diff options
author | Gael Guennebaud <g.gael@free.fr> | 2009-09-04 09:23:38 +0200 |
---|---|---|
committer | Gael Guennebaud <g.gael@free.fr> | 2009-09-04 09:23:38 +0200 |
commit | 68b28f7bfb29474ad21036476618a3730fa7fffa (patch) | |
tree | 4a2110fb56cdac34db426c2a9381bbb209cb8b51 /Eigen/src/Eigenvalues | |
parent | 7f5256f628fbc860a4f85fae999f22e8cb7d2837 (diff) |
rename the EigenSolver module to Eigenvalues
Diffstat (limited to 'Eigen/src/Eigenvalues')
-rw-r--r-- | Eigen/src/Eigenvalues/CMakeLists.txt | 6 | ||||
-rw-r--r-- | Eigen/src/Eigenvalues/ComplexEigenSolver.h | 148 | ||||
-rw-r--r-- | Eigen/src/Eigenvalues/ComplexSchur.h | 237 | ||||
-rw-r--r-- | Eigen/src/Eigenvalues/EigenSolver.h | 723 | ||||
-rw-r--r-- | Eigen/src/Eigenvalues/HessenbergDecomposition.h | 206 | ||||
-rw-r--r-- | Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h | 366 | ||||
-rw-r--r-- | Eigen/src/Eigenvalues/Tridiagonalization.h | 317 |
7 files changed, 2003 insertions, 0 deletions
diff --git a/Eigen/src/Eigenvalues/CMakeLists.txt b/Eigen/src/Eigenvalues/CMakeLists.txt new file mode 100644 index 000000000..193e02685 --- /dev/null +++ b/Eigen/src/Eigenvalues/CMakeLists.txt @@ -0,0 +1,6 @@ +FILE(GLOB Eigen_EIGENVALUES_SRCS "*.h") + +INSTALL(FILES + ${Eigen_EIGENVALUES_SRCS} + DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/Eigenvalues COMPONENT Devel + ) diff --git a/Eigen/src/Eigenvalues/ComplexEigenSolver.h b/Eigen/src/Eigenvalues/ComplexEigenSolver.h new file mode 100644 index 000000000..666381949 --- /dev/null +++ b/Eigen/src/Eigenvalues/ComplexEigenSolver.h @@ -0,0 +1,148 @@ +// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009 Claire Maurice
+// Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr>
+//
+// Eigen is free software; you can redistribute it and/or
+// modify it under the terms of the GNU Lesser General Public
+// License as published by the Free Software Foundation; either
+// version 3 of the License, or (at your option) any later version.
+//
+// Alternatively, you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of
+// the License, or (at your option) any later version.
+//
+// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
+// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU Lesser General Public
+// License and a copy of the GNU General Public License along with
+// Eigen. If not, see <http://www.gnu.org/licenses/>.
+
+#ifndef EIGEN_COMPLEX_EIGEN_SOLVER_H
+#define EIGEN_COMPLEX_EIGEN_SOLVER_H
+
+/** \eigenvalues_module \ingroup Eigenvalues_Module
+ * \nonstableyet
+ *
+ * \class ComplexEigenSolver
+ *
+ * \brief Eigen values/vectors solver for general complex matrices
+ *
+ * \param MatrixType the type of the matrix of which we are computing the eigen decomposition
+ *
+ * \sa class EigenSolver, class SelfAdjointEigenSolver
+ */
+template<typename _MatrixType> class ComplexEigenSolver
+{
+ public:
+ typedef _MatrixType MatrixType;
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ typedef std::complex<RealScalar> Complex;
+ typedef Matrix<Complex, MatrixType::ColsAtCompileTime,1> EigenvalueType;
+ typedef Matrix<Complex, MatrixType::RowsAtCompileTime,MatrixType::ColsAtCompileTime> EigenvectorType;
+
+ /**
+ * \brief Default Constructor.
+ *
+ * The default constructor is useful in cases in which the user intends to
+ * perform decompositions via ComplexEigenSolver::compute(const MatrixType&).
+ */
+ ComplexEigenSolver() : m_eivec(), m_eivalues(), m_isInitialized(false)
+ {}
+
+ ComplexEigenSolver(const MatrixType& matrix)
+ : m_eivec(matrix.rows(),matrix.cols()),
+ m_eivalues(matrix.cols()),
+ m_isInitialized(false)
+ {
+ compute(matrix);
+ }
+
+ EigenvectorType eigenvectors(void) const
+ {
+ ei_assert(m_isInitialized && "ComplexEigenSolver is not initialized.");
+ return m_eivec;
+ }
+
+ EigenvalueType eigenvalues() const
+ {
+ ei_assert(m_isInitialized && "ComplexEigenSolver is not initialized.");
+ return m_eivalues;
+ }
+
+ void compute(const MatrixType& matrix);
+
+ protected:
+ MatrixType m_eivec;
+ EigenvalueType m_eivalues;
+ bool m_isInitialized;
+};
+
+
+template<typename MatrixType>
+void ComplexEigenSolver<MatrixType>::compute(const MatrixType& matrix)
+{
+ // this code is inspired from Jampack
+ assert(matrix.cols() == matrix.rows());
+ int n = matrix.cols();
+ m_eivalues.resize(n,1);
+
+ RealScalar eps = epsilon<RealScalar>();
+
+ // Reduce to complex Schur form
+ ComplexSchur<MatrixType> schur(matrix);
+
+ m_eivalues = schur.matrixT().diagonal();
+
+ m_eivec.setZero();
+
+ Scalar d2, z;
+ RealScalar norm = matrix.norm();
+
+ // compute the (normalized) eigenvectors
+ for(int k=n-1 ; k>=0 ; k--)
+ {
+ d2 = schur.matrixT().coeff(k,k);
+ m_eivec.coeffRef(k,k) = Scalar(1.0,0.0);
+ for(int i=k-1 ; i>=0 ; i--)
+ {
+ m_eivec.coeffRef(i,k) = -schur.matrixT().coeff(i,k);
+ if(k-i-1>0)
+ m_eivec.coeffRef(i,k) -= (schur.matrixT().row(i).segment(i+1,k-i-1) * m_eivec.col(k).segment(i+1,k-i-1)).value();
+ z = schur.matrixT().coeff(i,i) - d2;
+ if(z==Scalar(0))
+ ei_real_ref(z) = eps * norm;
+ m_eivec.coeffRef(i,k) = m_eivec.coeff(i,k) / z;
+
+ }
+ m_eivec.col(k).normalize();
+ }
+
+ m_eivec = schur.matrixU() * m_eivec;
+ m_isInitialized = true;
+
+ // sort the eigenvalues
+ {
+ for (int i=0; i<n; i++)
+ {
+ int k;
+ m_eivalues.cwise().abs().end(n-i).minCoeff(&k);
+ if (k != 0)
+ {
+ k += i;
+ std::swap(m_eivalues[k],m_eivalues[i]);
+ m_eivec.col(i).swap(m_eivec.col(k));
+ }
+ }
+ }
+}
+
+
+
+#endif // EIGEN_COMPLEX_EIGEN_SOLVER_H
diff --git a/Eigen/src/Eigenvalues/ComplexSchur.h b/Eigen/src/Eigenvalues/ComplexSchur.h new file mode 100644 index 000000000..58e2ea440 --- /dev/null +++ b/Eigen/src/Eigenvalues/ComplexSchur.h @@ -0,0 +1,237 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009 Claire Maurice +// Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr> +// +// Eigen is free software; you can redistribute it and/or +// modify it under the terms of the GNU Lesser General Public +// License as published by the Free Software Foundation; either +// version 3 of the License, or (at your option) any later version. +// +// Alternatively, you can redistribute it and/or +// modify it under the terms of the GNU General Public License as +// published by the Free Software Foundation; either version 2 of +// the License, or (at your option) any later version. +// +// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY +// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS +// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the +// GNU General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public +// License and a copy of the GNU General Public License along with +// Eigen. If not, see <http://www.gnu.org/licenses/>. + +#ifndef EIGEN_COMPLEX_SCHUR_H +#define EIGEN_COMPLEX_SCHUR_H + +/** \eigenvalues_module \ingroup Eigenvalues_Module + * \nonstableyet + * + * \class ComplexShur + * + * \brief Performs a complex Shur decomposition of a real or complex square matrix + * + */ +template<typename _MatrixType> class ComplexSchur +{ + public: + typedef _MatrixType MatrixType; + typedef typename MatrixType::Scalar Scalar; + typedef typename NumTraits<Scalar>::Real RealScalar; + typedef std::complex<RealScalar> Complex; + typedef Matrix<Complex, MatrixType::RowsAtCompileTime,MatrixType::ColsAtCompileTime> ComplexMatrixType; + + /** + * \brief Default Constructor. + * + * The default constructor is useful in cases in which the user intends to + * perform decompositions via ComplexSchur::compute(const MatrixType&). + */ + ComplexSchur() : m_matT(), m_matU(), m_isInitialized(false) + {} + + ComplexSchur(const MatrixType& matrix) + : m_matT(matrix.rows(),matrix.cols()), + m_matU(matrix.rows(),matrix.cols()), + m_isInitialized(false) + { + compute(matrix); + } + + ComplexMatrixType matrixU() const + { + ei_assert(m_isInitialized && "ComplexSchur is not initialized."); + return m_matU; + } + + ComplexMatrixType matrixT() const + { + ei_assert(m_isInitialized && "ComplexShur is not initialized."); + return m_matT; + } + + void compute(const MatrixType& matrix); + + protected: + ComplexMatrixType m_matT, m_matU; + bool m_isInitialized; +}; + +/** Computes the principal value of the square root of the complex \a z. */ +template<typename RealScalar> +std::complex<RealScalar> ei_sqrt(const std::complex<RealScalar> &z) +{ + RealScalar t, tre, tim; + + t = ei_abs(z); + + if (ei_abs(ei_real(z)) <= ei_abs(ei_imag(z))) + { + // No cancellation in these formulas + tre = ei_sqrt(0.5*(t + ei_real(z))); + tim = ei_sqrt(0.5*(t - ei_real(z))); + } + else + { + // Stable computation of the above formulas + if (z.real() > 0) + { + tre = t + z.real(); + tim = ei_abs(ei_imag(z))*ei_sqrt(0.5/tre); + tre = ei_sqrt(0.5*tre); + } + else + { + tim = t - z.real(); + tre = ei_abs(ei_imag(z))*ei_sqrt(0.5/tim); + tim = ei_sqrt(0.5*tim); + } + } + if(z.imag() < 0) + tim = -tim; + + return (std::complex<RealScalar>(tre,tim)); + +} + +template<typename MatrixType> +void ComplexSchur<MatrixType>::compute(const MatrixType& matrix) +{ + // this code is inspired from Jampack + assert(matrix.cols() == matrix.rows()); + int n = matrix.cols(); + + // Reduce to Hessenberg form + HessenbergDecomposition<MatrixType> hess(matrix); + + m_matT = hess.matrixH(); + m_matU = hess.matrixQ(); + + int iu = m_matT.cols() - 1; + int il; + RealScalar d,sd,sf; + Complex c,b,disc,r1,r2,kappa; + + RealScalar eps = epsilon<RealScalar>(); + + int iter = 0; + while(true) + { + //locate the range in which to iterate + while(iu > 0) + { + d = ei_norm1(m_matT.coeffRef(iu,iu)) + ei_norm1(m_matT.coeffRef(iu-1,iu-1)); + sd = ei_norm1(m_matT.coeffRef(iu,iu-1)); + + if(sd >= eps * d) break; // FIXME : precision criterion ?? + + m_matT.coeffRef(iu,iu-1) = Complex(0); + iter = 0; + --iu; + } + if(iu==0) break; + iter++; + + if(iter >= 30) + { + // FIXME : what to do when iter==MAXITER ?? + std::cerr << "MAXITER" << std::endl; + return; + } + + il = iu-1; + while( il > 0 ) + { + // check if the current 2x2 block on the diagonal is upper triangular + d = ei_norm1(m_matT.coeffRef(il,il)) + ei_norm1(m_matT.coeffRef(il-1,il-1)); + sd = ei_norm1(m_matT.coeffRef(il,il-1)); + + if(sd < eps * d) break; // FIXME : precision criterion ?? + + --il; + } + + if( il != 0 ) m_matT.coeffRef(il,il-1) = Complex(0); + + // compute the shift (the normalization by sf is to avoid under/overflow) + Matrix<Scalar,2,2> t = m_matT.template block<2,2>(iu-1,iu-1); + sf = t.cwise().abs().sum(); + t /= sf; + + c = t.determinant(); + b = t.diagonal().sum(); + + disc = ei_sqrt(b*b - RealScalar(4)*c); + + r1 = (b+disc)/RealScalar(2); + r2 = (b-disc)/RealScalar(2); + + if(ei_norm1(r1) > ei_norm1(r2)) + r2 = c/r1; + else + r1 = c/r2; + + if(ei_norm1(r1-t.coeff(1,1)) < ei_norm1(r2-t.coeff(1,1))) + kappa = sf * r1; + else + kappa = sf * r2; + + // perform the QR step using Givens rotations + PlanarRotation<Complex> rot; + rot.makeGivens(m_matT.coeff(il,il) - kappa, m_matT.coeff(il+1,il)); + + for(int i=il ; i<iu ; i++) + { + m_matT.block(0,i,n,n-i).applyOnTheLeft(i, i+1, rot.adjoint()); + m_matT.block(0,0,std::min(i+2,iu)+1,n).applyOnTheRight(i, i+1, rot); + m_matU.applyOnTheRight(i, i+1, rot); + + if(i != iu-1) + { + int i1 = i+1; + int i2 = i+2; + + rot.makeGivens(m_matT.coeffRef(i1,i), m_matT.coeffRef(i2,i), &m_matT.coeffRef(i1,i)); + m_matT.coeffRef(i2,i) = Complex(0); + } + } + } + + // FIXME : is it necessary ? + /* + for(int i=0 ; i<n ; i++) + for(int j=0 ; j<n ; j++) + { + if(ei_abs(ei_real(m_matT.coeff(i,j))) < eps) + ei_real_ref(m_matT.coeffRef(i,j)) = 0; + if(ei_imag(ei_abs(m_matT.coeff(i,j))) < eps) + ei_imag_ref(m_matT.coeffRef(i,j)) = 0; + } + */ + + m_isInitialized = true; +} + +#endif // EIGEN_COMPLEX_SCHUR_H diff --git a/Eigen/src/Eigenvalues/EigenSolver.h b/Eigen/src/Eigenvalues/EigenSolver.h new file mode 100644 index 000000000..3fc36c080 --- /dev/null +++ b/Eigen/src/Eigenvalues/EigenSolver.h @@ -0,0 +1,723 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> +// +// Eigen is free software; you can redistribute it and/or +// modify it under the terms of the GNU Lesser General Public +// License as published by the Free Software Foundation; either +// version 3 of the License, or (at your option) any later version. +// +// Alternatively, you can redistribute it and/or +// modify it under the terms of the GNU General Public License as +// published by the Free Software Foundation; either version 2 of +// the License, or (at your option) any later version. +// +// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY +// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS +// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the +// GNU General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public +// License and a copy of the GNU General Public License along with +// Eigen. If not, see <http://www.gnu.org/licenses/>. + +#ifndef EIGEN_EIGENSOLVER_H +#define EIGEN_EIGENSOLVER_H + +/** \eigenvalues_module \ingroup Eigenvalues_Module + * \nonstableyet + * + * \class EigenSolver + * + * \brief Eigen values/vectors solver for non selfadjoint matrices + * + * \param MatrixType the type of the matrix of which we are computing the eigen decomposition + * + * Currently it only support real matrices. + * + * \note this code was adapted from JAMA (public domain) + * + * \sa MatrixBase::eigenvalues(), SelfAdjointEigenSolver + */ +template<typename _MatrixType> class EigenSolver +{ + public: + + typedef _MatrixType MatrixType; + typedef typename MatrixType::Scalar Scalar; + typedef typename NumTraits<Scalar>::Real RealScalar; + typedef std::complex<RealScalar> Complex; + typedef Matrix<Complex, MatrixType::ColsAtCompileTime, 1> EigenvalueType; + typedef Matrix<Complex, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime> EigenvectorType; + typedef Matrix<RealScalar, MatrixType::ColsAtCompileTime, 1> RealVectorType; + typedef Matrix<RealScalar, Dynamic, 1> RealVectorTypeX; + + /** + * \brief Default Constructor. + * + * The default constructor is useful in cases in which the user intends to + * perform decompositions via EigenSolver::compute(const MatrixType&). + */ + EigenSolver() : m_eivec(), m_eivalues(), m_isInitialized(false) {} + + EigenSolver(const MatrixType& matrix) + : m_eivec(matrix.rows(), matrix.cols()), + m_eivalues(matrix.cols()), + m_isInitialized(false) + { + compute(matrix); + } + + + EigenvectorType eigenvectors(void) const; + + /** \returns a real matrix V of pseudo eigenvectors. + * + * Let D be the block diagonal matrix with the real eigenvalues in 1x1 blocks, + * and any complex values u+iv in 2x2 blocks [u v ; -v u]. Then, the matrices D + * and V satisfy A*V = V*D. + * + * More precisely, if the diagonal matrix of the eigen values is:\n + * \f$ + * \left[ \begin{array}{cccccc} + * u+iv & & & & & \\ + * & u-iv & & & & \\ + * & & a+ib & & & \\ + * & & & a-ib & & \\ + * & & & & x & \\ + * & & & & & y \\ + * \end{array} \right] + * \f$ \n + * then, we have:\n + * \f$ + * D =\left[ \begin{array}{cccccc} + * u & v & & & & \\ + * -v & u & & & & \\ + * & & a & b & & \\ + * & & -b & a & & \\ + * & & & & x & \\ + * & & & & & y \\ + * \end{array} \right] + * \f$ + * + * \sa pseudoEigenvalueMatrix() + */ + const MatrixType& pseudoEigenvectors() const + { + ei_assert(m_isInitialized && "EigenSolver is not initialized."); + return m_eivec; + } + + MatrixType pseudoEigenvalueMatrix() const; + + /** \returns the eigenvalues as a column vector */ + EigenvalueType eigenvalues() const + { + ei_assert(m_isInitialized && "EigenSolver is not initialized."); + return m_eivalues; + } + + EigenSolver& compute(const MatrixType& matrix); + + private: + + void orthes(MatrixType& matH, RealVectorType& ort); + void hqr2(MatrixType& matH); + + protected: + MatrixType m_eivec; + EigenvalueType m_eivalues; + bool m_isInitialized; +}; + +/** \returns the real block diagonal matrix D of the eigenvalues. + * + * See pseudoEigenvectors() for the details. + */ +template<typename MatrixType> +MatrixType EigenSolver<MatrixType>::pseudoEigenvalueMatrix() const +{ + ei_assert(m_isInitialized && "EigenSolver is not initialized."); + int n = m_eivec.cols(); + MatrixType matD = MatrixType::Zero(n,n); + for (int i=0; i<n; ++i) + { + if (ei_isMuchSmallerThan(ei_imag(m_eivalues.coeff(i)), ei_real(m_eivalues.coeff(i)))) + matD.coeffRef(i,i) = ei_real(m_eivalues.coeff(i)); + else + { + matD.template block<2,2>(i,i) << ei_real(m_eivalues.coeff(i)), ei_imag(m_eivalues.coeff(i)), + -ei_imag(m_eivalues.coeff(i)), ei_real(m_eivalues.coeff(i)); + ++i; + } + } + return matD; +} + +/** \returns the normalized complex eigenvectors as a matrix of column vectors. + * + * \sa eigenvalues(), pseudoEigenvectors() + */ +template<typename MatrixType> +typename EigenSolver<MatrixType>::EigenvectorType EigenSolver<MatrixType>::eigenvectors(void) const +{ + ei_assert(m_isInitialized && "EigenSolver is not initialized."); + int n = m_eivec.cols(); + EigenvectorType matV(n,n); + for (int j=0; j<n; ++j) + { + if (ei_isMuchSmallerThan(ei_abs(ei_imag(m_eivalues.coeff(j))), ei_abs(ei_real(m_eivalues.coeff(j))))) + { + // we have a real eigen value + matV.col(j) = m_eivec.col(j).template cast<Complex>(); + } + else + { + // we have a pair of complex eigen values + for (int i=0; i<n; ++i) + { + matV.coeffRef(i,j) = Complex(m_eivec.coeff(i,j), m_eivec.coeff(i,j+1)); + matV.coeffRef(i,j+1) = Complex(m_eivec.coeff(i,j), -m_eivec.coeff(i,j+1)); + } + matV.col(j).normalize(); + matV.col(j+1).normalize(); + ++j; + } + } + return matV; +} + +template<typename MatrixType> +EigenSolver<MatrixType>& EigenSolver<MatrixType>::compute(const MatrixType& matrix) +{ + assert(matrix.cols() == matrix.rows()); + int n = matrix.cols(); + m_eivalues.resize(n,1); + + MatrixType matH = matrix; + RealVectorType ort(n); + + // Reduce to Hessenberg form. + orthes(matH, ort); + + // Reduce Hessenberg to real Schur form. + hqr2(matH); + + m_isInitialized = true; + return *this; +} + +// Nonsymmetric reduction to Hessenberg form. +template<typename MatrixType> +void EigenSolver<MatrixType>::orthes(MatrixType& matH, RealVectorType& ort) +{ + // This is derived from the Algol procedures orthes and ortran, + // by Martin and Wilkinson, Handbook for Auto. Comp., + // Vol.ii-Linear Algebra, and the corresponding + // Fortran subroutines in EISPACK. + + int n = m_eivec.cols(); + int low = 0; + int high = n-1; + + for (int m = low+1; m <= high-1; ++m) + { + // Scale column. + RealScalar scale = matH.block(m, m-1, high-m+1, 1).cwise().abs().sum(); + if (scale != 0.0) + { + // Compute Householder transformation. + RealScalar h = 0.0; + // FIXME could be rewritten, but this one looks better wrt cache + for (int i = high; i >= m; i--) + { + ort.coeffRef(i) = matH.coeff(i,m-1)/scale; + h += ort.coeff(i) * ort.coeff(i); + } + RealScalar g = ei_sqrt(h); + if (ort.coeff(m) > 0) + g = -g; + h = h - ort.coeff(m) * g; + ort.coeffRef(m) = ort.coeff(m) - g; + + // Apply Householder similarity transformation + // H = (I-u*u'/h)*H*(I-u*u')/h) + int bSize = high-m+1; + matH.block(m, m, bSize, n-m).noalias() -= ((ort.segment(m, bSize)/h) + * (ort.segment(m, bSize).transpose() * matH.block(m, m, bSize, n-m))); + + matH.block(0, m, high+1, bSize).noalias() -= ((matH.block(0, m, high+1, bSize) * ort.segment(m, bSize)) + * (ort.segment(m, bSize)/h).transpose()); + + ort.coeffRef(m) = scale*ort.coeff(m); + matH.coeffRef(m,m-1) = scale*g; + } + } + + // Accumulate transformations (Algol's ortran). + m_eivec.setIdentity(); + + for (int m = high-1; m >= low+1; m--) + { + if (matH.coeff(m,m-1) != 0.0) + { + ort.segment(m+1, high-m) = matH.col(m-1).segment(m+1, high-m); + + int bSize = high-m+1; + m_eivec.block(m, m, bSize, bSize).noalias() += ( (ort.segment(m, bSize) / (matH.coeff(m,m-1) * ort.coeff(m))) + * (ort.segment(m, bSize).transpose() * m_eivec.block(m, m, bSize, bSize)) ); + } + } +} + +// Complex scalar division. +template<typename Scalar> +std::complex<Scalar> cdiv(Scalar xr, Scalar xi, Scalar yr, Scalar yi) +{ + Scalar r,d; + if (ei_abs(yr) > ei_abs(yi)) + { + r = yi/yr; + d = yr + r*yi; + return std::complex<Scalar>((xr + r*xi)/d, (xi - r*xr)/d); + } + else + { + r = yr/yi; + d = yi + r*yr; + return std::complex<Scalar>((r*xr + xi)/d, (r*xi - xr)/d); + } +} + + +// Nonsymmetric reduction from Hessenberg to real Schur form. +template<typename MatrixType> +void EigenSolver<MatrixType>::hqr2(MatrixType& matH) +{ + // This is derived from the Algol procedure hqr2, + // by Martin and Wilkinson, Handbook for Auto. Comp., + // Vol.ii-Linear Algebra, and the corresponding + // Fortran subroutine in EISPACK. + + // Initialize + int nn = m_eivec.cols(); + int n = nn-1; + int low = 0; + int high = nn-1; + Scalar eps = ei_pow(Scalar(2),ei_is_same_type<Scalar,float>::ret ? Scalar(-23) : Scalar(-52)); + Scalar exshift = 0.0; + Scalar p=0,q=0,r=0,s=0,z=0,t,w,x,y; + + // Store roots isolated by balanc and compute matrix norm + // FIXME to be efficient the following would requires a triangular reduxion code + // Scalar norm = matH.upper().cwise().abs().sum() + matH.corner(BottomLeft,n,n).diagonal().cwise().abs().sum(); + Scalar norm = 0.0; + for (int j = 0; j < nn; ++j) + { + // FIXME what's the purpose of the following since the condition is always false + if ((j < low) || (j > high)) + { + m_eivalues.coeffRef(j) = Complex(matH.coeff(j,j), 0.0); + } + norm += matH.row(j).segment(std::max(j-1,0), nn-std::max(j-1,0)).cwise().abs().sum(); + } + + // Outer loop over eigenvalue index + int iter = 0; + while (n >= low) + { + // Look for single small sub-diagonal element + int l = n; + while (l > low) + { + s = ei_abs(matH.coeff(l-1,l-1)) + ei_abs(matH.coeff(l,l)); + if (s == 0.0) + s = norm; + if (ei_abs(matH.coeff(l,l-1)) < eps * s) + break; + l--; + } + + // Check for convergence + // One root found + if (l == n) + { + matH.coeffRef(n,n) = matH.coeff(n,n) + exshift; + m_eivalues.coeffRef(n) = Complex(matH.coeff(n,n), 0.0); + n--; + iter = 0; + } + else if (l == n-1) // Two roots found + { + w = matH.coeff(n,n-1) * matH.coeff(n-1,n); + p = (matH.coeff(n-1,n-1) - matH.coeff(n,n)) * Scalar(0.5); + q = p * p + w; + z = ei_sqrt(ei_abs(q)); + matH.coeffRef(n,n) = matH.coeff(n,n) + exshift; + matH.coeffRef(n-1,n-1) = matH.coeff(n-1,n-1) + exshift; + x = matH.coeff(n,n); + + // Scalar pair + if (q >= 0) + { + if (p >= 0) + z = p + z; + else + z = p - z; + + m_eivalues.coeffRef(n-1) = Complex(x + z, 0.0); + m_eivalues.coeffRef(n) = Complex(z!=0.0 ? x - w / z : m_eivalues.coeff(n-1).real(), 0.0); + + x = matH.coeff(n,n-1); + s = ei_abs(x) + ei_abs(z); + p = x / s; + q = z / s; + r = ei_sqrt(p * p+q * q); + p = p / r; + q = q / r; + + // Row modification + for (int j = n-1; j < nn; ++j) + { + z = matH.coeff(n-1,j); + matH.coeffRef(n-1,j) = q * z + p * matH.coeff(n,j); + matH.coeffRef(n,j) = q * matH.coeff(n,j) - p * z; + } + + // Column modification + for (int i = 0; i <= n; ++i) + { + z = matH.coeff(i,n-1); + matH.coeffRef(i,n-1) = q * z + p * matH.coeff(i,n); + matH.coeffRef(i,n) = q * matH.coeff(i,n) - p * z; + } + + // Accumulate transformations + for (int i = low; i <= high; ++i) + { + z = m_eivec.coeff(i,n-1); + m_eivec.coeffRef(i,n-1) = q * z + p * m_eivec.coeff(i,n); + m_eivec.coeffRef(i,n) = q * m_eivec.coeff(i,n) - p * z; + } + } + else // Complex pair + { + m_eivalues.coeffRef(n-1) = Complex(x + p, z); + m_eivalues.coeffRef(n) = Complex(x + p, -z); + } + n = n - 2; + iter = 0; + } + else // No convergence yet + { + // Form shift + x = matH.coeff(n,n); + y = 0.0; + w = 0.0; + if (l < n) + { + y = matH.coeff(n-1,n-1); + w = matH.coeff(n,n-1) * matH.coeff(n-1,n); + } + + // Wilkinson's original ad hoc shift + if (iter == 10) + { + exshift += x; + for (int i = low; i <= n; ++i) + matH.coeffRef(i,i) -= x; + s = ei_abs(matH.coeff(n,n-1)) + ei_abs(matH.coeff(n-1,n-2)); + x = y = Scalar(0.75) * s; + w = Scalar(-0.4375) * s * s; + } + + // MATLAB's new ad hoc shift + if (iter == 30) + { + s = Scalar((y - x) / 2.0); + s = s * s + w; + if (s > 0) + { + s = ei_sqrt(s); + if (y < x) + s = -s; + s = Scalar(x - w / ((y - x) / 2.0 + s)); + for (int i = low; i <= n; ++i) + matH.coeffRef(i,i) -= s; + exshift += s; + x = y = w = Scalar(0.964); + } + } + + iter = iter + 1; // (Could check iteration count here.) + + // Look for two consecutive small sub-diagonal elements + int m = n-2; + while (m >= l) + { + z = matH.coeff(m,m); + r = x - z; + s = y - z; + p = (r * s - w) / matH.coeff(m+1,m) + matH.coeff(m,m+1); + q = matH.coeff(m+1,m+1) - z - r - s; + r = matH.coeff(m+2,m+1); + s = ei_abs(p) + ei_abs(q) + ei_abs(r); + p = p / s; + q = q / s; + r = r / s; + if (m == l) { + break; + } + if (ei_abs(matH.coeff(m,m-1)) * (ei_abs(q) + ei_abs(r)) < + eps * (ei_abs(p) * (ei_abs(matH.coeff(m-1,m-1)) + ei_abs(z) + + ei_abs(matH.coeff(m+1,m+1))))) + { + break; + } + m--; + } + + for (int i = m+2; i <= n; ++i) + { + matH.coeffRef(i,i-2) = 0.0; + if (i > m+2) + matH.coeffRef(i,i-3) = 0.0; + } + + // Double QR step involving rows l:n and columns m:n + for (int k = m; k <= n-1; ++k) + { + int notlast = (k != n-1); + if (k != m) { + p = matH.coeff(k,k-1); + q = matH.coeff(k+1,k-1); + r = notlast ? matH.coeff(k+2,k-1) : Scalar(0); + x = ei_abs(p) + ei_abs(q) + ei_abs(r); + if (x != 0.0) + { + p = p / x; + q = q / x; + r = r / x; + } + } + + if (x == 0.0) + break; + + s = ei_sqrt(p * p + q * q + r * r); + + if (p < 0) + s = -s; + + if (s != 0) + { + if (k != m) + matH.coeffRef(k,k-1) = -s * x; + else if (l != m) + matH.coeffRef(k,k-1) = -matH.coeff(k,k-1); + + p = p + s; + x = p / s; + y = q / s; + z = r / s; + q = q / p; + r = r / p; + + // Row modification + for (int j = k; j < nn; ++j) + { + p = matH.coeff(k,j) + q * matH.coeff(k+1,j); + if (notlast) + { + p = p + r * matH.coeff(k+2,j); + matH.coeffRef(k+2,j) = matH.coeff(k+2,j) - p * z; + } + matH.coeffRef(k,j) = matH.coeff(k,j) - p * x; + matH.coeffRef(k+1,j) = matH.coeff(k+1,j) - p * y; + } + + // Column modification + for (int i = 0; i <= std::min(n,k+3); ++i) + { + p = x * matH.coeff(i,k) + y * matH.coeff(i,k+1); + if (notlast) + { + p = p + z * matH.coeff(i,k+2); + matH.coeffRef(i,k+2) = matH.coeff(i,k+2) - p * r; + } + matH.coeffRef(i,k) = matH.coeff(i,k) - p; + matH.coeffRef(i,k+1) = matH.coeff(i,k+1) - p * q; + } + + // Accumulate transformations + for (int i = low; i <= high; ++i) + { + p = x * m_eivec.coeff(i,k) + y * m_eivec.coeff(i,k+1); + if (notlast) + { + p = p + z * m_eivec.coeff(i,k+2); + m_eivec.coeffRef(i,k+2) = m_eivec.coeff(i,k+2) - p * r; + } + m_eivec.coeffRef(i,k) = m_eivec.coeff(i,k) - p; + m_eivec.coeffRef(i,k+1) = m_eivec.coeff(i,k+1) - p * q; + } + } // (s != 0) + } // k loop + } // check convergence + } // while (n >= low) + + // Backsubstitute to find vectors of upper triangular form + if (norm == 0.0) + { + return; + } + + for (n = nn-1; n >= 0; n--) + { + p = m_eivalues.coeff(n).real(); + q = m_eivalues.coeff(n).imag(); + + // Scalar vector + if (q == 0) + { + int l = n; + matH.coeffRef(n,n) = 1.0; + for (int i = n-1; i >= 0; i--) + { + w = matH.coeff(i,i) - p; + r = matH.row(i).segment(l,n-l+1).dot(matH.col(n).segment(l, n-l+1)); + + if (m_eivalues.coeff(i).imag() < 0.0) + { + z = w; + s = r; + } + else + { + l = i; + if (m_eivalues.coeff(i).imag() == 0.0) + { + if (w != 0.0) + matH.coeffRef(i,n) = -r / w; + else + matH.coeffRef(i,n) = -r / (eps * norm); + } + else // Solve real equations + { + x = matH.coeff(i,i+1); + y = matH.coeff(i+1,i); + q = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag(); + t = (x * s - z * r) / q; + matH.coeffRef(i,n) = t; + if (ei_abs(x) > ei_abs(z)) + matH.coeffRef(i+1,n) = (-r - w * t) / x; + else + matH.coeffRef(i+1,n) = (-s - y * t) / z; + } + + // Overflow control + t = ei_abs(matH.coeff(i,n)); + if ((eps * t) * t > 1) + matH.col(n).end(nn-i) /= t; + } + } + } + else if (q < 0) // Complex vector + { + std::complex<Scalar> cc; + int l = n-1; + + // Last vector component imaginary so matrix is triangular + if (ei_abs(matH.coeff(n,n-1)) > ei_abs(matH.coeff(n-1,n))) + { + matH.coeffRef(n-1,n-1) = q / matH.coeff(n,n-1); + matH.coeffRef(n-1,n) = -(matH.coeff(n,n) - p) / matH.coeff(n,n-1); + } + else + { + cc = cdiv<Scalar>(0.0,-matH.coeff(n-1,n),matH.coeff(n-1,n-1)-p,q); + matH.coeffRef(n-1,n-1) = ei_real(cc); + matH.coeffRef(n-1,n) = ei_imag(cc); + } + matH.coeffRef(n,n-1) = 0.0; + matH.coeffRef(n,n) = 1.0; + for (int i = n-2; i >= 0; i--) + { + Scalar ra,sa,vr,vi; + ra = matH.row(i).segment(l, n-l+1).dot(matH.col(n-1).segment(l, n-l+1)); + sa = matH.row(i).segment(l, n-l+1).dot(matH.col(n).segment(l, n-l+1)); + w = matH.coeff(i,i) - p; + + if (m_eivalues.coeff(i).imag() < 0.0) + { + z = w; + r = ra; + s = sa; + } + else + { + l = i; + if (m_eivalues.coeff(i).imag() == 0) + { + cc = cdiv(-ra,-sa,w,q); + matH.coeffRef(i,n-1) = ei_real(cc); + matH.coeffRef(i,n) = ei_imag(cc); + } + else + { + // Solve complex equations + x = matH.coeff(i,i+1); + y = matH.coeff(i+1,i); + vr = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag() - q * q; + vi = (m_eivalues.coeff(i).real() - p) * Scalar(2) * q; + if ((vr == 0.0) && (vi == 0.0)) + vr = eps * norm * (ei_abs(w) + ei_abs(q) + ei_abs(x) + ei_abs(y) + ei_abs(z)); + + cc= cdiv(x*r-z*ra+q*sa,x*s-z*sa-q*ra,vr,vi); + matH.coeffRef(i,n-1) = ei_real(cc); + matH.coeffRef(i,n) = ei_imag(cc); + if (ei_abs(x) > (ei_abs(z) + ei_abs(q))) + { + matH.coeffRef(i+1,n-1) = (-ra - w * matH.coeff(i,n-1) + q * matH.coeff(i,n)) / x; + matH.coeffRef(i+1,n) = (-sa - w * matH.coeff(i,n) - q * matH.coeff(i,n-1)) / x; + } + else + { + cc = cdiv(-r-y*matH.coeff(i,n-1),-s-y*matH.coeff(i,n),z,q); + matH.coeffRef(i+1,n-1) = ei_real(cc); + matH.coeffRef(i+1,n) = ei_imag(cc); + } + } + + // Overflow control + t = std::max(ei_abs(matH.coeff(i,n-1)),ei_abs(matH.coeff(i,n))); + if ((eps * t) * t > 1) + matH.block(i, n-1, nn-i, 2) /= t; + + } + } + } + } + + // Vectors of isolated roots + for (int i = 0; i < nn; ++i) + { + // FIXME again what's the purpose of this test ? + // in this algo low==0 and high==nn-1 !! + if (i < low || i > high) + { + m_eivec.row(i).end(nn-i) = matH.row(i).end(nn-i); + } + } + + // Back transformation to get eigenvectors of original matrix + int bRows = high-low+1; + for (int j = nn-1; j >= low; j--) + { + int bSize = std::min(j,high)-low+1; + m_eivec.col(j).segment(low, bRows) = (m_eivec.block(low, low, bRows, bSize) * matH.col(j).segment(low, bSize)); + } +} + +#endif // EIGEN_EIGENSOLVER_H diff --git a/Eigen/src/Eigenvalues/HessenbergDecomposition.h b/Eigen/src/Eigenvalues/HessenbergDecomposition.h new file mode 100644 index 000000000..b1e21d4ee --- /dev/null +++ b/Eigen/src/Eigenvalues/HessenbergDecomposition.h @@ -0,0 +1,206 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> +// +// Eigen is free software; you can redistribute it and/or +// modify it under the terms of the GNU Lesser General Public +// License as published by the Free Software Foundation; either +// version 3 of the License, or (at your option) any later version. +// +// Alternatively, you can redistribute it and/or +// modify it under the terms of the GNU General Public License as +// published by the Free Software Foundation; either version 2 of +// the License, or (at your option) any later version. +// +// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY +// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS +// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the +// GNU General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public +// License and a copy of the GNU General Public License along with +// Eigen. If not, see <http://www.gnu.org/licenses/>. + +#ifndef EIGEN_HESSENBERGDECOMPOSITION_H +#define EIGEN_HESSENBERGDECOMPOSITION_H + +/** \eigenvalues_module \ingroup Eigenvalues_Module + * \nonstableyet + * + * \class HessenbergDecomposition + * + * \brief Reduces a squared matrix to an Hessemberg form + * + * \param MatrixType the type of the matrix of which we are computing the Hessenberg decomposition + * + * This class performs an Hessenberg decomposition of a matrix \f$ A \f$ such that: + * \f$ A = Q H Q^* \f$ where \f$ Q \f$ is unitary and \f$ H \f$ a Hessenberg matrix. + * + * \sa class Tridiagonalization, class Qr + */ +template<typename _MatrixType> class HessenbergDecomposition +{ + public: + + typedef _MatrixType MatrixType; + typedef typename MatrixType::Scalar Scalar; + typedef typename NumTraits<Scalar>::Real RealScalar; + + enum { + Size = MatrixType::RowsAtCompileTime, + SizeMinusOne = MatrixType::RowsAtCompileTime==Dynamic + ? Dynamic + : MatrixType::RowsAtCompileTime-1 + }; + + typedef Matrix<Scalar, SizeMinusOne, 1> CoeffVectorType; + typedef Matrix<RealScalar, Size, 1> DiagonalType; + typedef Matrix<RealScalar, SizeMinusOne, 1> SubDiagonalType; + + typedef typename NestByValue<Diagonal<MatrixType,0> >::RealReturnType DiagonalReturnType; + + typedef typename NestByValue<Diagonal< + NestByValue<Block<MatrixType,SizeMinusOne,SizeMinusOne> >,0 > >::RealReturnType SubDiagonalReturnType; + + /** This constructor initializes a HessenbergDecomposition object for + * further use with HessenbergDecomposition::compute() + */ + HessenbergDecomposition(int size = Size==Dynamic ? 2 : Size) + : m_matrix(size,size), m_hCoeffs(size-1) + {} + + HessenbergDecomposition(const MatrixType& matrix) + : m_matrix(matrix), + m_hCoeffs(matrix.cols()-1) + { + _compute(m_matrix, m_hCoeffs); + } + + /** Computes or re-compute the Hessenberg decomposition for the matrix \a matrix. + * + * This method allows to re-use the allocated data. + */ + void compute(const MatrixType& matrix) + { + m_matrix = matrix; + m_hCoeffs.resize(matrix.rows()-1,1); + _compute(m_matrix, m_hCoeffs); + } + + /** \returns the householder coefficients allowing to + * reconstruct the matrix Q from the packed data. + * + * \sa packedMatrix() + */ + CoeffVectorType householderCoefficients() const { return m_hCoeffs; } + + /** \returns the internal result of the decomposition. + * + * The returned matrix contains the following information: + * - the upper part and lower sub-diagonal represent the Hessenberg matrix H + * - the rest of the lower part contains the Householder vectors that, combined with + * Householder coefficients returned by householderCoefficients(), + * allows to reconstruct the matrix Q as follow: + * Q = H_{N-1} ... H_1 H_0 + * where the matrices H are the Householder transformation: + * H_i = (I - h_i * v_i * v_i') + * where h_i == householderCoefficients()[i] and v_i is a Householder vector: + * v_i = [ 0, ..., 0, 1, M(i+2,i), ..., M(N-1,i) ] + * + * See LAPACK for further details on this packed storage. + */ + const MatrixType& packedMatrix(void) const { return m_matrix; } + + MatrixType matrixQ() const; + MatrixType matrixH() const; + + private: + + static void _compute(MatrixType& matA, CoeffVectorType& hCoeffs); + + protected: + MatrixType m_matrix; + CoeffVectorType m_hCoeffs; +}; + +#ifndef EIGEN_HIDE_HEAVY_CODE + +/** \internal + * Performs a tridiagonal decomposition of \a matA in place. + * + * \param matA the input selfadjoint matrix + * \param hCoeffs returned Householder coefficients + * + * The result is written in the lower triangular part of \a matA. + * + * Implemented from Golub's "Matrix Computations", algorithm 8.3.1. + * + * \sa packedMatrix() + */ +template<typename MatrixType> +void HessenbergDecomposition<MatrixType>::_compute(MatrixType& matA, CoeffVectorType& hCoeffs) +{ + assert(matA.rows()==matA.cols()); + int n = matA.rows(); + Matrix<Scalar,1,Dynamic> temp(n); + for (int i = 0; i<n-1; ++i) + { + // let's consider the vector v = i-th column starting at position i+1 + int remainingSize = n-i-1; + RealScalar beta; + Scalar h; + matA.col(i).end(remainingSize).makeHouseholderInPlace(&h, &beta); + matA.col(i).coeffRef(i+1) = beta; + hCoeffs.coeffRef(i) = h; + + // Apply similarity transformation to remaining columns, + // i.e., compute A = H A H' + + // A = H A + matA.corner(BottomRight, remainingSize, remainingSize) + .applyHouseholderOnTheLeft(matA.col(i).end(remainingSize-1), h, &temp.coeffRef(0)); + + // A = A H' + matA.corner(BottomRight, n, remainingSize) + .applyHouseholderOnTheRight(matA.col(i).end(remainingSize-1).conjugate(), ei_conj(h), &temp.coeffRef(0)); + } +} + +/** reconstructs and returns the matrix Q */ +template<typename MatrixType> +typename HessenbergDecomposition<MatrixType>::MatrixType +HessenbergDecomposition<MatrixType>::matrixQ() const +{ + int n = m_matrix.rows(); + MatrixType matQ = MatrixType::Identity(n,n); + Matrix<Scalar,1,MatrixType::ColsAtCompileTime> temp(n); + for (int i = n-2; i>=0; i--) + { + matQ.corner(BottomRight,n-i-1,n-i-1) + .applyHouseholderOnTheLeft(m_matrix.col(i).end(n-i-2), ei_conj(m_hCoeffs.coeff(i)), &temp.coeffRef(0,0)); + } + return matQ; +} + +#endif // EIGEN_HIDE_HEAVY_CODE + +/** constructs and returns the matrix H. + * Note that the matrix H is equivalent to the upper part of the packed matrix + * (including the lower sub-diagonal). Therefore, it might be often sufficient + * to directly use the packed matrix instead of creating a new one. + */ +template<typename MatrixType> +typename HessenbergDecomposition<MatrixType>::MatrixType +HessenbergDecomposition<MatrixType>::matrixH() const +{ + // FIXME should this function (and other similar) rather take a matrix as argument + // and fill it (to avoid temporaries) + int n = m_matrix.rows(); + MatrixType matH = m_matrix; + if (n>2) + matH.corner(BottomLeft,n-2, n-2).template triangularView<LowerTriangular>().setZero(); + return matH; +} + +#endif // EIGEN_HESSENBERGDECOMPOSITION_H diff --git a/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h b/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h new file mode 100644 index 000000000..84856aa66 --- /dev/null +++ b/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h @@ -0,0 +1,366 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> +// +// Eigen is free software; you can redistribute it and/or +// modify it under the terms of the GNU Lesser General Public +// License as published by the Free Software Foundation; either +// version 3 of the License, or (at your option) any later version. +// +// Alternatively, you can redistribute it and/or +// modify it under the terms of the GNU General Public License as +// published by the Free Software Foundation; either version 2 of +// the License, or (at your option) any later version. +// +// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY +// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS +// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the +// GNU General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public +// License and a copy of the GNU General Public License along with +// Eigen. If not, see <http://www.gnu.org/licenses/>. + +#ifndef EIGEN_SELFADJOINTEIGENSOLVER_H +#define EIGEN_SELFADJOINTEIGENSOLVER_H + +/** \eigenvalues_module \ingroup Eigenvalues_Module + * \nonstableyet + * + * \class SelfAdjointEigenSolver + * + * \brief Eigen values/vectors solver for selfadjoint matrix + * + * \param MatrixType the type of the matrix of which we are computing the eigen decomposition + * + * \note MatrixType must be an actual Matrix type, it can't be an expression type. + * + * \sa MatrixBase::eigenvalues(), class EigenSolver + */ +template<typename _MatrixType> class SelfAdjointEigenSolver +{ + public: + + enum {Size = _MatrixType::RowsAtCompileTime }; + typedef _MatrixType MatrixType; + typedef typename MatrixType::Scalar Scalar; + typedef typename NumTraits<Scalar>::Real RealScalar; + typedef std::complex<RealScalar> Complex; + typedef Matrix<RealScalar, MatrixType::ColsAtCompileTime, 1> RealVectorType; + typedef Matrix<RealScalar, Dynamic, 1> RealVectorTypeX; + typedef Tridiagonalization<MatrixType> TridiagonalizationType; +// typedef typename TridiagonalizationType::TridiagonalMatrixType TridiagonalMatrixType; + + SelfAdjointEigenSolver() + : m_eivec(int(Size), int(Size)), + m_eivalues(int(Size)) + { + ei_assert(Size!=Dynamic); + } + + SelfAdjointEigenSolver(int size) + : m_eivec(size, size), + m_eivalues(size) + {} + + /** Constructors computing the eigenvalues of the selfadjoint matrix \a matrix, + * as well as the eigenvectors if \a computeEigenvectors is true. + * + * \sa compute(MatrixType,bool), SelfAdjointEigenSolver(MatrixType,MatrixType,bool) + */ + SelfAdjointEigenSolver(const MatrixType& matrix, bool computeEigenvectors = true) + : m_eivec(matrix.rows(), matrix.cols()), + m_eivalues(matrix.cols()) + { + compute(matrix, computeEigenvectors); + } + + /** Constructors computing the eigenvalues of the generalized eigen problem + * \f$ Ax = lambda B x \f$ with \a matA the selfadjoint matrix \f$ A \f$ + * and \a matB the positive definite matrix \f$ B \f$ . The eigenvectors + * are computed if \a computeEigenvectors is true. + * + * \sa compute(MatrixType,MatrixType,bool), SelfAdjointEigenSolver(MatrixType,bool) + */ + SelfAdjointEigenSolver(const MatrixType& matA, const MatrixType& matB, bool computeEigenvectors = true) + : m_eivec(matA.rows(), matA.cols()), + m_eivalues(matA.cols()) + { + compute(matA, matB, computeEigenvectors); + } + + SelfAdjointEigenSolver& compute(const MatrixType& matrix, bool computeEigenvectors = true); + + SelfAdjointEigenSolver& compute(const MatrixType& matA, const MatrixType& matB, bool computeEigenvectors = true); + + /** \returns the computed eigen vectors as a matrix of column vectors */ + MatrixType eigenvectors(void) const + { + #ifndef NDEBUG + ei_assert(m_eigenvectorsOk); + #endif + return m_eivec; + } + + /** \returns the computed eigen values */ + RealVectorType eigenvalues(void) const { return m_eivalues; } + + /** \returns the positive square root of the matrix + * + * \note the matrix itself must be positive in order for this to make sense. + */ + MatrixType operatorSqrt() const + { + return m_eivec * m_eivalues.cwise().sqrt().asDiagonal() * m_eivec.adjoint(); + } + + /** \returns the positive inverse square root of the matrix + * + * \note the matrix itself must be positive definite in order for this to make sense. + */ + MatrixType operatorInverseSqrt() const + { + return m_eivec * m_eivalues.cwise().inverse().cwise().sqrt().asDiagonal() * m_eivec.adjoint(); + } + + + protected: + MatrixType m_eivec; + RealVectorType m_eivalues; + #ifndef NDEBUG + bool m_eigenvectorsOk; + #endif +}; + +#ifndef EIGEN_HIDE_HEAVY_CODE + +/** \internal + * + * \eigenvalues_module \ingroup Eigenvalues_Module + * + * Performs a QR step on a tridiagonal symmetric matrix represented as a + * pair of two vectors \a diag and \a subdiag. + * + * \param matA the input selfadjoint matrix + * \param hCoeffs returned Householder coefficients + * + * For compilation efficiency reasons, this procedure does not use eigen expression + * for its arguments. + * + * Implemented from Golub's "Matrix Computations", algorithm 8.3.2: + * "implicit symmetric QR step with Wilkinson shift" + */ +template<typename RealScalar, typename Scalar> +static void ei_tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, int start, int end, Scalar* matrixQ, int n); + +/** Computes the eigenvalues of the selfadjoint matrix \a matrix, + * as well as the eigenvectors if \a computeEigenvectors is true. + * + * \sa SelfAdjointEigenSolver(MatrixType,bool), compute(MatrixType,MatrixType,bool) + */ +template<typename MatrixType> +SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>::compute(const MatrixType& matrix, bool computeEigenvectors) +{ + #ifndef NDEBUG + m_eigenvectorsOk = computeEigenvectors; + #endif + assert(matrix.cols() == matrix.rows()); + int n = matrix.cols(); + m_eivalues.resize(n,1); + + if(n==1) + { + m_eivalues.coeffRef(0,0) = ei_real(matrix.coeff(0,0)); + m_eivec.setOnes(); + return *this; + } + + m_eivec = matrix; + + // FIXME, should tridiag be a local variable of this function or an attribute of SelfAdjointEigenSolver ? + // the latter avoids multiple memory allocation when the same SelfAdjointEigenSolver is used multiple times... + // (same for diag and subdiag) + RealVectorType& diag = m_eivalues; + typename TridiagonalizationType::SubDiagonalType subdiag(n-1); + TridiagonalizationType::decomposeInPlace(m_eivec, diag, subdiag, computeEigenvectors); + + int end = n-1; + int start = 0; + while (end>0) + { + for (int i = start; i<end; ++i) + if (ei_isMuchSmallerThan(ei_abs(subdiag[i]),(ei_abs(diag[i])+ei_abs(diag[i+1])))) + subdiag[i] = 0; + + // find the largest unreduced block + while (end>0 && subdiag[end-1]==0) + end--; + if (end<=0) + break; + start = end - 1; + while (start>0 && subdiag[start-1]!=0) + start--; + + ei_tridiagonal_qr_step(diag.data(), subdiag.data(), start, end, computeEigenvectors ? m_eivec.data() : (Scalar*)0, n); + } + + // Sort eigenvalues and corresponding vectors. + // TODO make the sort optional ? + // TODO use a better sort algorithm !! + for (int i = 0; i < n-1; ++i) + { + int k; + m_eivalues.segment(i,n-i).minCoeff(&k); + if (k > 0) + { + std::swap(m_eivalues[i], m_eivalues[k+i]); + m_eivec.col(i).swap(m_eivec.col(k+i)); + } + } + return *this; +} + +/** Computes the eigenvalues of the generalized eigen problem + * \f$ Ax = lambda B x \f$ with \a matA the selfadjoint matrix \f$ A \f$ + * and \a matB the positive definite matrix \f$ B \f$ . The eigenvectors + * are computed if \a computeEigenvectors is true. + * + * \sa SelfAdjointEigenSolver(MatrixType,MatrixType,bool), compute(MatrixType,bool) + */ +template<typename MatrixType> +SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>:: +compute(const MatrixType& matA, const MatrixType& matB, bool computeEigenvectors) +{ + ei_assert(matA.cols()==matA.rows() && matB.rows()==matA.rows() && matB.cols()==matB.rows()); + + // Compute the cholesky decomposition of matB = L L' + LLT<MatrixType> cholB(matB); + + // compute C = inv(L) A inv(L') + MatrixType matC = matA; + cholB.matrixL().solveInPlace(matC); + // FIXME since we currently do not support A * inv(L'), let's do (inv(L) A')' : + matC.adjointInPlace(); + cholB.matrixL().solveInPlace(matC); + matC.adjointInPlace(); + // this version works too: +// matC = matC.transpose(); +// cholB.matrixL().conjugate().template marked<LowerTriangular>().solveTriangularInPlace(matC); +// matC = matC.transpose(); + // FIXME: this should work: (currently it only does for small matrices) +// Transpose<MatrixType> trMatC(matC); +// cholB.matrixL().conjugate().eval().template marked<LowerTriangular>().solveTriangularInPlace(trMatC); + + compute(matC, computeEigenvectors); + + if (computeEigenvectors) + { + // transform back the eigen vectors: evecs = inv(U) * evecs + cholB.matrixU().solveInPlace(m_eivec); + for (int i=0; i<m_eivec.cols(); ++i) + m_eivec.col(i) = m_eivec.col(i).normalized(); + } + return *this; +} + +#endif // EIGEN_HIDE_HEAVY_CODE + +/** \eigenvalues_module + * + * \returns a vector listing the eigenvalues of this matrix. + */ +template<typename Derived> +inline Matrix<typename NumTraits<typename ei_traits<Derived>::Scalar>::Real, ei_traits<Derived>::ColsAtCompileTime, 1> +MatrixBase<Derived>::eigenvalues() const +{ + ei_assert(Flags&SelfAdjointBit); + return SelfAdjointEigenSolver<typename Derived::PlainMatrixType>(eval(),false).eigenvalues(); +} + +template<typename Derived, bool IsSelfAdjoint> +struct ei_operatorNorm_selector +{ + static inline typename NumTraits<typename ei_traits<Derived>::Scalar>::Real + operatorNorm(const MatrixBase<Derived>& m) + { + // FIXME if it is really guaranteed that the eigenvalues are already sorted, + // then we don't need to compute a maxCoeff() here, comparing the 1st and last ones is enough. + return m.eigenvalues().cwise().abs().maxCoeff(); + } +}; + +template<typename Derived> struct ei_operatorNorm_selector<Derived, false> +{ + static inline typename NumTraits<typename ei_traits<Derived>::Scalar>::Real + operatorNorm(const MatrixBase<Derived>& m) + { + typename Derived::PlainMatrixType m_eval(m); + // FIXME if it is really guaranteed that the eigenvalues are already sorted, + // then we don't need to compute a maxCoeff() here, comparing the 1st and last ones is enough. + return ei_sqrt( + (m_eval*m_eval.adjoint()) + .template marked<SelfAdjoint>() + .eigenvalues() + .maxCoeff() + ); + } +}; + +/** \eigenvalues_module + * + * \returns the matrix norm of this matrix. + */ +template<typename Derived> +inline typename NumTraits<typename ei_traits<Derived>::Scalar>::Real +MatrixBase<Derived>::operatorNorm() const +{ + return ei_operatorNorm_selector<Derived, Flags&SelfAdjointBit> + ::operatorNorm(derived()); +} + +#ifndef EIGEN_EXTERN_INSTANTIATIONS +template<typename RealScalar, typename Scalar> +static void ei_tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, int start, int end, Scalar* matrixQ, int n) +{ + RealScalar td = (diag[end-1] - diag[end])*RealScalar(0.5); + RealScalar e2 = ei_abs2(subdiag[end-1]); + RealScalar mu = diag[end] - e2 / (td + (td>0 ? 1 : -1) * ei_sqrt(td*td + e2)); + RealScalar x = diag[start] - mu; + RealScalar z = subdiag[start]; + + for (int k = start; k < end; ++k) + { + PlanarRotation<RealScalar> rot; + rot.makeGivens(x, z); + + // do T = G' T G + RealScalar sdk = rot.s() * diag[k] + rot.c() * subdiag[k]; + RealScalar dkp1 = rot.s() * subdiag[k] + rot.c() * diag[k+1]; + + diag[k] = rot.c() * (rot.c() * diag[k] - rot.s() * subdiag[k]) - rot.s() * (rot.c() * subdiag[k] - rot.s() * diag[k+1]); + diag[k+1] = rot.s() * sdk + rot.c() * dkp1; + subdiag[k] = rot.c() * sdk - rot.s() * dkp1; + + if (k > start) + subdiag[k - 1] = rot.c() * subdiag[k-1] - rot.s() * z; + + x = subdiag[k]; + + if (k < end - 1) + { + z = -rot.s() * subdiag[k+1]; + subdiag[k + 1] = rot.c() * subdiag[k+1]; + } + + // apply the givens rotation to the unit matrix Q = Q * G + if (matrixQ) + { + Map<Matrix<Scalar,Dynamic,Dynamic> > q(matrixQ,n,n); + q.applyOnTheRight(k,k+1,rot); + } + } +} +#endif + +#endif // EIGEN_SELFADJOINTEIGENSOLVER_H diff --git a/Eigen/src/Eigenvalues/Tridiagonalization.h b/Eigen/src/Eigenvalues/Tridiagonalization.h new file mode 100644 index 000000000..5f891bfa6 --- /dev/null +++ b/Eigen/src/Eigenvalues/Tridiagonalization.h @@ -0,0 +1,317 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> +// +// Eigen is free software; you can redistribute it and/or +// modify it under the terms of the GNU Lesser General Public +// License as published by the Free Software Foundation; either +// version 3 of the License, or (at your option) any later version. +// +// Alternatively, you can redistribute it and/or +// modify it under the terms of the GNU General Public License as +// published by the Free Software Foundation; either version 2 of +// the License, or (at your option) any later version. +// +// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY +// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS +// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the +// GNU General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public +// License and a copy of the GNU General Public License along with +// Eigen. If not, see <http://www.gnu.org/licenses/>. + +#ifndef EIGEN_TRIDIAGONALIZATION_H +#define EIGEN_TRIDIAGONALIZATION_H + +/** \eigenvalues_module \ingroup Eigenvalues_Module + * \nonstableyet + * + * \class Tridiagonalization + * + * \brief Trigiagonal decomposition of a selfadjoint matrix + * + * \param MatrixType the type of the matrix of which we are performing the tridiagonalization + * + * This class performs a tridiagonal decomposition of a selfadjoint matrix \f$ A \f$ such that: + * \f$ A = Q T Q^* \f$ where \f$ Q \f$ is unitary and \f$ T \f$ a real symmetric tridiagonal matrix. + * + * \sa MatrixBase::tridiagonalize() + */ +template<typename _MatrixType> class Tridiagonalization +{ + public: + + typedef _MatrixType MatrixType; + typedef typename MatrixType::Scalar Scalar; + typedef typename NumTraits<Scalar>::Real RealScalar; + typedef typename ei_packet_traits<Scalar>::type Packet; + + enum { + Size = MatrixType::RowsAtCompileTime, + SizeMinusOne = MatrixType::RowsAtCompileTime==Dynamic + ? Dynamic + : MatrixType::RowsAtCompileTime-1, + PacketSize = ei_packet_traits<Scalar>::size + }; + + typedef Matrix<Scalar, SizeMinusOne, 1> CoeffVectorType; + typedef Matrix<RealScalar, Size, 1> DiagonalType; + typedef Matrix<RealScalar, SizeMinusOne, 1> SubDiagonalType; + + typedef typename ei_meta_if<NumTraits<Scalar>::IsComplex, + typename NestByValue<Diagonal<MatrixType,0> >::RealReturnType, + Diagonal<MatrixType,0> + >::ret DiagonalReturnType; + + typedef typename ei_meta_if<NumTraits<Scalar>::IsComplex, + typename NestByValue<Diagonal< + NestByValue<Block<MatrixType,SizeMinusOne,SizeMinusOne> >,0 > >::RealReturnType, + Diagonal< + NestByValue<Block<MatrixType,SizeMinusOne,SizeMinusOne> >,0 > + >::ret SubDiagonalReturnType; + + /** This constructor initializes a Tridiagonalization object for + * further use with Tridiagonalization::compute() + */ + Tridiagonalization(int size = Size==Dynamic ? 2 : Size) + : m_matrix(size,size), m_hCoeffs(size-1) + {} + + Tridiagonalization(const MatrixType& matrix) + : m_matrix(matrix), m_hCoeffs(matrix.cols()-1) + { + _compute(m_matrix, m_hCoeffs); + } + + /** Computes or re-compute the tridiagonalization for the matrix \a matrix. + * + * This method allows to re-use the allocated data. + */ + void compute(const MatrixType& matrix) + { + m_matrix = matrix; + m_hCoeffs.resize(matrix.rows()-1, 1); + _compute(m_matrix, m_hCoeffs); + } + + /** \returns the householder coefficients allowing to + * reconstruct the matrix Q from the packed data. + * + * \sa packedMatrix() + */ + inline CoeffVectorType householderCoefficients(void) const { return m_hCoeffs; } + + /** \returns the internal result of the decomposition. + * + * The returned matrix contains the following information: + * - the strict upper part is equal to the input matrix A + * - the diagonal and lower sub-diagonal represent the tridiagonal symmetric matrix (real). + * - the rest of the lower part contains the Householder vectors that, combined with + * Householder coefficients returned by householderCoefficients(), + * allows to reconstruct the matrix Q as follow: + * Q = H_{N-1} ... H_1 H_0 + * where the matrices H are the Householder transformations: + * H_i = (I - h_i * v_i * v_i') + * where h_i == householderCoefficients()[i] and v_i is a Householder vector: + * v_i = [ 0, ..., 0, 1, M(i+2,i), ..., M(N-1,i) ] + * + * See LAPACK for further details on this packed storage. + */ + inline const MatrixType& packedMatrix(void) const { return m_matrix; } + + MatrixType matrixQ() const; + template<typename QDerived> void matrixQInPlace(MatrixBase<QDerived>* q) const; + MatrixType matrixT() const; + const DiagonalReturnType diagonal(void) const; + const SubDiagonalReturnType subDiagonal(void) const; + + static void decomposeInPlace(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ = true); + + static void _compute(MatrixType& matA, CoeffVectorType& hCoeffs); + + protected: + + static void _decomposeInPlace3x3(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ = true); + + MatrixType m_matrix; + CoeffVectorType m_hCoeffs; +}; + +/** \returns an expression of the diagonal vector */ +template<typename MatrixType> +const typename Tridiagonalization<MatrixType>::DiagonalReturnType +Tridiagonalization<MatrixType>::diagonal(void) const +{ + return m_matrix.diagonal().nestByValue(); +} + +/** \returns an expression of the sub-diagonal vector */ +template<typename MatrixType> +const typename Tridiagonalization<MatrixType>::SubDiagonalReturnType +Tridiagonalization<MatrixType>::subDiagonal(void) const +{ + int n = m_matrix.rows(); + return Block<MatrixType,SizeMinusOne,SizeMinusOne>(m_matrix, 1, 0, n-1,n-1) + .nestByValue().diagonal().nestByValue(); +} + +/** constructs and returns the tridiagonal matrix T. + * Note that the matrix T is equivalent to the diagonal and sub-diagonal of the packed matrix. + * Therefore, it might be often sufficient to directly use the packed matrix, or the vector + * expressions returned by diagonal() and subDiagonal() instead of creating a new matrix. + */ +template<typename MatrixType> +typename Tridiagonalization<MatrixType>::MatrixType +Tridiagonalization<MatrixType>::matrixT(void) const +{ + // FIXME should this function (and other similar ones) rather take a matrix as argument + // and fill it ? (to avoid temporaries) + int n = m_matrix.rows(); + MatrixType matT = m_matrix; + matT.corner(TopRight,n-1, n-1).diagonal() = subDiagonal().template cast<Scalar>().conjugate(); + if (n>2) + { + matT.corner(TopRight,n-2, n-2).template triangularView<UpperTriangular>().setZero(); + matT.corner(BottomLeft,n-2, n-2).template triangularView<LowerTriangular>().setZero(); + } + return matT; +} + +#ifndef EIGEN_HIDE_HEAVY_CODE + +/** \internal + * Performs a tridiagonal decomposition of \a matA in place. + * + * \param matA the input selfadjoint matrix + * \param hCoeffs returned Householder coefficients + * + * The result is written in the lower triangular part of \a matA. + * + * Implemented from Golub's "Matrix Computations", algorithm 8.3.1. + * + * \sa packedMatrix() + */ +template<typename MatrixType> +void Tridiagonalization<MatrixType>::_compute(MatrixType& matA, CoeffVectorType& hCoeffs) +{ + assert(matA.rows()==matA.cols()); + int n = matA.rows(); + Matrix<Scalar,1,Dynamic> aux(n); + for (int i = 0; i<n-1; ++i) + { + int remainingSize = n-i-1; + RealScalar beta; + Scalar h; + matA.col(i).end(remainingSize).makeHouseholderInPlace(&h, &beta); + + // Apply similarity transformation to remaining columns, + // i.e., A = H A H' where H = I - h v v' and v = matA.col(i).end(n-i-1) + matA.col(i).coeffRef(i+1) = 1; + + hCoeffs.end(n-i-1) = (matA.corner(BottomRight,remainingSize,remainingSize).template selfadjointView<LowerTriangular>() + * (ei_conj(h) * matA.col(i).end(remainingSize))); + + hCoeffs.end(n-i-1) += (ei_conj(h)*Scalar(-0.5)*(hCoeffs.end(remainingSize).dot(matA.col(i).end(remainingSize)))) * matA.col(i).end(n-i-1); + + matA.corner(BottomRight, remainingSize, remainingSize).template selfadjointView<LowerTriangular>() + .rankUpdate(matA.col(i).end(remainingSize), hCoeffs.end(remainingSize), -1); + + matA.col(i).coeffRef(i+1) = beta; + hCoeffs.coeffRef(i) = h; + } +} + +/** reconstructs and returns the matrix Q */ +template<typename MatrixType> +typename Tridiagonalization<MatrixType>::MatrixType +Tridiagonalization<MatrixType>::matrixQ(void) const +{ + MatrixType matQ; + matrixQInPlace(&matQ); + return matQ; +} + +template<typename MatrixType> +template<typename QDerived> +void Tridiagonalization<MatrixType>::matrixQInPlace(MatrixBase<QDerived>* q) const +{ + QDerived& matQ = q->derived(); + int n = m_matrix.rows(); + matQ = MatrixType::Identity(n,n); + Matrix<Scalar,1,Dynamic> aux(n); + for (int i = n-2; i>=0; i--) + { + matQ.corner(BottomRight,n-i-1,n-i-1) + .applyHouseholderOnTheLeft(m_matrix.col(i).end(n-i-2), ei_conj(m_hCoeffs.coeff(i)), &aux.coeffRef(0,0)); + } +} + +/** Performs a full decomposition in place */ +template<typename MatrixType> +void Tridiagonalization<MatrixType>::decomposeInPlace(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ) +{ + int n = mat.rows(); + ei_assert(mat.cols()==n && diag.size()==n && subdiag.size()==n-1); + if (n==3 && (!NumTraits<Scalar>::IsComplex) ) + { + _decomposeInPlace3x3(mat, diag, subdiag, extractQ); + } + else + { + Tridiagonalization tridiag(mat); + diag = tridiag.diagonal(); + subdiag = tridiag.subDiagonal(); + if (extractQ) + tridiag.matrixQInPlace(&mat); + } +} + +/** \internal + * Optimized path for 3x3 matrices. + * Especially useful for plane fitting. + */ +template<typename MatrixType> +void Tridiagonalization<MatrixType>::_decomposeInPlace3x3(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ) +{ + diag[0] = ei_real(mat(0,0)); + RealScalar v1norm2 = ei_abs2(mat(0,2)); + if (ei_isMuchSmallerThan(v1norm2, RealScalar(1))) + { + diag[1] = ei_real(mat(1,1)); + diag[2] = ei_real(mat(2,2)); + subdiag[0] = ei_real(mat(0,1)); + subdiag[1] = ei_real(mat(1,2)); + if (extractQ) + mat.setIdentity(); + } + else + { + RealScalar beta = ei_sqrt(ei_abs2(mat(0,1))+v1norm2); + RealScalar invBeta = RealScalar(1)/beta; + Scalar m01 = mat(0,1) * invBeta; + Scalar m02 = mat(0,2) * invBeta; + Scalar q = RealScalar(2)*m01*mat(1,2) + m02*(mat(2,2) - mat(1,1)); + diag[1] = ei_real(mat(1,1) + m02*q); + diag[2] = ei_real(mat(2,2) - m02*q); + subdiag[0] = beta; + subdiag[1] = ei_real(mat(1,2) - m01 * q); + if (extractQ) + { + mat(0,0) = 1; + mat(0,1) = 0; + mat(0,2) = 0; + mat(1,0) = 0; + mat(1,1) = m01; + mat(1,2) = m02; + mat(2,0) = 0; + mat(2,1) = m02; + mat(2,2) = -m01; + } + } +} + +#endif // EIGEN_HIDE_HEAVY_CODE + +#endif // EIGEN_TRIDIAGONALIZATION_H |