(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* N0 | xH, xO p2 => Npos (xI p2) | xH, xI p2 => Npos (xO p2) | xO p1, xH => Npos (xI p1) | xO p1, xO p2 => Ndouble (Pxor p1 p2) | xO p1, xI p2 => Ndouble_plus_one (Pxor p1 p2) | xI p1, xH => Npos (xO p1) | xI p1, xO p2 => Ndouble_plus_one (Pxor p1 p2) | xI p1, xI p2 => Ndouble (Pxor p1 p2) end. Definition Nxor (n n':N) := match n, n' with | N0, _ => n' | _, N0 => n | Npos p, Npos p' => Pxor p p' end. Lemma Nxor_neutral_left : forall n:N, Nxor N0 n = n. Proof. trivial. Qed. Lemma Nxor_neutral_right : forall n:N, Nxor n N0 = n. Proof. destruct n; trivial. Qed. Lemma Nxor_comm : forall n n':N, Nxor n n' = Nxor n' n. Proof. destruct n; destruct n'; simpl; auto. generalize p0; clear p0; induction p as [p Hrecp| p Hrecp| ]; simpl; auto. destruct p0; simpl; trivial; intros; rewrite Hrecp; trivial. destruct p0; simpl; trivial; intros; rewrite Hrecp; trivial. destruct p0 as [p| p| ]; simpl; auto. Qed. Lemma Nxor_nilpotent : forall n:N, Nxor n n = N0. Proof. destruct n; trivial. simpl. induction p as [p IHp| p IHp| ]; trivial. simpl. rewrite IHp; reflexivity. simpl. rewrite IHp; reflexivity. Qed. (** Checking whether a particular bit is set on not *) Fixpoint Pbit (p:positive) : nat -> bool := match p with | xH => fun n:nat => match n with | O => true | S _ => false end | xO p => fun n:nat => match n with | O => false | S n' => Pbit p n' end | xI p => fun n:nat => match n with | O => true | S n' => Pbit p n' end end. Definition Nbit (a:N) := match a with | N0 => fun _ => false | Npos p => Pbit p end. (** Auxiliary results about streams of bits *) Definition eqf (f g:nat -> bool) := forall n:nat, f n = g n. Lemma eqf_sym : forall f f':nat -> bool, eqf f f' -> eqf f' f. Proof. unfold eqf. intros. rewrite H. reflexivity. Qed. Lemma eqf_refl : forall f:nat -> bool, eqf f f. Proof. unfold eqf. trivial. Qed. Lemma eqf_trans : forall f f' f'':nat -> bool, eqf f f' -> eqf f' f'' -> eqf f f''. Proof. unfold eqf. intros. rewrite H. exact (H0 n). Qed. Definition xorf (f g:nat -> bool) (n:nat) := xorb (f n) (g n). Lemma xorf_eq : forall f f', eqf (xorf f f') (fun n => false) -> eqf f f'. Proof. unfold eqf, xorf. intros. apply xorb_eq. apply H. Qed. Lemma xorf_assoc : forall f f' f'', eqf (xorf (xorf f f') f'') (xorf f (xorf f' f'')). Proof. unfold eqf, xorf. intros. apply xorb_assoc. Qed. Lemma eqf_xorf : forall f f' f'' f''', eqf f f' -> eqf f'' f''' -> eqf (xorf f f'') (xorf f' f'''). Proof. unfold eqf, xorf. intros. rewrite H. rewrite H0. reflexivity. Qed. (** End of auxilliary results *) (** This part is aimed at proving that if two numbers produce the same stream of bits, then they are equal. *) Lemma Nbit_faithful_1 : forall a:N, eqf (Nbit N0) (Nbit a) -> N0 = a. Proof. destruct a. trivial. induction p as [p IHp| p IHp| ]; intro H. absurd (N0 = Npos p). discriminate. exact (IHp (fun n => H (S n))). absurd (N0 = Npos p). discriminate. exact (IHp (fun n => H (S n))). absurd (false = true). discriminate. exact (H 0). Qed. Lemma Nbit_faithful_2 : forall a:N, eqf (Nbit (Npos 1)) (Nbit a) -> Npos 1 = a. Proof. destruct a. intros. absurd (true = false). discriminate. exact (H 0). destruct p. intro H. absurd (N0 = Npos p). discriminate. exact (Nbit_faithful_1 (Npos p) (fun n:nat => H (S n))). intros. absurd (true = false). discriminate. exact (H 0). trivial. Qed. Lemma Nbit_faithful_3 : forall (a:N) (p:positive), (forall p':positive, eqf (Nbit (Npos p)) (Nbit (Npos p')) -> p = p') -> eqf (Nbit (Npos (xO p))) (Nbit a) -> Npos (xO p) = a. Proof. destruct a. intros. cut (eqf (Nbit N0) (Nbit (Npos (xO p)))). intro. rewrite (Nbit_faithful_1 (Npos (xO p)) H1). reflexivity. unfold eqf. intro. unfold eqf in H0. rewrite H0. reflexivity. case p. intros. absurd (false = true). discriminate. exact (H0 0). intros. rewrite (H p0 (fun n => H0 (S n))). reflexivity. intros. absurd (false = true). discriminate. exact (H0 0). Qed. Lemma Nbit_faithful_4 : forall (a:N) (p:positive), (forall p':positive, eqf (Nbit (Npos p)) (Nbit (Npos p')) -> p = p') -> eqf (Nbit (Npos (xI p))) (Nbit a) -> Npos (xI p) = a. Proof. destruct a. intros. cut (eqf (Nbit N0) (Nbit (Npos (xI p)))). intro. rewrite (Nbit_faithful_1 (Npos (xI p)) H1). reflexivity. unfold eqf. intro. unfold eqf in H0. rewrite H0. reflexivity. case p. intros. rewrite (H p0 (fun n:nat => H0 (S n))). reflexivity. intros. absurd (true = false). discriminate. exact (H0 0). intros. absurd (N0 = Npos p0). discriminate. cut (eqf (Nbit (Npos 1)) (Nbit (Npos (xI p0)))). intro. exact (Nbit_faithful_1 (Npos p0) (fun n:nat => H1 (S n))). unfold eqf in *. intro. rewrite H0. reflexivity. Qed. Lemma Nbit_faithful : forall a a':N, eqf (Nbit a) (Nbit a') -> a = a'. Proof. destruct a. exact Nbit_faithful_1. induction p. intros a' H. apply Nbit_faithful_4. intros. cut (Npos p = Npos p'). intro. inversion H1. reflexivity. exact (IHp (Npos p') H0). assumption. intros. apply Nbit_faithful_3. intros. cut (Npos p = Npos p'). intro. inversion H1. reflexivity. exact (IHp (Npos p') H0). assumption. exact Nbit_faithful_2. Qed. (** We now describe the semantics of [Nxor] in terms of bit streams. *) Lemma Nxor_sem_1 : forall a':N, Nbit (Nxor N0 a') 0 = Nbit a' 0. Proof. trivial. Qed. Lemma Nxor_sem_2 : forall a':N, Nbit (Nxor (Npos 1) a') 0 = negb (Nbit a' 0). Proof. intro. case a'. trivial. simpl. intro. case p; trivial. Qed. Lemma Nxor_sem_3 : forall (p:positive) (a':N), Nbit (Nxor (Npos (xO p)) a') 0 = Nbit a' 0. Proof. intros. case a'. trivial. simpl. intro. case p0; trivial. intro. case (Pxor p p1); trivial. intro. case (Pxor p p1); trivial. Qed. Lemma Nxor_sem_4 : forall (p:positive) (a':N), Nbit (Nxor (Npos (xI p)) a') 0 = negb (Nbit a' 0). Proof. intros. case a'. trivial. simpl. intro. case p0; trivial. intro. case (Pxor p p1); trivial. intro. case (Pxor p p1); trivial. Qed. Lemma Nxor_sem_5 : forall a a':N, Nbit (Nxor a a') 0 = xorf (Nbit a) (Nbit a') 0. Proof. destruct a. intro. change (Nbit a' 0 = xorb false (Nbit a' 0)). rewrite false_xorb. trivial. case p. exact Nxor_sem_4. intros. change (Nbit (Nxor (Npos (xO p0)) a') 0 = xorb false (Nbit a' 0)). rewrite false_xorb. apply Nxor_sem_3. exact Nxor_sem_2. Qed. Lemma Nxor_sem_6 : forall n:nat, (forall a a':N, Nbit (Nxor a a') n = xorf (Nbit a) (Nbit a') n) -> forall a a':N, Nbit (Nxor a a') (S n) = xorf (Nbit a) (Nbit a') (S n). Proof. intros. generalize (fun p1 p2 => H (Npos p1) (Npos p2)); clear H; intro H. unfold xorf in *. case a. simpl Nbit; rewrite false_xorb. reflexivity. case a'; intros. simpl Nbit; rewrite xorb_false. reflexivity. case p0. case p; intros; simpl Nbit in *. rewrite <- H; simpl; case (Pxor p2 p1); trivial. rewrite <- H; simpl; case (Pxor p2 p1); trivial. rewrite xorb_false. reflexivity. case p; intros; simpl Nbit in *. rewrite <- H; simpl; case (Pxor p2 p1); trivial. rewrite <- H; simpl; case (Pxor p2 p1); trivial. rewrite xorb_false. reflexivity. simpl Nbit. rewrite false_xorb. simpl. case p; trivial. Qed. Lemma Nxor_semantics : forall a a':N, eqf (Nbit (Nxor a a')) (xorf (Nbit a) (Nbit a')). Proof. unfold eqf. intros. generalize a a'. elim n. exact Nxor_sem_5. exact Nxor_sem_6. Qed. (** Consequences: - only equal numbers lead to a null xor - xor is associative *) Lemma Nxor_eq : forall a a':N, Nxor a a' = N0 -> a = a'. Proof. intros. apply Nbit_faithful. apply xorf_eq. apply eqf_trans with (f' := Nbit (Nxor a a')). apply eqf_sym. apply Nxor_semantics. rewrite H. unfold eqf. trivial. Qed. Lemma Nxor_assoc : forall a a' a'':N, Nxor (Nxor a a') a'' = Nxor a (Nxor a' a''). Proof. intros. apply Nbit_faithful. apply eqf_trans with (f' := xorf (xorf (Nbit a) (Nbit a')) (Nbit a'')). apply eqf_trans with (f' := xorf (Nbit (Nxor a a')) (Nbit a'')). apply Nxor_semantics. apply eqf_xorf. apply Nxor_semantics. apply eqf_refl. apply eqf_trans with (f' := xorf (Nbit a) (xorf (Nbit a') (Nbit a''))). apply xorf_assoc. apply eqf_trans with (f' := xorf (Nbit a) (Nbit (Nxor a' a''))). apply eqf_xorf. apply eqf_refl. apply eqf_sym. apply Nxor_semantics. apply eqf_sym. apply Nxor_semantics. Qed. (** Checking whether a number is odd, i.e. if its lower bit is set. *) Definition Nbit0 (n:N) := match n with | N0 => false | Npos (xO _) => false | _ => true end. Definition Nodd (n:N) := Nbit0 n = true. Definition Neven (n:N) := Nbit0 n = false. Lemma Nbit0_correct : forall n:N, Nbit n 0 = Nbit0 n. Proof. destruct n; trivial. destruct p; trivial. Qed. Lemma Ndouble_bit0 : forall n:N, Nbit0 (Ndouble n) = false. Proof. destruct n; trivial. Qed. Lemma Ndouble_plus_one_bit0 : forall n:N, Nbit0 (Ndouble_plus_one n) = true. Proof. destruct n; trivial. Qed. Lemma Ndiv2_double : forall n:N, Neven n -> Ndouble (Ndiv2 n) = n. Proof. destruct n. trivial. destruct p. intro H. discriminate H. intros. reflexivity. intro H. discriminate H. Qed. Lemma Ndiv2_double_plus_one : forall n:N, Nodd n -> Ndouble_plus_one (Ndiv2 n) = n. Proof. destruct n. intro. discriminate H. destruct p. intros. reflexivity. intro H. discriminate H. intro. reflexivity. Qed. Lemma Ndiv2_correct : forall (a:N) (n:nat), Nbit (Ndiv2 a) n = Nbit a (S n). Proof. destruct a; trivial. destruct p; trivial. Qed. Lemma Nxor_bit0 : forall a a':N, Nbit0 (Nxor a a') = xorb (Nbit0 a) (Nbit0 a'). Proof. intros. rewrite <- Nbit0_correct. rewrite (Nxor_semantics a a' 0). unfold xorf. rewrite Nbit0_correct. rewrite Nbit0_correct. reflexivity. Qed. Lemma Nxor_div2 : forall a a':N, Ndiv2 (Nxor a a') = Nxor (Ndiv2 a) (Ndiv2 a'). Proof. intros. apply Nbit_faithful. unfold eqf. intro. rewrite (Nxor_semantics (Ndiv2 a) (Ndiv2 a') n). rewrite Ndiv2_correct. rewrite (Nxor_semantics a a' (S n)). unfold xorf. rewrite Ndiv2_correct. rewrite Ndiv2_correct. reflexivity. Qed. Lemma Nneg_bit0 : forall a a':N, Nbit0 (Nxor a a') = true -> Nbit0 a = negb (Nbit0 a'). Proof. intros. rewrite <- true_xorb. rewrite <- H. rewrite Nxor_bit0. rewrite xorb_assoc. rewrite xorb_nilpotent. rewrite xorb_false. reflexivity. Qed. Lemma Nneg_bit0_1 : forall a a':N, Nxor a a' = Npos 1 -> Nbit0 a = negb (Nbit0 a'). Proof. intros. apply Nneg_bit0. rewrite H. reflexivity. Qed. Lemma Nneg_bit0_2 : forall (a a':N) (p:positive), Nxor a a' = Npos (xI p) -> Nbit0 a = negb (Nbit0 a'). Proof. intros. apply Nneg_bit0. rewrite H. reflexivity. Qed. Lemma Nsame_bit0 : forall (a a':N) (p:positive), Nxor a a' = Npos (xO p) -> Nbit0 a = Nbit0 a'. Proof. intros. rewrite <- (xorb_false (Nbit0 a)). cut (Nbit0 (Npos (xO p)) = false). intro. rewrite <- H0. rewrite <- H. rewrite Nxor_bit0. rewrite <- xorb_assoc. rewrite xorb_nilpotent. rewrite false_xorb. reflexivity. reflexivity. Qed. (** a lexicographic order on bits, starting from the lowest bit *) Fixpoint Nless_aux (a a':N) (p:positive) {struct p} : bool := match p with | xO p' => Nless_aux (Ndiv2 a) (Ndiv2 a') p' | _ => andb (negb (Nbit0 a)) (Nbit0 a') end. Definition Nless (a a':N) := match Nxor a a' with | N0 => false | Npos p => Nless_aux a a' p end. Lemma Nbit0_less : forall a a', Nbit0 a = false -> Nbit0 a' = true -> Nless a a' = true. Proof. intros. elim (Ndiscr (Nxor a a')). intro H1. elim H1. intros p H2. unfold Nless in |- *. rewrite H2. generalize H2. elim p. intros. simpl in |- *. rewrite H. rewrite H0. reflexivity. intros. cut (Nbit0 (Nxor a a') = false). intro. rewrite (Nxor_bit0 a a') in H5. rewrite H in H5. rewrite H0 in H5. discriminate H5. rewrite H4. reflexivity. intro. simpl in |- *. rewrite H. rewrite H0. reflexivity. intro H1. cut (Nbit0 (Nxor a a') = false). intro. rewrite (Nxor_bit0 a a') in H2. rewrite H in H2. rewrite H0 in H2. discriminate H2. rewrite H1. reflexivity. Qed. Lemma Nbit0_gt : forall a a', Nbit0 a = true -> Nbit0 a' = false -> Nless a a' = false. Proof. intros. elim (Ndiscr (Nxor a a')). intro H1. elim H1. intros p H2. unfold Nless in |- *. rewrite H2. generalize H2. elim p. intros. simpl in |- *. rewrite H. rewrite H0. reflexivity. intros. cut (Nbit0 (Nxor a a') = false). intro. rewrite (Nxor_bit0 a a') in H5. rewrite H in H5. rewrite H0 in H5. discriminate H5. rewrite H4. reflexivity. intro. simpl in |- *. rewrite H. rewrite H0. reflexivity. intro H1. unfold Nless in |- *. rewrite H1. reflexivity. Qed. Lemma Nless_not_refl : forall a, Nless a a = false. Proof. intro. unfold Nless in |- *. rewrite (Nxor_nilpotent a). reflexivity. Qed. Lemma Nless_def_1 : forall a a', Nless (Ndouble a) (Ndouble a') = Nless a a'. Proof. simple induction a. simple induction a'. reflexivity. trivial. simple induction a'. unfold Nless in |- *. simpl in |- *. elim p; trivial. unfold Nless in |- *. simpl in |- *. intro. case (Pxor p p0). reflexivity. trivial. Qed. Lemma Nless_def_2 : forall a a', Nless (Ndouble_plus_one a) (Ndouble_plus_one a') = Nless a a'. Proof. simple induction a. simple induction a'. reflexivity. trivial. simple induction a'. unfold Nless in |- *. simpl in |- *. elim p; trivial. unfold Nless in |- *. simpl in |- *. intro. case (Pxor p p0). reflexivity. trivial. Qed. Lemma Nless_def_3 : forall a a', Nless (Ndouble a) (Ndouble_plus_one a') = true. Proof. intros. apply Nbit0_less. apply Ndouble_bit0. apply Ndouble_plus_one_bit0. Qed. Lemma Nless_def_4 : forall a a', Nless (Ndouble_plus_one a) (Ndouble a') = false. Proof. intros. apply Nbit0_gt. apply Ndouble_plus_one_bit0. apply Ndouble_bit0. Qed. Lemma Nless_z : forall a, Nless a N0 = false. Proof. simple induction a. reflexivity. unfold Nless in |- *. intro. rewrite (Nxor_neutral_right (Npos p)). elim p; trivial. Qed. Lemma N0_less_1 : forall a, Nless N0 a = true -> {p : positive | a = Npos p}. Proof. simple induction a. intro. discriminate H. intros. split with p. reflexivity. Qed. Lemma N0_less_2 : forall a, Nless N0 a = false -> a = N0. Proof. simple induction a. trivial. unfold Nless in |- *. simpl in |- *. cut (forall p:positive, Nless_aux N0 (Npos p) p = false -> False). intros. elim (H p H0). simple induction p. intros. discriminate H0. intros. exact (H H0). intro. discriminate H. Qed. Lemma Nless_trans : forall a a' a'', Nless a a' = true -> Nless a' a'' = true -> Nless a a'' = true. Proof. intro a. pattern a; apply N_ind_double. intros. case_eq (Nless N0 a''). trivial. intro H1. rewrite (N0_less_2 a'' H1) in H0. rewrite (Nless_z a') in H0. discriminate H0. intros a0 H a'. pattern a'; apply N_ind_double. intros. rewrite (Nless_z (Ndouble a0)) in H0. discriminate H0. intros a1 H0 a'' H1. rewrite (Nless_def_1 a0 a1) in H1. pattern a''; apply N_ind_double; clear a''. intro. rewrite (Nless_z (Ndouble a1)) in H2. discriminate H2. intros. rewrite (Nless_def_1 a1 a2) in H3. rewrite (Nless_def_1 a0 a2). exact (H a1 a2 H1 H3). intros. apply Nless_def_3. intros a1 H0 a'' H1. pattern a''; apply N_ind_double. intro. rewrite (Nless_z (Ndouble_plus_one a1)) in H2. discriminate H2. intros. rewrite (Nless_def_4 a1 a2) in H3. discriminate H3. intros. apply Nless_def_3. intros a0 H a'. pattern a'; apply N_ind_double. intros. rewrite (Nless_z (Ndouble_plus_one a0)) in H0. discriminate H0. intros. rewrite (Nless_def_4 a0 a1) in H1. discriminate H1. intros a1 H0 a'' H1. pattern a''; apply N_ind_double. intro. rewrite (Nless_z (Ndouble_plus_one a1)) in H2. discriminate H2. intros. rewrite (Nless_def_4 a1 a2) in H3. discriminate H3. rewrite (Nless_def_2 a0 a1) in H1. intros. rewrite (Nless_def_2 a1 a2) in H3. rewrite (Nless_def_2 a0 a2). exact (H a1 a2 H1 H3). Qed. Lemma Nless_total : forall a a', {Nless a a' = true} + {Nless a' a = true} + {a = a'}. Proof. intro a. pattern a; apply N_rec_double; clear a. intro. case_eq (Nless N0 a'). intro H. left. left. auto. intro H. right. rewrite (N0_less_2 a' H). reflexivity. intros a0 H a'. pattern a'; apply N_rec_double; clear a'. case_eq (Nless N0 (Ndouble a0)). intro H0. left. right. auto. intro H0. right. exact (N0_less_2 _ H0). intros a1 H0. rewrite Nless_def_1. rewrite Nless_def_1. elim (H a1). intro H1. left. assumption. intro H1. right. rewrite H1. reflexivity. intros a1 H0. left. left. apply Nless_def_3. intros a0 H a'. pattern a'; apply N_rec_double; clear a'. left. right. case a0; reflexivity. intros a1 H0. left. right. apply Nless_def_3. intros a1 H0. rewrite Nless_def_2. rewrite Nless_def_2. elim (H a1). intro H1. left. assumption. intro H1. right. rewrite H1. reflexivity. Qed. (** Number of digits in a number *) Fixpoint Psize (p:positive) : nat := match p with | xH => 1%nat | xI p => S (Psize p) | xO p => S (Psize p) end. Definition Nsize (n:N) : nat := match n with | N0 => 0%nat | Npos p => Psize p end. (** conversions between N and bit vectors. *) Fixpoint P2Bv (p:positive) : Bvector (Psize p) := match p return Bvector (Psize p) with | xH => Bvect_true 1%nat | xO p => Bcons false (Psize p) (P2Bv p) | xI p => Bcons true (Psize p) (P2Bv p) end. Definition N2Bv (n:N) : Bvector (Nsize n) := match n as n0 return Bvector (Nsize n0) with | N0 => Bnil | Npos p => P2Bv p end. Fixpoint Bv2N (n:nat)(bv:Bvector n) {struct bv} : N := match bv with | Vnil => N0 | Vcons false n bv => Ndouble (Bv2N n bv) | Vcons true n bv => Ndouble_plus_one (Bv2N n bv) end. Lemma Bv2N_N2Bv : forall n, Bv2N _ (N2Bv n) = n. Proof. destruct n. simpl; auto. induction p; simpl in *; auto; rewrite IHp; simpl; auto. Qed. (** The opposite composition is not so simple: if the considered bit vector has some zeros on its right, they will disappear during the return [Bv2N] translation: *) Lemma Bv2N_Nsize : forall n (bv:Bvector n), Nsize (Bv2N n bv) <= n. Proof. induction n; intros. rewrite (V0_eq _ bv); simpl; auto. rewrite (VSn_eq _ _ bv); simpl. generalize (IHn (Vtail _ _ bv)); clear IHn. destruct (Vhead _ _ bv); destruct (Bv2N n (Vtail bool n bv)); simpl; auto with arith. Qed. (** In the previous lemma, we can only replace the inequality by an equality whenever the highest bit is non-null. *) Lemma Bv2N_Nsize_1 : forall n (bv:Bvector (S n)), Bsign _ bv = true <-> Nsize (Bv2N _ bv) = (S n). Proof. induction n; intro. rewrite (VSn_eq _ _ bv); simpl. rewrite (V0_eq _ (Vtail _ _ bv)); simpl. destruct (Vhead _ _ bv); simpl; intuition; try discriminate. rewrite (VSn_eq _ _ bv); simpl. generalize (IHn (Vtail _ _ bv)); clear IHn. destruct (Vhead _ _ bv); destruct (Bv2N (S n) (Vtail bool (S n) bv)); simpl; intuition; try discriminate. Qed. (** To state nonetheless a second result about composition of conversions, we define a conversion on a given number of bits : *) Fixpoint N2Bv_gen (n:nat)(a:N) { struct n } : Bvector n := match n return Bvector n with | 0 => Bnil | S n => match a with | N0 => Bvect_false (S n) | Npos xH => Bcons true _ (Bvect_false n) | Npos (xO p) => Bcons false _ (N2Bv_gen n (Npos p)) | Npos (xI p) => Bcons true _ (N2Bv_gen n (Npos p)) end end. (** The first [N2Bv] is then a special case of [N2Bv_gen] *) Lemma N2Bv_N2Bv_gen : forall (a:N), N2Bv a = N2Bv_gen (Nsize a) a. Proof. destruct a; simpl. auto. induction p; simpl; intros; auto; congruence. Qed. (** In fact, if [k] is large enough, [N2Bv_gen k a] contains all digits of [a] plus some zeros. *) Lemma N2Bv_N2Bv_gen_above : forall (a:N)(k:nat), N2Bv_gen (Nsize a + k) a = Vextend _ _ _ (N2Bv a) (Bvect_false k). Proof. destruct a; simpl. destruct k; simpl; auto. induction p; simpl; intros;unfold Bcons; f_equal; auto. Qed. (** Here comes now the second composition result. *) Lemma N2Bv_Bv2N : forall n (bv:Bvector n), N2Bv_gen n (Bv2N n bv) = bv. Proof. induction n; intros. rewrite (V0_eq _ bv); simpl; auto. rewrite (VSn_eq _ _ bv); simpl. generalize (IHn (Vtail _ _ bv)); clear IHn. unfold Bcons. destruct (Bv2N _ (Vtail _ _ bv)); destruct (Vhead _ _ bv); intro H; rewrite <- H; simpl; trivial; induction n; simpl; auto. Qed. (** accessing some precise bits. *) Lemma Nbit0_Blow : forall n, forall (bv:Bvector (S n)), Nbit0 (Bv2N _ bv) = Blow _ bv. Proof. intros. unfold Blow. pattern bv at 1; rewrite (VSn_eq _ _ bv). simpl. destruct (Bv2N n (Vtail bool n bv)); simpl; destruct (Vhead bool n bv); auto. Qed. Definition Bnth (n:nat)(bv:Bvector n)(p:nat) : p bool. Proof. induction 1. intros. elimtype False; inversion H. intros. destruct p. exact a. apply (IHbv p); auto with arith. Defined. Lemma Bnth_Nbit : forall n (bv:Bvector n) p (H:p Nbit n p = false. Proof. destruct n as [|n]. simpl; auto. induction n; simpl in *; intros; destruct p; auto with arith. inversion H. inversion H. Qed. Lemma Nbit_Bth: forall n p (H:p < Nsize n), Nbit n p = Bnth _ (N2Bv n) p H. Proof. destruct n as [|n]. inversion H. induction n; simpl in *; intros; destruct p; auto with arith. inversion H; inversion H1. Qed. (** Xor is the same in the two worlds. *) Lemma Nxor_BVxor : forall n (bv bv' : Bvector n), Bv2N _ (BVxor _ bv bv') = Nxor (Bv2N _ bv) (Bv2N _ bv'). Proof. induction n. intros. rewrite (V0_eq _ bv); rewrite (V0_eq _ bv'); simpl; auto. intros. rewrite (VSn_eq _ _ bv); rewrite (VSn_eq _ _ bv'); simpl; auto. rewrite IHn. destruct (Vhead bool n bv); destruct (Vhead bool n bv'); destruct (Bv2N n (Vtail bool n bv)); destruct (Bv2N n (Vtail bool n bv')); simpl; auto. Qed.