summaryrefslogtreecommitdiff
path: root/theories/IntMap/Addr.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/IntMap/Addr.v')
-rw-r--r--theories/IntMap/Addr.v491
1 files changed, 491 insertions, 0 deletions
diff --git a/theories/IntMap/Addr.v b/theories/IntMap/Addr.v
new file mode 100644
index 00000000..1370d72d
--- /dev/null
+++ b/theories/IntMap/Addr.v
@@ -0,0 +1,491 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(*i $Id: Addr.v,v 1.8.2.1 2004/07/16 19:31:04 herbelin Exp $ i*)
+
+(** Representation of adresses by the [positive] type of binary numbers *)
+
+Require Import Bool.
+Require Import ZArith.
+
+Inductive ad : Set :=
+ | ad_z : ad
+ | ad_x : positive -> ad.
+
+Lemma ad_sum : forall a:ad, {p : positive | a = ad_x p} + {a = ad_z}.
+Proof.
+ destruct a; auto.
+ left; exists p; trivial.
+Qed.
+
+Fixpoint p_xor (p p2:positive) {struct p} : ad :=
+ match p with
+ | xH =>
+ match p2 with
+ | xH => ad_z
+ | xO p'2 => ad_x (xI p'2)
+ | xI p'2 => ad_x (xO p'2)
+ end
+ | xO p' =>
+ match p2 with
+ | xH => ad_x (xI p')
+ | xO p'2 =>
+ match p_xor p' p'2 with
+ | ad_z => ad_z
+ | ad_x p'' => ad_x (xO p'')
+ end
+ | xI p'2 =>
+ match p_xor p' p'2 with
+ | ad_z => ad_x 1
+ | ad_x p'' => ad_x (xI p'')
+ end
+ end
+ | xI p' =>
+ match p2 with
+ | xH => ad_x (xO p')
+ | xO p'2 =>
+ match p_xor p' p'2 with
+ | ad_z => ad_x 1
+ | ad_x p'' => ad_x (xI p'')
+ end
+ | xI p'2 =>
+ match p_xor p' p'2 with
+ | ad_z => ad_z
+ | ad_x p'' => ad_x (xO p'')
+ end
+ end
+ end.
+
+Definition ad_xor (a a':ad) :=
+ match a with
+ | ad_z => a'
+ | ad_x p => match a' with
+ | ad_z => a
+ | ad_x p' => p_xor p p'
+ end
+ end.
+
+Lemma ad_xor_neutral_left : forall a:ad, ad_xor ad_z a = a.
+Proof.
+ trivial.
+Qed.
+
+Lemma ad_xor_neutral_right : forall a:ad, ad_xor a ad_z = a.
+Proof.
+ destruct a; trivial.
+Qed.
+
+Lemma ad_xor_comm : forall a a':ad, ad_xor a a' = ad_xor a' a.
+Proof.
+ destruct a; destruct a'; simpl in |- *; auto.
+ generalize p0; clear p0; induction p as [p Hrecp| p Hrecp| ]; simpl in |- *;
+ auto.
+ destruct p0; simpl in |- *; trivial; intros.
+ rewrite Hrecp; trivial.
+ rewrite Hrecp; trivial.
+ destruct p0; simpl in |- *; trivial; intros.
+ rewrite Hrecp; trivial.
+ rewrite Hrecp; trivial.
+ destruct p0 as [p| p| ]; simpl in |- *; auto.
+Qed.
+
+Lemma ad_xor_nilpotent : forall a:ad, ad_xor a a = ad_z.
+Proof.
+ destruct a; trivial.
+ simpl in |- *. induction p as [p IHp| p IHp| ]; trivial.
+ simpl in |- *. rewrite IHp; reflexivity.
+ simpl in |- *. rewrite IHp; reflexivity.
+Qed.
+
+Fixpoint ad_bit_1 (p:positive) : nat -> bool :=
+ match p with
+ | xH => fun n:nat => match n with
+ | O => true
+ | S _ => false
+ end
+ | xO p =>
+ fun n:nat => match n with
+ | O => false
+ | S n' => ad_bit_1 p n'
+ end
+ | xI p => fun n:nat => match n with
+ | O => true
+ | S n' => ad_bit_1 p n'
+ end
+ end.
+
+Definition ad_bit (a:ad) :=
+ match a with
+ | ad_z => fun _:nat => false
+ | ad_x p => ad_bit_1 p
+ end.
+
+Definition eqf (f g:nat -> bool) := forall n:nat, f n = g n.
+
+Lemma ad_faithful_1 : forall a:ad, eqf (ad_bit ad_z) (ad_bit a) -> ad_z = a.
+Proof.
+ destruct a. trivial.
+ induction p as [p IHp| p IHp| ]; intro H. absurd (ad_z = ad_x p). discriminate.
+ exact (IHp (fun n:nat => H (S n))).
+ absurd (ad_z = ad_x p). discriminate.
+ exact (IHp (fun n:nat => H (S n))).
+ absurd (false = true). discriminate.
+ exact (H 0).
+Qed.
+
+Lemma ad_faithful_2 :
+ forall a:ad, eqf (ad_bit (ad_x 1)) (ad_bit a) -> ad_x 1 = a.
+Proof.
+ destruct a. intros. absurd (true = false). discriminate.
+ exact (H 0).
+ destruct p. intro H. absurd (ad_z = ad_x p). discriminate.
+ exact (ad_faithful_1 (ad_x p) (fun n:nat => H (S n))).
+ intros. absurd (true = false). discriminate.
+ exact (H 0).
+ trivial.
+Qed.
+
+Lemma ad_faithful_3 :
+ forall (a:ad) (p:positive),
+ (forall p':positive, eqf (ad_bit (ad_x p)) (ad_bit (ad_x p')) -> p = p') ->
+ eqf (ad_bit (ad_x (xO p))) (ad_bit a) -> ad_x (xO p) = a.
+Proof.
+ destruct a. intros. cut (eqf (ad_bit ad_z) (ad_bit (ad_x (xO p)))).
+ intro. rewrite (ad_faithful_1 (ad_x (xO p)) H1). reflexivity.
+ unfold eqf in |- *. intro. unfold eqf in H0. rewrite H0. reflexivity.
+ case p. intros. absurd (false = true). discriminate.
+ exact (H0 0).
+ intros. rewrite (H p0 (fun n:nat => H0 (S n))). reflexivity.
+ intros. absurd (false = true). discriminate.
+ exact (H0 0).
+Qed.
+
+Lemma ad_faithful_4 :
+ forall (a:ad) (p:positive),
+ (forall p':positive, eqf (ad_bit (ad_x p)) (ad_bit (ad_x p')) -> p = p') ->
+ eqf (ad_bit (ad_x (xI p))) (ad_bit a) -> ad_x (xI p) = a.
+Proof.
+ destruct a. intros. cut (eqf (ad_bit ad_z) (ad_bit (ad_x (xI p)))).
+ intro. rewrite (ad_faithful_1 (ad_x (xI p)) H1). reflexivity.
+ unfold eqf in |- *. intro. unfold eqf in H0. rewrite H0. reflexivity.
+ case p. intros. rewrite (H p0 (fun n:nat => H0 (S n))). reflexivity.
+ intros. absurd (true = false). discriminate.
+ exact (H0 0).
+ intros. absurd (ad_z = ad_x p0). discriminate.
+ cut (eqf (ad_bit (ad_x 1)) (ad_bit (ad_x (xI p0)))).
+ intro. exact (ad_faithful_1 (ad_x p0) (fun n:nat => H1 (S n))).
+ unfold eqf in |- *. unfold eqf in H0. intro. rewrite H0. reflexivity.
+Qed.
+
+Lemma ad_faithful : forall a a':ad, eqf (ad_bit a) (ad_bit a') -> a = a'.
+Proof.
+ destruct a. exact ad_faithful_1.
+ induction p. intros a' H. apply ad_faithful_4. intros. cut (ad_x p = ad_x p').
+ intro. inversion H1. reflexivity.
+ exact (IHp (ad_x p') H0).
+ assumption.
+ intros. apply ad_faithful_3. intros. cut (ad_x p = ad_x p'). intro. inversion H1. reflexivity.
+ exact (IHp (ad_x p') H0).
+ assumption.
+ exact ad_faithful_2.
+Qed.
+
+Definition adf_xor (f g:nat -> bool) (n:nat) := xorb (f n) (g n).
+
+Lemma ad_xor_sem_1 : forall a':ad, ad_bit (ad_xor ad_z a') 0 = ad_bit a' 0.
+Proof.
+ trivial.
+Qed.
+
+Lemma ad_xor_sem_2 :
+ forall a':ad, ad_bit (ad_xor (ad_x 1) a') 0 = negb (ad_bit a' 0).
+Proof.
+ intro. case a'. trivial.
+ simpl in |- *. intro.
+ case p; trivial.
+Qed.
+
+Lemma ad_xor_sem_3 :
+ forall (p:positive) (a':ad),
+ ad_bit (ad_xor (ad_x (xO p)) a') 0 = ad_bit a' 0.
+Proof.
+ intros. case a'. trivial.
+ simpl in |- *. intro.
+ case p0; trivial. intro.
+ case (p_xor p p1); trivial.
+ intro. case (p_xor p p1); trivial.
+Qed.
+
+Lemma ad_xor_sem_4 :
+ forall (p:positive) (a':ad),
+ ad_bit (ad_xor (ad_x (xI p)) a') 0 = negb (ad_bit a' 0).
+Proof.
+ intros. case a'. trivial.
+ simpl in |- *. intro. case p0; trivial. intro.
+ case (p_xor p p1); trivial.
+ intro.
+ case (p_xor p p1); trivial.
+Qed.
+
+Lemma ad_xor_sem_5 :
+ forall a a':ad, ad_bit (ad_xor a a') 0 = adf_xor (ad_bit a) (ad_bit a') 0.
+Proof.
+ destruct a. intro. change (ad_bit a' 0 = xorb false (ad_bit a' 0)) in |- *. rewrite false_xorb. trivial.
+ case p. exact ad_xor_sem_4.
+ intros. change (ad_bit (ad_xor (ad_x (xO p0)) a') 0 = xorb false (ad_bit a' 0))
+ in |- *.
+ rewrite false_xorb. apply ad_xor_sem_3. exact ad_xor_sem_2.
+Qed.
+
+Lemma ad_xor_sem_6 :
+ forall n:nat,
+ (forall a a':ad, ad_bit (ad_xor a a') n = adf_xor (ad_bit a) (ad_bit a') n) ->
+ forall a a':ad,
+ ad_bit (ad_xor a a') (S n) = adf_xor (ad_bit a) (ad_bit a') (S n).
+Proof.
+ intros. case a. unfold adf_xor in |- *. unfold ad_bit at 2 in |- *. rewrite false_xorb. reflexivity.
+ case a'. unfold adf_xor in |- *. unfold ad_bit at 3 in |- *. intro. rewrite xorb_false. reflexivity.
+ intros. case p0. case p. intros.
+ change
+ (ad_bit (ad_xor (ad_x (xI p2)) (ad_x (xI p1))) (S n) =
+ adf_xor (ad_bit (ad_x p2)) (ad_bit (ad_x p1)) n)
+ in |- *.
+ rewrite <- H. simpl in |- *.
+ case (p_xor p2 p1); trivial.
+ intros.
+ change
+ (ad_bit (ad_xor (ad_x (xI p2)) (ad_x (xO p1))) (S n) =
+ adf_xor (ad_bit (ad_x p2)) (ad_bit (ad_x p1)) n)
+ in |- *.
+ rewrite <- H. simpl in |- *.
+ case (p_xor p2 p1); trivial.
+ intro. unfold adf_xor in |- *. unfold ad_bit at 3 in |- *. unfold ad_bit_1 in |- *. rewrite xorb_false. reflexivity.
+ case p. intros.
+ change
+ (ad_bit (ad_xor (ad_x (xO p2)) (ad_x (xI p1))) (S n) =
+ adf_xor (ad_bit (ad_x p2)) (ad_bit (ad_x p1)) n)
+ in |- *.
+ rewrite <- H. simpl in |- *.
+ case (p_xor p2 p1); trivial.
+ intros.
+ change
+ (ad_bit (ad_xor (ad_x (xO p2)) (ad_x (xO p1))) (S n) =
+ adf_xor (ad_bit (ad_x p2)) (ad_bit (ad_x p1)) n)
+ in |- *.
+ rewrite <- H. simpl in |- *.
+ case (p_xor p2 p1); trivial.
+ intro. unfold adf_xor in |- *. unfold ad_bit at 3 in |- *. unfold ad_bit_1 in |- *. rewrite xorb_false. reflexivity.
+ unfold adf_xor in |- *. unfold ad_bit at 2 in |- *. unfold ad_bit_1 in |- *. rewrite false_xorb. simpl in |- *. case p; trivial.
+Qed.
+
+Lemma ad_xor_semantics :
+ forall a a':ad, eqf (ad_bit (ad_xor a a')) (adf_xor (ad_bit a) (ad_bit a')).
+Proof.
+ unfold eqf in |- *. intros. generalize a a'. elim n. exact ad_xor_sem_5.
+ exact ad_xor_sem_6.
+Qed.
+
+Lemma eqf_sym : forall f f':nat -> bool, eqf f f' -> eqf f' f.
+Proof.
+ unfold eqf in |- *. intros. rewrite H. reflexivity.
+Qed.
+
+Lemma eqf_refl : forall f:nat -> bool, eqf f f.
+Proof.
+ unfold eqf in |- *. trivial.
+Qed.
+
+Lemma eqf_trans :
+ forall f f' f'':nat -> bool, eqf f f' -> eqf f' f'' -> eqf f f''.
+Proof.
+ unfold eqf in |- *. intros. rewrite H. exact (H0 n).
+Qed.
+
+Lemma adf_xor_eq :
+ forall f f':nat -> bool, eqf (adf_xor f f') (fun n:nat => false) -> eqf f f'.
+Proof.
+ unfold eqf in |- *. unfold adf_xor in |- *. intros. apply xorb_eq. apply H.
+Qed.
+
+Lemma ad_xor_eq : forall a a':ad, ad_xor a a' = ad_z -> a = a'.
+Proof.
+ intros. apply ad_faithful. apply adf_xor_eq. apply eqf_trans with (f' := ad_bit (ad_xor a a')).
+ apply eqf_sym. apply ad_xor_semantics.
+ rewrite H. unfold eqf in |- *. trivial.
+Qed.
+
+Lemma adf_xor_assoc :
+ forall f f' f'':nat -> bool,
+ eqf (adf_xor (adf_xor f f') f'') (adf_xor f (adf_xor f' f'')).
+Proof.
+ unfold eqf in |- *. unfold adf_xor in |- *. intros. apply xorb_assoc.
+Qed.
+
+Lemma eqf_xor_1 :
+ forall f f' f'' f''':nat -> bool,
+ eqf f f' -> eqf f'' f''' -> eqf (adf_xor f f'') (adf_xor f' f''').
+Proof.
+ unfold eqf in |- *. intros. unfold adf_xor in |- *. rewrite H. rewrite H0. reflexivity.
+Qed.
+
+Lemma ad_xor_assoc :
+ forall a a' a'':ad, ad_xor (ad_xor a a') a'' = ad_xor a (ad_xor a' a'').
+Proof.
+ intros. apply ad_faithful.
+ apply eqf_trans with
+ (f' := adf_xor (adf_xor (ad_bit a) (ad_bit a')) (ad_bit a'')).
+ apply eqf_trans with (f' := adf_xor (ad_bit (ad_xor a a')) (ad_bit a'')).
+ apply ad_xor_semantics.
+ apply eqf_xor_1. apply ad_xor_semantics.
+ apply eqf_refl.
+ apply eqf_trans with
+ (f' := adf_xor (ad_bit a) (adf_xor (ad_bit a') (ad_bit a''))).
+ apply adf_xor_assoc.
+ apply eqf_trans with (f' := adf_xor (ad_bit a) (ad_bit (ad_xor a' a''))).
+ apply eqf_xor_1. apply eqf_refl.
+ apply eqf_sym. apply ad_xor_semantics.
+ apply eqf_sym. apply ad_xor_semantics.
+Qed.
+
+Definition ad_double (a:ad) :=
+ match a with
+ | ad_z => ad_z
+ | ad_x p => ad_x (xO p)
+ end.
+
+Definition ad_double_plus_un (a:ad) :=
+ match a with
+ | ad_z => ad_x 1
+ | ad_x p => ad_x (xI p)
+ end.
+
+Definition ad_div_2 (a:ad) :=
+ match a with
+ | ad_z => ad_z
+ | ad_x xH => ad_z
+ | ad_x (xO p) => ad_x p
+ | ad_x (xI p) => ad_x p
+ end.
+
+Lemma ad_double_div_2 : forall a:ad, ad_div_2 (ad_double a) = a.
+Proof.
+ destruct a; trivial.
+Qed.
+
+Lemma ad_double_plus_un_div_2 :
+ forall a:ad, ad_div_2 (ad_double_plus_un a) = a.
+Proof.
+ destruct a; trivial.
+Qed.
+
+Lemma ad_double_inj : forall a0 a1:ad, ad_double a0 = ad_double a1 -> a0 = a1.
+Proof.
+ intros. rewrite <- (ad_double_div_2 a0). rewrite H. apply ad_double_div_2.
+Qed.
+
+Lemma ad_double_plus_un_inj :
+ forall a0 a1:ad, ad_double_plus_un a0 = ad_double_plus_un a1 -> a0 = a1.
+Proof.
+ intros. rewrite <- (ad_double_plus_un_div_2 a0). rewrite H. apply ad_double_plus_un_div_2.
+Qed.
+
+Definition ad_bit_0 (a:ad) :=
+ match a with
+ | ad_z => false
+ | ad_x (xO _) => false
+ | _ => true
+ end.
+
+Lemma ad_double_bit_0 : forall a:ad, ad_bit_0 (ad_double a) = false.
+Proof.
+ destruct a; trivial.
+Qed.
+
+Lemma ad_double_plus_un_bit_0 :
+ forall a:ad, ad_bit_0 (ad_double_plus_un a) = true.
+Proof.
+ destruct a; trivial.
+Qed.
+
+Lemma ad_div_2_double :
+ forall a:ad, ad_bit_0 a = false -> ad_double (ad_div_2 a) = a.
+Proof.
+ destruct a. trivial. destruct p. intro H. discriminate H.
+ intros. reflexivity.
+ intro H. discriminate H.
+Qed.
+
+Lemma ad_div_2_double_plus_un :
+ forall a:ad, ad_bit_0 a = true -> ad_double_plus_un (ad_div_2 a) = a.
+Proof.
+ destruct a. intro. discriminate H.
+ destruct p. intros. reflexivity.
+ intro H. discriminate H.
+ intro. reflexivity.
+Qed.
+
+Lemma ad_bit_0_correct : forall a:ad, ad_bit a 0 = ad_bit_0 a.
+Proof.
+ destruct a; trivial.
+ destruct p; trivial.
+Qed.
+
+Lemma ad_div_2_correct :
+ forall (a:ad) (n:nat), ad_bit (ad_div_2 a) n = ad_bit a (S n).
+Proof.
+ destruct a; trivial.
+ destruct p; trivial.
+Qed.
+
+Lemma ad_xor_bit_0 :
+ forall a a':ad, ad_bit_0 (ad_xor a a') = xorb (ad_bit_0 a) (ad_bit_0 a').
+Proof.
+ intros. rewrite <- ad_bit_0_correct. rewrite (ad_xor_semantics a a' 0).
+ unfold adf_xor in |- *. rewrite ad_bit_0_correct. rewrite ad_bit_0_correct. reflexivity.
+Qed.
+
+Lemma ad_xor_div_2 :
+ forall a a':ad, ad_div_2 (ad_xor a a') = ad_xor (ad_div_2 a) (ad_div_2 a').
+Proof.
+ intros. apply ad_faithful. unfold eqf in |- *. intro.
+ rewrite (ad_xor_semantics (ad_div_2 a) (ad_div_2 a') n).
+ rewrite ad_div_2_correct.
+ rewrite (ad_xor_semantics a a' (S n)).
+ unfold adf_xor in |- *. rewrite ad_div_2_correct. rewrite ad_div_2_correct.
+ reflexivity.
+Qed.
+
+Lemma ad_neg_bit_0 :
+ forall a a':ad,
+ ad_bit_0 (ad_xor a a') = true -> ad_bit_0 a = negb (ad_bit_0 a').
+Proof.
+ intros. rewrite <- true_xorb. rewrite <- H. rewrite ad_xor_bit_0.
+ rewrite xorb_assoc. rewrite xorb_nilpotent. rewrite xorb_false. reflexivity.
+Qed.
+
+Lemma ad_neg_bit_0_1 :
+ forall a a':ad, ad_xor a a' = ad_x 1 -> ad_bit_0 a = negb (ad_bit_0 a').
+Proof.
+ intros. apply ad_neg_bit_0. rewrite H. reflexivity.
+Qed.
+
+Lemma ad_neg_bit_0_2 :
+ forall (a a':ad) (p:positive),
+ ad_xor a a' = ad_x (xI p) -> ad_bit_0 a = negb (ad_bit_0 a').
+Proof.
+ intros. apply ad_neg_bit_0. rewrite H. reflexivity.
+Qed.
+
+Lemma ad_same_bit_0 :
+ forall (a a':ad) (p:positive),
+ ad_xor a a' = ad_x (xO p) -> ad_bit_0 a = ad_bit_0 a'.
+Proof.
+ intros. rewrite <- (xorb_false (ad_bit_0 a)). cut (ad_bit_0 (ad_x (xO p)) = false).
+ intro. rewrite <- H0. rewrite <- H. rewrite ad_xor_bit_0. rewrite <- xorb_assoc.
+ rewrite xorb_nilpotent. rewrite false_xorb. reflexivity.
+ reflexivity.
+Qed. \ No newline at end of file