aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/gpu/effects/GrBicubicEffect.cpp
blob: 803f2907a6014aabf3cc0aafa757086d7b7bc632 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
/*
 * Copyright 2014 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "GrBicubicEffect.h"

#include "GrTexture.h"
#include "glsl/GrGLSLFragmentShaderBuilder.h"
#include "glsl/GrGLSLProgramDataManager.h"
#include "glsl/GrGLSLUniformHandler.h"

class GrGLBicubicEffect : public GrGLSLFragmentProcessor {
public:
    void emitCode(EmitArgs&) override;

    static inline void GenKey(const GrProcessor& effect, const GrShaderCaps&,
                              GrProcessorKeyBuilder* b) {
        const GrBicubicEffect& bicubicEffect = effect.cast<GrBicubicEffect>();
        b->add32(GrTextureDomain::GLDomain::DomainKey(bicubicEffect.domain()));
    }

protected:
    void onSetData(const GrGLSLProgramDataManager&, const GrFragmentProcessor&) override;

private:
    typedef GrGLSLProgramDataManager::UniformHandle UniformHandle;

    UniformHandle               fImageIncrementUni;
    GrTextureDomain::GLDomain   fDomain;

    typedef GrGLSLFragmentProcessor INHERITED;
};

void GrGLBicubicEffect::emitCode(EmitArgs& args) {
    const GrBicubicEffect& bicubicEffect = args.fFp.cast<GrBicubicEffect>();

    GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
    fImageIncrementUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kHalf2_GrSLType,
                                                    "ImageIncrement");

    const char* imgInc = uniformHandler->getUniformCStr(fImageIncrementUni);

    GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
    SkString coords2D = fragBuilder->ensureCoords2D(args.fTransformedCoords[0]);

    /*
     * Filter weights come from Don Mitchell & Arun Netravali's 'Reconstruction Filters in Computer
     * Graphics', ACM SIGGRAPH Computer Graphics 22, 4 (Aug. 1988).
     * ACM DL: http://dl.acm.org/citation.cfm?id=378514
     * Free  : http://www.cs.utexas.edu/users/fussell/courses/cs384g/lectures/mitchell/Mitchell.pdf
     *
     * The authors define a family of cubic filters with two free parameters (B and C):
     *
     *            { (12 - 9B - 6C)|x|^3 + (-18 + 12B + 6C)|x|^2 + (6 - 2B)          if |x| < 1
     * k(x) = 1/6 { (-B - 6C)|x|^3 + (6B + 30C)|x|^2 + (-12B - 48C)|x| + (8B + 24C) if 1 <= |x| < 2
     *            { 0                                                               otherwise
     *
     * Various well-known cubic splines can be generated, and the authors select (1/3, 1/3) as their
     * favorite overall spline - this is now commonly known as the Mitchell filter, and is the
     * source of the specific weights below.
     *
     * This is GLSL, so the matrix is column-major (transposed from standard matrix notation).
     */
    fragBuilder->codeAppend("half4x4 kMitchellCoefficients = half4x4("
                            " 1.0 / 18.0,  16.0 / 18.0,   1.0 / 18.0,  0.0 / 18.0,"
                            "-9.0 / 18.0,   0.0 / 18.0,   9.0 / 18.0,  0.0 / 18.0,"
                            "15.0 / 18.0, -36.0 / 18.0,  27.0 / 18.0, -6.0 / 18.0,"
                            "-7.0 / 18.0,  21.0 / 18.0, -21.0 / 18.0,  7.0 / 18.0);");
    fragBuilder->codeAppendf("float2 coord = %s - %s * float2(0.5);", coords2D.c_str(), imgInc);
    // We unnormalize the coord in order to determine our fractional offset (f) within the texel
    // We then snap coord to a texel center and renormalize. The snap prevents cases where the
    // starting coords are near a texel boundary and accumulations of imgInc would cause us to skip/
    // double hit a texel.
    fragBuilder->codeAppendf("coord /= %s;", imgInc);
    fragBuilder->codeAppend("float2 f = fract(coord);");
    fragBuilder->codeAppendf("coord = (coord - f + float2(0.5)) * %s;", imgInc);
    fragBuilder->codeAppend("half4 wx = kMitchellCoefficients * half4(1.0, f.x, f.x * f.x, f.x * f.x * f.x);");
    fragBuilder->codeAppend("half4 wy = kMitchellCoefficients * half4(1.0, f.y, f.y * f.y, f.y * f.y * f.y);");
    fragBuilder->codeAppend("half4 rowColors[4];");
    for (int y = 0; y < 4; ++y) {
        for (int x = 0; x < 4; ++x) {
            SkString coord;
            coord.printf("coord + %s * float2(%d, %d)", imgInc, x - 1, y - 1);
            SkString sampleVar;
            sampleVar.printf("rowColors[%d]", x);
            fDomain.sampleTexture(fragBuilder,
                                  args.fUniformHandler,
                                  args.fShaderCaps,
                                  bicubicEffect.domain(),
                                  sampleVar.c_str(),
                                  coord,
                                  args.fTexSamplers[0]);
        }
        fragBuilder->codeAppendf(
            "half4 s%d = wx.x * rowColors[0] + wx.y * rowColors[1] + wx.z * rowColors[2] + wx.w * rowColors[3];",
            y);
    }
    SkString bicubicColor("(wy.x * s0 + wy.y * s1 + wy.z * s2 + wy.w * s3)");
    fragBuilder->codeAppendf("%s = %s * %s;", args.fOutputColor, bicubicColor.c_str(),
                             args.fInputColor);
}

void GrGLBicubicEffect::onSetData(const GrGLSLProgramDataManager& pdman,
                                  const GrFragmentProcessor& processor) {
    const GrBicubicEffect& bicubicEffect = processor.cast<GrBicubicEffect>();
    GrSurfaceProxy* proxy = processor.textureSampler(0).proxy();
    GrTexture* texture = proxy->priv().peekTexture();

    float imageIncrement[2];
    imageIncrement[0] = 1.0f / texture->width();
    imageIncrement[1] = 1.0f / texture->height();
    pdman.set2fv(fImageIncrementUni, 1, imageIncrement);
    fDomain.setData(pdman, bicubicEffect.domain(), proxy);
}

GrBicubicEffect::GrBicubicEffect(sk_sp<GrTextureProxy> proxy,
                                 const SkMatrix& matrix,
                                 const GrSamplerState::WrapMode wrapModes[2])
        : INHERITED{kGrBicubicEffect_ClassID, ModulateByConfigOptimizationFlags(proxy->config())}
        , fCoordTransform(matrix, proxy.get())
        , fDomain(GrTextureDomain::IgnoredDomain())
        , fTextureSampler(std::move(proxy),
                          GrSamplerState(wrapModes, GrSamplerState::Filter::kNearest)) {
    this->addCoordTransform(&fCoordTransform);
    this->addTextureSampler(&fTextureSampler);
}

GrBicubicEffect::GrBicubicEffect(sk_sp<GrTextureProxy> proxy,
                                 const SkMatrix& matrix,
                                 const SkRect& domain)
        : INHERITED(kGrBicubicEffect_ClassID, ModulateByConfigOptimizationFlags(proxy->config()))
        , fCoordTransform(matrix, proxy.get())
        , fDomain(proxy.get(), domain, GrTextureDomain::kClamp_Mode)
        , fTextureSampler(std::move(proxy)) {
    this->addCoordTransform(&fCoordTransform);
    this->addTextureSampler(&fTextureSampler);
}

GrBicubicEffect::GrBicubicEffect(const GrBicubicEffect& that)
        : INHERITED(kGrBicubicEffect_ClassID, that.optimizationFlags())
        , fCoordTransform(that.fCoordTransform)
        , fDomain(that.fDomain)
        , fTextureSampler(that.fTextureSampler) {
    this->addCoordTransform(&fCoordTransform);
    this->addTextureSampler(&fTextureSampler);
}

void GrBicubicEffect::onGetGLSLProcessorKey(const GrShaderCaps& caps,
                                            GrProcessorKeyBuilder* b) const {
    GrGLBicubicEffect::GenKey(*this, caps, b);
}

GrGLSLFragmentProcessor* GrBicubicEffect::onCreateGLSLInstance() const  {
    return new GrGLBicubicEffect;
}

bool GrBicubicEffect::onIsEqual(const GrFragmentProcessor& sBase) const {
    const GrBicubicEffect& s = sBase.cast<GrBicubicEffect>();
    return fDomain == s.fDomain;
}

GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrBicubicEffect);

#if GR_TEST_UTILS
std::unique_ptr<GrFragmentProcessor> GrBicubicEffect::TestCreate(GrProcessorTestData* d) {
    int texIdx = d->fRandom->nextBool() ? GrProcessorUnitTest::kSkiaPMTextureIdx
                                        : GrProcessorUnitTest::kAlphaTextureIdx;
    static const GrSamplerState::WrapMode kClampClamp[] = {GrSamplerState::WrapMode::kClamp,
                                                           GrSamplerState::WrapMode::kClamp};
    return GrBicubicEffect::Make(d->textureProxy(texIdx), SkMatrix::I(), kClampClamp);
}
#endif

//////////////////////////////////////////////////////////////////////////////

bool GrBicubicEffect::ShouldUseBicubic(const SkMatrix& matrix, GrSamplerState::Filter* filterMode) {
    if (matrix.isIdentity()) {
        *filterMode = GrSamplerState::Filter::kNearest;
        return false;
    }

    SkScalar scales[2];
    if (!matrix.getMinMaxScales(scales) || scales[0] < SK_Scalar1) {
        // Bicubic doesn't handle arbitrary minimization well, as src texels can be skipped
        // entirely,
        *filterMode = GrSamplerState::Filter::kMipMap;
        return false;
    }
    // At this point if scales[1] == SK_Scalar1 then the matrix doesn't do any scaling.
    if (scales[1] == SK_Scalar1) {
        if (matrix.rectStaysRect() && SkScalarIsInt(matrix.getTranslateX()) &&
            SkScalarIsInt(matrix.getTranslateY())) {
            *filterMode = GrSamplerState::Filter::kNearest;
        } else {
            // Use bilerp to handle rotation or fractional translation.
            *filterMode = GrSamplerState::Filter::kBilerp;
        }
        return false;
    }
    // When we use the bicubic filtering effect each sample is read from the texture using
    // nearest neighbor sampling.
    *filterMode = GrSamplerState::Filter::kNearest;
    return true;
}