summaryrefslogtreecommitdiff
path: root/theories/IntMap/Addec.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/IntMap/Addec.v')
-rw-r--r--theories/IntMap/Addec.v193
1 files changed, 193 insertions, 0 deletions
diff --git a/theories/IntMap/Addec.v b/theories/IntMap/Addec.v
new file mode 100644
index 00000000..7dba9ef6
--- /dev/null
+++ b/theories/IntMap/Addec.v
@@ -0,0 +1,193 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(*i $Id: Addec.v,v 1.7.2.1 2004/07/16 19:31:04 herbelin Exp $ i*)
+
+(** Equality on adresses *)
+
+Require Import Bool.
+Require Import Sumbool.
+Require Import ZArith.
+Require Import Addr.
+
+Fixpoint ad_eq_1 (p1 p2:positive) {struct p2} : bool :=
+ match p1, p2 with
+ | xH, xH => true
+ | xO p'1, xO p'2 => ad_eq_1 p'1 p'2
+ | xI p'1, xI p'2 => ad_eq_1 p'1 p'2
+ | _, _ => false
+ end.
+
+Definition ad_eq (a a':ad) :=
+ match a, a' with
+ | ad_z, ad_z => true
+ | ad_x p, ad_x p' => ad_eq_1 p p'
+ | _, _ => false
+ end.
+
+Lemma ad_eq_correct : forall a:ad, ad_eq a a = true.
+Proof.
+ destruct a; trivial.
+ induction p; trivial.
+Qed.
+
+Lemma ad_eq_complete : forall a a':ad, ad_eq a a' = true -> a = a'.
+Proof.
+ destruct a. destruct a'; trivial. destruct p.
+ discriminate 1.
+ discriminate 1.
+ discriminate 1.
+ destruct a'. intros. discriminate H.
+ unfold ad_eq in |- *. intros. cut (p = p0). intros. rewrite H0. reflexivity.
+ generalize dependent p0.
+ induction p as [p IHp| p IHp| ]. destruct p0; intro H.
+ rewrite (IHp p0). reflexivity.
+ exact H.
+ discriminate H.
+ discriminate H.
+ destruct p0; intro H. discriminate H.
+ rewrite (IHp p0 H). reflexivity.
+ discriminate H.
+ destruct p0 as [p| p| ]; intro H. discriminate H.
+ discriminate H.
+ trivial.
+Qed.
+
+Lemma ad_eq_comm : forall a a':ad, ad_eq a a' = ad_eq a' a.
+Proof.
+ intros. cut (forall b b':bool, ad_eq a a' = b -> ad_eq a' a = b' -> b = b').
+ intros. apply H. reflexivity.
+ reflexivity.
+ destruct b. intros. cut (a = a').
+ intro. rewrite H1 in H0. rewrite (ad_eq_correct a') in H0. exact H0.
+ apply ad_eq_complete. exact H.
+ destruct b'. intros. cut (a' = a).
+ intro. rewrite H1 in H. rewrite H1 in H0. rewrite <- H. exact H0.
+ apply ad_eq_complete. exact H0.
+ trivial.
+Qed.
+
+Lemma ad_xor_eq_true :
+ forall a a':ad, ad_xor a a' = ad_z -> ad_eq a a' = true.
+Proof.
+ intros. rewrite (ad_xor_eq a a' H). apply ad_eq_correct.
+Qed.
+
+Lemma ad_xor_eq_false :
+ forall (a a':ad) (p:positive), ad_xor a a' = ad_x p -> ad_eq a a' = false.
+Proof.
+ intros. elim (sumbool_of_bool (ad_eq a a')). intro H0.
+ rewrite (ad_eq_complete a a' H0) in H. rewrite (ad_xor_nilpotent a') in H. discriminate H.
+ trivial.
+Qed.
+
+Lemma ad_bit_0_1_not_double :
+ forall a:ad,
+ ad_bit_0 a = true -> forall a0:ad, ad_eq (ad_double a0) a = false.
+Proof.
+ intros. elim (sumbool_of_bool (ad_eq (ad_double a0) a)). intro H0.
+ rewrite <- (ad_eq_complete _ _ H0) in H. rewrite (ad_double_bit_0 a0) in H. discriminate H.
+ trivial.
+Qed.
+
+Lemma ad_not_div_2_not_double :
+ forall a a0:ad,
+ ad_eq (ad_div_2 a) a0 = false -> ad_eq a (ad_double a0) = false.
+Proof.
+ intros. elim (sumbool_of_bool (ad_eq (ad_double a0) a)). intro H0.
+ rewrite <- (ad_eq_complete _ _ H0) in H. rewrite (ad_double_div_2 a0) in H.
+ rewrite (ad_eq_correct a0) in H. discriminate H.
+ intro. rewrite ad_eq_comm. assumption.
+Qed.
+
+Lemma ad_bit_0_0_not_double_plus_un :
+ forall a:ad,
+ ad_bit_0 a = false -> forall a0:ad, ad_eq (ad_double_plus_un a0) a = false.
+Proof.
+ intros. elim (sumbool_of_bool (ad_eq (ad_double_plus_un a0) a)). intro H0.
+ rewrite <- (ad_eq_complete _ _ H0) in H. rewrite (ad_double_plus_un_bit_0 a0) in H.
+ discriminate H.
+ trivial.
+Qed.
+
+Lemma ad_not_div_2_not_double_plus_un :
+ forall a a0:ad,
+ ad_eq (ad_div_2 a) a0 = false -> ad_eq (ad_double_plus_un a0) a = false.
+Proof.
+ intros. elim (sumbool_of_bool (ad_eq a (ad_double_plus_un a0))). intro H0.
+ rewrite (ad_eq_complete _ _ H0) in H. rewrite (ad_double_plus_un_div_2 a0) in H.
+ rewrite (ad_eq_correct a0) in H. discriminate H.
+ intro H0. rewrite ad_eq_comm. assumption.
+Qed.
+
+Lemma ad_bit_0_neq :
+ forall a a':ad,
+ ad_bit_0 a = false -> ad_bit_0 a' = true -> ad_eq a a' = false.
+Proof.
+ intros. elim (sumbool_of_bool (ad_eq a a')). intro H1. rewrite (ad_eq_complete _ _ H1) in H.
+ rewrite H in H0. discriminate H0.
+ trivial.
+Qed.
+
+Lemma ad_div_eq :
+ forall a a':ad, ad_eq a a' = true -> ad_eq (ad_div_2 a) (ad_div_2 a') = true.
+Proof.
+ intros. cut (a = a'). intros. rewrite H0. apply ad_eq_correct.
+ apply ad_eq_complete. exact H.
+Qed.
+
+Lemma ad_div_neq :
+ forall a a':ad,
+ ad_eq (ad_div_2 a) (ad_div_2 a') = false -> ad_eq a a' = false.
+Proof.
+ intros. elim (sumbool_of_bool (ad_eq a a')). intro H0.
+ rewrite (ad_eq_complete _ _ H0) in H. rewrite (ad_eq_correct (ad_div_2 a')) in H. discriminate H.
+ trivial.
+Qed.
+
+Lemma ad_div_bit_eq :
+ forall a a':ad,
+ ad_bit_0 a = ad_bit_0 a' -> ad_div_2 a = ad_div_2 a' -> a = a'.
+Proof.
+ intros. apply ad_faithful. unfold eqf in |- *. destruct n.
+ rewrite ad_bit_0_correct. rewrite ad_bit_0_correct. assumption.
+ rewrite <- ad_div_2_correct. rewrite <- ad_div_2_correct.
+ rewrite H0. reflexivity.
+Qed.
+
+Lemma ad_div_bit_neq :
+ forall a a':ad,
+ ad_eq a a' = false ->
+ ad_bit_0 a = ad_bit_0 a' -> ad_eq (ad_div_2 a) (ad_div_2 a') = false.
+Proof.
+ intros. elim (sumbool_of_bool (ad_eq (ad_div_2 a) (ad_div_2 a'))). intro H1.
+ rewrite (ad_div_bit_eq _ _ H0 (ad_eq_complete _ _ H1)) in H.
+ rewrite (ad_eq_correct a') in H. discriminate H.
+ trivial.
+Qed.
+
+Lemma ad_neq :
+ forall a a':ad,
+ ad_eq a a' = false ->
+ ad_bit_0 a = negb (ad_bit_0 a') \/
+ ad_eq (ad_div_2 a) (ad_div_2 a') = false.
+Proof.
+ intros. cut (ad_bit_0 a = ad_bit_0 a' \/ ad_bit_0 a = negb (ad_bit_0 a')).
+ intros. elim H0. intro. right. apply ad_div_bit_neq. assumption.
+ assumption.
+ intro. left. assumption.
+ case (ad_bit_0 a); case (ad_bit_0 a'); auto.
+Qed.
+
+Lemma ad_double_or_double_plus_un :
+ forall a:ad,
+ {a0 : ad | a = ad_double a0} + {a1 : ad | a = ad_double_plus_un a1}.
+Proof.
+ intro. elim (sumbool_of_bool (ad_bit_0 a)). intro H. right. split with (ad_div_2 a).
+ rewrite (ad_div_2_double_plus_un a H). reflexivity.
+ intro H. left. split with (ad_div_2 a). rewrite (ad_div_2_double a H). reflexivity.
+Qed. \ No newline at end of file