1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Claire Maurice
// Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_COMPLEX_SCHUR_H
#define EIGEN_COMPLEX_SCHUR_H
/** \eigenvalues_module \ingroup Eigenvalues_Module
* \nonstableyet
*
* \class ComplexShur
*
* \brief Performs a complex Shur decomposition of a real or complex square matrix
*
*/
template<typename _MatrixType> class ComplexSchur
{
public:
typedef _MatrixType MatrixType;
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef std::complex<RealScalar> Complex;
typedef Matrix<Complex, MatrixType::RowsAtCompileTime,MatrixType::ColsAtCompileTime> ComplexMatrixType;
/**
* \brief Default Constructor.
*
* The default constructor is useful in cases in which the user intends to
* perform decompositions via ComplexSchur::compute(const MatrixType&).
*/
ComplexSchur() : m_matT(), m_matU(), m_isInitialized(false)
{}
ComplexSchur(const MatrixType& matrix)
: m_matT(matrix.rows(),matrix.cols()),
m_matU(matrix.rows(),matrix.cols()),
m_isInitialized(false)
{
compute(matrix);
}
ComplexMatrixType matrixU() const
{
ei_assert(m_isInitialized && "ComplexSchur is not initialized.");
return m_matU;
}
ComplexMatrixType matrixT() const
{
ei_assert(m_isInitialized && "ComplexShur is not initialized.");
return m_matT;
}
void compute(const MatrixType& matrix);
protected:
ComplexMatrixType m_matT, m_matU;
bool m_isInitialized;
};
/** Computes the principal value of the square root of the complex \a z. */
template<typename RealScalar>
std::complex<RealScalar> ei_sqrt(const std::complex<RealScalar> &z)
{
RealScalar t, tre, tim;
t = ei_abs(z);
if (ei_abs(ei_real(z)) <= ei_abs(ei_imag(z)))
{
// No cancellation in these formulas
tre = ei_sqrt(0.5*(t + ei_real(z)));
tim = ei_sqrt(0.5*(t - ei_real(z)));
}
else
{
// Stable computation of the above formulas
if (z.real() > 0)
{
tre = t + z.real();
tim = ei_abs(ei_imag(z))*ei_sqrt(0.5/tre);
tre = ei_sqrt(0.5*tre);
}
else
{
tim = t - z.real();
tre = ei_abs(ei_imag(z))*ei_sqrt(0.5/tim);
tim = ei_sqrt(0.5*tim);
}
}
if(z.imag() < 0)
tim = -tim;
return (std::complex<RealScalar>(tre,tim));
}
template<typename MatrixType>
void ComplexSchur<MatrixType>::compute(const MatrixType& matrix)
{
// this code is inspired from Jampack
assert(matrix.cols() == matrix.rows());
int n = matrix.cols();
// Reduce to Hessenberg form
HessenbergDecomposition<MatrixType> hess(matrix);
m_matT = hess.matrixH();
m_matU = hess.matrixQ();
int iu = m_matT.cols() - 1;
int il;
RealScalar d,sd,sf;
Complex c,b,disc,r1,r2,kappa;
RealScalar eps = epsilon<RealScalar>();
int iter = 0;
while(true)
{
//locate the range in which to iterate
while(iu > 0)
{
d = ei_norm1(m_matT.coeffRef(iu,iu)) + ei_norm1(m_matT.coeffRef(iu-1,iu-1));
sd = ei_norm1(m_matT.coeffRef(iu,iu-1));
if(sd >= eps * d) break; // FIXME : precision criterion ??
m_matT.coeffRef(iu,iu-1) = Complex(0);
iter = 0;
--iu;
}
if(iu==0) break;
iter++;
if(iter >= 30)
{
// FIXME : what to do when iter==MAXITER ??
std::cerr << "MAXITER" << std::endl;
return;
}
il = iu-1;
while( il > 0 )
{
// check if the current 2x2 block on the diagonal is upper triangular
d = ei_norm1(m_matT.coeffRef(il,il)) + ei_norm1(m_matT.coeffRef(il-1,il-1));
sd = ei_norm1(m_matT.coeffRef(il,il-1));
if(sd < eps * d) break; // FIXME : precision criterion ??
--il;
}
if( il != 0 ) m_matT.coeffRef(il,il-1) = Complex(0);
// compute the shift (the normalization by sf is to avoid under/overflow)
Matrix<Scalar,2,2> t = m_matT.template block<2,2>(iu-1,iu-1);
sf = t.cwise().abs().sum();
t /= sf;
c = t.determinant();
b = t.diagonal().sum();
disc = ei_sqrt(b*b - RealScalar(4)*c);
r1 = (b+disc)/RealScalar(2);
r2 = (b-disc)/RealScalar(2);
if(ei_norm1(r1) > ei_norm1(r2))
r2 = c/r1;
else
r1 = c/r2;
if(ei_norm1(r1-t.coeff(1,1)) < ei_norm1(r2-t.coeff(1,1)))
kappa = sf * r1;
else
kappa = sf * r2;
// perform the QR step using Givens rotations
PlanarRotation<Complex> rot;
rot.makeGivens(m_matT.coeff(il,il) - kappa, m_matT.coeff(il+1,il));
for(int i=il ; i<iu ; i++)
{
m_matT.block(0,i,n,n-i).applyOnTheLeft(i, i+1, rot.adjoint());
m_matT.block(0,0,std::min(i+2,iu)+1,n).applyOnTheRight(i, i+1, rot);
m_matU.applyOnTheRight(i, i+1, rot);
if(i != iu-1)
{
int i1 = i+1;
int i2 = i+2;
rot.makeGivens(m_matT.coeffRef(i1,i), m_matT.coeffRef(i2,i), &m_matT.coeffRef(i1,i));
m_matT.coeffRef(i2,i) = Complex(0);
}
}
}
// FIXME : is it necessary ?
/*
for(int i=0 ; i<n ; i++)
for(int j=0 ; j<n ; j++)
{
if(ei_abs(ei_real(m_matT.coeff(i,j))) < eps)
ei_real_ref(m_matT.coeffRef(i,j)) = 0;
if(ei_imag(ei_abs(m_matT.coeff(i,j))) < eps)
ei_imag_ref(m_matT.coeffRef(i,j)) = 0;
}
*/
m_isInitialized = true;
}
#endif // EIGEN_COMPLEX_SCHUR_H
|