summaryrefslogtreecommitdiff
path: root/Source/Dafny/Rewriter.cs
blob: 2e18c4e65a577e8e80fa2bfef6e2427237b6d438 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
using System;
using System.Collections.Generic;
using System.Diagnostics.Contracts;
using Bpl = Microsoft.Boogie;
using IToken = Microsoft.Boogie.IToken;

namespace Microsoft.Dafny
{
  public abstract class IRewriter
  {
    protected readonly ErrorReporter reporter;

    public IRewriter(ErrorReporter reporter) {
      Contract.Requires(reporter != null);
      this.reporter = reporter;
    }

    internal virtual void PreResolve(ModuleDefinition m) {
      Contract.Requires(m != null);
    }

    internal virtual void PostResolve(ModuleDefinition m) {
      Contract.Requires(m != null);
    }

    // After SCC/Cyclicity/Recursivity analysis:
    internal virtual void PostCyclicityResolve(ModuleDefinition m) {
      Contract.Requires(m != null);
    }
  }

  public class AutoGeneratedToken : TokenWrapper
  {
    public AutoGeneratedToken(Boogie.IToken wrappedToken)
      : base(wrappedToken)
    {
      Contract.Requires(wrappedToken != null);
    }
  }

  public class TriggerGeneratingRewriter : IRewriter {
    internal TriggerGeneratingRewriter(ErrorReporter reporter) : base(reporter) {
      Contract.Requires(reporter != null);
    }

    internal override void PostCyclicityResolve(ModuleDefinition m) {
      var finder = new Triggers.QuantifierCollector(reporter);
        
      foreach (var decl in ModuleDefinition.AllCallables(m.TopLevelDecls)) {
        finder.Visit(decl, false);
      }
      
      var triggersCollector = new Triggers.TriggersCollector(finder.exprsInOldContext);
      foreach (var quantifierCollection in finder.quantifierCollections) {
        quantifierCollection.ComputeTriggers(triggersCollector);
        quantifierCollection.CommitTriggers();
      }
    }
  }

  internal class QuantifierSplittingRewriter : IRewriter {
    internal QuantifierSplittingRewriter(ErrorReporter reporter) : base(reporter) {
      Contract.Requires(reporter != null);
    }

    internal override void PostResolve(ModuleDefinition m) {
      var splitter = new Triggers.QuantifierSplitter();
      foreach (var decl in ModuleDefinition.AllCallables(m.TopLevelDecls)) {
        splitter.Visit(decl);
      }
      splitter.Commit();
    }
  }

  // write out the quantifier for ForallStmt
  public class ForallStmtRewriter : IRewriter
  {
    public ForallStmtRewriter(ErrorReporter reporter) : base(reporter) {
      Contract.Requires(reporter != null);
    }

    internal override void PostResolve(ModuleDefinition m) {
      var forallvisiter = new ForAllStmtVisitor();
      foreach (var decl in ModuleDefinition.AllCallables(m.TopLevelDecls)) {
        forallvisiter.Visit(decl, true);
      }
    }

    internal class ForAllStmtVisitor : TopDownVisitor<bool>
    {
      protected override bool VisitOneStmt(Statement stmt, ref bool st) {
        if (stmt is ForallStmt) {
          ForallStmt s = (ForallStmt)stmt;
          if (s.Kind == ForallStmt.ParBodyKind.Proof) {
            Expression term = s.Ens.Count != 0 ? s.Ens[0].E : new LiteralExpr(s.Tok, true);
            for (int i = 1; i < s.Ens.Count; i++) {
              term = new BinaryExpr(s.Tok, BinaryExpr.ResolvedOpcode.And, term, s.Ens[i].E);
            }
            List<Expression> exprList = new List<Expression>();
            ForallExpr expr = new ForallExpr(s.Tok, s.BoundVars, s.Range, term, s.Attributes);
            expr.Type = Type.Bool; // resolve here
            exprList.Add(expr);
            s.ForallExpressions = exprList;
          } else if (s.Kind == ForallStmt.ParBodyKind.Assign) {
            if (s.BoundVars.Count != 0) {
              var s0 = (AssignStmt)s.S0;
              if (s0.Rhs is ExprRhs) {
                List<Expression> exprList = new List<Expression>();
                Expression Fi = null;
                Func<Expression, Expression> lhsBuilder = null;
                var lhs = s0.Lhs.Resolved;
                var i = s.BoundVars[0];
                if (s.BoundVars.Count == 1) {
                  //var lhsContext = null;
                  // Detect the following cases:
                  //   0: forall i | R(i) { F(i).f := E(i); }
                  //   1: forall i | R(i) { A[F(i)] := E(i); }
                  //   2: forall i | R(i) { F(i)[N] := E(i); }
                  if (lhs is MemberSelectExpr) {
                    var ll = (MemberSelectExpr)lhs;
                    Fi = ll.Obj;
                    lhsBuilder = e => { var l = new MemberSelectExpr(ll.tok, e, ll.MemberName); l.Member = ll.Member; l.Type = ll.Type; return l; };
                  } else if (lhs is SeqSelectExpr) {
                    var ll = (SeqSelectExpr)lhs;
                    Contract.Assert(ll.SelectOne);
                    if (!Translator.ContainsFreeVariable(ll.Seq, false, i)) {
                      Fi = ll.E0;
                      lhsBuilder = e => { var l = new SeqSelectExpr(ll.tok, true, ll.Seq, e, null); l.Type = ll.Type; return l; };
                    } else if (!Translator.ContainsFreeVariable(ll.E0, false, i)) {
                      Fi = ll.Seq;
                      lhsBuilder = e => { var l = new SeqSelectExpr(ll.tok, true, e, ll.E0, null); l.Type = ll.Type; return l; };
                    }
                  }
                }
                var rhs = ((ExprRhs)s0.Rhs).Expr;
                bool usedInversion = false;
                if (Fi != null) {
                  var j = new BoundVar(i.tok, i.Name + "#inv", Fi.Type);
                  var jj = Expression.CreateIdentExpr(j);
                  var jList = new List<BoundVar>() { j };
                  var vals = InvertExpression(i, j, s.Range, Fi);
#if DEBUG_PRINT
          Console.WriteLine("DEBUG: Trying to invert:");
          Console.WriteLine("DEBUG:   " + Printer.ExprToString(s.Range) + " && " + j.Name + " == " + Printer.ExprToString(Fi));
          if (vals == null) {
            Console.WriteLine("DEBUG: Can't");
          } else {
            Console.WriteLine("DEBUG: The inverse is the disjunction of the following:");
            foreach (var val in vals) {
              Console.WriteLine("DEBUG:   " + Printer.ExprToString(val.Range) + " && " + Printer.ExprToString(val.FInverse) + " == " + i.Name);
            }
          }
#endif
                  if (vals != null) {
                    foreach (var val in vals) {
                      lhs = lhsBuilder(jj);
                      Attributes attributes = new Attributes("trigger", new List<Expression>() { lhs }, s.Attributes);
                      var expr = new ForallExpr(s.Tok, jList, val.Range, new BinaryExpr(s.Tok, BinaryExpr.ResolvedOpcode.EqCommon, lhs, Substitute(rhs, i, val.FInverse)), attributes);
                      expr.Type = Type.Bool; //resolve here
                      exprList.Add(expr);
                    }
                    usedInversion = true;
                  }
                }
                if (!usedInversion) {
                  var expr = new ForallExpr(s.Tok, s.BoundVars, s.Range, new BinaryExpr(s.Tok, BinaryExpr.ResolvedOpcode.EqCommon, lhs, rhs), s.Attributes);
                  expr.Type = Type.Bool; // resolve here
                  exprList.Add(expr);
                }
                s.ForallExpressions = exprList;
              }
            }
          } else if (s.Kind == ForallStmt.ParBodyKind.Call) {
            var s0 = (CallStmt)s.S0;
            Expression term = s0.Method.Ens.Count != 0 ? s0.Method.Ens[0].E : new LiteralExpr(s.Tok, true);
            for (int i = 1; i < s0.Method.Ens.Count; i++) {
              term = new BinaryExpr(s.Tok, BinaryExpr.ResolvedOpcode.And, term, s0.Method.Ens[i].E);
            }
            List<Expression> exprList = new List<Expression>();
            ForallExpr expr = new ForallExpr(s.Tok, s.BoundVars, s.Range, term, s.Attributes);
            expr.Type = Type.Bool; // resolve here
            exprList.Add(expr);
          } else {
            Contract.Assert(false);  // unexpected kind
          }
        }
        return true;  //visit the sub-parts with the same "st"    
      }

      internal class ForallStmtTranslationValues
      {
        public readonly Expression Range;
        public readonly Expression FInverse;
        public ForallStmtTranslationValues(Expression range, Expression fInverse) {
          Contract.Requires(range != null);
          Contract.Requires(fInverse != null);
          Range = range;
          FInverse = fInverse;
        }
        public ForallStmtTranslationValues Subst(IVariable j, Expression e) {
          Contract.Requires(j != null);
          Contract.Requires(e != null);
          Dictionary<TypeParameter, Type> typeMap = new Dictionary<TypeParameter, Type>();
          var substMap = new Dictionary<IVariable, Expression>();
          substMap.Add(j, e);
          Translator.Substituter sub = new Translator.Substituter(null, substMap, typeMap, null);
          var v = new ForallStmtTranslationValues(sub.Substitute(Range), sub.Substitute(FInverse));
          return v;
        }
      }

      /// <summary>
      /// Find piecewise inverse of F under R.  More precisely, find lists of expressions P and F-1
      /// such that
      ///     R(i) && j == F(i)
      /// holds iff the disjunction of the following predicates holds:
      ///     P_0(j) && F-1_0(j) == i
      ///     ...
      ///     P_{n-1}(j) && F-1_{n-1}(j) == i
      /// If no such disjunction is found, return null.
      /// If such a disjunction is found, return for each disjunct:
      ///     * The predicate P_k(j), which is an expression that may have free occurrences of j (but no free occurrences of i)
      ///     * The expression F-1_k(j), which also may have free occurrences of j but not of i
      /// </summary>
      private List<ForallStmtTranslationValues> InvertExpression(BoundVar i, BoundVar j, Expression R, Expression F) {
        Contract.Requires(i != null);
        Contract.Requires(j != null);
        Contract.Requires(R != null);
        Contract.Requires(F != null);
        var vals = new List<ForallStmtTranslationValues>(InvertExpressionIter(i, j, R, F));
        if (vals.Count == 0) {
          return null;
        } else {
          return vals;
        }
      }
      /// <summary>
      /// See InvertExpression.
      /// </summary>
      private IEnumerable<ForallStmtTranslationValues> InvertExpressionIter(BoundVar i, BoundVar j, Expression R, Expression F) {
        Contract.Requires(i != null);
        Contract.Requires(j != null);
        Contract.Requires(R != null);
        Contract.Requires(F != null);
        F = F.Resolved;
        if (!Translator.ContainsFreeVariable(F, false, i)) {
          // We're looking at R(i) && j == K.
          // We cannot invert j == K, but if we're lucky, R(i) contains a conjunct i==G.
          Expression r = Expression.CreateBoolLiteral(R.tok, true);
          Expression G = null;
          foreach (var c in Expression.Conjuncts(R)) {
            if (G == null && c is BinaryExpr) {
              var bin = (BinaryExpr)c;
              if (BinaryExpr.IsEqualityOp(bin.ResolvedOp)) {
                var id = bin.E0.Resolved as IdentifierExpr;
                if (id != null && id.Var == i) {
                  G = bin.E1;
                  continue;
                }
                id = bin.E1.Resolved as IdentifierExpr;
                if (id != null && id.Var == i) {
                  G = bin.E0;
                  continue;
                }
              }
            }
            r = Expression.CreateAnd(r, c);
          }
          if (G != null) {
            var jIsK = Expression.CreateEq(Expression.CreateIdentExpr(j), F, j.Type);
            var rr = Substitute(r, i, G);
            yield return new ForallStmtTranslationValues(Expression.CreateAnd(rr, jIsK), G);
          }
        } else if (F is IdentifierExpr) {
          var e = (IdentifierExpr)F;
          if (e.Var == i) {
            // We're looking at R(i) && j == i, which is particularly easy to invert:  R(j) && j == i
            var jj = Expression.CreateIdentExpr(j);
            yield return new ForallStmtTranslationValues(Substitute(R, i, jj), jj);
          }
        } else if (F is BinaryExpr) {
          var bin = (BinaryExpr)F;
          if (bin.ResolvedOp == BinaryExpr.ResolvedOpcode.Add && (bin.E0.Type.IsIntegerType || bin.E0.Type.IsRealType)) {
            if (!Translator.ContainsFreeVariable(bin.E1, false, i)) {
              // We're looking at:  R(i) && j == f(i) + K.
              // By a recursive call, we'll ask to invert:  R(i) && j' == f(i).
              // For each P_0(j') && f-1_0(j') == i we get back, we yield:
              // P_0(j - K) && f-1_0(j - K) == i
              var jMinusK = Expression.CreateSubtract(Expression.CreateIdentExpr(j), bin.E1);
              foreach (var val in InvertExpression(i, j, R, bin.E0)) {
                yield return val.Subst(j, jMinusK);
              }
            } else if (!Translator.ContainsFreeVariable(bin.E0, false, i)) {
              // We're looking at:  R(i) && j == K + f(i)
              // Do as in previous case, but with operands reversed.
              var jMinusK = Expression.CreateSubtract(Expression.CreateIdentExpr(j), bin.E0);
              foreach (var val in InvertExpression(i, j, R, bin.E1)) {
                yield return val.Subst(j, jMinusK);
              }
            }
          } else if (bin.ResolvedOp == BinaryExpr.ResolvedOpcode.Sub && (bin.E0.Type.IsIntegerType || bin.E0.Type.IsRealType)) {
            if (!Translator.ContainsFreeVariable(bin.E1, false, i)) {
              // We're looking at:  R(i) && j == f(i) - K
              // Recurse on f(i) and then replace j := j + K
              var jPlusK = Expression.CreateAdd(Expression.CreateIdentExpr(j), bin.E1);
              foreach (var val in InvertExpression(i, j, R, bin.E0)) {
                yield return val.Subst(j, jPlusK);
              }
            } else if (!Translator.ContainsFreeVariable(bin.E0, false, i)) {
              // We're looking at:  R(i) && j == K - f(i)
              // Recurse on f(i) and then replace j := K - j
              var kMinusJ = Expression.CreateAdd(Expression.CreateIdentExpr(j), bin.E0);
              foreach (var val in InvertExpression(i, j, R, bin.E1)) {
                yield return val.Subst(j, kMinusJ);
              }
            }
          }
        } else if (F is ITEExpr) {
          var ife = (ITEExpr)F;
          // We're looking at R(i) && j == if A(i) then B(i) else C(i), which is equivalent to the disjunction of:
          //   R(i) && A(i) && j == B(i)
          //   R(i) && !A(i) && j == C(i)
          // We recurse on each one, yielding the results
          var r = Expression.CreateAnd(R, ife.Test);
          var valsThen = InvertExpression(i, j, r, ife.Thn);
          if (valsThen != null) {
            r = Expression.CreateAnd(R, Expression.CreateNot(ife.tok, ife.Test));
            var valsElse = InvertExpression(i, j, r, ife.Els);
            if (valsElse != null) {
              foreach (var val in valsThen) { yield return val; }
              foreach (var val in valsElse) { yield return val; }
            }
          }
        }
      }

      Expression Substitute(Expression expr, IVariable v, Expression e) {
        Dictionary<IVariable, Expression/*!*/> substMap = new Dictionary<IVariable, Expression>();
        Dictionary<TypeParameter, Type> typeMap = new Dictionary<TypeParameter, Type>();
        substMap.Add(v, e);
        Translator.Substituter sub = new Translator.Substituter(null, substMap, typeMap, null);
        return sub.Substitute(expr);
      }
    }
  }

  /// <summary>
  /// AutoContracts is an experimental feature that will fill much of the dynamic-frames boilerplate
  /// into a class.  From the user's perspective, what needs to be done is simply:
  ///  - mark the class with {:autocontracts}
  ///  - declare a function (or predicate) called Valid()
  ///  
  /// AutoContracts will then:
  ///
  /// Declare:
  ///    ghost var Repr: set(object)
  ///
  /// For function/predicate Valid(), insert:
  ///    reads this, Repr
  /// Into body of Valid(), insert (at the beginning of the body):
  ///    this in Repr && null !in Repr
  /// and also insert, for every array-valued field A declared in the class:
  ///    (A != null ==> A in Repr) &&
  /// and for every field F of a class type T where T has a field called Repr, also insert:
  ///    (F != null ==> F in Repr && F.Repr SUBSET Repr && this !in Repr)
  /// Except, if A or F is declared with {:autocontracts false}, then the implication will not
  /// be added.
  ///
  /// For every constructor, add:
  ///    modifies this;
  ///    ensures Valid() && fresh(Repr - {this})
  /// At the end of the body of the constructor, add:
  ///    Repr := {this};
  ///    if (A != null) { Repr := Repr + {A}; }
  ///    if (F != null) { Repr := Repr + {F} + F.Repr; }
  ///
  /// For every non-static non-ghost method that is not a "simple query method",
  /// add:
  ///    requires Valid()
  ///    modifies Repr
  ///    ensures Valid() && fresh(Repr - old(Repr))
  /// At the end of the body of the method, add:
  ///    if (A != null) { Repr := Repr + {A}; }
  ///    if (F != null) { Repr := Repr + {F} + F.Repr; }
  /// For every non-static method that is either ghost or is a "simple query method",
  /// add:
  ///    requires Valid()
  /// </summary>
  public class AutoContractsRewriter : IRewriter
  {
    public AutoContractsRewriter(ErrorReporter reporter)
      : base(reporter) {
      Contract.Requires(reporter != null);
    }

    internal override void PreResolve(ModuleDefinition m) {
      foreach (var d in m.TopLevelDecls) {
        bool sayYes = true;
        if (d is ClassDecl && Attributes.ContainsBool(d.Attributes, "autocontracts", ref sayYes) && sayYes) {
          ProcessClassPreResolve((ClassDecl)d);
        }
      }
    }

    void ProcessClassPreResolve(ClassDecl cl) {
      // Add:  ghost var Repr: set<object>;
      // ...unless a field with that name is already present
      if (!cl.Members.Exists(member => member is Field && member.Name == "Repr")) {
        Type ty = new SetType(true, new ObjectType());
        cl.Members.Add(new Field(new AutoGeneratedToken(cl.tok), "Repr", true, ty, null));
      }

      foreach (var member in cl.Members) {
        bool sayYes = true;
        if (Attributes.ContainsBool(member.Attributes, "autocontracts", ref sayYes) && !sayYes) {
          // the user has excluded this member
          continue;
        }
        if (member.RefinementBase != null) {
          // member is inherited from a module where it was already processed
          continue;
        }
        Boogie.IToken tok = new AutoGeneratedToken(member.tok);
        if (member is Function && member.Name == "Valid" && !member.IsStatic) {
          var valid = (Function)member;
          // reads this;
          valid.Reads.Add(new FrameExpression(tok, new ThisExpr(tok), null));
          // reads Repr;
          valid.Reads.Add(new FrameExpression(tok, new MemberSelectExpr(tok, new ImplicitThisExpr(tok), "Repr"), null));
        } else if (member is Constructor) {
          var ctor = (Constructor)member;
          // modifies this;
          ctor.Mod.Expressions.Add(new FrameExpression(tok, new ImplicitThisExpr(tok), null));
          // ensures Valid();
          ctor.Ens.Insert(0, new MaybeFreeExpression(new FunctionCallExpr(tok, "Valid", new ImplicitThisExpr(tok), tok, new List<Expression>())));
          // ensures fresh(Repr - {this});
          var freshness = new UnaryOpExpr(tok, UnaryOpExpr.Opcode.Fresh, new BinaryExpr(tok, BinaryExpr.Opcode.Sub,
            new MemberSelectExpr(tok, new ImplicitThisExpr(tok), "Repr"),
            new SetDisplayExpr(tok, true, new List<Expression>() { new ThisExpr(tok) })));
          ctor.Ens.Insert(1, new MaybeFreeExpression(freshness));
        } else if (member is Method && !member.IsStatic) {
          var m = (Method)member;
          // requires Valid();
          m.Req.Insert(0, new MaybeFreeExpression(new FunctionCallExpr(tok, "Valid", new ImplicitThisExpr(tok), tok, new List<Expression>())));
          // If this is a mutating method, we should also add a modifies clause and a postcondition, but we don't do that if it's
          // a simple query method.  However, we won't know if it's a simple query method until after resolution, so we'll add the
          // rest of the spec then.
        }
      }
    }

    internal override void PostResolve(ModuleDefinition m) {
      foreach (var d in m.TopLevelDecls) {
        bool sayYes = true;
        if (d is ClassDecl && Attributes.ContainsBool(d.Attributes, "autocontracts", ref sayYes) && sayYes) {
          ProcessClassPostResolve((ClassDecl)d);
        }
      }
    }

    void ProcessClassPostResolve(ClassDecl cl) {
      // Find all fields of a reference type, and make a note of whether or not the reference type has a Repr field.
      // Also, find the Repr field and the function Valid in class "cl"
      Field ReprField = null;
      Function Valid = null;
      var subobjects = new List<Tuple<Field, Field>>();
      foreach (var member in cl.Members) {
        var field = member as Field;
        if (field != null) {
          bool sayYes = true;
          if (field.Name == "Repr") {
            ReprField = field;
          } else if (Attributes.ContainsBool(field.Attributes, "autocontracts", ref sayYes) && !sayYes) {
            // ignore this field
          } else if (field.Type is ObjectType) {
            subobjects.Add(new Tuple<Field, Field>(field, null));
          } else if (field.Type.IsRefType) {
            var rcl = (ClassDecl)((UserDefinedType)field.Type).ResolvedClass;
            Field rRepr = null;
            foreach (var memb in rcl.Members) {
              var f = memb as Field;
              if (f != null && f.Name == "Repr") {
                rRepr = f;
                break;
              }
            }
            subobjects.Add(new Tuple<Field, Field>(field, rRepr));
          }
        } else if (member is Function && member.Name == "Valid" && !member.IsStatic) {
          var fn = (Function)member;
          if (fn.Formals.Count == 0 && fn.ResultType.IsBoolType) {
            Valid = fn;
          }
        }
      }
      Contract.Assert(ReprField != null);  // we expect there to be a "Repr" field, since we added one in PreResolve

      Boogie.IToken clTok = new AutoGeneratedToken(cl.tok);
      Type ty = UserDefinedType.FromTopLevelDecl(clTok, cl);
      var self = new ThisExpr(clTok);
      self.Type = ty;
      var implicitSelf = new ImplicitThisExpr(clTok);
      implicitSelf.Type = ty;
      var Repr = new MemberSelectExpr(clTok, implicitSelf, "Repr");
      Repr.Member = ReprField;
      Repr.Type = ReprField.Type;
      var cNull = new LiteralExpr(clTok);
      cNull.Type = new ObjectType();

      foreach (var member in cl.Members) {
        bool sayYes = true;
        if (Attributes.ContainsBool(member.Attributes, "autocontracts", ref sayYes) && !sayYes) {
          continue;
        }
        Boogie.IToken tok = new AutoGeneratedToken(member.tok);
        if (member is Function && member.Name == "Valid" && !member.IsStatic) {
          var valid = (Function)member;
          if (valid.IsGhost && valid.ResultType.IsBoolType) {
            Expression c;
            if (valid.RefinementBase == null) {
              var c0 = BinBoolExpr(tok, BinaryExpr.ResolvedOpcode.InSet, self, Repr);  // this in Repr
              var c1 = BinBoolExpr(tok, BinaryExpr.ResolvedOpcode.NotInSet, cNull, Repr);  // null !in Repr
              c = BinBoolExpr(tok, BinaryExpr.ResolvedOpcode.And, c0, c1);
            } else {
              c = new LiteralExpr(tok, true);
              c.Type = Type.Bool;
            }

            foreach (var ff in subobjects) {
              if (ff.Item1.RefinementBase != null) {
                // the field has been inherited from a refined module, so don't include it here
                continue;
              }
              var F = Resolver.NewMemberSelectExpr(tok, implicitSelf, ff.Item1, null);
              var c0 = BinBoolExpr(tok, BinaryExpr.ResolvedOpcode.NeqCommon, F, cNull);
              var c1 = BinBoolExpr(tok, BinaryExpr.ResolvedOpcode.InSet, F, Repr);
              if (ff.Item2 == null) {
                // F != null ==> F in Repr  (so, nothing else to do)
              } else {
                // F != null ==> F in Repr && F.Repr <= Repr && this !in F.Repr
                var FRepr = new MemberSelectExpr(tok, F, ff.Item2.Name);
                FRepr.Member = ff.Item2;
                FRepr.Type = ff.Item2.Type;
                var c2 = BinBoolExpr(tok, BinaryExpr.ResolvedOpcode.Subset, FRepr, Repr);
                var c3 = BinBoolExpr(tok, BinaryExpr.ResolvedOpcode.NotInSet, self, FRepr);
                c1 = BinBoolExpr(tok, BinaryExpr.ResolvedOpcode.And, c1, BinBoolExpr(tok, BinaryExpr.ResolvedOpcode.And, c2, c3));
              }
              c = BinBoolExpr(tok, BinaryExpr.ResolvedOpcode.And, c, BinBoolExpr(tok, BinaryExpr.ResolvedOpcode.Imp, c0, c1));
            }

            if (valid.Body == null) {
              valid.Body = c;
            } else {
              valid.Body = BinBoolExpr(tok, BinaryExpr.ResolvedOpcode.And, c, valid.Body);
            }
          }

        } else if (member is Constructor) {
          var ctor = (Constructor)member;
          if (ctor.Body != null) {
            var bodyStatements = ((BlockStmt)ctor.Body).Body;
            // Repr := {this};
            var e = new SetDisplayExpr(tok, true, new List<Expression>() { self });
            e.Type = new SetType(true, new ObjectType());
            Statement s = new AssignStmt(tok, tok, Repr, new ExprRhs(e));
            s.IsGhost = true;
            bodyStatements.Add(s);

            AddSubobjectReprs(tok, subobjects, bodyStatements, self, implicitSelf, cNull, Repr);
          }

        } else if (member is Method && !member.IsStatic && !member.IsGhost) {
          var m = (Method)member;
          if (Valid != null && !IsSimpleQueryMethod(m)) {
            if (member.RefinementBase == null) {
              // modifies Repr;
              m.Mod.Expressions.Add(new FrameExpression(Repr.tok, Repr, null));
              // ensures Valid();
              var valid = new FunctionCallExpr(tok, "Valid", implicitSelf, tok, new List<Expression>());
              valid.Function = Valid;
              valid.Type = Type.Bool;
              // Add the identity substitution to this call
              valid.TypeArgumentSubstitutions = new Dictionary<TypeParameter, Type>();
              foreach (var p in cl.TypeArgs) {
                valid.TypeArgumentSubstitutions.Add(p, new UserDefinedType(p)); 
              }
              m.Ens.Insert(0, new MaybeFreeExpression(valid));
              // ensures fresh(Repr - old(Repr));
              var e0 = new OldExpr(tok, Repr);
              e0.Type = Repr.Type;
              var e1 = new BinaryExpr(tok, BinaryExpr.Opcode.Sub, Repr, e0);
              e1.ResolvedOp = BinaryExpr.ResolvedOpcode.SetDifference;
              e1.Type = Repr.Type;
              var freshness = new UnaryOpExpr(tok, UnaryOpExpr.Opcode.Fresh, e1);
              freshness.Type = Type.Bool;
              m.Ens.Insert(1, new MaybeFreeExpression(freshness));
            }

            if (m.Body != null) {
              var bodyStatements = ((BlockStmt)m.Body).Body;
              AddSubobjectReprs(tok, subobjects, bodyStatements, self, implicitSelf, cNull, Repr);
            }
          }
        }
      }
    }

    void AddSubobjectReprs(Boogie.IToken tok, List<Tuple<Field, Field>> subobjects, List<Statement> bodyStatements,
      Expression self, Expression implicitSelf, Expression cNull, Expression Repr) {
      // TODO: these assignments should be included on every return path

      foreach (var ff in subobjects) {
        var F = Resolver.NewMemberSelectExpr(tok, implicitSelf, ff.Item1, null);  // create a resolved MemberSelectExpr
        Expression e = new SetDisplayExpr(tok, true, new List<Expression>() { F });
        e.Type = new SetType(true, new ObjectType());  // resolve here
        var rhs = new BinaryExpr(tok, BinaryExpr.Opcode.Add, Repr, e);
        rhs.ResolvedOp = BinaryExpr.ResolvedOpcode.Union;  // resolve here
        rhs.Type = Repr.Type;  // resolve here
        if (ff.Item2 == null) {
          // Repr := Repr + {F}  (so, nothing else to do)
        } else {
          // Repr := Repr + {F} + F.Repr
          var FRepr = Resolver.NewMemberSelectExpr(tok, F, ff.Item2, null);  // create resolved MemberSelectExpr
          rhs = new BinaryExpr(tok, BinaryExpr.Opcode.Add, rhs, FRepr);
          rhs.ResolvedOp = BinaryExpr.ResolvedOpcode.Union;  // resolve here
          rhs.Type = Repr.Type;  // resolve here
        }
        // Repr := Repr + ...;
        Statement s = new AssignStmt(tok, tok, Repr, new ExprRhs(rhs));
        s.IsGhost = true;
        // wrap if statement around s
        e = BinBoolExpr(tok, BinaryExpr.ResolvedOpcode.NeqCommon, F, cNull);
        var thn = new BlockStmt(tok, tok, new List<Statement>() { s });
        thn.IsGhost = true;
        s = new IfStmt(tok, tok, false, e, thn, null);
        s.IsGhost = true;
        // finally, add s to the body
        bodyStatements.Add(s);
      }
    }

    bool IsSimpleQueryMethod(Method m) {
      // A simple query method has out parameters, its body has no effect other than to assign to them,
      // and the postcondition does not explicitly mention the pre-state.
      return m.Outs.Count != 0 && m.Body != null && LocalAssignsOnly(m.Body) &&
        m.Ens.TrueForAll(mfe => !MentionsOldState(mfe.E));
    }

    bool LocalAssignsOnly(Statement s) {
      Contract.Requires(s != null);
      if (s is AssignStmt) {
        var ss = (AssignStmt)s;
        return ss.Lhs.Resolved is IdentifierExpr;
      } else if (s is ConcreteUpdateStatement) {
        var ss = (ConcreteUpdateStatement)s;
        return ss.Lhss.TrueForAll(e => e.Resolved is IdentifierExpr);
      } else if (s is CallStmt) {
        return false;
      } else {
        foreach (var ss in s.SubStatements) {
          if (!LocalAssignsOnly(ss)) {
            return false;
          }
        }
      }
      return true;
    }

    /// <summary>
    /// Returns true iff 'expr' is a two-state expression, that is, if it mentions "old(...)" or "fresh(...)".
    /// </summary>
    static bool MentionsOldState(Expression expr) {
      Contract.Requires(expr != null);
      if (expr is OldExpr) {
        return true;
      } else if (expr is UnaryOpExpr && ((UnaryOpExpr)expr).Op == UnaryOpExpr.Opcode.Fresh) {
        return true;
      }
      foreach (var ee in expr.SubExpressions) {
        if (MentionsOldState(ee)) {
          return true;
        }
      }
      return false;
    }

    public static BinaryExpr BinBoolExpr(Boogie.IToken tok, BinaryExpr.ResolvedOpcode rop, Expression e0, Expression e1) {
      var p = new BinaryExpr(tok, BinaryExpr.ResolvedOp2SyntacticOp(rop), e0, e1);
      p.ResolvedOp = rop;  // resolve here
      p.Type = Type.Bool;  // resolve here
      return p;
    }
  }


  /// <summary>
  /// For any function foo() with the :opaque attribute,
  /// hide the body, so that it can only be seen within its
  /// recursive clique (if any), or if the programmer
  /// specifically asks to see it via the reveal_foo() lemma
  /// </summary>
  public class OpaqueFunctionRewriter : IRewriter {
    protected Dictionary<Function, Function> fullVersion; // Given an opaque function, retrieve the full
    protected Dictionary<Function, Function> original;    // Given a full version of an opaque function, find the original opaque version
    protected Dictionary<Lemma, Function> revealOriginal; // Map reveal_* lemmas back to their original functions

    public OpaqueFunctionRewriter(ErrorReporter reporter)
      : base(reporter) {
      Contract.Requires(reporter != null);

      fullVersion = new Dictionary<Function, Function>();
      original = new Dictionary<Function, Function>();
      revealOriginal = new Dictionary<Lemma, Function>();
    }

    internal override void PreResolve(ModuleDefinition m) {
      foreach (var d in m.TopLevelDecls) {
        if (d is ClassDecl) {
          DuplicateOpaqueClassFunctions((ClassDecl)d);
        }
      }
    }    

    internal override void PostResolve(ModuleDefinition m) {
      // Fix up the ensures clause of the full version of the function,
      // since it may refer to the original opaque function      
      foreach (var fn in ModuleDefinition.AllFunctions(m.TopLevelDecls)) {        
        if (isFullVersion(fn)) {  // Is this a function we created to supplement an opaque function?                  
          OpaqueFunctionVisitor visitor = new OpaqueFunctionVisitor();
          var context = new OpaqueFunctionContext(original[fn], fn);

          foreach (Expression ens in fn.Ens) {
            visitor.Visit(ens, context);
          }
        } 
      }

      foreach (var decl in ModuleDefinition.AllCallables(m.TopLevelDecls)) {
        if (decl is Lemma) {
          var lem = (Lemma)decl;
          if (revealOriginal.ContainsKey(lem)) {
            fixupRevealLemma(lem, revealOriginal[lem]);
            fixupTypeArguments(lem, revealOriginal[lem]);
          }
        }
      }
    }

    internal override void PostCyclicityResolve(ModuleDefinition m) {
      // Add layer quantifier if the function is recursive 
      foreach (var decl in ModuleDefinition.AllCallables(m.TopLevelDecls)) {
        if (decl is Lemma) {
          var lem = (Lemma)decl;
          if (revealOriginal.ContainsKey(lem)) {
            needsLayerQuantifier(lem, revealOriginal[lem]);
          }
        }
      }
    }
  
    // Is f the full version of an opaque function?
    public bool isFullVersion(Function f) {
      return original.ContainsKey(f);
    }
    
    // In case we change how opacity is denoted
    public bool isOpaque(Function f) {
      return fullVersion.ContainsKey(f);
    }

    public Function OpaqueVersion(Function f) {
      Function ret;
      original.TryGetValue(f, out ret);
      return ret;
    }

    public Function FullVersion(Function f) {
      Function ret;
      fullVersion.TryGetValue(f, out ret);
      return ret;
    }

    // Trims the body from the original function and then adds an internal,
    // full version, along with a lemma connecting the two
    protected void DuplicateOpaqueClassFunctions(ClassDecl c) {
      List<MemberDecl> newDecls = new List<MemberDecl>();
      foreach (MemberDecl member in c.Members) {
        if (member is Function) {
          var f = (Function)member;

          if (!Attributes.Contains(f.Attributes, "opaque")) {
            // Nothing to do
          } else if (f.IsProtected) {
            reporter.Error(MessageSource.Rewriter, f.tok, ":opaque is not allowed to be applied to protected functions (this will be allowed when the language introduces 'opaque'/'reveal' as keywords)");
          } else if (!RefinementToken.IsInherited(f.tok, c.Module)) {
            // Create a copy, which will be the internal version with a full body
            // which will allow us to verify that the ensures are true
            var cloner = new Cloner();
            var fWithBody = cloner.CloneFunction(f, "#" + f.Name + "_FULL");  
            newDecls.Add(fWithBody);
            fullVersion.Add(f, fWithBody);
            original.Add(fWithBody, f);

            var newToken = new Boogie.Token(f.tok.line, f.tok.col);
            newToken.filename = f.tok.filename;
            newToken._val = fWithBody.Name;
            newToken._kind = f.tok.kind;
            newToken._pos = f.tok.pos;
            fWithBody.tok = (f.tok is IncludeToken) ? new IncludeToken(newToken) : (Boogie.IToken)newToken;

            // Annotate the new function so we remember that we introduced it
            fWithBody.Attributes = new Attributes("opaque_full", new List<Expression>(), fWithBody.Attributes);
            fWithBody.Attributes = new Attributes("auto_generated", new List<Expression>(), fWithBody.Attributes);

            // Create a lemma to allow the user to selectively reveal the function's body          
            // That is, given:
            //   function {:opaque} foo(x:int, y:int) : int
            //     requires 0 <= x < 5;
            //     requires 0 <= y < 5;
            //     ensures foo(x, y) < 10;
            //   { x + y }
            // We produce:
            //   lemma {:axiom} {:auto_generated} reveal_foo()
            //     ensures forall x:int, y:int {:trigger foo(x,y)} :: 0 <= x < 5 && 0 <= y < 5 ==> foo(x,y) == foo_FULL(x,y);
            Expression reqExpr = new LiteralExpr(f.tok, true);
            foreach (Expression req in f.Req) {
              Expression newReq = cloner.CloneExpr(req);
              reqExpr = new BinaryExpr(f.tok, BinaryExpr.Opcode.And, reqExpr, newReq);
            }

            List<TypeParameter> typeVars = new List<TypeParameter>();
            foreach (TypeParameter tp in f.TypeArgs) {
              typeVars.Add(cloner.CloneTypeParam(tp));
            }

            var boundVars = f.Formals.ConvertAll(formal => new BoundVar(formal.tok, formal.Name, cloner.CloneType(formal.Type)));

            // Build the implication connecting the function's requires to the connection with the revealed-body version
            Func<Function, Expression> func_builder = func =>
              new ApplySuffix(func.tok,
                new NameSegment(func.tok, func.Name, null),
                func.Formals.ConvertAll(x => (Expression)new IdentifierExpr(func.tok, x.Name)));
            var oldEqualsNew = new BinaryExpr(f.tok, BinaryExpr.Opcode.Eq, func_builder(f), func_builder(fWithBody));
            var requiresImpliesOldEqualsNew = new BinaryExpr(f.tok, BinaryExpr.Opcode.Imp, reqExpr, oldEqualsNew);            

            MaybeFreeExpression newEnsures;
            if (f.Formals.Count > 0) {
              // Build an explicit trigger for the forall, so Z3 doesn't get confused
              Expression trigger = func_builder(f);
              List<Expression> args = new List<Expression>();
              args.Add(trigger);
              Attributes attrs = new Attributes("trigger", args, null);

              // Also specify that this is a type quantifier
              attrs = new Attributes("typeQuantifier", new List<Expression>(), attrs);

              newEnsures = new MaybeFreeExpression(new ForallExpr(f.tok, typeVars, boundVars, null, requiresImpliesOldEqualsNew, attrs));
            } else {
              // No need for a forall
              newEnsures = new MaybeFreeExpression(oldEqualsNew);
            }
            var newEnsuresList = new List<MaybeFreeExpression>();
            newEnsuresList.Add(newEnsures);

            // Add an axiom attribute so that the compiler won't complain about the lemma's lack of a body
            Attributes lemma_attrs = new Attributes("axiom", new List<Expression>(), null);
            lemma_attrs = new Attributes("auto_generated", new List<Expression>(), lemma_attrs);

            var reveal = new Lemma(f.tok, "reveal_" + f.Name, f.HasStaticKeyword, new List<TypeParameter>(), new List<Formal>(), new List<Formal>(), new List<MaybeFreeExpression>(),
                                    new Specification<FrameExpression>(new List<FrameExpression>(), null), newEnsuresList,
                                    new Specification<Expression>(new List<Expression>(), null), null, lemma_attrs, null);
            newDecls.Add(reveal);
            revealOriginal[reveal] = f;

            // Update f's body to simply call the full version, so we preserve recursion checks, decreases clauses, etc.
            f.Body = func_builder(fWithBody);
          }
        }
      }
      c.Members.AddRange(newDecls);
    }    

    protected class OpaqueFunctionContext {
      public Function original;   // The original declaration of the opaque function
      public Function full;       // The version we added that has a body

      public OpaqueFunctionContext(Function Orig, Function Full) {
        original = Orig;
        full = Full;
      }
    }

    class OpaqueFunctionVisitor : TopDownVisitor<OpaqueFunctionContext> {
      protected override bool VisitOneExpr(Expression expr, ref OpaqueFunctionContext context) {
        if (expr is FunctionCallExpr) {
          var e = (FunctionCallExpr)expr;

          if (e.Function == context.original) { // Attempting to call the original opaque function
            // Redirect the call to the full version and its type-argument substitution map
            // First, do some sanity checks:
            Contract.Assert(e.TypeArgumentSubstitutions.Count == context.original.EnclosingClass.TypeArgs.Count + context.original.TypeArgs.Count);
            Contract.Assert(context.original.EnclosingClass == context.full.EnclosingClass);
            Contract.Assert(context.original.TypeArgs.Count == context.full.TypeArgs.Count);
            if (context.full.TypeArgs.Count != 0) {
              var newTypeArgsSubst = new Dictionary<TypeParameter, Type>();
              context.original.EnclosingClass.TypeArgs.ForEach(tp => newTypeArgsSubst.Add(tp, e.TypeArgumentSubstitutions[tp]));
              for (int i = 0; i < context.original.TypeArgs.Count; i++) {
                var tpOrig = context.original.TypeArgs[i];
                var tpFull = context.full.TypeArgs[i];
                newTypeArgsSubst.Add(tpFull, e.TypeArgumentSubstitutions[tpOrig]);
              }
              e.TypeArgumentSubstitutions = newTypeArgsSubst;
            }
            e.Function = context.full;
          }
        }
        return true;
      }
    }

    // If the function is recursive, make the reveal lemma quantifier a layerQuantifier
    protected void needsLayerQuantifier(Lemma lem, Function fn) {
      var origForall = lem.Ens[0].E as ForallExpr;
      if (origForall != null && fn.IsRecursive) {
        var newAttrib = new Attributes("layerQuantifier", new List<Expression>(), origForall.Attributes);
        var newForall = new ForallExpr(origForall.tok, origForall.TypeArgs, origForall.BoundVars, origForall.Range, origForall.Term, newAttrib);
        newForall.Type = Type.Bool;
        lem.Ens[0] = new MaybeFreeExpression(newForall);
      }
    }

    // This is for the reveal_F function. The ensures clause looks like this:
    // 
    //     ensures forall<A,B> x : T<A,B> :: F(x) == F_FULL(x)
    //
    // But the type argument substitutions for F and F_FULL are way off, so 
    // we use this function to make a substitution to the type variables the
    // forall quantifier binds.
    protected void fixupTypeArguments(Lemma lem, Function fn) {
      var origForall = lem.Ens[0].E as ForallExpr;
      if (origForall != null) {
        Contract.Assert(origForall.TypeArgs.Count == fn.TypeArgs.Count);
        fixupTypeArguments(lem.Ens[0].E, fn, origForall.TypeArgs);
      }
    }

    // Type argument substitution for the fn_FULL function using the orginal 
    // fn function.
    protected void fixupTypeArguments(Expression expr, Function fn, List<TypeParameter> qparams) {
      FunctionCallExpr e;
      if (((e = expr as FunctionCallExpr) != null) && (e.Function == fullVersion[fn])) {
        var newTypeArgsSubst = new Dictionary<TypeParameter, Type>();
        fn.EnclosingClass.TypeArgs.ForEach(tp => newTypeArgsSubst.Add(tp, e.TypeArgumentSubstitutions[tp]));
        for (int i = 0; i < e.Function.TypeArgs.Count; i++) {
          newTypeArgsSubst.Add(e.Function.TypeArgs[i], new UserDefinedType(qparams[i]));
        }
        e.TypeArgumentSubstitutions = newTypeArgsSubst;
      }
      foreach (var ee in expr.SubExpressions) {
        fixupTypeArguments(ee, fn, qparams);
      }
    }

    protected void fixupRevealLemma(Lemma lem, Function fn) {
      if (fn.Req.Count == 0) {
        return;
      }

      // DR: Note: I don't know of any example that actually gets to these lines below: 

      // Consolidate the requirements
      Expression reqs = Expression.CreateBoolLiteral(fn.tok, true);
      foreach (var expr in fn.Req) {
        reqs = Expression.CreateAnd(reqs, expr);
      }

      if (fn.Formals.Count == 0)
      {
          lem.Ens[0] = new MaybeFreeExpression(Expression.CreateImplies(reqs, lem.Ens[0].E));
          return;
      }

      var origForall = (ForallExpr)lem.Ens[0].E;
      var origImpl = (BinaryExpr)origForall.Term;

      // Substitute the forall's variables for those of the fn
      var formals = fn.Formals.ConvertAll<NonglobalVariable>(x => (NonglobalVariable)x);
      var typeMap = Util.Dict<TypeParameter, Type>(fn.TypeArgs, Util.Map(origForall.TypeArgs, x => new UserDefinedType(x)));
      reqs = Expression.VarSubstituter(formals, origForall.BoundVars, reqs, typeMap);

      var newImpl = Expression.CreateImplies(reqs, origImpl.E1);
      //var newForall = Expression.CreateQuantifier(origForall, true, newImpl);
      var newForall = new ForallExpr(origForall.tok, origForall.TypeArgs, origForall.BoundVars, origForall.Range, newImpl, origForall.Attributes);
      newForall.Type = Type.Bool;

      lem.Ens[0] = new MaybeFreeExpression(newForall);
    }

  }


  /// <summary>
  /// Automatically accumulate requires for function calls within a function body, 
  /// if requested via {:autoreq}
  /// </summary>
  public class AutoReqFunctionRewriter : IRewriter {
    Function parentFunction;
    OpaqueFunctionRewriter opaqueInfo;
    bool containsMatch; // TODO: Track this per-requirement, rather than per-function

    public AutoReqFunctionRewriter(ErrorReporter reporter, OpaqueFunctionRewriter o)
      : base(reporter) {
      Contract.Requires(reporter != null);
      this.opaqueInfo = o;
    }

    internal override void PostResolve(ModuleDefinition m) {
      var components = m.CallGraph.TopologicallySortedComponents();

      foreach (var scComponent in components) {  // Visit the call graph bottom up, so anything we call already has its prequisites calculated
        if (scComponent is Function) {
          Function fn = (Function)scComponent;
          if (Attributes.ContainsBoolAtAnyLevel(fn, "autoReq")) {
            parentFunction = fn;  // Remember where the recursion started
            containsMatch = false;  // Assume no match statements are involved

            if (!opaqueInfo.isOpaque(fn)) { // It's a normal function
              List<Expression> auto_reqs = new List<Expression>();

              // First handle all of the requirements' preconditions
              foreach (Expression req in fn.Req) {
                auto_reqs.AddRange(generateAutoReqs(req));
              }
              fn.Req.InsertRange(0, auto_reqs); // Need to come before the actual requires
              addAutoReqToolTipInfoToFunction("pre", fn, auto_reqs);

              // Then the body itself, if any          
              if (fn.Body != null) {
                auto_reqs = generateAutoReqs(fn.Body);
                fn.Req.AddRange(auto_reqs);
                addAutoReqToolTipInfoToFunction("post", fn, auto_reqs);
              }
            } else {  // Opaque functions need special handling
              // The opaque function's requirements are the same as for the _FULL version,
              // so we don't need to generate them again.  We do, however, need to swap
              // the function's variables for those of the FULL version

              List<Expression> fnVars = new List<Expression>();
              foreach (var formal in fn.Formals) {
                var id = new IdentifierExpr(formal.tok, formal.Name);
                id.Var = formal;  // resolve here
                id.Type = formal.Type;  // resolve here
                fnVars.Add(id);
              }

              var new_reqs = new List<Expression>();
              foreach (var req in opaqueInfo.FullVersion(fn).Req) {
                new_reqs.Add(subVars(opaqueInfo.FullVersion(fn).Formals, fnVars, req, null));
              }

              fn.Req.Clear();
              fn.Req.AddRange(new_reqs);
            }
          }
        }
        else if (scComponent is Method)
        {
            Method method = (Method)scComponent;
            if (Attributes.ContainsBoolAtAnyLevel(method, "autoReq"))
            {
                parentFunction = null;
                containsMatch = false; // Assume no match statements are involved

                List<MaybeFreeExpression> auto_reqs = new List<MaybeFreeExpression>();
                foreach (MaybeFreeExpression req in method.Req)
                {
                    List<Expression> local_auto_reqs = generateAutoReqs(req.E);
                    foreach (Expression local_auto_req in local_auto_reqs)
                    {
                        auto_reqs.Add(new MaybeFreeExpression(local_auto_req, !req.IsFree));
                    }
                }
                method.Req.InsertRange(0, auto_reqs); // Need to come before the actual requires
                addAutoReqToolTipInfoToMethod("pre", method, auto_reqs);
            }
        }
      }
    }

    Expression subVars(List<Formal> formals, List<Expression> values, Expression e, Expression f_this) {
      Contract.Assert(formals != null);
      Contract.Assert(values != null);
      Contract.Assert(formals.Count == values.Count);
      Dictionary<IVariable, Expression/*!*/> substMap = new Dictionary<IVariable, Expression>();
      Dictionary<TypeParameter, Type> typeMap = new Dictionary<TypeParameter, Type>();

      for (int i = 0; i < formals.Count; i++) {
        substMap.Add(formals[i], values[i]);
      }

      Translator.Substituter sub = new Translator.Substituter(f_this, substMap, typeMap, null);
      return sub.Substitute(e);
    }

    public void addAutoReqToolTipInfoToFunction(string label, Function f, List<Expression> reqs) {
      string prefix = "auto requires " + label + " ";
      string tip = "";

      string sep = "";
      foreach (var req in reqs) {
        if (containsMatch) {  // Pretty print the requirements
          tip += sep + prefix + Printer.ExtendedExprToString(req) + ";";
        } else {
          tip += sep + prefix + Printer.ExprToString(req) + ";";
        }
        sep = "\n";
      }

      if (!tip.Equals("")) {
        reporter.Info(MessageSource.Rewriter, f.tok, tip);
        if (DafnyOptions.O.AutoReqPrintFile != null) {
          using (System.IO.TextWriter writer = new System.IO.StreamWriter(DafnyOptions.O.AutoReqPrintFile, true)) {
            writer.WriteLine(f.Name);
            writer.WriteLine("\t" + tip);
          }
        }
      }
    }

    public void addAutoReqToolTipInfoToMethod(string label, Method method, List<MaybeFreeExpression> reqs) {
      string tip = "";

      foreach (var req in reqs) {
        string prefix = "auto ";
        if (req.IsFree) {
          prefix += "free ";
        }
        prefix += " requires " + label + " ";
        if (containsMatch) {  // Pretty print the requirements
          tip += prefix + Printer.ExtendedExprToString(req.E) + ";\n";
        } else {
          tip += prefix + Printer.ExprToString(req.E) + ";\n";
        }
      }

      if (!tip.Equals("")) {
        reporter.Info(MessageSource.Rewriter, method.tok, tip);
        if (DafnyOptions.O.AutoReqPrintFile != null) {
          using (System.IO.TextWriter writer = new System.IO.StreamWriter(DafnyOptions.O.AutoReqPrintFile, true)) {
            writer.WriteLine(method.Name);
            writer.WriteLine("\t" + tip);
          }
        }
      }
    }

    // Stitch a list of expressions together with logical ands
    Expression andify(Bpl.IToken tok, List<Expression> exprs) {
      Expression ret = Expression.CreateBoolLiteral(tok, true); 

      foreach (var expr in exprs) {        
        ret = Expression.CreateAnd(ret, expr);
      }   

      return ret;
    }
   
    List<Expression> gatherReqs(Function f, List<Expression> args, Expression f_this) {
      List<Expression> translated_f_reqs = new List<Expression>();

      if (f.Req.Count > 0) {
        Dictionary<IVariable, Expression/*!*/> substMap = new Dictionary<IVariable,Expression>();
        Dictionary<TypeParameter, Type> typeMap = new Dictionary<TypeParameter,Type>();

        for (int i = 0; i < f.Formals.Count; i++) {
          substMap.Add(f.Formals[i], args[i]);
        }

        foreach (var req in f.Req) {
          Translator.Substituter sub = new Translator.Substituter(f_this, substMap, typeMap, null);          
          translated_f_reqs.Add(sub.Substitute(req));         
        }
      }

      return translated_f_reqs;
    }

    List<Expression> generateAutoReqs(Expression expr) {
      List<Expression> reqs = new List<Expression>();

      if (expr is LiteralExpr) {      
      } else if (expr is ThisExpr) {
      } else if (expr is IdentifierExpr) {
      } else if (expr is SetDisplayExpr) {
        SetDisplayExpr e = (SetDisplayExpr)expr;

        foreach (var elt in e.Elements) {
          reqs.AddRange(generateAutoReqs(elt));
        }
      } else if (expr is MultiSetDisplayExpr) {
        MultiSetDisplayExpr e = (MultiSetDisplayExpr)expr;
        foreach (var elt in e.Elements) {
          reqs.AddRange(generateAutoReqs(elt));
        }
      } else if (expr is SeqDisplayExpr) {
        SeqDisplayExpr e = (SeqDisplayExpr)expr;
        foreach (var elt in e.Elements) {
          reqs.AddRange(generateAutoReqs(elt));
        }
      } else if (expr is MapDisplayExpr) {
        MapDisplayExpr e = (MapDisplayExpr)expr;

        foreach (ExpressionPair p in e.Elements) {
          reqs.AddRange(generateAutoReqs(p.A));
          reqs.AddRange(generateAutoReqs(p.B));        
        }
      } else if (expr is MemberSelectExpr) {
        MemberSelectExpr e = (MemberSelectExpr)expr;
        Contract.Assert(e.Member != null && e.Member is Field);

        reqs.AddRange(generateAutoReqs(e.Obj));       
      } else if (expr is SeqSelectExpr) {
        SeqSelectExpr e = (SeqSelectExpr)expr;

        reqs.AddRange(generateAutoReqs(e.Seq));
        if (e.E0 != null) {
          reqs.AddRange(generateAutoReqs(e.E0));
        }

        if (e.E1 != null) {
          reqs.AddRange(generateAutoReqs(e.E1));
        }
      } else if (expr is SeqUpdateExpr) {
        SeqUpdateExpr e = (SeqUpdateExpr)expr;
        reqs.AddRange(generateAutoReqs(e.Seq));
        reqs.AddRange(generateAutoReqs(e.Index));
        reqs.AddRange(generateAutoReqs(e.Value));
      } else if (expr is DatatypeUpdateExpr) {
        foreach (var ee in expr.SubExpressions) {
          reqs.AddRange(generateAutoReqs(ee));
        }
      } else if (expr is FunctionCallExpr) {
        FunctionCallExpr e = (FunctionCallExpr)expr;

        // All of the arguments need to be satisfied
        foreach (var arg in e.Args) {
          reqs.AddRange(generateAutoReqs(arg));
        }

        if (parentFunction != null && ModuleDefinition.InSameSCC(e.Function, parentFunction)) {
          // We're making a call within the same SCC, so don't descend into this function
        } else {
          reqs.AddRange(gatherReqs(e.Function, e.Args, e.Receiver));
        }
      } else if (expr is DatatypeValue) {         
        DatatypeValue dtv = (DatatypeValue)expr;
        Contract.Assert(dtv.Ctor != null);  // since dtv has been successfully resolved
        for (int i = 0; i < dtv.Arguments.Count; i++) {
          Expression arg = dtv.Arguments[i];
          reqs.AddRange(generateAutoReqs(arg));
        }              
      } else if (expr is OldExpr) {  
      } else if (expr is MatchExpr) {
        MatchExpr e = (MatchExpr)expr;
        containsMatch = true;
        reqs.AddRange(generateAutoReqs(e.Source));
        
        List<MatchCaseExpr> newMatches = new List<MatchCaseExpr>();
        foreach (MatchCaseExpr caseExpr in e.Cases) {
          //MatchCaseExpr c = new MatchCaseExpr(caseExpr.tok, caseExpr.Id, caseExpr.Arguments, andify(caseExpr.tok, generateAutoReqs(caseExpr.Body)));
          //c.Ctor = caseExpr.Ctor; // resolve here
          MatchCaseExpr c = Expression.CreateMatchCase(caseExpr, andify(caseExpr.tok, generateAutoReqs(caseExpr.Body)));
          newMatches.Add(c);
        }
        
        reqs.Add(Expression.CreateMatch(e.tok, e.Source, newMatches, e.Type));
      } else if (expr is MultiSetFormingExpr) {
        MultiSetFormingExpr e = (MultiSetFormingExpr)expr;
        reqs.AddRange(generateAutoReqs(e.E));
      } else if (expr is UnaryExpr) {
        UnaryExpr e = (UnaryExpr)expr;
        Expression arg = e.E;                
        reqs.AddRange(generateAutoReqs(arg));
      } else if (expr is BinaryExpr) {
        BinaryExpr e = (BinaryExpr)expr;
  
        switch (e.ResolvedOp) {
          case BinaryExpr.ResolvedOpcode.Imp:
          case BinaryExpr.ResolvedOpcode.And:
            reqs.AddRange(generateAutoReqs(e.E0));
            foreach (var req in generateAutoReqs(e.E1)) {
              // We only care about this req if E0 is true, since And short-circuits              
              reqs.Add(Expression.CreateImplies(e.E0, req));  
            }
            break;

          case BinaryExpr.ResolvedOpcode.Or:
            reqs.AddRange(generateAutoReqs(e.E0));
            foreach (var req in generateAutoReqs(e.E1)) {
              // We only care about this req if E0 is false, since Or short-circuits              
              reqs.Add(Expression.CreateImplies(Expression.CreateNot(e.E1.tok, e.E0), req));
            }
            break;

          default:
            reqs.AddRange(generateAutoReqs(e.E0));
            reqs.AddRange(generateAutoReqs(e.E1));
            break;
        }   
      } else if (expr is TernaryExpr) {
        var e = (TernaryExpr)expr;

        reqs.AddRange(generateAutoReqs(e.E0));
        reqs.AddRange(generateAutoReqs(e.E1));
        reqs.AddRange(generateAutoReqs(e.E2));
      } else if (expr is LetExpr) {
        var e = (LetExpr)expr;

        if (e.Exact) {
          foreach (var rhs in e.RHSs) {
            reqs.AddRange(generateAutoReqs(rhs));
          }
          var new_reqs = generateAutoReqs(e.Body);
          if (new_reqs.Count > 0) {                 
            reqs.Add(Expression.CreateLet(e.tok, e.LHSs, e.RHSs, andify(e.tok, new_reqs), e.Exact));
          }
        } else {
          // TODO: Still need to figure out what the right choice is here:
          // Given: var x :| g(x); f(x, y) do we:
          //    1) Update the original statement to be: var x :| g(x) && WP(f(x,y)); f(x, y)
          //    2) Add forall x :: g(x) ==> WP(f(x, y)) to the function's requirements
          //    3) Current option -- do nothing.  Up to the spec writer to fix
        }
      } else if (expr is NamedExpr) {
        reqs.AddRange(generateAutoReqs(((NamedExpr)expr).Body));
      } else if (expr is QuantifierExpr) {
        QuantifierExpr e = (QuantifierExpr)expr;

        // See LetExpr for issues with the e.Range

        var auto_reqs = generateAutoReqs(e.Term);
        if (auto_reqs.Count > 0) {
            Expression allReqsSatisfied = andify(e.Term.tok, auto_reqs);
            Expression allReqsSatisfiedAndTerm = Expression.CreateAnd(allReqsSatisfied, e.Term);
            e.UpdateTerm(allReqsSatisfiedAndTerm);
            reporter.Info(MessageSource.Rewriter, e.tok, "autoreq added (" + Printer.ExtendedExprToString(allReqsSatisfied) + ") &&");
        }
      } else if (expr is SetComprehension) {
        var e = (SetComprehension)expr;
        // Translate "set xs | R :: T" 

        // See LetExpr for issues with the e.Range
        //reqs.AddRange(generateAutoReqs(e.Range));
        var auto_reqs = generateAutoReqs(e.Term);
        if (auto_reqs.Count > 0) {
          reqs.Add(Expression.CreateQuantifier(new ForallExpr(e.tok, new List<TypeParameter>(), e.BoundVars, e.Range, andify(e.Term.tok, auto_reqs), e.Attributes), true));
        }      
      } else if (expr is MapComprehension) {
        var e = (MapComprehension)expr;
        // Translate "map x | R :: T" into
        // See LetExpr for issues with the e.Range
        //reqs.AddRange(generateAutoReqs(e.Range));        
        var auto_reqs = generateAutoReqs(e.Term);
        if (auto_reqs.Count > 0) {
          reqs.Add(Expression.CreateQuantifier(new ForallExpr(e.tok, new List<TypeParameter>(), e.BoundVars, e.Range, andify(e.Term.tok, auto_reqs), e.Attributes), true));
        }
      } else if (expr is StmtExpr) {
        var e = (StmtExpr)expr;
        reqs.AddRange(generateAutoReqs(e.E));
      } else if (expr is ITEExpr) {
        ITEExpr e = (ITEExpr)expr;
        reqs.AddRange(generateAutoReqs(e.Test));        
        reqs.Add(Expression.CreateITE(e.Test, andify(e.Thn.tok, generateAutoReqs(e.Thn)), andify(e.Els.tok, generateAutoReqs(e.Els))));
      } else if (expr is ConcreteSyntaxExpression) {
        var e = (ConcreteSyntaxExpression)expr;
        reqs.AddRange(generateAutoReqs(e.ResolvedExpression));
      } else {
        //Contract.Assert(false); throw new cce.UnreachableException();  // unexpected expression
      }

      return reqs;
    }
  }



  /// <summary>
  /// Replace all occurrences of attribute {:timeLimitMultiplier X} with {:timeLimit Y}
  /// where Y = X*default-time-limit or Y = X*command-line-time-limit
  /// </summary>
  public class TimeLimitRewriter : IRewriter
  {
    public TimeLimitRewriter(ErrorReporter reporter)
      : base(reporter) {
      Contract.Requires(reporter != null);
    }

    internal override void PreResolve(ModuleDefinition m) {
      foreach (var d in m.TopLevelDecls) {
        if (d is ClassDecl) {
          var c = (ClassDecl)d;
          foreach (MemberDecl member in c.Members)  {
            if (member is Function || member is Method) {
              // Check for the timeLimitMultiplier attribute
              if (Attributes.Contains(member.Attributes, "timeLimitMultiplier")) {
                Attributes attrs = member.Attributes;
                foreach (var attr in attrs.AsEnumerable()) {
                  if (attr.Name == "timeLimitMultiplier") {
                    if (attr.Args.Count == 1 && attr.Args[0] is LiteralExpr) {
                      var arg = attr.Args[0] as LiteralExpr;
                      System.Numerics.BigInteger value = (System.Numerics.BigInteger)arg.Value;
                      if (value.Sign > 0) {
                        int current_limit = DafnyOptions.O.ProverKillTime > 0 ? DafnyOptions.O.ProverKillTime : 10;  // Default to 10 seconds
                        attr.Args[0] = new LiteralExpr(attr.Args[0].tok, value * current_limit);
                        attr.Name = "timeLimit";
                      }
                    }
                  }
                }
              }
            }
          }
        }
      }
    }
  }


  class MatchCaseExprSubstituteCloner : Cloner
  {
    private List<Tuple<CasePattern, BoundVar>> patternSubst;
    private BoundVar oldvar;
    private BoundVar var;

    // the cloner is called after resolving the body of matchexpr, trying
    // to replace casepattern in the body that has been replaced by bv
    public MatchCaseExprSubstituteCloner(List<Tuple<CasePattern, BoundVar>> subst) {
      this.patternSubst = subst;
      this.oldvar = null;
      this.var = null;
    }

    public MatchCaseExprSubstituteCloner(BoundVar oldvar, BoundVar var) {
      this.patternSubst = null;
      this.oldvar = oldvar;
      this.var = var;
    }

    public override BoundVar CloneBoundVar(BoundVar bv) {
      // replace bv with this.var if bv == oldvar
      BoundVar bvNew;
      if (oldvar != null && bv.Name.Equals(oldvar.Name)) {
        bvNew = new BoundVar(new AutoGeneratedToken(bv.tok), var.Name, CloneType(bv.Type));
      } else {
        bvNew = new BoundVar(Tok(bv.tok), bv.Name, CloneType(bv.Type));
      }
      bvNew.IsGhost = bv.IsGhost;
      return bvNew;
    }

    public override NameSegment CloneNameSegment(Expression expr) {
      var e = (NameSegment)expr;
      if (oldvar != null && e.Name.Equals(oldvar.Name)) {
        return new NameSegment(new AutoGeneratedToken(e.tok), var.Name, e.OptTypeArguments == null ? null : e.OptTypeArguments.ConvertAll(CloneType));
      } else {
        return new NameSegment(Tok(e.tok), e.Name, e.OptTypeArguments == null ? null : e.OptTypeArguments.ConvertAll(CloneType));
      }
    }

    public override Expression CloneApplySuffix(ApplySuffix e) {
      // if the ApplySuffix matches the CasePattern, then replace it with the BoundVar.
      CasePattern cp = null;
      BoundVar bv = null;
      if (FindMatchingPattern(e, out cp, out bv)) {
        if (bv.tok is MatchCaseToken) {
          Contract.Assert(e.Args.Count == cp.Arguments.Count);
          for (int i = 0; i < e.Args.Count; i++) {
            ((MatchCaseToken)bv.tok).AddVar(e.Args[i].tok, cp.Arguments[i].Var, false);
          }
        }
        return new NameSegment(new AutoGeneratedToken(e.tok), bv.Name, null);
      } else {
        return new ApplySuffix(Tok(e.tok), CloneExpr(e.Lhs), e.Args.ConvertAll(CloneExpr));
      }
    }

    private bool FindMatchingPattern(ApplySuffix e, out CasePattern pattern, out BoundVar bv) {
      pattern = null;
      bv = null;
      if (patternSubst == null) {
        return false;
      }
      Expression lhs = e.Lhs;
      if (!(lhs is NameSegment)) {
        return false;
      }
      string applyName = ((NameSegment)lhs).Name;
      foreach (Tuple<CasePattern, BoundVar> pair in patternSubst) {
        CasePattern cp = pair.Item1;
        string ctorName = cp.Id;
        if (!(applyName.Equals(ctorName)) || (e.Args.Count != cp.Arguments.Count)) {
          continue;
        }
        bool found = true;
        for (int i = 0; i < e.Args.Count; i++) {
          var arg1 = e.Args[i];
          var arg2 = cp.Arguments[i];
          if (arg1.Resolved is IdentifierExpr) {
            var bv1 = ((IdentifierExpr)arg1.Resolved).Var;
            if (bv1 != arg2.Var) {
              found = false;
            }
          } else {
            found = false;
          }
        }
        if (found) {
          pattern = cp;
          bv = pair.Item2;
          return true;
        }
      }
      return false;
    }
  }

  // MatchCaseToken is used to record BoundVars that are consolidated due to rewrite of
  // nested match patterns. We want to record the original BoundVars that are consolidated
  // so that they will show up in the IDE correctly.
  public class MatchCaseToken : AutoGeneratedToken
  {
    public readonly List<Tuple<IToken, BoundVar, bool>> varList;
    public MatchCaseToken(IToken tok)
      : base(tok) {
      varList = new List<Tuple<IToken, BoundVar, bool>>();
    }

    public void AddVar(IToken tok, BoundVar var, bool isDefinition) {
      varList.Add(new Tuple<IToken, BoundVar, bool>(tok, var, isDefinition));
    }
  }

  // A cloner that replace the original token with AutoGeneratedToken.
  class AutoGeneratedTokenCloner : Cloner
  {
    public override IToken Tok(IToken tok) {
      return new AutoGeneratedToken(tok);
    }
  }

  // ===========================================================================================

  public class InductionRewriter : IRewriter {
    internal InductionRewriter(ErrorReporter reporter) : base(reporter) {
      Contract.Requires(reporter != null);
    }

    internal override void PostCyclicityResolve(ModuleDefinition m) {
      if (DafnyOptions.O.Induction == 0) {
        // Don't bother inferring :induction attributes.  This will also have the effect of not warning about malformed :induction attributes
      } else {
        foreach (var decl in m.TopLevelDecls) {
          if (decl is ClassDecl) {
            var cl = (ClassDecl)decl;
            foreach (var member in cl.Members) {
              if (member is FixpointLemma) {
                var method = (FixpointLemma)member;
                ProcessMethodExpressions(method);
                ComputeLemmaInduction(method.PrefixLemma);
                ProcessMethodExpressions(method.PrefixLemma);
              } else if (member is Method) {
                var method = (Method)member;
                ComputeLemmaInduction(method);
                ProcessMethodExpressions(method);
              } else if (member is FixpointPredicate) {
                var function = (FixpointPredicate)member;
                ProcessFunctionExpressions(function);
                ProcessFunctionExpressions(function.PrefixPredicate);
              } else if (member is Function) {
                var function = (Function)member;
                ProcessFunctionExpressions(function);
              }
            }
          } else if (decl is NewtypeDecl) {
            var nt = (NewtypeDecl)decl;
            if (nt.Constraint != null) {
              var visitor = new Induction_Visitor(this);
              visitor.Visit(nt.Constraint);
            }
          }
        }
      }
    }

    void ProcessMethodExpressions(Method method) {
      Contract.Requires(method != null);
      var visitor = new Induction_Visitor(this);
      method.Req.ForEach(mfe => visitor.Visit(mfe.E));
      method.Ens.ForEach(mfe => visitor.Visit(mfe.E));
      if (method.Body != null) {
        visitor.Visit(method.Body);
      }
    }

    void ProcessFunctionExpressions(Function function) {
      Contract.Requires(function != null);
      var visitor = new Induction_Visitor(this);
      function.Req.ForEach(visitor.Visit);
      function.Ens.ForEach(visitor.Visit);
      if (function.Body != null) {
        visitor.Visit(function.Body);
      }
    }

    void ComputeLemmaInduction(Method method) {
      Contract.Requires(method != null);
      if (method.Body != null && method.IsGhost && method.Mod.Expressions.Count == 0 && method.Outs.Count == 0 && !(method is FixpointLemma)) {
        var specs = new List<Expression>();
        method.Req.ForEach(mfe => specs.Add(mfe.E));
        method.Ens.ForEach(mfe => specs.Add(mfe.E));
        ComputeInductionVariables(method.tok, method.Ins, specs, method, ref method.Attributes);
      }
    }

    void ComputeInductionVariables<VarType>(IToken tok, List<VarType> boundVars, List<Expression> searchExprs, Method lemma, ref Attributes attributes) where VarType : class, IVariable {
      Contract.Requires(tok != null);
      Contract.Requires(boundVars != null);
      Contract.Requires(searchExprs != null);
      Contract.Requires(DafnyOptions.O.Induction != 0);

      var args = Attributes.FindExpressions(attributes, "induction");  // we only look at the first one we find, since it overrides any other ones
      if (args == null) {
        if (DafnyOptions.O.Induction < 2) {
          // No explicit induction variables and we're asked not to infer anything, so we're done
          return;
        } else if (DafnyOptions.O.Induction == 2 && lemma != null) {
          // We're asked to infer induction variables only for quantifiers, not for lemmas
          return;
        }
        // GO INFER below (only select boundVars)
      } else if (args.Count == 0) {
        // {:induction} is treated the same as {:induction true}, which says to automatically infer induction variables
        // GO INFER below (all boundVars)
      } else if (args.Count == 1 && args[0] is LiteralExpr && ((LiteralExpr)args[0]).Value is bool) {
        // {:induction false} or {:induction true}
        if (!(bool)((LiteralExpr)args[0]).Value) {
          // we're told not to infer anything
          return;
        }
        // GO INFER below (all boundVars)
      } else {
        // Here, we're expecting the arguments to {:induction args} to be a sublist of "boundVars".
        var goodArguments = new List<Expression>();
        var i = 0;
        foreach (var arg in args) {
          var ie = arg.Resolved as IdentifierExpr;
          if (ie != null) {
            var j = boundVars.FindIndex(i, v => v == ie.Var);
            if (i <= j) {
              goodArguments.Add(ie);
              i = j;
              continue;
            }
            if (0 <= boundVars.FindIndex(v => v == ie.Var)) {
              reporter.Warning(MessageSource.Rewriter, arg.tok, "{0}s given as :induction arguments must be given in the same order as in the {1}; ignoring attribute",
                lemma != null ? "lemma parameter" : "bound variable", lemma != null ? "lemma" : "quantifier");
              return;
            }
          }
          reporter.Warning(MessageSource.Rewriter, arg.tok, "invalid :induction attribute argument; expected {0}{1}; ignoring attribute",
            i == 0 ? "'false' or 'true' or " : "",
            lemma != null ? "lemma parameter" : "bound variable");
          return;
        }
        // The argument list was legal, so let's use it for the _induction attribute
        attributes = new Attributes("_induction", goodArguments, attributes);
        return;
      }

      // Okay, here we go, coming up with good induction setting for the given situation
      var inductionVariables = new List<Expression>();
      foreach (IVariable n in boundVars) {
        if (!n.Type.IsTypeParameter && (args != null || searchExprs.Exists(expr => VarOccursInArgumentToRecursiveFunction(expr, n)))) {
          inductionVariables.Add(new IdentifierExpr(n));
        }
      }
      if (inductionVariables.Count != 0) {
        // We found something usable, so let's record that in an attribute
        attributes = new Attributes("_induction", inductionVariables, attributes);
        // And since we're inferring something, let's also report that in a hover text.
        var s = Printer.OneAttributeToString(attributes, "induction");
        if (lemma is PrefixLemma) {
          s = lemma.Name + " " + s;
        }
        reporter.Info(MessageSource.Rewriter, tok, s);
      }
    }
    class Induction_Visitor : BottomUpVisitor
    {
      readonly InductionRewriter IndRewriter;
      public Induction_Visitor(InductionRewriter inductionRewriter) {
        Contract.Requires(inductionRewriter != null);
        IndRewriter = inductionRewriter;
      }
      protected override void VisitOneExpr(Expression expr) {
        var q = expr as QuantifierExpr;
        if (q != null && q.SplitQuantifier == null) {
          IndRewriter.ComputeInductionVariables(q.tok, q.BoundVars, new List<Expression>() { q.LogicalBody() }, null, ref q.Attributes);
        }
      }
      void VisitInductionStmt(Statement stmt) {
        Contract.Requires(stmt != null);
        // visit a selection of subexpressions
        if (stmt is AssertStmt) {
          var s = (AssertStmt)stmt;
          Visit(s.Expr);
        }
        // recursively visit all substatements
        foreach (var s in stmt.SubStatements) {
          VisitInductionStmt(s);
        }
      }
    }

    /// <summary>
    /// Returns 'true' iff by looking at 'expr' the Induction Heuristic determines that induction should be applied to 'n'.
    /// More precisely:
    ///   DafnyInductionHeuristic      Return 'true'
    ///   -----------------------      -------------
    ///        0                       always
    ///        1    if 'n' occurs as   any subexpression (of 'expr')
    ///        2    if 'n' occurs as   any subexpression of          any index argument of an array/sequence select expression or any                       argument to a recursive function
    ///        3    if 'n' occurs as   a prominent subexpression of  any index argument of an array/sequence select expression or any                       argument to a recursive function
    ///        4    if 'n' occurs as   any subexpression of                                                                       any                       argument to a recursive function
    ///        5    if 'n' occurs as   a prominent subexpression of                                                               any                       argument to a recursive function
    ///        6    if 'n' occurs as   a prominent subexpression of                                                               any decreases-influencing argument to a recursive function
    /// Parameter 'n' is allowed to be a ThisSurrogate.
    /// </summary>
    public static bool VarOccursInArgumentToRecursiveFunction(Expression expr, IVariable n) {
      switch (DafnyOptions.O.InductionHeuristic) {
        case 0: return true;
        case 1: return Translator.ContainsFreeVariable(expr, false, n);
        default: return VarOccursInArgumentToRecursiveFunction(expr, n, false);
      }
    }

    /// <summary>
    /// Worker routine for VarOccursInArgumentToRecursiveFunction(expr,n), where the additional parameter 'exprIsProminent' says whether or
    /// not 'expr' has prominent status in its context.
    /// DafnyInductionHeuristic cases 0 and 1 are assumed to be handled elsewhere (i.e., a precondition of this method is DafnyInductionHeuristic is at least 2).
    /// Parameter 'n' is allowed to be a ThisSurrogate.
    /// </summary>
    static bool VarOccursInArgumentToRecursiveFunction(Expression expr, IVariable n, bool exprIsProminent) {
      Contract.Requires(expr != null);
      Contract.Requires(n != null);

      // The following variable is what gets passed down to recursive calls if the subexpression does not itself acquire prominent status.
      var subExprIsProminent = DafnyOptions.O.InductionHeuristic == 2 || DafnyOptions.O.InductionHeuristic == 4 ? /*once prominent, always prominent*/exprIsProminent : /*reset the prominent status*/false;

      if (expr is IdentifierExpr) {
        var e = (IdentifierExpr)expr;
        return exprIsProminent && e.Var == n;
      } else if (expr is SeqSelectExpr) {
        var e = (SeqSelectExpr)expr;
        var q = DafnyOptions.O.InductionHeuristic < 4 || subExprIsProminent;
        return VarOccursInArgumentToRecursiveFunction(e.Seq, n, subExprIsProminent) ||  // this subexpression does not acquire "prominent" status
          (e.E0 != null && VarOccursInArgumentToRecursiveFunction(e.E0, n, q)) ||  // this one does (unless arrays/sequences are excluded)
          (e.E1 != null && VarOccursInArgumentToRecursiveFunction(e.E1, n, q));    // ditto
      } else if (expr is MultiSelectExpr) {
        var e = (MultiSelectExpr)expr;
        var q = DafnyOptions.O.InductionHeuristic < 4 || subExprIsProminent;
        return VarOccursInArgumentToRecursiveFunction(e.Array, n, subExprIsProminent) ||
          e.Indices.Exists(exp => VarOccursInArgumentToRecursiveFunction(exp, n, q));
      } else if (expr is FunctionCallExpr) {
        var e = (FunctionCallExpr)expr;
        // For recursive functions:  arguments are "prominent"
        // For non-recursive function:  arguments are "prominent" if the call is
        var rec = e.Function.IsRecursive && e.CoCall != FunctionCallExpr.CoCallResolution.Yes;
        var decr = e.Function.Decreases.Expressions;
        bool variantArgument;
        if (DafnyOptions.O.InductionHeuristic < 6) {
          variantArgument = rec;
        } else {
          // The receiver is considered to be "variant" if the function is recursive and the receiver participates
          // in the effective decreases clause of the function.  The receiver participates if it's a free variable
          // of a term in the explicit decreases clause.
          variantArgument = rec && decr.Exists(ee => Translator.ContainsFreeVariable(ee, true, null));
        }
        if (VarOccursInArgumentToRecursiveFunction(e.Receiver, n, variantArgument || subExprIsProminent)) {
          return true;
        }
        Contract.Assert(e.Function.Formals.Count == e.Args.Count);
        for (int i = 0; i < e.Function.Formals.Count; i++) {
          var f = e.Function.Formals[i];
          var exp = e.Args[i];
          if (DafnyOptions.O.InductionHeuristic < 6) {
            variantArgument = rec;
          } else if (rec) {
            // The argument position is considered to be "variant" if the function is recursive and...
            // ... it has something to do with why the callee is well-founded, which happens when...
            if (f is ImplicitFormal) {
              // ... it is the argument is the implicit _k parameter, which is always first in the effective decreases clause of a prefix lemma, or
              variantArgument = true;
            } else if (decr.Exists(ee => Translator.ContainsFreeVariable(ee, false, f))) {
              // ... it participates in the effective decreases clause of the function, which happens when it is
              // a free variable of a term in the explicit decreases clause, or
              variantArgument = true;
            } else {
              // ... the callee is a prefix predicate.
              variantArgument = true;
            }
          }
          if (VarOccursInArgumentToRecursiveFunction(exp, n, variantArgument || subExprIsProminent)) {
            return true;
          }
        }
        return false;
      } else if (expr is TernaryExpr) {
        var e = (TernaryExpr)expr;
        switch (e.Op) {
          case TernaryExpr.Opcode.PrefixEqOp:
          case TernaryExpr.Opcode.PrefixNeqOp:
            return VarOccursInArgumentToRecursiveFunction(e.E0, n, true) ||
              VarOccursInArgumentToRecursiveFunction(e.E1, n, subExprIsProminent) ||
              VarOccursInArgumentToRecursiveFunction(e.E2, n, subExprIsProminent);
          default:
            Contract.Assert(false); throw new cce.UnreachableException();  // unexpected ternary expression
        }
      } else if (expr is DatatypeValue) {
        var e = (DatatypeValue)expr;
        var q = n.Type.IsDatatype ? exprIsProminent : subExprIsProminent;  // prominent status continues, if we're looking for a variable whose type is a datatype
        return e.Arguments.Exists(exp => VarOccursInArgumentToRecursiveFunction(exp, n, q));
      } else if (expr is UnaryExpr) {
        var e = (UnaryExpr)expr;
        // both Not and SeqLength preserve prominence
        return VarOccursInArgumentToRecursiveFunction(e.E, n, exprIsProminent);
      } else if (expr is BinaryExpr) {
        var e = (BinaryExpr)expr;
        bool q;
        switch (e.ResolvedOp) {
          case BinaryExpr.ResolvedOpcode.Add:
          case BinaryExpr.ResolvedOpcode.Sub:
          case BinaryExpr.ResolvedOpcode.Mul:
          case BinaryExpr.ResolvedOpcode.Div:
          case BinaryExpr.ResolvedOpcode.Mod:
          case BinaryExpr.ResolvedOpcode.Union:
          case BinaryExpr.ResolvedOpcode.Intersection:
          case BinaryExpr.ResolvedOpcode.SetDifference:
          case BinaryExpr.ResolvedOpcode.Concat:
            // these operators preserve prominence
            q = exprIsProminent;
            break;
          default:
            // whereas all other binary operators do not
            q = subExprIsProminent;
            break;
        }
        return VarOccursInArgumentToRecursiveFunction(e.E0, n, q) ||
          VarOccursInArgumentToRecursiveFunction(e.E1, n, q);
      } else if (expr is StmtExpr) {
        var e = (StmtExpr)expr;
        // ignore the statement
        return VarOccursInArgumentToRecursiveFunction(e.E, n);

      } else if (expr is ITEExpr) {
        var e = (ITEExpr)expr;
        return VarOccursInArgumentToRecursiveFunction(e.Test, n, subExprIsProminent) ||  // test is not "prominent"
          VarOccursInArgumentToRecursiveFunction(e.Thn, n, exprIsProminent) ||  // but the two branches are
          VarOccursInArgumentToRecursiveFunction(e.Els, n, exprIsProminent);
      } else if (expr is OldExpr ||
                 expr is ConcreteSyntaxExpression ||
                 expr is BoxingCastExpr ||
                 expr is UnboxingCastExpr) {
        foreach (var exp in expr.SubExpressions) {
          if (VarOccursInArgumentToRecursiveFunction(exp, n, exprIsProminent)) {  // maintain prominence
            return true;
          }
        }
        return false;
      } else {
        // in all other cases, reset the prominence status and recurse on the subexpressions
        foreach (var exp in expr.SubExpressions) {
          if (VarOccursInArgumentToRecursiveFunction(exp, n, subExprIsProminent)) {
            return true;
          }
        }
        return false;
      }
    }
  }
}