summaryrefslogtreecommitdiff
path: root/theories/NArith/Ndigits.v
blob: ed8ced5bb602532e60cc12759ab996943f40911b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(*i $Id: Ndigits.v 8736 2006-04-26 21:18:44Z letouzey $ i*)

Require Import Bool.
Require Import Bvector.
Require Import BinPos.
Require Import BinNat.

(** Operation over bits of a [N] number. *)

(** [xor] *)

Fixpoint Pxor (p1 p2:positive) {struct p1} : N :=
  match p1, p2 with
  | xH, xH => N0
  | xH, xO p2 => Npos (xI p2)
  | xH, xI p2 => Npos (xO p2)
  | xO p1, xH => Npos (xI p1)
  | xO p1, xO p2 => Ndouble (Pxor p1 p2)
  | xO p1, xI p2 => Ndouble_plus_one (Pxor p1 p2)
  | xI p1, xH => Npos (xO p1)
  | xI p1, xO p2 => Ndouble_plus_one (Pxor p1 p2)
  | xI p1, xI p2 => Ndouble (Pxor p1 p2) 
  end.

Definition Nxor (n n':N) :=
  match n, n' with
  | N0, _ => n'
  | _, N0 => n
  | Npos p, Npos p' => Pxor p p'
  end.

Lemma Nxor_neutral_left : forall n:N, Nxor N0 n = n.
Proof.
  trivial.
Qed.

Lemma Nxor_neutral_right : forall n:N, Nxor n N0 = n.
Proof.
  destruct n; trivial.
Qed.

Lemma Nxor_comm : forall n n':N, Nxor n n' = Nxor n' n.
Proof.
  destruct n; destruct n'; simpl; auto.
  generalize p0; clear p0; induction p as [p Hrecp| p Hrecp| ]; simpl;
   auto.
  destruct p0; simpl; trivial; intros; rewrite Hrecp; trivial.
  destruct p0; simpl; trivial; intros; rewrite Hrecp; trivial.
  destruct p0 as [p| p| ]; simpl; auto.
Qed.

Lemma Nxor_nilpotent : forall n:N, Nxor n n = N0.
Proof.
  destruct n; trivial.
  simpl. induction p as [p IHp| p IHp| ]; trivial.
  simpl. rewrite IHp; reflexivity.
  simpl. rewrite IHp; reflexivity.
Qed.

(** Checking whether a particular bit is set on not *) 

Fixpoint Pbit (p:positive) : nat -> bool :=
  match p with
  | xH => fun n:nat => match n with
                       | O => true
                       | S _ => false
                       end
  | xO p =>
      fun n:nat => match n with
                   | O => false
                   | S n' => Pbit p n'
                   end
  | xI p => fun n:nat => match n with
                         | O => true
                         | S n' => Pbit p n'
                         end
  end.

Definition Nbit (a:N) :=
  match a with
  | N0 => fun _ => false
  | Npos p => Pbit p
  end.

(** Auxiliary results about streams of bits *)

Definition eqf (f g:nat -> bool) := forall n:nat, f n = g n.

Lemma eqf_sym : forall f f':nat -> bool, eqf f f' -> eqf f' f.
Proof.
  unfold eqf. intros. rewrite H. reflexivity.
Qed.

Lemma eqf_refl : forall f:nat -> bool, eqf f f.
Proof.
  unfold eqf. trivial.
Qed.

Lemma eqf_trans :
 forall f f' f'':nat -> bool, eqf f f' -> eqf f' f'' -> eqf f f''.
Proof.
  unfold eqf. intros. rewrite H. exact (H0 n).
Qed.

Definition xorf (f g:nat -> bool) (n:nat) := xorb (f n) (g n).

Lemma xorf_eq :
 forall f f', eqf (xorf f f') (fun n => false) -> eqf f f'.
Proof.
  unfold eqf, xorf. intros. apply xorb_eq. apply H.
Qed.

Lemma xorf_assoc :
 forall f f' f'',
   eqf (xorf (xorf f f') f'') (xorf f (xorf f' f'')).
Proof.
  unfold eqf, xorf. intros. apply xorb_assoc.
Qed.

Lemma eqf_xorf :
 forall f f' f'' f''',
   eqf f f' -> eqf f'' f''' -> eqf (xorf f f'') (xorf f' f''').
Proof.
  unfold eqf, xorf. intros. rewrite H. rewrite H0. reflexivity.
Qed.

(** End of auxilliary results *)

(** This part is aimed at proving that if two numbers produce 
  the same stream of bits, then they are equal. *)

Lemma Nbit_faithful_1 : forall a:N, eqf (Nbit N0) (Nbit a) -> N0 = a.
Proof.
  destruct a. trivial.
  induction p as [p IHp| p IHp| ]; intro H. 
  absurd (N0 = Npos p). discriminate.
  exact (IHp (fun n => H (S n))).
  absurd (N0 = Npos p). discriminate.
  exact (IHp (fun n => H (S n))).
  absurd (false = true). discriminate.
  exact (H 0).
Qed.

Lemma Nbit_faithful_2 :
 forall a:N, eqf (Nbit (Npos 1)) (Nbit a) -> Npos 1 = a.
Proof.
  destruct a. intros. absurd (true = false). discriminate.
  exact (H 0).
  destruct p. intro H. absurd (N0 = Npos p). discriminate.
  exact (Nbit_faithful_1 (Npos p) (fun n:nat => H (S n))).
  intros. absurd (true = false). discriminate.
  exact (H 0).
  trivial.
Qed.

Lemma Nbit_faithful_3 :
 forall (a:N) (p:positive),
   (forall p':positive, eqf (Nbit (Npos p)) (Nbit (Npos p')) -> p = p') ->
   eqf (Nbit (Npos (xO p))) (Nbit a) -> Npos (xO p) = a.
Proof.
  destruct a. intros. cut (eqf (Nbit N0) (Nbit (Npos (xO p)))).
  intro. rewrite (Nbit_faithful_1 (Npos (xO p)) H1). reflexivity.
  unfold eqf. intro. unfold eqf in H0. rewrite H0. reflexivity.
  case p. intros. absurd (false = true). discriminate.
  exact (H0 0).
  intros. rewrite (H p0 (fun n => H0 (S n))). reflexivity.
  intros. absurd (false = true). discriminate.
  exact (H0 0).
Qed.

Lemma Nbit_faithful_4 :
 forall (a:N) (p:positive),
   (forall p':positive, eqf (Nbit (Npos p)) (Nbit (Npos p')) -> p = p') ->
   eqf (Nbit (Npos (xI p))) (Nbit a) -> Npos (xI p) = a.
Proof.
  destruct a. intros. cut (eqf (Nbit N0) (Nbit (Npos (xI p)))).
  intro. rewrite (Nbit_faithful_1 (Npos (xI p)) H1). reflexivity.
  unfold eqf. intro. unfold eqf in H0. rewrite H0. reflexivity.
  case p. intros. rewrite (H p0 (fun n:nat => H0 (S n))). reflexivity.
  intros. absurd (true = false). discriminate.
  exact (H0 0).
  intros. absurd (N0 = Npos p0). discriminate.
  cut (eqf (Nbit (Npos 1)) (Nbit (Npos (xI p0)))).
  intro. exact (Nbit_faithful_1 (Npos p0) (fun n:nat => H1 (S n))).
  unfold eqf in *. intro. rewrite H0. reflexivity.
Qed.

Lemma Nbit_faithful : forall a a':N, eqf (Nbit a) (Nbit a') -> a = a'.
Proof.
  destruct a. exact Nbit_faithful_1.
  induction p. intros a' H. apply Nbit_faithful_4. intros. cut (Npos p = Npos p').
  intro. inversion H1. reflexivity.
  exact (IHp (Npos p') H0).
  assumption.
  intros. apply Nbit_faithful_3. intros. cut (Npos p = Npos p'). intro. inversion H1. reflexivity.
  exact (IHp (Npos p') H0).
  assumption.
  exact Nbit_faithful_2.
Qed.

(** We now describe the semantics of [Nxor] in terms of bit streams. *)

Lemma Nxor_sem_1 : forall a':N, Nbit (Nxor N0 a') 0 = Nbit a' 0.
Proof.
  trivial.
Qed.

Lemma Nxor_sem_2 :
 forall a':N, Nbit (Nxor (Npos 1) a') 0 = negb (Nbit a' 0).
Proof.
  intro. case a'. trivial.
  simpl. intro. 
  case p; trivial.
Qed.

Lemma Nxor_sem_3 :
 forall (p:positive) (a':N),
   Nbit (Nxor (Npos (xO p)) a') 0 = Nbit a' 0.
Proof.
  intros. case a'. trivial.
  simpl. intro. 
  case p0; trivial. intro. 
  case (Pxor p p1); trivial.
  intro. case (Pxor p p1); trivial.
Qed.

Lemma Nxor_sem_4 :
 forall (p:positive) (a':N),
   Nbit (Nxor (Npos (xI p)) a') 0 = negb (Nbit a' 0).
Proof.
  intros. case a'. trivial.
  simpl. intro. case p0; trivial. intro. 
  case (Pxor p p1); trivial.
  intro. 
  case (Pxor p p1); trivial.
Qed.

Lemma Nxor_sem_5 :
 forall a a':N, Nbit (Nxor a a') 0 = xorf (Nbit a) (Nbit a') 0.
Proof.
  destruct a. intro. change (Nbit a' 0 = xorb false (Nbit a' 0)). rewrite false_xorb. trivial.
  case p. exact Nxor_sem_4.
  intros. change (Nbit (Nxor (Npos (xO p0)) a') 0 = xorb false (Nbit a' 0)).
  rewrite false_xorb. apply Nxor_sem_3. exact Nxor_sem_2.
Qed.

Lemma Nxor_sem_6 :
 forall n:nat,
   (forall a a':N, Nbit (Nxor a a') n = xorf (Nbit a) (Nbit a') n) ->
   forall a a':N,
     Nbit (Nxor a a') (S n) = xorf (Nbit a) (Nbit a') (S n).
Proof.
  intros. 
  generalize (fun p1 p2 => H (Npos p1) (Npos p2)); clear H; intro H.
  unfold xorf in *.
  case a. simpl Nbit; rewrite false_xorb. reflexivity.
  case a'; intros. 
  simpl Nbit; rewrite xorb_false. reflexivity.
  case p0. case p; intros; simpl Nbit in *.
  rewrite <- H; simpl; case (Pxor p2 p1); trivial.
  rewrite <- H; simpl; case (Pxor p2 p1); trivial.
  rewrite xorb_false. reflexivity.
  case p; intros; simpl Nbit in *.
  rewrite <- H; simpl; case (Pxor p2 p1); trivial.
  rewrite <- H; simpl; case (Pxor p2 p1); trivial.
  rewrite xorb_false. reflexivity.
  simpl Nbit. rewrite false_xorb. simpl. case p; trivial.
Qed.

Lemma Nxor_semantics :
 forall a a':N, eqf (Nbit (Nxor a a')) (xorf (Nbit a) (Nbit a')).
Proof.
  unfold eqf. intros. generalize a a'. elim n. exact Nxor_sem_5.
  exact Nxor_sem_6.
Qed.

(** Consequences: 
       - only equal numbers lead to a null xor
       - xor is associative 
*)

Lemma Nxor_eq : forall a a':N, Nxor a a' = N0 -> a = a'.
Proof.
  intros. apply Nbit_faithful. apply xorf_eq. apply eqf_trans with (f' := Nbit (Nxor a a')).
  apply eqf_sym. apply Nxor_semantics.
  rewrite H. unfold eqf. trivial.
Qed.

Lemma Nxor_assoc :
 forall a a' a'':N, Nxor (Nxor a a') a'' = Nxor a (Nxor a' a'').
Proof.
  intros. apply Nbit_faithful.
  apply eqf_trans with
   (f' := xorf (xorf (Nbit a) (Nbit a')) (Nbit a'')).
  apply eqf_trans with (f' := xorf (Nbit (Nxor a a')) (Nbit a'')).
  apply Nxor_semantics.
  apply eqf_xorf. apply Nxor_semantics.
  apply eqf_refl.
  apply eqf_trans with
   (f' := xorf (Nbit a) (xorf (Nbit a') (Nbit a''))).
  apply xorf_assoc.
  apply eqf_trans with (f' := xorf (Nbit a) (Nbit (Nxor a' a''))).
  apply eqf_xorf. apply eqf_refl.
  apply eqf_sym. apply Nxor_semantics.
  apply eqf_sym. apply Nxor_semantics.
Qed.

(** Checking whether a number is odd, i.e. 
   if its lower bit is set. *)

Definition Nbit0 (n:N) :=
  match n with
  | N0 => false
  | Npos (xO _) => false
  | _ => true
  end.

Definition Nodd (n:N) := Nbit0 n = true.
Definition Neven (n:N) := Nbit0 n = false.

Lemma Nbit0_correct : forall n:N, Nbit n 0 = Nbit0 n.
Proof.
  destruct n; trivial.
  destruct p; trivial.
Qed.

Lemma Ndouble_bit0 : forall n:N, Nbit0 (Ndouble n) = false.
Proof.
  destruct n; trivial.
Qed.

Lemma Ndouble_plus_one_bit0 :
 forall n:N, Nbit0 (Ndouble_plus_one n) = true.
Proof.
  destruct n; trivial.
Qed.

Lemma Ndiv2_double :
 forall n:N, Neven n -> Ndouble (Ndiv2 n) = n.
Proof.
  destruct n. trivial. destruct p. intro H. discriminate H.
  intros. reflexivity.
  intro H. discriminate H.
Qed.

Lemma Ndiv2_double_plus_one :
 forall n:N, Nodd n -> Ndouble_plus_one (Ndiv2 n) = n.
Proof.
  destruct n. intro. discriminate H.
  destruct p. intros. reflexivity.
  intro H. discriminate H.
  intro. reflexivity.
Qed.

Lemma Ndiv2_correct :
 forall (a:N) (n:nat), Nbit (Ndiv2 a) n = Nbit a (S n).
Proof.
  destruct a; trivial.
  destruct p; trivial.
Qed.

Lemma Nxor_bit0 :
 forall a a':N, Nbit0 (Nxor a a') = xorb (Nbit0 a) (Nbit0 a').
Proof.
  intros. rewrite <- Nbit0_correct. rewrite (Nxor_semantics a a' 0).
  unfold xorf. rewrite Nbit0_correct. rewrite Nbit0_correct. reflexivity.
Qed.

Lemma Nxor_div2 :
 forall a a':N, Ndiv2 (Nxor a a') = Nxor (Ndiv2 a) (Ndiv2 a').
Proof.
  intros. apply Nbit_faithful. unfold eqf. intro.
  rewrite (Nxor_semantics (Ndiv2 a) (Ndiv2 a') n).
  rewrite Ndiv2_correct.
  rewrite (Nxor_semantics a a' (S n)).
  unfold xorf. rewrite Ndiv2_correct. rewrite Ndiv2_correct.
  reflexivity.
Qed.

Lemma Nneg_bit0 :
 forall a a':N,
   Nbit0 (Nxor a a') = true -> Nbit0 a = negb (Nbit0 a').
Proof.
  intros. rewrite <- true_xorb. rewrite <- H. rewrite Nxor_bit0.
  rewrite xorb_assoc. rewrite xorb_nilpotent. rewrite xorb_false. reflexivity.
Qed.

Lemma Nneg_bit0_1 :
 forall a a':N, Nxor a a' = Npos 1 -> Nbit0 a = negb (Nbit0 a').
Proof.
  intros. apply Nneg_bit0. rewrite H. reflexivity.
Qed.

Lemma Nneg_bit0_2 :
 forall (a a':N) (p:positive),
   Nxor a a' = Npos (xI p) -> Nbit0 a = negb (Nbit0 a').
Proof.
  intros. apply Nneg_bit0. rewrite H. reflexivity.
Qed.

Lemma Nsame_bit0 :
 forall (a a':N) (p:positive),
   Nxor a a' = Npos (xO p) -> Nbit0 a = Nbit0 a'.
Proof.
  intros. rewrite <- (xorb_false (Nbit0 a)). cut (Nbit0 (Npos (xO p)) = false).
  intro. rewrite <- H0. rewrite <- H. rewrite Nxor_bit0. rewrite <- xorb_assoc.
  rewrite xorb_nilpotent. rewrite false_xorb. reflexivity.
  reflexivity.
Qed.

(** a lexicographic order on bits, starting from the lowest bit *)

Fixpoint Nless_aux (a a':N) (p:positive) {struct p} : bool :=
  match p with
  | xO p' => Nless_aux (Ndiv2 a) (Ndiv2 a') p'
  | _ => andb (negb (Nbit0 a)) (Nbit0 a')
  end.

Definition Nless (a a':N) :=
  match Nxor a a' with
  | N0 => false
  | Npos p => Nless_aux a a' p
  end.

Lemma Nbit0_less :
 forall a a',
   Nbit0 a = false -> Nbit0 a' = true -> Nless a a' = true.
Proof.
  intros. elim (Ndiscr (Nxor a a')). intro H1. elim H1. intros p H2. unfold Nless in |- *.
  rewrite H2. generalize H2. elim p. intros. simpl in |- *. rewrite H. rewrite H0. reflexivity.
  intros. cut (Nbit0 (Nxor a a') = false). intro. rewrite (Nxor_bit0 a a') in H5.
  rewrite H in H5. rewrite H0 in H5. discriminate H5.
  rewrite H4. reflexivity.
  intro. simpl in |- *. rewrite H. rewrite H0. reflexivity.
  intro H1. cut (Nbit0 (Nxor a a') = false). intro. rewrite (Nxor_bit0 a a') in H2.
  rewrite H in H2. rewrite H0 in H2. discriminate H2.
  rewrite H1. reflexivity.
Qed.

Lemma Nbit0_gt :
 forall a a',
   Nbit0 a = true -> Nbit0 a' = false -> Nless a a' = false.
Proof.
  intros. elim (Ndiscr (Nxor a a')). intro H1. elim H1. intros p H2. unfold Nless in |- *.
  rewrite H2. generalize H2. elim p. intros. simpl in |- *. rewrite H. rewrite H0. reflexivity.
  intros. cut (Nbit0 (Nxor a a') = false). intro. rewrite (Nxor_bit0 a a') in H5.
  rewrite H in H5. rewrite H0 in H5. discriminate H5.
  rewrite H4. reflexivity.
  intro. simpl in |- *. rewrite H. rewrite H0. reflexivity.
  intro H1. unfold Nless in |- *. rewrite H1. reflexivity.
Qed.

Lemma Nless_not_refl : forall a, Nless a a = false.
Proof.
  intro. unfold Nless in |- *. rewrite (Nxor_nilpotent a). reflexivity.
Qed.

Lemma Nless_def_1 :
 forall a a', Nless (Ndouble a) (Ndouble a') = Nless a a'.
Proof.
  simple induction a. simple induction a'. reflexivity.
  trivial.
  simple induction a'. unfold Nless in |- *. simpl in |- *. elim p; trivial.
  unfold Nless in |- *. simpl in |- *. intro. case (Pxor p p0). reflexivity.
  trivial.
Qed.

Lemma Nless_def_2 :
 forall a a',
   Nless (Ndouble_plus_one a) (Ndouble_plus_one a') = Nless a a'.
Proof.
  simple induction a. simple induction a'. reflexivity.
  trivial.
  simple induction a'. unfold Nless in |- *. simpl in |- *. elim p; trivial.
  unfold Nless in |- *. simpl in |- *. intro. case (Pxor p p0). reflexivity.
  trivial.
Qed.

Lemma Nless_def_3 :
 forall a a', Nless (Ndouble a) (Ndouble_plus_one a') = true.
Proof.
  intros. apply Nbit0_less. apply Ndouble_bit0.
  apply Ndouble_plus_one_bit0.
Qed.

Lemma Nless_def_4 :
 forall a a', Nless (Ndouble_plus_one a) (Ndouble a') = false.
Proof.
  intros. apply Nbit0_gt. apply Ndouble_plus_one_bit0.
  apply Ndouble_bit0.
Qed.

Lemma Nless_z : forall a, Nless a N0 = false.
Proof.
  simple induction a. reflexivity.
  unfold Nless in |- *. intro. rewrite (Nxor_neutral_right (Npos p)). elim p; trivial.
Qed.

Lemma N0_less_1 :
 forall a, Nless N0 a = true -> {p : positive | a = Npos p}.
Proof.
  simple induction a. intro. discriminate H.
  intros. split with p. reflexivity.
Qed.

Lemma N0_less_2 : forall a, Nless N0 a = false -> a = N0.
Proof.
  simple induction a. trivial.
  unfold Nless in |- *. simpl in |- *. 
  cut (forall p:positive, Nless_aux N0 (Npos p) p = false -> False).
  intros. elim (H p H0).
  simple induction p. intros. discriminate H0.
  intros. exact (H H0).
  intro. discriminate H.
Qed.

Lemma Nless_trans :
 forall a a' a'',
   Nless a a' = true -> Nless a' a'' = true -> Nless a a'' = true.
Proof.
  intro a. pattern a; apply N_ind_double.
  intros. case_eq (Nless N0 a''). trivial.
  intro H1. rewrite (N0_less_2 a'' H1) in H0. rewrite (Nless_z a') in H0. discriminate H0.
  intros a0 H a'. pattern a'; apply N_ind_double.
  intros. rewrite (Nless_z (Ndouble a0)) in H0. discriminate H0.
  intros a1 H0 a'' H1. rewrite (Nless_def_1 a0 a1) in H1.
  pattern a''; apply N_ind_double; clear a''.
  intro. rewrite (Nless_z (Ndouble a1)) in H2. discriminate H2.
  intros. rewrite (Nless_def_1 a1 a2) in H3. rewrite (Nless_def_1 a0 a2).
  exact (H a1 a2 H1 H3).
  intros. apply Nless_def_3.
  intros a1 H0 a'' H1. pattern a''; apply N_ind_double.
  intro. rewrite (Nless_z (Ndouble_plus_one a1)) in H2. discriminate H2.
  intros. rewrite (Nless_def_4 a1 a2) in H3. discriminate H3.
  intros. apply Nless_def_3.
  intros a0 H a'. pattern a'; apply N_ind_double.
  intros. rewrite (Nless_z (Ndouble_plus_one a0)) in H0. discriminate H0.
  intros. rewrite (Nless_def_4 a0 a1) in H1. discriminate H1.
  intros a1 H0 a'' H1. pattern a''; apply N_ind_double.
  intro. rewrite (Nless_z (Ndouble_plus_one a1)) in H2. discriminate H2.
  intros. rewrite (Nless_def_4 a1 a2) in H3. discriminate H3.
  rewrite (Nless_def_2 a0 a1) in H1. intros. rewrite (Nless_def_2 a1 a2) in H3.
  rewrite (Nless_def_2 a0 a2). exact (H a1 a2 H1 H3).
Qed.
 
Lemma Nless_total :
 forall a a', {Nless a a' = true} + {Nless a' a = true} + {a = a'}.
Proof.
  intro a. 
  pattern a; apply N_rec_double; clear a.
  intro. case_eq (Nless N0 a'). intro H. left. left. auto.
  intro H. right. rewrite (N0_less_2 a' H). reflexivity.
  intros a0 H a'. 
  pattern a'; apply N_rec_double; clear a'.
  case_eq (Nless N0 (Ndouble a0)). intro H0. left. right. auto.
  intro H0. right. exact (N0_less_2 _ H0).
  intros a1 H0. rewrite Nless_def_1. rewrite Nless_def_1. elim (H a1). intro H1.
  left. assumption.
  intro H1. right. rewrite H1. reflexivity.
  intros a1 H0. left. left. apply Nless_def_3.
  intros a0 H a'. 
  pattern a'; apply N_rec_double; clear a'.
  left. right. case a0; reflexivity.
  intros a1 H0. left. right. apply Nless_def_3.
  intros a1 H0. rewrite Nless_def_2. rewrite Nless_def_2. elim (H a1). intro H1.
  left. assumption.
  intro H1. right. rewrite H1. reflexivity.
Qed.

(** Number of digits in a number *)

Fixpoint Psize (p:positive) : nat := 
  match p with 
    | xH => 1%nat
    | xI p => S (Psize p) 
    | xO p => S (Psize p)
  end.

Definition Nsize (n:N) : nat := match n with 
  | N0 => 0%nat
  | Npos p => Psize p
 end.


(** conversions between N and bit vectors. *)

Fixpoint P2Bv (p:positive) : Bvector (Psize p) := 
 match p return Bvector (Psize p) with 
   | xH => Bvect_true 1%nat
   | xO p => Bcons false (Psize p) (P2Bv p)
   | xI p => Bcons true (Psize p) (P2Bv p)
 end.

Definition N2Bv (n:N) : Bvector (Nsize n) :=
  match n as n0 return Bvector (Nsize n0) with 
    | N0 => Bnil
    | Npos p => P2Bv p
  end.

Fixpoint Bv2N (n:nat)(bv:Bvector n) {struct bv} : N := 
  match bv with 
    | Vnil => N0
    | Vcons false n bv => Ndouble (Bv2N n bv)
    | Vcons true n bv => Ndouble_plus_one (Bv2N n bv) 
  end.

Lemma Bv2N_N2Bv : forall n, Bv2N _ (N2Bv n) = n.
Proof. 
destruct n.
simpl; auto.
induction p; simpl in *; auto; rewrite IHp; simpl; auto.
Qed.

(** The opposite composition is not so simple: if the considered 
  bit vector has some zeros on its right, they will disappear during 
  the return [Bv2N] translation: *)

Lemma Bv2N_Nsize : forall n (bv:Bvector n), Nsize (Bv2N n bv) <= n.
Proof.
induction n; intros.
rewrite (V0_eq _ bv); simpl; auto.
rewrite (VSn_eq _ _ bv); simpl.
generalize (IHn (Vtail _ _ bv)); clear IHn.
destruct (Vhead _ _ bv); 
 destruct (Bv2N n (Vtail bool n bv)); 
  simpl; auto with arith.
Qed.

(** In the previous lemma, we can only replace the inequality by
  an equality whenever the highest bit is non-null. *)

Lemma Bv2N_Nsize_1 : forall n (bv:Bvector (S n)), 
  Bsign _ bv = true <-> 
  Nsize (Bv2N _ bv) = (S n).
Proof.
induction n; intro.
rewrite (VSn_eq _ _ bv); simpl.
rewrite (V0_eq _ (Vtail _ _ bv)); simpl.
destruct (Vhead _ _ bv); simpl; intuition; try discriminate.
rewrite (VSn_eq _ _ bv); simpl.
generalize (IHn (Vtail _ _ bv)); clear IHn.
destruct (Vhead _ _ bv); 
 destruct (Bv2N (S n) (Vtail bool (S n) bv)); 
  simpl; intuition; try discriminate.
Qed.

(** To state nonetheless a second result about composition of 
 conversions, we define a conversion on a given number of bits : *) 

Fixpoint N2Bv_gen (n:nat)(a:N) { struct n } : Bvector n := 
 match n return Bvector n with 
   | 0 => Bnil
   | S n => match a with 
       | N0 => Bvect_false (S n)
       | Npos xH => Bcons true _ (Bvect_false n)
       | Npos (xO p) => Bcons false _ (N2Bv_gen n (Npos p))
       | Npos (xI p) => Bcons true _ (N2Bv_gen n (Npos p))
      end
  end.

(** The first [N2Bv] is then a special case of [N2Bv_gen] *)

Lemma N2Bv_N2Bv_gen : forall (a:N), N2Bv a = N2Bv_gen (Nsize a) a.
Proof.
destruct a; simpl.
auto.
induction p; simpl; intros; auto; congruence.
Qed.

(** In fact, if [k] is large enough, [N2Bv_gen k a] contains all digits of 
   [a] plus some zeros. *)

Lemma N2Bv_N2Bv_gen_above : forall (a:N)(k:nat), 
 N2Bv_gen (Nsize a + k) a = Vextend _ _ _ (N2Bv a) (Bvect_false k).
Proof.
destruct a; simpl.
destruct k; simpl; auto.
induction p; simpl; intros;unfold Bcons; f_equal; auto.
Qed.

(** Here comes now the second composition result. *)

Lemma N2Bv_Bv2N : forall n (bv:Bvector n), 
   N2Bv_gen n (Bv2N n bv) = bv.
Proof.
induction n; intros.
rewrite (V0_eq _ bv); simpl; auto.
rewrite (VSn_eq _ _ bv); simpl.
generalize (IHn (Vtail _ _ bv)); clear IHn.
unfold Bcons.
destruct (Bv2N _ (Vtail _ _ bv)); 
 destruct (Vhead _ _ bv); intro H; rewrite <- H; simpl; trivial; 
  induction n; simpl; auto.
Qed.

(** accessing some precise bits. *)

Lemma Nbit0_Blow : forall n, forall (bv:Bvector (S n)), 
  Nbit0 (Bv2N _ bv) = Blow _ bv.
Proof.
intros.
unfold Blow.
pattern bv at 1; rewrite (VSn_eq _ _ bv).
simpl.
destruct (Bv2N n (Vtail bool n bv)); simpl; 
 destruct (Vhead bool n bv); auto.
Qed.

Definition Bnth (n:nat)(bv:Bvector n)(p:nat) : p<n -> bool.
Proof.
 induction 1.
 intros.
 elimtype False; inversion H.
 intros.
 destruct p.
 exact a.
 apply (IHbv p); auto with arith.
Defined.

Lemma Bnth_Nbit : forall n (bv:Bvector n) p (H:p<n), 
  Bnth _ bv p H = Nbit (Bv2N _ bv) p.
Proof.
induction bv; intros.
inversion H.
destruct p; simpl; destruct (Bv2N n bv); destruct a; simpl in *; auto.
Qed.

Lemma Nbit_Nsize : forall n p, Nsize n <= p -> Nbit n p = false.
Proof.
destruct n as [|n].
simpl; auto.
induction n; simpl in *; intros; destruct p; auto with arith.
inversion H.
inversion H.
Qed.

Lemma Nbit_Bth: forall n p (H:p < Nsize n), Nbit n p = Bnth _ (N2Bv n) p H.
Proof.
destruct n as [|n].
inversion H.
induction n; simpl in *; intros; destruct p; auto with arith.
inversion H; inversion H1.
Qed.

(** Xor is the same in the two worlds. *)

Lemma Nxor_BVxor : forall n (bv bv' : Bvector n), 
  Bv2N _ (BVxor _ bv bv') = Nxor (Bv2N _ bv) (Bv2N _ bv').
Proof.
induction n.
intros.
rewrite (V0_eq _ bv); rewrite (V0_eq _ bv'); simpl; auto.
intros.
rewrite (VSn_eq _ _ bv); rewrite (VSn_eq _ _ bv'); simpl; auto.
rewrite IHn.
destruct (Vhead bool n bv); destruct (Vhead bool n bv'); 
 destruct (Bv2N n (Vtail bool n bv)); destruct (Bv2N n (Vtail bool n bv')); simpl; auto.
Qed.