aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/effects/GrCircleBlurFragmentProcessor.cpp
blob: ff6985f7c3d56b5ea13b836c786acd9a4dd5a73e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
/*
 * Copyright 2015 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "GrCircleBlurFragmentProcessor.h"

#if SK_SUPPORT_GPU

#include "GrContext.h"
#include "GrInvariantOutput.h"
#include "GrTextureProvider.h"

#include "glsl/GrGLSLFragmentProcessor.h"
#include "glsl/GrGLSLFragmentShaderBuilder.h"
#include "glsl/GrGLSLProgramDataManager.h"
#include "glsl/GrGLSLUniformHandler.h"

#include "SkFixed.h"

class GrGLCircleBlurFragmentProcessor : public GrGLSLFragmentProcessor {
public:
    void emitCode(EmitArgs&) override;

protected:
    void onSetData(const GrGLSLProgramDataManager&, const GrProcessor&) override;

private:
    GrGLSLProgramDataManager::UniformHandle fDataUniform;

    typedef GrGLSLFragmentProcessor INHERITED;
};

void GrGLCircleBlurFragmentProcessor::emitCode(EmitArgs& args) {

    const char *dataName;

    // The data is formatted as:
    // x,y  - the center of the circle
    // z    - the distance at which the intensity starts falling off (e.g., the start of the table)
    // w    - the inverse of the profile texture size
    fDataUniform = args.fUniformHandler->addUniform(kFragment_GrShaderFlag,
                                                    kVec4f_GrSLType,
                                                    kDefault_GrSLPrecision,
                                                    "data",
                                                    &dataName);

    GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
    const char *fragmentPos = fragBuilder->fragmentPosition();

    if (args.fInputColor) {
        fragBuilder->codeAppendf("vec4 src=%s;", args.fInputColor);
    } else {
        fragBuilder->codeAppendf("vec4 src=vec4(1);");
    }

    // We just want to compute "length(vec) - %s.z + 0.5) * %s.w" but need to rearrange
    // for precision
    fragBuilder->codeAppendf("vec2 vec = vec2( (%s.x - %s.x) * %s.w , (%s.y - %s.y) * %s.w );",
                             fragmentPos, dataName, dataName,
                             fragmentPos, dataName, dataName);
    fragBuilder->codeAppendf("float dist = length(vec) + ( 0.5 - %s.z ) * %s.w;",
                             dataName, dataName);

    fragBuilder->codeAppendf("float intensity = ");
    fragBuilder->appendTextureLookup(args.fTexSamplers[0], "vec2(dist, 0.5)");
    fragBuilder->codeAppend(".a;");

    fragBuilder->codeAppendf("%s = src * intensity;\n", args.fOutputColor );
}

void GrGLCircleBlurFragmentProcessor::onSetData(const GrGLSLProgramDataManager& pdman,
                                                const GrProcessor& proc) {
    const GrCircleBlurFragmentProcessor& cbfp = proc.cast<GrCircleBlurFragmentProcessor>();
    const SkRect& circle = cbfp.circle();

    // The data is formatted as:
    // x,y  - the center of the circle
    // z    - the distance at which the intensity starts falling off (e.g., the start of the table)
    // w    - the inverse of the profile texture size
    pdman.set4f(fDataUniform, circle.centerX(), circle.centerY(), cbfp.offset(),
                1.0f / cbfp.profileSize());
}

///////////////////////////////////////////////////////////////////////////////

GrCircleBlurFragmentProcessor::GrCircleBlurFragmentProcessor(const SkRect& circle,
                                                             float sigma,
                                                             float offset,
                                                             GrTexture* blurProfile)
    : fCircle(circle)
    , fSigma(sigma)
    , fOffset(offset)
    , fBlurProfileAccess(blurProfile, GrTextureParams::kBilerp_FilterMode) {
    this->initClassID<GrCircleBlurFragmentProcessor>();
    this->addTextureAccess(&fBlurProfileAccess);
    this->setWillReadFragmentPosition();
}

GrGLSLFragmentProcessor* GrCircleBlurFragmentProcessor::onCreateGLSLInstance() const {
    return new GrGLCircleBlurFragmentProcessor;
}

void GrCircleBlurFragmentProcessor::onGetGLSLProcessorKey(const GrGLSLCaps& caps,
                                                          GrProcessorKeyBuilder* b) const {
    GrGLCircleBlurFragmentProcessor::GenKey(*this, caps, b);
}

void GrCircleBlurFragmentProcessor::onComputeInvariantOutput(GrInvariantOutput* inout) const {
    inout->mulByUnknownSingleComponent();
}

// Create a Gaussian half-kernel and a summed area table given a sigma and number of discrete
// steps. The half kernel is normalized to sum to 0.5.
static void make_half_kernel_and_summed_table(float* halfKernel, float* summedHalfKernel,
                                              int halfKernelSize, float sigma) {
    const float invSigma = 1.f / sigma;
    const float b = -0.5f * invSigma * invSigma;
    float tot = 0.0f;
    // Compute half kernel values at half pixel steps out from the center.
    float t = 0.5f;
    for (int i = 0; i < halfKernelSize; ++i) {
        float value = expf(t * t * b);
        tot += value;
        halfKernel[i] = value;
        t += 1.f;
    }
    float sum = 0.f;
    // The half kernel should sum to 0.5 not 1.0.
    tot *= 2.f;
    for (int i = 0; i < halfKernelSize; ++i) {
        halfKernel[i] /= tot;
        sum += halfKernel[i];
        summedHalfKernel[i] = sum;
    }
}

// Applies the 1D half kernel vertically at a point (x, 0) to a circle centered at the origin with
// radius circleR.
static float eval_vertically(float x, float circleR, const float* summedHalfKernelTable,
                             int halfKernelSize) {
    // Given x find the positive y that is on the edge of the circle.
    float y = sqrtf(fabs(circleR * circleR - x * x));
    // In the column at x we exit the circle at +y and -y
    // table entry j is actually the kernel evaluated at j + 0.5.
    y -= 0.5f;
    int yInt = SkScalarFloorToInt(y);
    SkASSERT(yInt >= -1);
    if (y < 0) {
        return (y + 0.5f) * summedHalfKernelTable[0];
    } else if (yInt >= halfKernelSize - 1) {
        return 0.5f;
    } else {
        float yFrac = y - yInt;
        return (1.f - yFrac) * summedHalfKernelTable[yInt] +
                       yFrac * summedHalfKernelTable[yInt + 1];
    }
}

// Apply the kernel at point (t, 0) to a circle centered at the origin with radius circleR.
static uint8_t eval_at(float t, float circleR, const float* halfKernel,
                       const float* summedHalfKernelTable, int halfKernelSize) {
    float acc = 0;

    for (int i = 0; i < halfKernelSize; ++i) {
        float x = t - i - 0.5f;
        if (x < -circleR || x > circleR) {
            continue;
        }
        float verticalEval = eval_vertically(x, circleR, summedHalfKernelTable, halfKernelSize);
        acc += verticalEval * halfKernel[i];
    }
    for (int i = 0; i < halfKernelSize; ++i) {
        float x = t + i + 0.5f;
        if (x < -circleR || x > circleR) {
            continue;
        }
        float verticalEval = eval_vertically(x, circleR, summedHalfKernelTable, halfKernelSize);
        acc += verticalEval * halfKernel[i];
    }
    // Since we applied a half kernel in y we multiply acc by 2 (the circle is symmetric about the
    // x axis).
    return SkUnitScalarClampToByte(2.f * acc);
}

static inline void compute_profile_offset_and_size(float circleR, float sigma,
                                                   float* offset, int* size) {
    if (3*sigma <= circleR) {
        // The circle is bigger than the Gaussian. In this case we know the interior of the
        // blurred circle is solid.
        *offset = circleR - 3 * sigma; // This location maps to 0.5f in the weights texture.
                                       // It should always be 255.
        *size = SkScalarCeilToInt(6*sigma);
    } else {
        // The Gaussian is bigger than the circle.
        *offset = 0.0f;
        *size = SkScalarCeilToInt(circleR + 3*sigma);
    }
}

// This function creates a profile of a blurred circle. It does this by computing a kernel for
// half the Gaussian and a matching summed area table. To compute a profile value at x = r it steps
// outward in x from (r, 0) in both directions. There is a step for each direction for each entry
// in the half kernel. The y contribution at each step is computed from the summed area table using
// the height of the circle above the step point. Each y contribution is multiplied by the half
// kernel value corresponding to the step in x.
static uint8_t* create_profile(float circleR, float sigma) {
    float offset;
    int numSteps;
    compute_profile_offset_and_size(circleR, sigma, &offset, &numSteps);

    uint8_t* weights = new uint8_t[numSteps];

    // The full kernel is 6 sigmas wide.
    int halfKernelSize = SkScalarCeilToInt(6.0f*sigma);
    // round up to next multiple of 2 and then divide by 2
    halfKernelSize = ((halfKernelSize + 1) & ~1) >> 1;
    SkAutoTArray<float> halfKernel(halfKernelSize);
    SkAutoTArray<float> summedKernel(halfKernelSize);
    make_half_kernel_and_summed_table(halfKernel.get(), summedKernel.get(), halfKernelSize,
                                      sigma);
    for (int i = 0; i < numSteps - 1; ++i) {
        weights[i] = eval_at(offset+i, circleR, halfKernel.get(), summedKernel.get(),
                             halfKernelSize);
    }
    // Ensure the tail of the Gaussian goes to zero.
    weights[numSteps - 1] = 0;
    return weights;
}

GrTexture* GrCircleBlurFragmentProcessor::CreateCircleBlurProfileTexture(
                                                                GrTextureProvider* textureProvider,
                                                                const SkRect& circle,
                                                                float sigma,
                                                                float* offset) {
    float circleR = circle.width() / 2.0f;

    static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain();
    GrUniqueKey key;
    GrUniqueKey::Builder builder(&key, kDomain, 2);
    // The profile curve varies with both the sigma of the Gaussian and the size of the
    // disk. Quantizing to 16.16 should be close enough though.
    builder[0] = SkScalarToFixed(sigma);
    builder[1] = SkScalarToFixed(circleR);
    builder.finish();

    GrTexture *blurProfile = textureProvider->findAndRefTextureByUniqueKey(key);

    int profileSize;
    compute_profile_offset_and_size(circleR, sigma, offset, &profileSize);

    if (!blurProfile) {

        GrSurfaceDesc texDesc;
        texDesc.fWidth = profileSize;
        texDesc.fHeight = 1;
        texDesc.fConfig = kAlpha_8_GrPixelConfig;

        SkAutoTDeleteArray<uint8_t> profile(create_profile(circleR, sigma));

        blurProfile = textureProvider->createTexture(texDesc, SkBudgeted::kYes, profile.get(), 0);
        if (blurProfile) {
            textureProvider->assignUniqueKeyToTexture(key, blurProfile);
        }
    }

    return blurProfile;
}

GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrCircleBlurFragmentProcessor);

const GrFragmentProcessor* GrCircleBlurFragmentProcessor::TestCreate(GrProcessorTestData* d) {
    SkScalar wh = d->fRandom->nextRangeScalar(100.f, 1000.f);
    SkScalar sigma = d->fRandom->nextRangeF(1.f,10.f);
    SkRect circle = SkRect::MakeWH(wh, wh);
    return GrCircleBlurFragmentProcessor::Create(d->fContext->textureProvider(), circle, sigma);
}

#endif