/* * Copyright 2014 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrBicubicEffect.h" #include "GrTexture.h" #include "glsl/GrGLSLFragmentShaderBuilder.h" #include "glsl/GrGLSLProgramDataManager.h" #include "glsl/GrGLSLUniformHandler.h" class GrGLBicubicEffect : public GrGLSLFragmentProcessor { public: void emitCode(EmitArgs&) override; static inline void GenKey(const GrProcessor& effect, const GrShaderCaps&, GrProcessorKeyBuilder* b) { const GrBicubicEffect& bicubicEffect = effect.cast(); b->add32(GrTextureDomain::GLDomain::DomainKey(bicubicEffect.domain())); } protected: void onSetData(const GrGLSLProgramDataManager&, const GrFragmentProcessor&) override; private: typedef GrGLSLProgramDataManager::UniformHandle UniformHandle; UniformHandle fImageIncrementUni; GrTextureDomain::GLDomain fDomain; typedef GrGLSLFragmentProcessor INHERITED; }; void GrGLBicubicEffect::emitCode(EmitArgs& args) { const GrBicubicEffect& bicubicEffect = args.fFp.cast(); GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; fImageIncrementUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kHalf2_GrSLType, "ImageIncrement"); const char* imgInc = uniformHandler->getUniformCStr(fImageIncrementUni); GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; SkString coords2D = fragBuilder->ensureCoords2D(args.fTransformedCoords[0]); /* * Filter weights come from Don Mitchell & Arun Netravali's 'Reconstruction Filters in Computer * Graphics', ACM SIGGRAPH Computer Graphics 22, 4 (Aug. 1988). * ACM DL: http://dl.acm.org/citation.cfm?id=378514 * Free : http://www.cs.utexas.edu/users/fussell/courses/cs384g/lectures/mitchell/Mitchell.pdf * * The authors define a family of cubic filters with two free parameters (B and C): * * { (12 - 9B - 6C)|x|^3 + (-18 + 12B + 6C)|x|^2 + (6 - 2B) if |x| < 1 * k(x) = 1/6 { (-B - 6C)|x|^3 + (6B + 30C)|x|^2 + (-12B - 48C)|x| + (8B + 24C) if 1 <= |x| < 2 * { 0 otherwise * * Various well-known cubic splines can be generated, and the authors select (1/3, 1/3) as their * favorite overall spline - this is now commonly known as the Mitchell filter, and is the * source of the specific weights below. * * This is GLSL, so the matrix is column-major (transposed from standard matrix notation). */ fragBuilder->codeAppend("half4x4 kMitchellCoefficients = half4x4(" " 1.0 / 18.0, 16.0 / 18.0, 1.0 / 18.0, 0.0 / 18.0," "-9.0 / 18.0, 0.0 / 18.0, 9.0 / 18.0, 0.0 / 18.0," "15.0 / 18.0, -36.0 / 18.0, 27.0 / 18.0, -6.0 / 18.0," "-7.0 / 18.0, 21.0 / 18.0, -21.0 / 18.0, 7.0 / 18.0);"); fragBuilder->codeAppendf("float2 coord = %s - %s * float2(0.5);", coords2D.c_str(), imgInc); // We unnormalize the coord in order to determine our fractional offset (f) within the texel // We then snap coord to a texel center and renormalize. The snap prevents cases where the // starting coords are near a texel boundary and accumulations of imgInc would cause us to skip/ // double hit a texel. fragBuilder->codeAppendf("coord /= %s;", imgInc); fragBuilder->codeAppend("float2 f = fract(coord);"); fragBuilder->codeAppendf("coord = (coord - f + float2(0.5)) * %s;", imgInc); fragBuilder->codeAppend("half4 wx = kMitchellCoefficients * half4(1.0, f.x, f.x * f.x, f.x * f.x * f.x);"); fragBuilder->codeAppend("half4 wy = kMitchellCoefficients * half4(1.0, f.y, f.y * f.y, f.y * f.y * f.y);"); fragBuilder->codeAppend("half4 rowColors[4];"); for (int y = 0; y < 4; ++y) { for (int x = 0; x < 4; ++x) { SkString coord; coord.printf("coord + %s * float2(%d, %d)", imgInc, x - 1, y - 1); SkString sampleVar; sampleVar.printf("rowColors[%d]", x); fDomain.sampleTexture(fragBuilder, args.fUniformHandler, args.fShaderCaps, bicubicEffect.domain(), sampleVar.c_str(), coord, args.fTexSamplers[0]); } fragBuilder->codeAppendf( "half4 s%d = wx.x * rowColors[0] + wx.y * rowColors[1] + wx.z * rowColors[2] + wx.w * rowColors[3];", y); } SkString bicubicColor("(wy.x * s0 + wy.y * s1 + wy.z * s2 + wy.w * s3)"); fragBuilder->codeAppendf("%s = %s * %s;", args.fOutputColor, bicubicColor.c_str(), args.fInputColor); } void GrGLBicubicEffect::onSetData(const GrGLSLProgramDataManager& pdman, const GrFragmentProcessor& processor) { const GrBicubicEffect& bicubicEffect = processor.cast(); GrSurfaceProxy* proxy = processor.textureSampler(0).proxy(); GrTexture* texture = proxy->priv().peekTexture(); float imageIncrement[2]; imageIncrement[0] = 1.0f / texture->width(); imageIncrement[1] = 1.0f / texture->height(); pdman.set2fv(fImageIncrementUni, 1, imageIncrement); fDomain.setData(pdman, bicubicEffect.domain(), proxy); } GrBicubicEffect::GrBicubicEffect(sk_sp proxy, const SkMatrix& matrix, const GrSamplerState::WrapMode wrapModes[2]) : INHERITED{kGrBicubicEffect_ClassID, ModulateByConfigOptimizationFlags(proxy->config())} , fCoordTransform(matrix, proxy.get()) , fDomain(GrTextureDomain::IgnoredDomain()) , fTextureSampler(std::move(proxy), GrSamplerState(wrapModes, GrSamplerState::Filter::kNearest)) { this->addCoordTransform(&fCoordTransform); this->addTextureSampler(&fTextureSampler); } GrBicubicEffect::GrBicubicEffect(sk_sp proxy, const SkMatrix& matrix, const SkRect& domain) : INHERITED(kGrBicubicEffect_ClassID, ModulateByConfigOptimizationFlags(proxy->config())) , fCoordTransform(matrix, proxy.get()) , fDomain(proxy.get(), domain, GrTextureDomain::kClamp_Mode) , fTextureSampler(std::move(proxy)) { this->addCoordTransform(&fCoordTransform); this->addTextureSampler(&fTextureSampler); } GrBicubicEffect::GrBicubicEffect(const GrBicubicEffect& that) : INHERITED(kGrBicubicEffect_ClassID, that.optimizationFlags()) , fCoordTransform(that.fCoordTransform) , fDomain(that.fDomain) , fTextureSampler(that.fTextureSampler) { this->addCoordTransform(&fCoordTransform); this->addTextureSampler(&fTextureSampler); } void GrBicubicEffect::onGetGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const { GrGLBicubicEffect::GenKey(*this, caps, b); } GrGLSLFragmentProcessor* GrBicubicEffect::onCreateGLSLInstance() const { return new GrGLBicubicEffect; } bool GrBicubicEffect::onIsEqual(const GrFragmentProcessor& sBase) const { const GrBicubicEffect& s = sBase.cast(); return fDomain == s.fDomain; } GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrBicubicEffect); #if GR_TEST_UTILS std::unique_ptr GrBicubicEffect::TestCreate(GrProcessorTestData* d) { int texIdx = d->fRandom->nextBool() ? GrProcessorUnitTest::kSkiaPMTextureIdx : GrProcessorUnitTest::kAlphaTextureIdx; static const GrSamplerState::WrapMode kClampClamp[] = {GrSamplerState::WrapMode::kClamp, GrSamplerState::WrapMode::kClamp}; return GrBicubicEffect::Make(d->textureProxy(texIdx), SkMatrix::I(), kClampClamp); } #endif ////////////////////////////////////////////////////////////////////////////// bool GrBicubicEffect::ShouldUseBicubic(const SkMatrix& matrix, GrSamplerState::Filter* filterMode) { if (matrix.isIdentity()) { *filterMode = GrSamplerState::Filter::kNearest; return false; } SkScalar scales[2]; if (!matrix.getMinMaxScales(scales) || scales[0] < SK_Scalar1) { // Bicubic doesn't handle arbitrary minimization well, as src texels can be skipped // entirely, *filterMode = GrSamplerState::Filter::kMipMap; return false; } // At this point if scales[1] == SK_Scalar1 then the matrix doesn't do any scaling. if (scales[1] == SK_Scalar1) { if (matrix.rectStaysRect() && SkScalarIsInt(matrix.getTranslateX()) && SkScalarIsInt(matrix.getTranslateY())) { *filterMode = GrSamplerState::Filter::kNearest; } else { // Use bilerp to handle rotation or fractional translation. *filterMode = GrSamplerState::Filter::kBilerp; } return false; } // When we use the bicubic filtering effect each sample is read from the texture using // nearest neighbor sampling. *filterMode = GrSamplerState::Filter::kNearest; return true; }