diff options
author | bsalomon <bsalomon@google.com> | 2016-05-19 15:52:34 -0700 |
---|---|---|
committer | Commit bot <commit-bot@chromium.org> | 2016-05-19 15:52:34 -0700 |
commit | b525721907fa56fd20682116f7645b4d0a861b78 (patch) | |
tree | e435dc00e1345290be2a7676bab1968c61b10331 /src | |
parent | 5878dbdf1b5d86201d299c6e07d53e35048713c7 (diff) |
Make circle blur profile computation separable
BUG=skia:5224
GOLD_TRYBOT_URL= https://gold.skia.org/search2?unt=true&query=source_type%3Dgm&master=false&issue=1996653002
Review-Url: https://codereview.chromium.org/1996653002
Diffstat (limited to 'src')
-rw-r--r-- | src/effects/GrCircleBlurFragmentProcessor.cpp | 158 |
1 files changed, 76 insertions, 82 deletions
diff --git a/src/effects/GrCircleBlurFragmentProcessor.cpp b/src/effects/GrCircleBlurFragmentProcessor.cpp index 7718e43f7b..ff6985f7c3 100644 --- a/src/effects/GrCircleBlurFragmentProcessor.cpp +++ b/src/effects/GrCircleBlurFragmentProcessor.cpp @@ -112,93 +112,81 @@ void GrCircleBlurFragmentProcessor::onComputeInvariantOutput(GrInvariantOutput* inout->mulByUnknownSingleComponent(); } -// Evaluate an AA circle function centered at the origin with 'radius' at (x,y) -static inline float disk(float x, float y, float radius) { - float distSq = x*x + y*y; - if (distSq <= (radius - 0.5f) * (radius - 0.5f)) { - return 1.0f; - } else if (distSq >= (radius + 0.5f) * (radius + 0.5f)) { - return 0.0f; - } else { - float ramp = radius + 0.5f - sqrtf(distSq); - SkASSERT(ramp >= 0.0f && ramp <= 1.0f); - return ramp; - } -} - -// Create the top half of an even-sized Gaussian kernel -static void make_half_kernel(float* kernel, int kernelWH, float sigma) { - SkASSERT(!(kernelWH & 1)); - - // We treat each cell in the half-kernel as a 1x1 window and evaluate it - // at the center. So the evaluations go from -kernelOff to kernelOff in x - // and -kernelOff to -.5 in y (since this is a top-half kernel). - const float kernelOff = (kernelWH - 1) / 2.0f; - - float b = 1.0f / (2.0f * sigma * sigma); - // omit the scale term since we're just going to renormalize - +// Create a Gaussian half-kernel and a summed area table given a sigma and number of discrete +// steps. The half kernel is normalized to sum to 0.5. +static void make_half_kernel_and_summed_table(float* halfKernel, float* summedHalfKernel, + int halfKernelSize, float sigma) { + const float invSigma = 1.f / sigma; + const float b = -0.5f * invSigma * invSigma; float tot = 0.0f; - for (int y = 0; y < kernelWH / 2; ++y) { - for (int x = 0; x < kernelWH / 2; ++x) { - // TODO: use a cheap approximation of the 2D Guassian? - float x2 = (x - kernelOff) * (x - kernelOff); - float y2 = (y - kernelOff) * (y - kernelOff); - // The kernel is symmetric so only compute it once for both sides - float value = expf(-(x2 + y2) * b); - kernel[y * kernelWH + x] = value; - kernel[y * kernelWH + (kernelWH - x - 1)] = value; - tot += 2.0f * value; - } + // Compute half kernel values at half pixel steps out from the center. + float t = 0.5f; + for (int i = 0; i < halfKernelSize; ++i) { + float value = expf(t * t * b); + tot += value; + halfKernel[i] = value; + t += 1.f; } - // Normalize the half kernel to 1.0 (rather than 0.5) so we don't have to scale by 2.0 after - // convolution. - for (int y = 0; y < kernelWH / 2; ++y) { - for (int x = 0; x < kernelWH; ++x) { - kernel[y * kernelWH + x] /= tot; - } + float sum = 0.f; + // The half kernel should sum to 0.5 not 1.0. + tot *= 2.f; + for (int i = 0; i < halfKernelSize; ++i) { + halfKernel[i] /= tot; + sum += halfKernel[i]; + summedHalfKernel[i] = sum; } } -// Apply the half-kernel at 't' away from the center of the circle -static uint8_t eval_at(float t, float circleR, float* halfKernel, int kernelWH) { - SkASSERT(!(kernelWH & 1)); +// Applies the 1D half kernel vertically at a point (x, 0) to a circle centered at the origin with +// radius circleR. +static float eval_vertically(float x, float circleR, const float* summedHalfKernelTable, + int halfKernelSize) { + // Given x find the positive y that is on the edge of the circle. + float y = sqrtf(fabs(circleR * circleR - x * x)); + // In the column at x we exit the circle at +y and -y + // table entry j is actually the kernel evaluated at j + 0.5. + y -= 0.5f; + int yInt = SkScalarFloorToInt(y); + SkASSERT(yInt >= -1); + if (y < 0) { + return (y + 0.5f) * summedHalfKernelTable[0]; + } else if (yInt >= halfKernelSize - 1) { + return 0.5f; + } else { + float yFrac = y - yInt; + return (1.f - yFrac) * summedHalfKernelTable[yInt] + + yFrac * summedHalfKernelTable[yInt + 1]; + } +} +// Apply the kernel at point (t, 0) to a circle centered at the origin with radius circleR. +static uint8_t eval_at(float t, float circleR, const float* halfKernel, + const float* summedHalfKernelTable, int halfKernelSize) { float acc = 0; - // We evaluate the kernel application at (x=t, y=0) using halfKernel which represents the top - // half of a 2D Guassian kernel. The full kernel is symmetric so evaluating just the upper half - // is sufficient. The half kernel has been normalized to 1 rather than 0.5 so there is no need - // to double after evaluation. - - // The sample positions relative to (t, 0) match the sampling used to create the half kernel. - const float kernelOff = (kernelWH - 1) / 2.0f; - - for (int j = 0; j < kernelWH / 2; ++j) { - float y = (kernelOff - j); - if (y > circleR + 0.5f) { - // The entire row is above the circle. + for (int i = 0; i < halfKernelSize; ++i) { + float x = t - i - 0.5f; + if (x < -circleR || x > circleR) { continue; } - - for (int i = 0; i < kernelWH; ++i) { - float x = t - kernelOff + i; - if (x > circleR + 0.5f) { - // Stop evaluation once x crosses outside the circle. - break; - } - float image = disk(x, y, circleR); - float kernel = halfKernel[j * kernelWH + i]; - acc += kernel * image; + float verticalEval = eval_vertically(x, circleR, summedHalfKernelTable, halfKernelSize); + acc += verticalEval * halfKernel[i]; + } + for (int i = 0; i < halfKernelSize; ++i) { + float x = t + i + 0.5f; + if (x < -circleR || x > circleR) { + continue; } + float verticalEval = eval_vertically(x, circleR, summedHalfKernelTable, halfKernelSize); + acc += verticalEval * halfKernel[i]; } - - return SkUnitScalarClampToByte(acc); + // Since we applied a half kernel in y we multiply acc by 2 (the circle is symmetric about the + // x axis). + return SkUnitScalarClampToByte(2.f * acc); } static inline void compute_profile_offset_and_size(float circleR, float sigma, float* offset, int* size) { - if (3*sigma <= circleR) { // The circle is bigger than the Gaussian. In this case we know the interior of the // blurred circle is solid. @@ -212,27 +200,33 @@ static inline void compute_profile_offset_and_size(float circleR, float sigma, } } +// This function creates a profile of a blurred circle. It does this by computing a kernel for +// half the Gaussian and a matching summed area table. To compute a profile value at x = r it steps +// outward in x from (r, 0) in both directions. There is a step for each direction for each entry +// in the half kernel. The y contribution at each step is computed from the summed area table using +// the height of the circle above the step point. Each y contribution is multiplied by the half +// kernel value corresponding to the step in x. static uint8_t* create_profile(float circleR, float sigma) { - - int kernelWH = SkScalarCeilToInt(6.0f*sigma); - kernelWH = (kernelWH + 1) & ~1; // make it the next even number up - - SkAutoTArray<float> halfKernel(kernelWH * kernelWH / 2); - - make_half_kernel(halfKernel.get(), kernelWH, sigma); - float offset; int numSteps; - compute_profile_offset_and_size(circleR, sigma, &offset, &numSteps); uint8_t* weights = new uint8_t[numSteps]; + + // The full kernel is 6 sigmas wide. + int halfKernelSize = SkScalarCeilToInt(6.0f*sigma); + // round up to next multiple of 2 and then divide by 2 + halfKernelSize = ((halfKernelSize + 1) & ~1) >> 1; + SkAutoTArray<float> halfKernel(halfKernelSize); + SkAutoTArray<float> summedKernel(halfKernelSize); + make_half_kernel_and_summed_table(halfKernel.get(), summedKernel.get(), halfKernelSize, + sigma); for (int i = 0; i < numSteps - 1; ++i) { - weights[i] = eval_at(offset+i, circleR, halfKernel.get(), kernelWH); + weights[i] = eval_at(offset+i, circleR, halfKernel.get(), summedKernel.get(), + halfKernelSize); } // Ensure the tail of the Gaussian goes to zero. weights[numSteps - 1] = 0; - return weights; } |