summaryrefslogtreecommitdiff
path: root/theories/NArith/Ndigits.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/NArith/Ndigits.v')
-rw-r--r--theories/NArith/Ndigits.v767
1 files changed, 767 insertions, 0 deletions
diff --git a/theories/NArith/Ndigits.v b/theories/NArith/Ndigits.v
new file mode 100644
index 00000000..ed8ced5b
--- /dev/null
+++ b/theories/NArith/Ndigits.v
@@ -0,0 +1,767 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: Ndigits.v 8736 2006-04-26 21:18:44Z letouzey $ i*)
+
+Require Import Bool.
+Require Import Bvector.
+Require Import BinPos.
+Require Import BinNat.
+
+(** Operation over bits of a [N] number. *)
+
+(** [xor] *)
+
+Fixpoint Pxor (p1 p2:positive) {struct p1} : N :=
+ match p1, p2 with
+ | xH, xH => N0
+ | xH, xO p2 => Npos (xI p2)
+ | xH, xI p2 => Npos (xO p2)
+ | xO p1, xH => Npos (xI p1)
+ | xO p1, xO p2 => Ndouble (Pxor p1 p2)
+ | xO p1, xI p2 => Ndouble_plus_one (Pxor p1 p2)
+ | xI p1, xH => Npos (xO p1)
+ | xI p1, xO p2 => Ndouble_plus_one (Pxor p1 p2)
+ | xI p1, xI p2 => Ndouble (Pxor p1 p2)
+ end.
+
+Definition Nxor (n n':N) :=
+ match n, n' with
+ | N0, _ => n'
+ | _, N0 => n
+ | Npos p, Npos p' => Pxor p p'
+ end.
+
+Lemma Nxor_neutral_left : forall n:N, Nxor N0 n = n.
+Proof.
+ trivial.
+Qed.
+
+Lemma Nxor_neutral_right : forall n:N, Nxor n N0 = n.
+Proof.
+ destruct n; trivial.
+Qed.
+
+Lemma Nxor_comm : forall n n':N, Nxor n n' = Nxor n' n.
+Proof.
+ destruct n; destruct n'; simpl; auto.
+ generalize p0; clear p0; induction p as [p Hrecp| p Hrecp| ]; simpl;
+ auto.
+ destruct p0; simpl; trivial; intros; rewrite Hrecp; trivial.
+ destruct p0; simpl; trivial; intros; rewrite Hrecp; trivial.
+ destruct p0 as [p| p| ]; simpl; auto.
+Qed.
+
+Lemma Nxor_nilpotent : forall n:N, Nxor n n = N0.
+Proof.
+ destruct n; trivial.
+ simpl. induction p as [p IHp| p IHp| ]; trivial.
+ simpl. rewrite IHp; reflexivity.
+ simpl. rewrite IHp; reflexivity.
+Qed.
+
+(** Checking whether a particular bit is set on not *)
+
+Fixpoint Pbit (p:positive) : nat -> bool :=
+ match p with
+ | xH => fun n:nat => match n with
+ | O => true
+ | S _ => false
+ end
+ | xO p =>
+ fun n:nat => match n with
+ | O => false
+ | S n' => Pbit p n'
+ end
+ | xI p => fun n:nat => match n with
+ | O => true
+ | S n' => Pbit p n'
+ end
+ end.
+
+Definition Nbit (a:N) :=
+ match a with
+ | N0 => fun _ => false
+ | Npos p => Pbit p
+ end.
+
+(** Auxiliary results about streams of bits *)
+
+Definition eqf (f g:nat -> bool) := forall n:nat, f n = g n.
+
+Lemma eqf_sym : forall f f':nat -> bool, eqf f f' -> eqf f' f.
+Proof.
+ unfold eqf. intros. rewrite H. reflexivity.
+Qed.
+
+Lemma eqf_refl : forall f:nat -> bool, eqf f f.
+Proof.
+ unfold eqf. trivial.
+Qed.
+
+Lemma eqf_trans :
+ forall f f' f'':nat -> bool, eqf f f' -> eqf f' f'' -> eqf f f''.
+Proof.
+ unfold eqf. intros. rewrite H. exact (H0 n).
+Qed.
+
+Definition xorf (f g:nat -> bool) (n:nat) := xorb (f n) (g n).
+
+Lemma xorf_eq :
+ forall f f', eqf (xorf f f') (fun n => false) -> eqf f f'.
+Proof.
+ unfold eqf, xorf. intros. apply xorb_eq. apply H.
+Qed.
+
+Lemma xorf_assoc :
+ forall f f' f'',
+ eqf (xorf (xorf f f') f'') (xorf f (xorf f' f'')).
+Proof.
+ unfold eqf, xorf. intros. apply xorb_assoc.
+Qed.
+
+Lemma eqf_xorf :
+ forall f f' f'' f''',
+ eqf f f' -> eqf f'' f''' -> eqf (xorf f f'') (xorf f' f''').
+Proof.
+ unfold eqf, xorf. intros. rewrite H. rewrite H0. reflexivity.
+Qed.
+
+(** End of auxilliary results *)
+
+(** This part is aimed at proving that if two numbers produce
+ the same stream of bits, then they are equal. *)
+
+Lemma Nbit_faithful_1 : forall a:N, eqf (Nbit N0) (Nbit a) -> N0 = a.
+Proof.
+ destruct a. trivial.
+ induction p as [p IHp| p IHp| ]; intro H.
+ absurd (N0 = Npos p). discriminate.
+ exact (IHp (fun n => H (S n))).
+ absurd (N0 = Npos p). discriminate.
+ exact (IHp (fun n => H (S n))).
+ absurd (false = true). discriminate.
+ exact (H 0).
+Qed.
+
+Lemma Nbit_faithful_2 :
+ forall a:N, eqf (Nbit (Npos 1)) (Nbit a) -> Npos 1 = a.
+Proof.
+ destruct a. intros. absurd (true = false). discriminate.
+ exact (H 0).
+ destruct p. intro H. absurd (N0 = Npos p). discriminate.
+ exact (Nbit_faithful_1 (Npos p) (fun n:nat => H (S n))).
+ intros. absurd (true = false). discriminate.
+ exact (H 0).
+ trivial.
+Qed.
+
+Lemma Nbit_faithful_3 :
+ forall (a:N) (p:positive),
+ (forall p':positive, eqf (Nbit (Npos p)) (Nbit (Npos p')) -> p = p') ->
+ eqf (Nbit (Npos (xO p))) (Nbit a) -> Npos (xO p) = a.
+Proof.
+ destruct a. intros. cut (eqf (Nbit N0) (Nbit (Npos (xO p)))).
+ intro. rewrite (Nbit_faithful_1 (Npos (xO p)) H1). reflexivity.
+ unfold eqf. intro. unfold eqf in H0. rewrite H0. reflexivity.
+ case p. intros. absurd (false = true). discriminate.
+ exact (H0 0).
+ intros. rewrite (H p0 (fun n => H0 (S n))). reflexivity.
+ intros. absurd (false = true). discriminate.
+ exact (H0 0).
+Qed.
+
+Lemma Nbit_faithful_4 :
+ forall (a:N) (p:positive),
+ (forall p':positive, eqf (Nbit (Npos p)) (Nbit (Npos p')) -> p = p') ->
+ eqf (Nbit (Npos (xI p))) (Nbit a) -> Npos (xI p) = a.
+Proof.
+ destruct a. intros. cut (eqf (Nbit N0) (Nbit (Npos (xI p)))).
+ intro. rewrite (Nbit_faithful_1 (Npos (xI p)) H1). reflexivity.
+ unfold eqf. intro. unfold eqf in H0. rewrite H0. reflexivity.
+ case p. intros. rewrite (H p0 (fun n:nat => H0 (S n))). reflexivity.
+ intros. absurd (true = false). discriminate.
+ exact (H0 0).
+ intros. absurd (N0 = Npos p0). discriminate.
+ cut (eqf (Nbit (Npos 1)) (Nbit (Npos (xI p0)))).
+ intro. exact (Nbit_faithful_1 (Npos p0) (fun n:nat => H1 (S n))).
+ unfold eqf in *. intro. rewrite H0. reflexivity.
+Qed.
+
+Lemma Nbit_faithful : forall a a':N, eqf (Nbit a) (Nbit a') -> a = a'.
+Proof.
+ destruct a. exact Nbit_faithful_1.
+ induction p. intros a' H. apply Nbit_faithful_4. intros. cut (Npos p = Npos p').
+ intro. inversion H1. reflexivity.
+ exact (IHp (Npos p') H0).
+ assumption.
+ intros. apply Nbit_faithful_3. intros. cut (Npos p = Npos p'). intro. inversion H1. reflexivity.
+ exact (IHp (Npos p') H0).
+ assumption.
+ exact Nbit_faithful_2.
+Qed.
+
+(** We now describe the semantics of [Nxor] in terms of bit streams. *)
+
+Lemma Nxor_sem_1 : forall a':N, Nbit (Nxor N0 a') 0 = Nbit a' 0.
+Proof.
+ trivial.
+Qed.
+
+Lemma Nxor_sem_2 :
+ forall a':N, Nbit (Nxor (Npos 1) a') 0 = negb (Nbit a' 0).
+Proof.
+ intro. case a'. trivial.
+ simpl. intro.
+ case p; trivial.
+Qed.
+
+Lemma Nxor_sem_3 :
+ forall (p:positive) (a':N),
+ Nbit (Nxor (Npos (xO p)) a') 0 = Nbit a' 0.
+Proof.
+ intros. case a'. trivial.
+ simpl. intro.
+ case p0; trivial. intro.
+ case (Pxor p p1); trivial.
+ intro. case (Pxor p p1); trivial.
+Qed.
+
+Lemma Nxor_sem_4 :
+ forall (p:positive) (a':N),
+ Nbit (Nxor (Npos (xI p)) a') 0 = negb (Nbit a' 0).
+Proof.
+ intros. case a'. trivial.
+ simpl. intro. case p0; trivial. intro.
+ case (Pxor p p1); trivial.
+ intro.
+ case (Pxor p p1); trivial.
+Qed.
+
+Lemma Nxor_sem_5 :
+ forall a a':N, Nbit (Nxor a a') 0 = xorf (Nbit a) (Nbit a') 0.
+Proof.
+ destruct a. intro. change (Nbit a' 0 = xorb false (Nbit a' 0)). rewrite false_xorb. trivial.
+ case p. exact Nxor_sem_4.
+ intros. change (Nbit (Nxor (Npos (xO p0)) a') 0 = xorb false (Nbit a' 0)).
+ rewrite false_xorb. apply Nxor_sem_3. exact Nxor_sem_2.
+Qed.
+
+Lemma Nxor_sem_6 :
+ forall n:nat,
+ (forall a a':N, Nbit (Nxor a a') n = xorf (Nbit a) (Nbit a') n) ->
+ forall a a':N,
+ Nbit (Nxor a a') (S n) = xorf (Nbit a) (Nbit a') (S n).
+Proof.
+ intros.
+ generalize (fun p1 p2 => H (Npos p1) (Npos p2)); clear H; intro H.
+ unfold xorf in *.
+ case a. simpl Nbit; rewrite false_xorb. reflexivity.
+ case a'; intros.
+ simpl Nbit; rewrite xorb_false. reflexivity.
+ case p0. case p; intros; simpl Nbit in *.
+ rewrite <- H; simpl; case (Pxor p2 p1); trivial.
+ rewrite <- H; simpl; case (Pxor p2 p1); trivial.
+ rewrite xorb_false. reflexivity.
+ case p; intros; simpl Nbit in *.
+ rewrite <- H; simpl; case (Pxor p2 p1); trivial.
+ rewrite <- H; simpl; case (Pxor p2 p1); trivial.
+ rewrite xorb_false. reflexivity.
+ simpl Nbit. rewrite false_xorb. simpl. case p; trivial.
+Qed.
+
+Lemma Nxor_semantics :
+ forall a a':N, eqf (Nbit (Nxor a a')) (xorf (Nbit a) (Nbit a')).
+Proof.
+ unfold eqf. intros. generalize a a'. elim n. exact Nxor_sem_5.
+ exact Nxor_sem_6.
+Qed.
+
+(** Consequences:
+ - only equal numbers lead to a null xor
+ - xor is associative
+*)
+
+Lemma Nxor_eq : forall a a':N, Nxor a a' = N0 -> a = a'.
+Proof.
+ intros. apply Nbit_faithful. apply xorf_eq. apply eqf_trans with (f' := Nbit (Nxor a a')).
+ apply eqf_sym. apply Nxor_semantics.
+ rewrite H. unfold eqf. trivial.
+Qed.
+
+Lemma Nxor_assoc :
+ forall a a' a'':N, Nxor (Nxor a a') a'' = Nxor a (Nxor a' a'').
+Proof.
+ intros. apply Nbit_faithful.
+ apply eqf_trans with
+ (f' := xorf (xorf (Nbit a) (Nbit a')) (Nbit a'')).
+ apply eqf_trans with (f' := xorf (Nbit (Nxor a a')) (Nbit a'')).
+ apply Nxor_semantics.
+ apply eqf_xorf. apply Nxor_semantics.
+ apply eqf_refl.
+ apply eqf_trans with
+ (f' := xorf (Nbit a) (xorf (Nbit a') (Nbit a''))).
+ apply xorf_assoc.
+ apply eqf_trans with (f' := xorf (Nbit a) (Nbit (Nxor a' a''))).
+ apply eqf_xorf. apply eqf_refl.
+ apply eqf_sym. apply Nxor_semantics.
+ apply eqf_sym. apply Nxor_semantics.
+Qed.
+
+(** Checking whether a number is odd, i.e.
+ if its lower bit is set. *)
+
+Definition Nbit0 (n:N) :=
+ match n with
+ | N0 => false
+ | Npos (xO _) => false
+ | _ => true
+ end.
+
+Definition Nodd (n:N) := Nbit0 n = true.
+Definition Neven (n:N) := Nbit0 n = false.
+
+Lemma Nbit0_correct : forall n:N, Nbit n 0 = Nbit0 n.
+Proof.
+ destruct n; trivial.
+ destruct p; trivial.
+Qed.
+
+Lemma Ndouble_bit0 : forall n:N, Nbit0 (Ndouble n) = false.
+Proof.
+ destruct n; trivial.
+Qed.
+
+Lemma Ndouble_plus_one_bit0 :
+ forall n:N, Nbit0 (Ndouble_plus_one n) = true.
+Proof.
+ destruct n; trivial.
+Qed.
+
+Lemma Ndiv2_double :
+ forall n:N, Neven n -> Ndouble (Ndiv2 n) = n.
+Proof.
+ destruct n. trivial. destruct p. intro H. discriminate H.
+ intros. reflexivity.
+ intro H. discriminate H.
+Qed.
+
+Lemma Ndiv2_double_plus_one :
+ forall n:N, Nodd n -> Ndouble_plus_one (Ndiv2 n) = n.
+Proof.
+ destruct n. intro. discriminate H.
+ destruct p. intros. reflexivity.
+ intro H. discriminate H.
+ intro. reflexivity.
+Qed.
+
+Lemma Ndiv2_correct :
+ forall (a:N) (n:nat), Nbit (Ndiv2 a) n = Nbit a (S n).
+Proof.
+ destruct a; trivial.
+ destruct p; trivial.
+Qed.
+
+Lemma Nxor_bit0 :
+ forall a a':N, Nbit0 (Nxor a a') = xorb (Nbit0 a) (Nbit0 a').
+Proof.
+ intros. rewrite <- Nbit0_correct. rewrite (Nxor_semantics a a' 0).
+ unfold xorf. rewrite Nbit0_correct. rewrite Nbit0_correct. reflexivity.
+Qed.
+
+Lemma Nxor_div2 :
+ forall a a':N, Ndiv2 (Nxor a a') = Nxor (Ndiv2 a) (Ndiv2 a').
+Proof.
+ intros. apply Nbit_faithful. unfold eqf. intro.
+ rewrite (Nxor_semantics (Ndiv2 a) (Ndiv2 a') n).
+ rewrite Ndiv2_correct.
+ rewrite (Nxor_semantics a a' (S n)).
+ unfold xorf. rewrite Ndiv2_correct. rewrite Ndiv2_correct.
+ reflexivity.
+Qed.
+
+Lemma Nneg_bit0 :
+ forall a a':N,
+ Nbit0 (Nxor a a') = true -> Nbit0 a = negb (Nbit0 a').
+Proof.
+ intros. rewrite <- true_xorb. rewrite <- H. rewrite Nxor_bit0.
+ rewrite xorb_assoc. rewrite xorb_nilpotent. rewrite xorb_false. reflexivity.
+Qed.
+
+Lemma Nneg_bit0_1 :
+ forall a a':N, Nxor a a' = Npos 1 -> Nbit0 a = negb (Nbit0 a').
+Proof.
+ intros. apply Nneg_bit0. rewrite H. reflexivity.
+Qed.
+
+Lemma Nneg_bit0_2 :
+ forall (a a':N) (p:positive),
+ Nxor a a' = Npos (xI p) -> Nbit0 a = negb (Nbit0 a').
+Proof.
+ intros. apply Nneg_bit0. rewrite H. reflexivity.
+Qed.
+
+Lemma Nsame_bit0 :
+ forall (a a':N) (p:positive),
+ Nxor a a' = Npos (xO p) -> Nbit0 a = Nbit0 a'.
+Proof.
+ intros. rewrite <- (xorb_false (Nbit0 a)). cut (Nbit0 (Npos (xO p)) = false).
+ intro. rewrite <- H0. rewrite <- H. rewrite Nxor_bit0. rewrite <- xorb_assoc.
+ rewrite xorb_nilpotent. rewrite false_xorb. reflexivity.
+ reflexivity.
+Qed.
+
+(** a lexicographic order on bits, starting from the lowest bit *)
+
+Fixpoint Nless_aux (a a':N) (p:positive) {struct p} : bool :=
+ match p with
+ | xO p' => Nless_aux (Ndiv2 a) (Ndiv2 a') p'
+ | _ => andb (negb (Nbit0 a)) (Nbit0 a')
+ end.
+
+Definition Nless (a a':N) :=
+ match Nxor a a' with
+ | N0 => false
+ | Npos p => Nless_aux a a' p
+ end.
+
+Lemma Nbit0_less :
+ forall a a',
+ Nbit0 a = false -> Nbit0 a' = true -> Nless a a' = true.
+Proof.
+ intros. elim (Ndiscr (Nxor a a')). intro H1. elim H1. intros p H2. unfold Nless in |- *.
+ rewrite H2. generalize H2. elim p. intros. simpl in |- *. rewrite H. rewrite H0. reflexivity.
+ intros. cut (Nbit0 (Nxor a a') = false). intro. rewrite (Nxor_bit0 a a') in H5.
+ rewrite H in H5. rewrite H0 in H5. discriminate H5.
+ rewrite H4. reflexivity.
+ intro. simpl in |- *. rewrite H. rewrite H0. reflexivity.
+ intro H1. cut (Nbit0 (Nxor a a') = false). intro. rewrite (Nxor_bit0 a a') in H2.
+ rewrite H in H2. rewrite H0 in H2. discriminate H2.
+ rewrite H1. reflexivity.
+Qed.
+
+Lemma Nbit0_gt :
+ forall a a',
+ Nbit0 a = true -> Nbit0 a' = false -> Nless a a' = false.
+Proof.
+ intros. elim (Ndiscr (Nxor a a')). intro H1. elim H1. intros p H2. unfold Nless in |- *.
+ rewrite H2. generalize H2. elim p. intros. simpl in |- *. rewrite H. rewrite H0. reflexivity.
+ intros. cut (Nbit0 (Nxor a a') = false). intro. rewrite (Nxor_bit0 a a') in H5.
+ rewrite H in H5. rewrite H0 in H5. discriminate H5.
+ rewrite H4. reflexivity.
+ intro. simpl in |- *. rewrite H. rewrite H0. reflexivity.
+ intro H1. unfold Nless in |- *. rewrite H1. reflexivity.
+Qed.
+
+Lemma Nless_not_refl : forall a, Nless a a = false.
+Proof.
+ intro. unfold Nless in |- *. rewrite (Nxor_nilpotent a). reflexivity.
+Qed.
+
+Lemma Nless_def_1 :
+ forall a a', Nless (Ndouble a) (Ndouble a') = Nless a a'.
+Proof.
+ simple induction a. simple induction a'. reflexivity.
+ trivial.
+ simple induction a'. unfold Nless in |- *. simpl in |- *. elim p; trivial.
+ unfold Nless in |- *. simpl in |- *. intro. case (Pxor p p0). reflexivity.
+ trivial.
+Qed.
+
+Lemma Nless_def_2 :
+ forall a a',
+ Nless (Ndouble_plus_one a) (Ndouble_plus_one a') = Nless a a'.
+Proof.
+ simple induction a. simple induction a'. reflexivity.
+ trivial.
+ simple induction a'. unfold Nless in |- *. simpl in |- *. elim p; trivial.
+ unfold Nless in |- *. simpl in |- *. intro. case (Pxor p p0). reflexivity.
+ trivial.
+Qed.
+
+Lemma Nless_def_3 :
+ forall a a', Nless (Ndouble a) (Ndouble_plus_one a') = true.
+Proof.
+ intros. apply Nbit0_less. apply Ndouble_bit0.
+ apply Ndouble_plus_one_bit0.
+Qed.
+
+Lemma Nless_def_4 :
+ forall a a', Nless (Ndouble_plus_one a) (Ndouble a') = false.
+Proof.
+ intros. apply Nbit0_gt. apply Ndouble_plus_one_bit0.
+ apply Ndouble_bit0.
+Qed.
+
+Lemma Nless_z : forall a, Nless a N0 = false.
+Proof.
+ simple induction a. reflexivity.
+ unfold Nless in |- *. intro. rewrite (Nxor_neutral_right (Npos p)). elim p; trivial.
+Qed.
+
+Lemma N0_less_1 :
+ forall a, Nless N0 a = true -> {p : positive | a = Npos p}.
+Proof.
+ simple induction a. intro. discriminate H.
+ intros. split with p. reflexivity.
+Qed.
+
+Lemma N0_less_2 : forall a, Nless N0 a = false -> a = N0.
+Proof.
+ simple induction a. trivial.
+ unfold Nless in |- *. simpl in |- *.
+ cut (forall p:positive, Nless_aux N0 (Npos p) p = false -> False).
+ intros. elim (H p H0).
+ simple induction p. intros. discriminate H0.
+ intros. exact (H H0).
+ intro. discriminate H.
+Qed.
+
+Lemma Nless_trans :
+ forall a a' a'',
+ Nless a a' = true -> Nless a' a'' = true -> Nless a a'' = true.
+Proof.
+ intro a. pattern a; apply N_ind_double.
+ intros. case_eq (Nless N0 a''). trivial.
+ intro H1. rewrite (N0_less_2 a'' H1) in H0. rewrite (Nless_z a') in H0. discriminate H0.
+ intros a0 H a'. pattern a'; apply N_ind_double.
+ intros. rewrite (Nless_z (Ndouble a0)) in H0. discriminate H0.
+ intros a1 H0 a'' H1. rewrite (Nless_def_1 a0 a1) in H1.
+ pattern a''; apply N_ind_double; clear a''.
+ intro. rewrite (Nless_z (Ndouble a1)) in H2. discriminate H2.
+ intros. rewrite (Nless_def_1 a1 a2) in H3. rewrite (Nless_def_1 a0 a2).
+ exact (H a1 a2 H1 H3).
+ intros. apply Nless_def_3.
+ intros a1 H0 a'' H1. pattern a''; apply N_ind_double.
+ intro. rewrite (Nless_z (Ndouble_plus_one a1)) in H2. discriminate H2.
+ intros. rewrite (Nless_def_4 a1 a2) in H3. discriminate H3.
+ intros. apply Nless_def_3.
+ intros a0 H a'. pattern a'; apply N_ind_double.
+ intros. rewrite (Nless_z (Ndouble_plus_one a0)) in H0. discriminate H0.
+ intros. rewrite (Nless_def_4 a0 a1) in H1. discriminate H1.
+ intros a1 H0 a'' H1. pattern a''; apply N_ind_double.
+ intro. rewrite (Nless_z (Ndouble_plus_one a1)) in H2. discriminate H2.
+ intros. rewrite (Nless_def_4 a1 a2) in H3. discriminate H3.
+ rewrite (Nless_def_2 a0 a1) in H1. intros. rewrite (Nless_def_2 a1 a2) in H3.
+ rewrite (Nless_def_2 a0 a2). exact (H a1 a2 H1 H3).
+Qed.
+
+Lemma Nless_total :
+ forall a a', {Nless a a' = true} + {Nless a' a = true} + {a = a'}.
+Proof.
+ intro a.
+ pattern a; apply N_rec_double; clear a.
+ intro. case_eq (Nless N0 a'). intro H. left. left. auto.
+ intro H. right. rewrite (N0_less_2 a' H). reflexivity.
+ intros a0 H a'.
+ pattern a'; apply N_rec_double; clear a'.
+ case_eq (Nless N0 (Ndouble a0)). intro H0. left. right. auto.
+ intro H0. right. exact (N0_less_2 _ H0).
+ intros a1 H0. rewrite Nless_def_1. rewrite Nless_def_1. elim (H a1). intro H1.
+ left. assumption.
+ intro H1. right. rewrite H1. reflexivity.
+ intros a1 H0. left. left. apply Nless_def_3.
+ intros a0 H a'.
+ pattern a'; apply N_rec_double; clear a'.
+ left. right. case a0; reflexivity.
+ intros a1 H0. left. right. apply Nless_def_3.
+ intros a1 H0. rewrite Nless_def_2. rewrite Nless_def_2. elim (H a1). intro H1.
+ left. assumption.
+ intro H1. right. rewrite H1. reflexivity.
+Qed.
+
+(** Number of digits in a number *)
+
+Fixpoint Psize (p:positive) : nat :=
+ match p with
+ | xH => 1%nat
+ | xI p => S (Psize p)
+ | xO p => S (Psize p)
+ end.
+
+Definition Nsize (n:N) : nat := match n with
+ | N0 => 0%nat
+ | Npos p => Psize p
+ end.
+
+
+(** conversions between N and bit vectors. *)
+
+Fixpoint P2Bv (p:positive) : Bvector (Psize p) :=
+ match p return Bvector (Psize p) with
+ | xH => Bvect_true 1%nat
+ | xO p => Bcons false (Psize p) (P2Bv p)
+ | xI p => Bcons true (Psize p) (P2Bv p)
+ end.
+
+Definition N2Bv (n:N) : Bvector (Nsize n) :=
+ match n as n0 return Bvector (Nsize n0) with
+ | N0 => Bnil
+ | Npos p => P2Bv p
+ end.
+
+Fixpoint Bv2N (n:nat)(bv:Bvector n) {struct bv} : N :=
+ match bv with
+ | Vnil => N0
+ | Vcons false n bv => Ndouble (Bv2N n bv)
+ | Vcons true n bv => Ndouble_plus_one (Bv2N n bv)
+ end.
+
+Lemma Bv2N_N2Bv : forall n, Bv2N _ (N2Bv n) = n.
+Proof.
+destruct n.
+simpl; auto.
+induction p; simpl in *; auto; rewrite IHp; simpl; auto.
+Qed.
+
+(** The opposite composition is not so simple: if the considered
+ bit vector has some zeros on its right, they will disappear during
+ the return [Bv2N] translation: *)
+
+Lemma Bv2N_Nsize : forall n (bv:Bvector n), Nsize (Bv2N n bv) <= n.
+Proof.
+induction n; intros.
+rewrite (V0_eq _ bv); simpl; auto.
+rewrite (VSn_eq _ _ bv); simpl.
+generalize (IHn (Vtail _ _ bv)); clear IHn.
+destruct (Vhead _ _ bv);
+ destruct (Bv2N n (Vtail bool n bv));
+ simpl; auto with arith.
+Qed.
+
+(** In the previous lemma, we can only replace the inequality by
+ an equality whenever the highest bit is non-null. *)
+
+Lemma Bv2N_Nsize_1 : forall n (bv:Bvector (S n)),
+ Bsign _ bv = true <->
+ Nsize (Bv2N _ bv) = (S n).
+Proof.
+induction n; intro.
+rewrite (VSn_eq _ _ bv); simpl.
+rewrite (V0_eq _ (Vtail _ _ bv)); simpl.
+destruct (Vhead _ _ bv); simpl; intuition; try discriminate.
+rewrite (VSn_eq _ _ bv); simpl.
+generalize (IHn (Vtail _ _ bv)); clear IHn.
+destruct (Vhead _ _ bv);
+ destruct (Bv2N (S n) (Vtail bool (S n) bv));
+ simpl; intuition; try discriminate.
+Qed.
+
+(** To state nonetheless a second result about composition of
+ conversions, we define a conversion on a given number of bits : *)
+
+Fixpoint N2Bv_gen (n:nat)(a:N) { struct n } : Bvector n :=
+ match n return Bvector n with
+ | 0 => Bnil
+ | S n => match a with
+ | N0 => Bvect_false (S n)
+ | Npos xH => Bcons true _ (Bvect_false n)
+ | Npos (xO p) => Bcons false _ (N2Bv_gen n (Npos p))
+ | Npos (xI p) => Bcons true _ (N2Bv_gen n (Npos p))
+ end
+ end.
+
+(** The first [N2Bv] is then a special case of [N2Bv_gen] *)
+
+Lemma N2Bv_N2Bv_gen : forall (a:N), N2Bv a = N2Bv_gen (Nsize a) a.
+Proof.
+destruct a; simpl.
+auto.
+induction p; simpl; intros; auto; congruence.
+Qed.
+
+(** In fact, if [k] is large enough, [N2Bv_gen k a] contains all digits of
+ [a] plus some zeros. *)
+
+Lemma N2Bv_N2Bv_gen_above : forall (a:N)(k:nat),
+ N2Bv_gen (Nsize a + k) a = Vextend _ _ _ (N2Bv a) (Bvect_false k).
+Proof.
+destruct a; simpl.
+destruct k; simpl; auto.
+induction p; simpl; intros;unfold Bcons; f_equal; auto.
+Qed.
+
+(** Here comes now the second composition result. *)
+
+Lemma N2Bv_Bv2N : forall n (bv:Bvector n),
+ N2Bv_gen n (Bv2N n bv) = bv.
+Proof.
+induction n; intros.
+rewrite (V0_eq _ bv); simpl; auto.
+rewrite (VSn_eq _ _ bv); simpl.
+generalize (IHn (Vtail _ _ bv)); clear IHn.
+unfold Bcons.
+destruct (Bv2N _ (Vtail _ _ bv));
+ destruct (Vhead _ _ bv); intro H; rewrite <- H; simpl; trivial;
+ induction n; simpl; auto.
+Qed.
+
+(** accessing some precise bits. *)
+
+Lemma Nbit0_Blow : forall n, forall (bv:Bvector (S n)),
+ Nbit0 (Bv2N _ bv) = Blow _ bv.
+Proof.
+intros.
+unfold Blow.
+pattern bv at 1; rewrite (VSn_eq _ _ bv).
+simpl.
+destruct (Bv2N n (Vtail bool n bv)); simpl;
+ destruct (Vhead bool n bv); auto.
+Qed.
+
+Definition Bnth (n:nat)(bv:Bvector n)(p:nat) : p<n -> bool.
+Proof.
+ induction 1.
+ intros.
+ elimtype False; inversion H.
+ intros.
+ destruct p.
+ exact a.
+ apply (IHbv p); auto with arith.
+Defined.
+
+Lemma Bnth_Nbit : forall n (bv:Bvector n) p (H:p<n),
+ Bnth _ bv p H = Nbit (Bv2N _ bv) p.
+Proof.
+induction bv; intros.
+inversion H.
+destruct p; simpl; destruct (Bv2N n bv); destruct a; simpl in *; auto.
+Qed.
+
+Lemma Nbit_Nsize : forall n p, Nsize n <= p -> Nbit n p = false.
+Proof.
+destruct n as [|n].
+simpl; auto.
+induction n; simpl in *; intros; destruct p; auto with arith.
+inversion H.
+inversion H.
+Qed.
+
+Lemma Nbit_Bth: forall n p (H:p < Nsize n), Nbit n p = Bnth _ (N2Bv n) p H.
+Proof.
+destruct n as [|n].
+inversion H.
+induction n; simpl in *; intros; destruct p; auto with arith.
+inversion H; inversion H1.
+Qed.
+
+(** Xor is the same in the two worlds. *)
+
+Lemma Nxor_BVxor : forall n (bv bv' : Bvector n),
+ Bv2N _ (BVxor _ bv bv') = Nxor (Bv2N _ bv) (Bv2N _ bv').
+Proof.
+induction n.
+intros.
+rewrite (V0_eq _ bv); rewrite (V0_eq _ bv'); simpl; auto.
+intros.
+rewrite (VSn_eq _ _ bv); rewrite (VSn_eq _ _ bv'); simpl; auto.
+rewrite IHn.
+destruct (Vhead bool n bv); destruct (Vhead bool n bv');
+ destruct (Bv2N n (Vtail bool n bv)); destruct (Bv2N n (Vtail bool n bv')); simpl; auto.
+Qed.
+