').
+ Proof.
+ unfold MapDisjoint in |- *. intros m m' a. rewrite in_dom_delta. rewrite in_dom_restrto.
+ intros. elim (andb_prop _ _ H0). intros. rewrite H1 in H. rewrite H2 in H. discriminate H.
+ Qed.
+
+ Lemma MapDelta_RestrTo_disjoint_2 :
+ forall m m':Map A,
+ MapDisjoint A A (MapDelta A m m') (MapDomRestrTo A A m' m).
+ Proof.
+ unfold MapDisjoint in |- *. intros m m' a. rewrite in_dom_delta. rewrite in_dom_restrto.
+ intros. elim (andb_prop _ _ H0). intros. rewrite H1 in H. rewrite H2 in H. discriminate H.
+ Qed.
+
+ Variable D : Set.
+
+ Lemma MapSubset_Disjoint :
+ forall (m:Map A) (m':Map B) (m'':Map C) (m''':Map D),
+ MapSubset _ _ m m' ->
+ MapSubset _ _ m'' m''' ->
+ MapDisjoint _ _ m' m''' -> MapDisjoint _ _ m m''.
+ Proof.
+ unfold MapSubset, MapDisjoint in |- *. intros. exact (H1 _ (H _ H2) (H0 _ H3)).
+ Qed.
+
+ Lemma MapSubset_Disjoint_l :
+ forall (m:Map A) (m':Map B) (m'':Map C),
+ MapSubset _ _ m m' -> MapDisjoint _ _ m' m'' -> MapDisjoint _ _ m m''.
+ Proof.
+ unfold MapSubset, MapDisjoint in |- *. intros. exact (H0 _ (H _ H1) H2).
+ Qed.
+
+ Lemma MapSubset_Disjoint_r :
+ forall (m:Map A) (m'':Map C) (m''':Map D),
+ MapSubset _ _ m'' m''' ->
+ MapDisjoint _ _ m m''' -> MapDisjoint _ _ m m''.
+ Proof.
+ unfold MapSubset, MapDisjoint in |- *. intros. exact (H0 _ H1 (H _ H2)).
+ Qed.
+
+End MapDisjointExtra. \ No newline at end of file
diff --git a/theories/IntMap/intro.tex b/theories/IntMap/intro.tex
new file mode 100644
index 00000000..9ad93050
--- /dev/null
+++ b/theories/IntMap/intro.tex
@@ -0,0 +1,6 @@
+\section{Maps indexed by binary integers : IntMap}\label{IntMap}
+
+This library contains a data structure for finite sets implemented by
+an efficient structure of map (trees indexed by binary integers).
+It was initially developed by Jean Goubault.
+