summaryrefslogtreecommitdiff
path: root/theories/IntMap/Lsort.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/IntMap/Lsort.v')
-rw-r--r--theories/IntMap/Lsort.v628
1 files changed, 628 insertions, 0 deletions
diff --git a/theories/IntMap/Lsort.v b/theories/IntMap/Lsort.v
new file mode 100644
index 00000000..48972872
--- /dev/null
+++ b/theories/IntMap/Lsort.v
@@ -0,0 +1,628 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(*i $Id: Lsort.v,v 1.4.2.1 2004/07/16 19:31:04 herbelin Exp $ i*)
+
+Require Import Bool.
+Require Import Sumbool.
+Require Import Arith.
+Require Import ZArith.
+Require Import Addr.
+Require Import Adist.
+Require Import Addec.
+Require Import Map.
+Require Import List.
+Require Import Mapiter.
+
+Section LSort.
+
+ Variable A : Set.
+
+ Fixpoint ad_less_1 (a a':ad) (p:positive) {struct p} : bool :=
+ match p with
+ | xO p' => ad_less_1 (ad_div_2 a) (ad_div_2 a') p'
+ | _ => andb (negb (ad_bit_0 a)) (ad_bit_0 a')
+ end.
+
+ Definition ad_less (a a':ad) :=
+ match ad_xor a a' with
+ | ad_z => false
+ | ad_x p => ad_less_1 a a' p
+ end.
+
+ Lemma ad_bit_0_less :
+ forall a a':ad,
+ ad_bit_0 a = false -> ad_bit_0 a' = true -> ad_less a a' = true.
+ Proof.
+ intros. elim (ad_sum (ad_xor a a')). intro H1. elim H1. intros p H2. unfold ad_less in |- *.
+ rewrite H2. generalize H2. elim p. intros. simpl in |- *. rewrite H. rewrite H0. reflexivity.
+ intros. cut (ad_bit_0 (ad_xor a a') = false). intro. rewrite (ad_xor_bit_0 a a') in H5.
+ rewrite H in H5. rewrite H0 in H5. discriminate H5.
+ rewrite H4. reflexivity.
+ intro. simpl in |- *. rewrite H. rewrite H0. reflexivity.
+ intro H1. cut (ad_bit_0 (ad_xor a a') = false). intro. rewrite (ad_xor_bit_0 a a') in H2.
+ rewrite H in H2. rewrite H0 in H2. discriminate H2.
+ rewrite H1. reflexivity.
+ Qed.
+
+ Lemma ad_bit_0_gt :
+ forall a a':ad,
+ ad_bit_0 a = true -> ad_bit_0 a' = false -> ad_less a a' = false.
+ Proof.
+ intros. elim (ad_sum (ad_xor a a')). intro H1. elim H1. intros p H2. unfold ad_less in |- *.
+ rewrite H2. generalize H2. elim p. intros. simpl in |- *. rewrite H. rewrite H0. reflexivity.
+ intros. cut (ad_bit_0 (ad_xor a a') = false). intro. rewrite (ad_xor_bit_0 a a') in H5.
+ rewrite H in H5. rewrite H0 in H5. discriminate H5.
+ rewrite H4. reflexivity.
+ intro. simpl in |- *. rewrite H. rewrite H0. reflexivity.
+ intro H1. unfold ad_less in |- *. rewrite H1. reflexivity.
+ Qed.
+
+ Lemma ad_less_not_refl : forall a:ad, ad_less a a = false.
+ Proof.
+ intro. unfold ad_less in |- *. rewrite (ad_xor_nilpotent a). reflexivity.
+ Qed.
+
+ Lemma ad_ind_double :
+ forall (a:ad) (P:ad -> Prop),
+ P ad_z ->
+ (forall a:ad, P a -> P (ad_double a)) ->
+ (forall a:ad, P a -> P (ad_double_plus_un a)) -> P a.
+ Proof.
+ intros; elim a. trivial.
+ simple induction p. intros.
+ apply (H1 (ad_x p0)); trivial.
+ intros; apply (H0 (ad_x p0)); trivial.
+ intros; apply (H1 ad_z); assumption.
+ Qed.
+
+ Lemma ad_rec_double :
+ forall (a:ad) (P:ad -> Set),
+ P ad_z ->
+ (forall a:ad, P a -> P (ad_double a)) ->
+ (forall a:ad, P a -> P (ad_double_plus_un a)) -> P a.
+ Proof.
+ intros; elim a. trivial.
+ simple induction p. intros.
+ apply (H1 (ad_x p0)); trivial.
+ intros; apply (H0 (ad_x p0)); trivial.
+ intros; apply (H1 ad_z); assumption.
+ Qed.
+
+ Lemma ad_less_def_1 :
+ forall a a':ad, ad_less (ad_double a) (ad_double a') = ad_less a a'.
+ Proof.
+ simple induction a. simple induction a'. reflexivity.
+ trivial.
+ simple induction a'. unfold ad_less in |- *. simpl in |- *. elim p; trivial.
+ unfold ad_less in |- *. simpl in |- *. intro. case (p_xor p p0). reflexivity.
+ trivial.
+ Qed.
+
+ Lemma ad_less_def_2 :
+ forall a a':ad,
+ ad_less (ad_double_plus_un a) (ad_double_plus_un a') = ad_less a a'.
+ Proof.
+ simple induction a. simple induction a'. reflexivity.
+ trivial.
+ simple induction a'. unfold ad_less in |- *. simpl in |- *. elim p; trivial.
+ unfold ad_less in |- *. simpl in |- *. intro. case (p_xor p p0). reflexivity.
+ trivial.
+ Qed.
+
+ Lemma ad_less_def_3 :
+ forall a a':ad, ad_less (ad_double a) (ad_double_plus_un a') = true.
+ Proof.
+ intros. apply ad_bit_0_less. apply ad_double_bit_0.
+ apply ad_double_plus_un_bit_0.
+ Qed.
+
+ Lemma ad_less_def_4 :
+ forall a a':ad, ad_less (ad_double_plus_un a) (ad_double a') = false.
+ Proof.
+ intros. apply ad_bit_0_gt. apply ad_double_plus_un_bit_0.
+ apply ad_double_bit_0.
+ Qed.
+
+ Lemma ad_less_z : forall a:ad, ad_less a ad_z = false.
+ Proof.
+ simple induction a. reflexivity.
+ unfold ad_less in |- *. intro. rewrite (ad_xor_neutral_right (ad_x p)). elim p; trivial.
+ Qed.
+
+ Lemma ad_z_less_1 :
+ forall a:ad, ad_less ad_z a = true -> {p : positive | a = ad_x p}.
+ Proof.
+ simple induction a. intro. discriminate H.
+ intros. split with p. reflexivity.
+ Qed.
+
+ Lemma ad_z_less_2 : forall a:ad, ad_less ad_z a = false -> a = ad_z.
+ Proof.
+ simple induction a. trivial.
+ unfold ad_less in |- *. simpl in |- *. cut (forall p:positive, ad_less_1 ad_z (ad_x p) p = false -> False).
+ intros. elim (H p H0).
+ simple induction p. intros. discriminate H0.
+ intros. exact (H H0).
+ intro. discriminate H.
+ Qed.
+
+ Lemma ad_less_trans :
+ forall a a' a'':ad,
+ ad_less a a' = true -> ad_less a' a'' = true -> ad_less a a'' = true.
+ Proof.
+ intro a. apply ad_ind_double with
+ (P := fun a:ad =>
+ forall a' a'':ad,
+ ad_less a a' = true ->
+ ad_less a' a'' = true -> ad_less a a'' = true).
+ intros. elim (sumbool_of_bool (ad_less ad_z a'')). trivial.
+ intro H1. rewrite (ad_z_less_2 a'' H1) in H0. rewrite (ad_less_z a') in H0. discriminate H0.
+ intros a0 H a'. apply ad_ind_double with
+ (P := fun a':ad =>
+ forall a'':ad,
+ ad_less (ad_double a0) a' = true ->
+ ad_less a' a'' = true -> ad_less (ad_double a0) a'' = true).
+ intros. rewrite (ad_less_z (ad_double a0)) in H0. discriminate H0.
+ intros a1 H0 a'' H1. rewrite (ad_less_def_1 a0 a1) in H1.
+ apply ad_ind_double with
+ (P := fun a'':ad =>
+ ad_less (ad_double a1) a'' = true ->
+ ad_less (ad_double a0) a'' = true).
+ intro. rewrite (ad_less_z (ad_double a1)) in H2. discriminate H2.
+ intros. rewrite (ad_less_def_1 a1 a2) in H3. rewrite (ad_less_def_1 a0 a2).
+ exact (H a1 a2 H1 H3).
+ intros. apply ad_less_def_3.
+ intros a1 H0 a'' H1. apply ad_ind_double with
+ (P := fun a'':ad =>
+ ad_less (ad_double_plus_un a1) a'' = true ->
+ ad_less (ad_double a0) a'' = true).
+ intro. rewrite (ad_less_z (ad_double_plus_un a1)) in H2. discriminate H2.
+ intros. rewrite (ad_less_def_4 a1 a2) in H3. discriminate H3.
+ intros. apply ad_less_def_3.
+ intros a0 H a'. apply ad_ind_double with
+ (P := fun a':ad =>
+ forall a'':ad,
+ ad_less (ad_double_plus_un a0) a' = true ->
+ ad_less a' a'' = true ->
+ ad_less (ad_double_plus_un a0) a'' = true).
+ intros. rewrite (ad_less_z (ad_double_plus_un a0)) in H0. discriminate H0.
+ intros. rewrite (ad_less_def_4 a0 a1) in H1. discriminate H1.
+ intros a1 H0 a'' H1. apply ad_ind_double with
+ (P := fun a'':ad =>
+ ad_less (ad_double_plus_un a1) a'' = true ->
+ ad_less (ad_double_plus_un a0) a'' = true).
+ intro. rewrite (ad_less_z (ad_double_plus_un a1)) in H2. discriminate H2.
+ intros. rewrite (ad_less_def_4 a1 a2) in H3. discriminate H3.
+ rewrite (ad_less_def_2 a0 a1) in H1. intros. rewrite (ad_less_def_2 a1 a2) in H3.
+ rewrite (ad_less_def_2 a0 a2). exact (H a1 a2 H1 H3).
+ Qed.
+
+ Fixpoint alist_sorted (l:alist A) : bool :=
+ match l with
+ | nil => true
+ | (a, _) :: l' =>
+ match l' with
+ | nil => true
+ | (a', y') :: l'' => andb (ad_less a a') (alist_sorted l')
+ end
+ end.
+
+ Fixpoint alist_nth_ad (n:nat) (l:alist A) {struct l} : ad :=
+ match l with
+ | nil => ad_z (* dummy *)
+ | (a, y) :: l' => match n with
+ | O => a
+ | S n' => alist_nth_ad n' l'
+ end
+ end.
+
+ Definition alist_sorted_1 (l:alist A) :=
+ forall n:nat,
+ S (S n) <= length l ->
+ ad_less (alist_nth_ad n l) (alist_nth_ad (S n) l) = true.
+
+ Lemma alist_sorted_imp_1 :
+ forall l:alist A, alist_sorted l = true -> alist_sorted_1 l.
+ Proof.
+ unfold alist_sorted_1 in |- *. simple induction l. intros. elim (le_Sn_O (S n) H0).
+ intro r. elim r. intros a y. simple induction l0. intros. simpl in H1.
+ elim (le_Sn_O n (le_S_n (S n) 0 H1)).
+ intro r0. elim r0. intros a0 y0. simple induction n. intros. simpl in |- *. simpl in H1.
+ exact (proj1 (andb_prop _ _ H1)).
+ intros. change
+ (ad_less (alist_nth_ad n0 ((a0, y0) :: l1))
+ (alist_nth_ad (S n0) ((a0, y0) :: l1)) = true)
+ in |- *.
+ apply H0. exact (proj2 (andb_prop _ _ H1)).
+ apply le_S_n. exact H3.
+ Qed.
+
+ Definition alist_sorted_2 (l:alist A) :=
+ forall m n:nat,
+ m < n ->
+ S n <= length l -> ad_less (alist_nth_ad m l) (alist_nth_ad n l) = true.
+
+ Lemma alist_sorted_1_imp_2 :
+ forall l:alist A, alist_sorted_1 l -> alist_sorted_2 l.
+ Proof.
+ unfold alist_sorted_1, alist_sorted_2, lt in |- *. intros l H m n H0. elim H0. exact (H m).
+ intros. apply ad_less_trans with (a' := alist_nth_ad m0 l). apply H2. apply le_Sn_le.
+ assumption.
+ apply H. assumption.
+ Qed.
+
+ Lemma alist_sorted_2_imp :
+ forall l:alist A, alist_sorted_2 l -> alist_sorted l = true.
+ Proof.
+ unfold alist_sorted_2, lt in |- *. simple induction l. trivial.
+ intro r. elim r. intros a y. simple induction l0. trivial.
+ intro r0. elim r0. intros a0 y0. intros.
+ change (andb (ad_less a a0) (alist_sorted ((a0, y0) :: l1)) = true)
+ in |- *.
+ apply andb_true_intro. split. apply (H1 0 1). apply le_n.
+ simpl in |- *. apply le_n_S. apply le_n_S. apply le_O_n.
+ apply H0. intros. apply (H1 (S m) (S n)). apply le_n_S. assumption.
+ exact (le_n_S _ _ H3).
+ Qed.
+
+ Lemma app_length :
+ forall (C:Set) (l l':list C), length (l ++ l') = length l + length l'.
+ Proof.
+ simple induction l. trivial.
+ intros. simpl in |- *. rewrite (H l'). reflexivity.
+ Qed.
+
+ Lemma aapp_length :
+ forall l l':alist A, length (aapp A l l') = length l + length l'.
+ Proof.
+ exact (app_length (ad * A)).
+ Qed.
+
+ Lemma alist_nth_ad_aapp_1 :
+ forall (l l':alist A) (n:nat),
+ S n <= length l -> alist_nth_ad n (aapp A l l') = alist_nth_ad n l.
+ Proof.
+ simple induction l. intros. elim (le_Sn_O n H).
+ intro r. elim r. intros a y l' H l''. simple induction n. trivial.
+ intros. simpl in |- *. apply H. apply le_S_n. exact H1.
+ Qed.
+
+ Lemma alist_nth_ad_aapp_2 :
+ forall (l l':alist A) (n:nat),
+ S n <= length l' ->
+ alist_nth_ad (length l + n) (aapp A l l') = alist_nth_ad n l'.
+ Proof.
+ simple induction l. trivial.
+ intro r. elim r. intros a y l' H l'' n H0. simpl in |- *. apply H. exact H0.
+ Qed.
+
+ Lemma interval_split :
+ forall p q n:nat,
+ S n <= p + q -> {n' : nat | S n' <= q /\ n = p + n'} + {S n <= p}.
+ Proof.
+ simple induction p. simpl in |- *. intros. left. split with n. split; [ assumption | reflexivity ].
+ intros p' H q. simple induction n. intros. right. apply le_n_S. apply le_O_n.
+ intros. elim (H _ _ (le_S_n _ _ H1)). intro H2. left. elim H2. intros n' H3.
+ elim H3. intros H4 H5. split with n'. split; [ assumption | rewrite H5; reflexivity ].
+ intro H2. right. apply le_n_S. assumption.
+ Qed.
+
+ Lemma alist_conc_sorted :
+ forall l l':alist A,
+ alist_sorted_2 l ->
+ alist_sorted_2 l' ->
+ (forall n n':nat,
+ S n <= length l ->
+ S n' <= length l' ->
+ ad_less (alist_nth_ad n l) (alist_nth_ad n' l') = true) ->
+ alist_sorted_2 (aapp A l l').
+ Proof.
+ unfold alist_sorted_2, lt in |- *. intros. rewrite (aapp_length l l') in H3.
+ elim
+ (interval_split (length l) (length l') m
+ (le_trans _ _ _ (le_n_S _ _ (lt_le_weak m n H2)) H3)).
+ intro H4. elim H4. intros m' H5. elim H5. intros. rewrite H7.
+ rewrite (alist_nth_ad_aapp_2 l l' m' H6). elim (interval_split (length l) (length l') n H3).
+ intro H8. elim H8. intros n' H9. elim H9. intros. rewrite H11.
+ rewrite (alist_nth_ad_aapp_2 l l' n' H10). apply H0. rewrite H7 in H2. rewrite H11 in H2.
+ change (S (length l) + m' <= length l + n') in H2.
+ rewrite (plus_Snm_nSm (length l) m') in H2. exact ((fun p n m:nat => plus_le_reg_l n m p) (length l) (S m') n' H2).
+ exact H10.
+ intro H8. rewrite H7 in H2. cut (S (length l) <= length l). intros. elim (le_Sn_n _ H9).
+ apply le_trans with (m := S n). apply le_n_S. apply le_trans with (m := S (length l + m')).
+ apply le_trans with (m := length l + m'). apply le_plus_l.
+ apply le_n_Sn.
+ exact H2.
+ exact H8.
+ intro H4. rewrite (alist_nth_ad_aapp_1 l l' m H4).
+ elim (interval_split (length l) (length l') n H3). intro H5. elim H5. intros n' H6. elim H6.
+ intros. rewrite H8. rewrite (alist_nth_ad_aapp_2 l l' n' H7). exact (H1 m n' H4 H7).
+ intro H5. rewrite (alist_nth_ad_aapp_1 l l' n H5). exact (H m n H2 H5).
+ Qed.
+
+ Lemma alist_nth_ad_semantics :
+ forall (l:alist A) (n:nat),
+ S n <= length l ->
+ {y : A | alist_semantics A l (alist_nth_ad n l) = SOME A y}.
+ Proof.
+ simple induction l. intros. elim (le_Sn_O _ H).
+ intro r. elim r. intros a y l0 H. simple induction n. simpl in |- *. intro. split with y.
+ rewrite (ad_eq_correct a). reflexivity.
+ intros. elim (H _ (le_S_n _ _ H1)). intros y0 H2.
+ elim (sumbool_of_bool (ad_eq a (alist_nth_ad n0 l0))). intro H3. split with y.
+ rewrite (ad_eq_complete _ _ H3). simpl in |- *. rewrite (ad_eq_correct (alist_nth_ad n0 l0)).
+ reflexivity.
+ intro H3. split with y0. simpl in |- *. rewrite H3. assumption.
+ Qed.
+
+ Lemma alist_of_Map_nth_ad :
+ forall (m:Map A) (pf:ad -> ad) (l:alist A),
+ l =
+ MapFold1 A (alist A) (anil A) (aapp A)
+ (fun (a0:ad) (y:A) => acons A (a0, y) (anil A)) pf m ->
+ forall n:nat, S n <= length l -> {a' : ad | alist_nth_ad n l = pf a'}.
+ Proof.
+ intros. elim (alist_nth_ad_semantics l n H0). intros y H1.
+ apply (alist_of_Map_semantics_1_1 A m pf (alist_nth_ad n l) y).
+ rewrite <- H. assumption.
+ Qed.
+
+ Definition ad_monotonic (pf:ad -> ad) :=
+ forall a a':ad, ad_less a a' = true -> ad_less (pf a) (pf a') = true.
+
+ Lemma ad_double_monotonic : ad_monotonic ad_double.
+ Proof.
+ unfold ad_monotonic in |- *. intros. rewrite ad_less_def_1. assumption.
+ Qed.
+
+ Lemma ad_double_plus_un_monotonic : ad_monotonic ad_double_plus_un.
+ Proof.
+ unfold ad_monotonic in |- *. intros. rewrite ad_less_def_2. assumption.
+ Qed.
+
+ Lemma ad_comp_monotonic :
+ forall pf pf':ad -> ad,
+ ad_monotonic pf ->
+ ad_monotonic pf' -> ad_monotonic (fun a0:ad => pf (pf' a0)).
+ Proof.
+ unfold ad_monotonic in |- *. intros. apply H. apply H0. exact H1.
+ Qed.
+
+ Lemma ad_comp_double_monotonic :
+ forall pf:ad -> ad,
+ ad_monotonic pf -> ad_monotonic (fun a0:ad => pf (ad_double a0)).
+ Proof.
+ intros. apply ad_comp_monotonic. assumption.
+ exact ad_double_monotonic.
+ Qed.
+
+ Lemma ad_comp_double_plus_un_monotonic :
+ forall pf:ad -> ad,
+ ad_monotonic pf -> ad_monotonic (fun a0:ad => pf (ad_double_plus_un a0)).
+ Proof.
+ intros. apply ad_comp_monotonic. assumption.
+ exact ad_double_plus_un_monotonic.
+ Qed.
+
+ Lemma alist_of_Map_sorts_1 :
+ forall (m:Map A) (pf:ad -> ad),
+ ad_monotonic pf ->
+ alist_sorted_2
+ (MapFold1 A (alist A) (anil A) (aapp A)
+ (fun (a:ad) (y:A) => acons A (a, y) (anil A)) pf m).
+ Proof.
+ simple induction m. simpl in |- *. intros. apply alist_sorted_1_imp_2. apply alist_sorted_imp_1. reflexivity.
+ intros. simpl in |- *. apply alist_sorted_1_imp_2. apply alist_sorted_imp_1. reflexivity.
+ intros. simpl in |- *. apply alist_conc_sorted.
+ exact
+ (H (fun a0:ad => pf (ad_double a0)) (ad_comp_double_monotonic pf H1)).
+ exact
+ (H0 (fun a0:ad => pf (ad_double_plus_un a0))
+ (ad_comp_double_plus_un_monotonic pf H1)).
+ intros. elim
+ (alist_of_Map_nth_ad m0 (fun a0:ad => pf (ad_double a0))
+ (MapFold1 A (alist A) (anil A) (aapp A)
+ (fun (a0:ad) (y:A) => acons A (a0, y) (anil A))
+ (fun a0:ad => pf (ad_double a0)) m0) (refl_equal _) n H2).
+ intros a H4. rewrite H4. elim
+ (alist_of_Map_nth_ad m1 (fun a0:ad => pf (ad_double_plus_un a0))
+ (MapFold1 A (alist A) (anil A) (aapp A)
+ (fun (a0:ad) (y:A) => acons A (a0, y) (anil A))
+ (fun a0:ad => pf (ad_double_plus_un a0)) m1) (
+ refl_equal _) n' H3).
+ intros a' H5. rewrite H5. unfold ad_monotonic in H1. apply H1. apply ad_less_def_3.
+ Qed.
+
+ Lemma alist_of_Map_sorts :
+ forall m:Map A, alist_sorted (alist_of_Map A m) = true.
+ Proof.
+ intro. apply alist_sorted_2_imp.
+ exact
+ (alist_of_Map_sorts_1 m (fun a0:ad => a0)
+ (fun (a a':ad) (p:ad_less a a' = true) => p)).
+ Qed.
+
+ Lemma alist_of_Map_sorts1 :
+ forall m:Map A, alist_sorted_1 (alist_of_Map A m).
+ Proof.
+ intro. apply alist_sorted_imp_1. apply alist_of_Map_sorts.
+ Qed.
+
+ Lemma alist_of_Map_sorts2 :
+ forall m:Map A, alist_sorted_2 (alist_of_Map A m).
+ Proof.
+ intro. apply alist_sorted_1_imp_2. apply alist_of_Map_sorts1.
+ Qed.
+
+ Lemma ad_less_total :
+ forall a a':ad, {ad_less a a' = true} + {ad_less a' a = true} + {a = a'}.
+ Proof.
+ intro a. refine
+ (ad_rec_double a
+ (fun a:ad =>
+ forall a':ad,
+ {ad_less a a' = true} + {ad_less a' a = true} + {a = a'}) _ _ _).
+ intro. elim (sumbool_of_bool (ad_less ad_z a')). intro H. left. left. assumption.
+ intro H. right. rewrite (ad_z_less_2 a' H). reflexivity.
+ intros a0 H a'. refine
+ (ad_rec_double a'
+ (fun a':ad =>
+ {ad_less (ad_double a0) a' = true} +
+ {ad_less a' (ad_double a0) = true} + {ad_double a0 = a'}) _ _ _).
+ elim (sumbool_of_bool (ad_less ad_z (ad_double a0))). intro H0. left. right. assumption.
+ intro H0. right. exact (ad_z_less_2 _ H0).
+ intros a1 H0. rewrite ad_less_def_1. rewrite ad_less_def_1. elim (H a1). intro H1.
+ left. assumption.
+ intro H1. right. rewrite H1. reflexivity.
+ intros a1 H0. left. left. apply ad_less_def_3.
+ intros a0 H a'. refine
+ (ad_rec_double a'
+ (fun a':ad =>
+ {ad_less (ad_double_plus_un a0) a' = true} +
+ {ad_less a' (ad_double_plus_un a0) = true} +
+ {ad_double_plus_un a0 = a'}) _ _ _).
+ left. right. case a0; reflexivity.
+ intros a1 H0. left. right. apply ad_less_def_3.
+ intros a1 H0. rewrite ad_less_def_2. rewrite ad_less_def_2. elim (H a1). intro H1.
+ left. assumption.
+ intro H1. right. rewrite H1. reflexivity.
+ Qed.
+
+ Lemma alist_too_low :
+ forall (l:alist A) (a a':ad) (y:A),
+ ad_less a a' = true ->
+ alist_sorted_2 ((a', y) :: l) ->
+ alist_semantics A ((a', y) :: l) a = NONE A.
+ Proof.
+ simple induction l. intros. simpl in |- *. elim (sumbool_of_bool (ad_eq a' a)). intro H1.
+ rewrite (ad_eq_complete _ _ H1) in H. rewrite (ad_less_not_refl a) in H. discriminate H.
+ intro H1. rewrite H1. reflexivity.
+ intro r. elim r. intros a y l0 H a0 a1 y0 H0 H1.
+ change
+ (match ad_eq a1 a0 with
+ | true => SOME A y0
+ | false => alist_semantics A ((a, y) :: l0) a0
+ end = NONE A) in |- *.
+ elim (sumbool_of_bool (ad_eq a1 a0)). intro H2. rewrite (ad_eq_complete _ _ H2) in H0.
+ rewrite (ad_less_not_refl a0) in H0. discriminate H0.
+ intro H2. rewrite H2. apply H. apply ad_less_trans with (a' := a1). assumption.
+ unfold alist_sorted_2 in H1. apply (H1 0 1). apply lt_n_Sn.
+ simpl in |- *. apply le_n_S. apply le_n_S. apply le_O_n.
+ apply alist_sorted_1_imp_2. apply alist_sorted_imp_1.
+ cut (alist_sorted ((a1, y0) :: (a, y) :: l0) = true). intro H3.
+ exact (proj2 (andb_prop _ _ H3)).
+ apply alist_sorted_2_imp. assumption.
+ Qed.
+
+ Lemma alist_semantics_nth_ad :
+ forall (l:alist A) (a:ad) (y:A),
+ alist_semantics A l a = SOME A y ->
+ {n : nat | S n <= length l /\ alist_nth_ad n l = a}.
+ Proof.
+ simple induction l. intros. discriminate H.
+ intro r. elim r. intros a y l0 H a0 y0 H0. simpl in H0. elim (sumbool_of_bool (ad_eq a a0)).
+ intro H1. rewrite H1 in H0. split with 0. split. simpl in |- *. apply le_n_S. apply le_O_n.
+ simpl in |- *. exact (ad_eq_complete _ _ H1).
+ intro H1. rewrite H1 in H0. elim (H a0 y0 H0). intros n' H2. split with (S n'). split.
+ simpl in |- *. apply le_n_S. exact (proj1 H2).
+ exact (proj2 H2).
+ Qed.
+
+ Lemma alist_semantics_tail :
+ forall (l:alist A) (a:ad) (y:A),
+ alist_sorted_2 ((a, y) :: l) ->
+ eqm A (alist_semantics A l)
+ (fun a0:ad =>
+ if ad_eq a a0 then NONE A else alist_semantics A ((a, y) :: l) a0).
+ Proof.
+ unfold eqm in |- *. intros. elim (sumbool_of_bool (ad_eq a a0)). intro H0. rewrite H0.
+ rewrite <- (ad_eq_complete _ _ H0). unfold alist_sorted_2 in H.
+ elim (option_sum A (alist_semantics A l a)). intro H1. elim H1. intros y0 H2.
+ elim (alist_semantics_nth_ad l a y0 H2). intros n H3. elim H3. intros.
+ cut
+ (ad_less (alist_nth_ad 0 ((a, y) :: l))
+ (alist_nth_ad (S n) ((a, y) :: l)) = true).
+ intro. simpl in H6. rewrite H5 in H6. rewrite (ad_less_not_refl a) in H6. discriminate H6.
+ apply H. apply lt_O_Sn.
+ simpl in |- *. apply le_n_S. assumption.
+ trivial.
+ intro H0. simpl in |- *. rewrite H0. reflexivity.
+ Qed.
+
+ Lemma alist_semantics_same_tail :
+ forall (l l':alist A) (a:ad) (y:A),
+ alist_sorted_2 ((a, y) :: l) ->
+ alist_sorted_2 ((a, y) :: l') ->
+ eqm A (alist_semantics A ((a, y) :: l))
+ (alist_semantics A ((a, y) :: l')) ->
+ eqm A (alist_semantics A l) (alist_semantics A l').
+ Proof.
+ unfold eqm in |- *. intros. rewrite (alist_semantics_tail _ _ _ H a0).
+ rewrite (alist_semantics_tail _ _ _ H0 a0). case (ad_eq a a0). reflexivity.
+ exact (H1 a0).
+ Qed.
+
+ Lemma alist_sorted_tail :
+ forall (l:alist A) (a:ad) (y:A),
+ alist_sorted_2 ((a, y) :: l) -> alist_sorted_2 l.
+ Proof.
+ unfold alist_sorted_2 in |- *. intros. apply (H (S m) (S n)). apply lt_n_S. assumption.
+ simpl in |- *. apply le_n_S. assumption.
+ Qed.
+
+ Lemma alist_canonical :
+ forall l l':alist A,
+ eqm A (alist_semantics A l) (alist_semantics A l') ->
+ alist_sorted_2 l -> alist_sorted_2 l' -> l = l'.
+ Proof.
+ unfold eqm in |- *. simple induction l. simple induction l'. trivial.
+ intro r. elim r. intros a y l0 H H0 H1 H2. simpl in H0.
+ cut
+ (NONE A =
+ match ad_eq a a with
+ | true => SOME A y
+ | false => alist_semantics A l0 a
+ end).
+ rewrite (ad_eq_correct a). intro. discriminate H3.
+ exact (H0 a).
+ intro r. elim r. intros a y l0 H. simple induction l'. intros. simpl in H0.
+ cut
+ (match ad_eq a a with
+ | true => SOME A y
+ | false => alist_semantics A l0 a
+ end = NONE A).
+ rewrite (ad_eq_correct a). intro. discriminate H3.
+ exact (H0 a).
+ intro r'. elim r'. intros a' y' l'0 H0 H1 H2 H3. elim (ad_less_total a a'). intro H4.
+ elim H4. intro H5.
+ cut
+ (alist_semantics A ((a, y) :: l0) a =
+ alist_semantics A ((a', y') :: l'0) a).
+ intro. rewrite (alist_too_low l'0 a a' y' H5 H3) in H6. simpl in H6.
+ rewrite (ad_eq_correct a) in H6. discriminate H6.
+ exact (H1 a).
+ intro H5. cut
+ (alist_semantics A ((a, y) :: l0) a' =
+ alist_semantics A ((a', y') :: l'0) a').
+ intro. rewrite (alist_too_low l0 a' a y H5 H2) in H6. simpl in H6.
+ rewrite (ad_eq_correct a') in H6. discriminate H6.
+ exact (H1 a').
+ intro H4. rewrite H4.
+ cut
+ (alist_semantics A ((a, y) :: l0) a =
+ alist_semantics A ((a', y') :: l'0) a).
+ intro. simpl in H5. rewrite H4 in H5. rewrite (ad_eq_correct a') in H5. inversion H5.
+ rewrite H4 in H1. rewrite H7 in H1. cut (l0 = l'0). intro. rewrite H6. reflexivity.
+ apply H. rewrite H4 in H2. rewrite H7 in H2.
+ exact (alist_semantics_same_tail l0 l'0 a' y' H2 H3 H1).
+ exact (alist_sorted_tail _ _ _ H2).
+ exact (alist_sorted_tail _ _ _ H3).
+ exact (H1 a).
+ Qed.
+
+End LSort. \ No newline at end of file