summaryrefslogtreecommitdiff
path: root/theories7/Relations
diff options
context:
space:
mode:
Diffstat (limited to 'theories7/Relations')
-rwxr-xr-xtheories7/Relations/Newman.v115
-rwxr-xr-xtheories7/Relations/Operators_Properties.v98
-rwxr-xr-xtheories7/Relations/Relation_Definitions.v83
-rwxr-xr-xtheories7/Relations/Relation_Operators.v157
-rwxr-xr-xtheories7/Relations/Relations.v28
-rwxr-xr-xtheories7/Relations/Rstar.v78
6 files changed, 0 insertions, 559 deletions
diff --git a/theories7/Relations/Newman.v b/theories7/Relations/Newman.v
deleted file mode 100755
index c53db971..00000000
--- a/theories7/Relations/Newman.v
+++ /dev/null
@@ -1,115 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(*i $Id: Newman.v,v 1.1.2.1 2004/07/16 19:31:37 herbelin Exp $ i*)
-
-Require Rstar.
-
-Section Newman.
-
-Variable A: Type.
-Variable R: A->A->Prop.
-
-Local Rstar := (Rstar A R).
-Local Rstar_reflexive := (Rstar_reflexive A R).
-Local Rstar_transitive := (Rstar_transitive A R).
-Local Rstar_Rstar' := (Rstar_Rstar' A R).
-
-Definition coherence := [x:A][y:A] (exT2 ? (Rstar x) (Rstar y)).
-
-Theorem coherence_intro : (x:A)(y:A)(z:A)(Rstar x z)->(Rstar y z)->(coherence x y).
-Proof [x:A][y:A][z:A][h1:(Rstar x z)][h2:(Rstar y z)]
- (exT_intro2 A (Rstar x) (Rstar y) z h1 h2).
-
-(** A very simple case of coherence : *)
-
-Lemma Rstar_coherence : (x:A)(y:A)(Rstar x y)->(coherence x y).
- Proof [x:A][y:A][h:(Rstar x y)](coherence_intro x y y h (Rstar_reflexive y)).
-
-(** coherence is symmetric *)
-Lemma coherence_sym: (x:A)(y:A)(coherence x y)->(coherence y x).
- Proof [x:A][y:A][h:(coherence x y)]
- (exT2_ind A (Rstar x) (Rstar y) (coherence y x)
- [w:A][h1:(Rstar x w)][h2:(Rstar y w)]
- (coherence_intro y x w h2 h1) h).
-
-Definition confluence :=
- [x:A](y:A)(z:A)(Rstar x y)->(Rstar x z)->(coherence y z).
-
-Definition local_confluence :=
- [x:A](y:A)(z:A)(R x y)->(R x z)->(coherence y z).
-
-Definition noetherian :=
- (x:A)(P:A->Prop)((y:A)((z:A)(R y z)->(P z))->(P y))->(P x).
-
-Section Newman_section.
-
-(** The general hypotheses of the theorem *)
-
-Hypothesis Hyp1:noetherian.
-Hypothesis Hyp2:(x:A)(local_confluence x).
-
-(** The induction hypothesis *)
-
-Section Induct.
- Variable x:A.
- Hypothesis hyp_ind:(u:A)(R x u)->(confluence u).
-
-(** Confluence in [x] *)
-
- Variables y,z:A.
- Hypothesis h1:(Rstar x y).
- Hypothesis h2:(Rstar x z).
-
-(** particular case [x->u] and [u->*y] *)
-Section Newman_.
- Variable u:A.
- Hypothesis t1:(R x u).
- Hypothesis t2:(Rstar u y).
-
-(** In the usual diagram, we assume also [x->v] and [v->*z] *)
-
-Theorem Diagram : (v:A)(u1:(R x v))(u2:(Rstar v z))(coherence y z).
-
-Proof (* We draw the diagram ! *)
- [v:A][u1:(R x v)][u2:(Rstar v z)]
- (exT2_ind A (Rstar u) (Rstar v) (* local confluence in x for u,v *)
- (coherence y z) (* gives w, u->*w and v->*w *)
- ([w:A][s1:(Rstar u w)][s2:(Rstar v w)]
- (exT2_ind A (Rstar y) (Rstar w) (* confluence in u => coherence(y,w) *)
- (coherence y z) (* gives a, y->*a and z->*a *)
- ([a:A][v1:(Rstar y a)][v2:(Rstar w a)]
- (exT2_ind A (Rstar a) (Rstar z) (* confluence in v => coherence(a,z) *)
- (coherence y z) (* gives b, a->*b and z->*b *)
- ([b:A][w1:(Rstar a b)][w2:(Rstar z b)]
- (coherence_intro y z b (Rstar_transitive y a b v1 w1) w2))
- (hyp_ind v u1 a z (Rstar_transitive v w a s2 v2) u2)))
- (hyp_ind u t1 y w t2 s1)))
- (Hyp2 x u v t1 u1)).
-
-Theorem caseRxy : (coherence y z).
-Proof (Rstar_Rstar' x z h2
- ([v:A][w:A](coherence y w))
- (coherence_sym x y (Rstar_coherence x y h1)) (*i case x=z i*)
- Diagram). (*i case x->v->*z i*)
-End Newman_.
-
-Theorem Ind_proof : (coherence y z).
-Proof (Rstar_Rstar' x y h1 ([u:A][v:A](coherence v z))
- (Rstar_coherence x z h2) (*i case x=y i*)
- caseRxy). (*i case x->u->*z i*)
-End Induct.
-
-Theorem Newman : (x:A)(confluence x).
-Proof [x:A](Hyp1 x confluence Ind_proof).
-
-End Newman_section.
-
-
-End Newman.
-
diff --git a/theories7/Relations/Operators_Properties.v b/theories7/Relations/Operators_Properties.v
deleted file mode 100755
index 4f1818bc..00000000
--- a/theories7/Relations/Operators_Properties.v
+++ /dev/null
@@ -1,98 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(*i $Id: Operators_Properties.v,v 1.1.2.1 2004/07/16 19:31:37 herbelin Exp $ i*)
-
-(****************************************************************************)
-(* Bruno Barras *)
-(****************************************************************************)
-
-Require Relation_Definitions.
-Require Relation_Operators.
-
-
-Section Properties.
-
- Variable A: Set.
- Variable R: (relation A).
-
- Local incl : (relation A)->(relation A)->Prop :=
- [R1,R2: (relation A)] (x,y:A) (R1 x y) -> (R2 x y).
-
-Section Clos_Refl_Trans.
-
- Lemma clos_rt_is_preorder: (preorder A (clos_refl_trans A R)).
-Apply Build_preorder.
-Exact (rt_refl A R).
-
-Exact (rt_trans A R).
-Qed.
-
-
-
-Lemma clos_rt_idempotent:
- (incl (clos_refl_trans A (clos_refl_trans A R))
- (clos_refl_trans A R)).
-Red.
-NewInduction 1; Auto with sets.
-Intros.
-Apply rt_trans with y; Auto with sets.
-Qed.
-
- Lemma clos_refl_trans_ind_left: (A:Set)(R:A->A->Prop)(M:A)(P:A->Prop)
- (P M)
- ->((P0,N:A)
- (clos_refl_trans A R M P0)->(P P0)->(R P0 N)->(P N))
- ->(a:A)(clos_refl_trans A R M a)->(P a).
-Intros.
-Generalize H H0 .
-Clear H H0.
-Elim H1; Intros; Auto with sets.
-Apply H2 with x; Auto with sets.
-
-Apply H3.
-Apply H0; Auto with sets.
-
-Intros.
-Apply H5 with P0; Auto with sets.
-Apply rt_trans with y; Auto with sets.
-Qed.
-
-
-End Clos_Refl_Trans.
-
-
-Section Clos_Refl_Sym_Trans.
-
- Lemma clos_rt_clos_rst: (inclusion A (clos_refl_trans A R)
- (clos_refl_sym_trans A R)).
-Red.
-NewInduction 1; Auto with sets.
-Apply rst_trans with y; Auto with sets.
-Qed.
-
- Lemma clos_rst_is_equiv: (equivalence A (clos_refl_sym_trans A R)).
-Apply Build_equivalence.
-Exact (rst_refl A R).
-
-Exact (rst_trans A R).
-
-Exact (rst_sym A R).
-Qed.
-
- Lemma clos_rst_idempotent:
- (incl (clos_refl_sym_trans A (clos_refl_sym_trans A R))
- (clos_refl_sym_trans A R)).
-Red.
-NewInduction 1; Auto with sets.
-Apply rst_trans with y; Auto with sets.
-Qed.
-
-End Clos_Refl_Sym_Trans.
-
-End Properties.
diff --git a/theories7/Relations/Relation_Definitions.v b/theories7/Relations/Relation_Definitions.v
deleted file mode 100755
index 1e38e753..00000000
--- a/theories7/Relations/Relation_Definitions.v
+++ /dev/null
@@ -1,83 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(*i $Id: Relation_Definitions.v,v 1.1.2.1 2004/07/16 19:31:38 herbelin Exp $ i*)
-
-Section Relation_Definition.
-
- Variable A: Type.
-
- Definition relation := A -> A -> Prop.
-
- Variable R: relation.
-
-
-Section General_Properties_of_Relations.
-
- Definition reflexive : Prop := (x: A) (R x x).
- Definition transitive : Prop := (x,y,z: A) (R x y) -> (R y z) -> (R x z).
- Definition symmetric : Prop := (x,y: A) (R x y) -> (R y x).
- Definition antisymmetric : Prop := (x,y: A) (R x y) -> (R y x) -> x=y.
-
- (* for compatibility with Equivalence in ../PROGRAMS/ALG/ *)
- Definition equiv := reflexive /\ transitive /\ symmetric.
-
-End General_Properties_of_Relations.
-
-
-
-Section Sets_of_Relations.
-
- Record preorder : Prop := {
- preord_refl : reflexive;
- preord_trans : transitive }.
-
- Record order : Prop := {
- ord_refl : reflexive;
- ord_trans : transitive;
- ord_antisym : antisymmetric }.
-
- Record equivalence : Prop := {
- equiv_refl : reflexive;
- equiv_trans : transitive;
- equiv_sym : symmetric }.
-
- Record PER : Prop := {
- per_sym : symmetric;
- per_trans : transitive }.
-
-End Sets_of_Relations.
-
-
-
-Section Relations_of_Relations.
-
- Definition inclusion : relation -> relation -> Prop :=
- [R1,R2: relation] (x,y:A) (R1 x y) -> (R2 x y).
-
- Definition same_relation : relation -> relation -> Prop :=
- [R1,R2: relation] (inclusion R1 R2) /\ (inclusion R2 R1).
-
- Definition commut : relation -> relation -> Prop :=
- [R1,R2:relation] (x,y:A) (R1 y x) -> (z:A) (R2 z y)
- -> (EX y':A |(R2 y' x) & (R1 z y')).
-
-End Relations_of_Relations.
-
-
-End Relation_Definition.
-
-Hints Unfold reflexive transitive antisymmetric symmetric : sets v62.
-
-Hints Resolve Build_preorder Build_order Build_equivalence
- Build_PER preord_refl preord_trans
- ord_refl ord_trans ord_antisym
- equiv_refl equiv_trans equiv_sym
- per_sym per_trans : sets v62.
-
-Hints Unfold inclusion same_relation commut : sets v62.
diff --git a/theories7/Relations/Relation_Operators.v b/theories7/Relations/Relation_Operators.v
deleted file mode 100755
index 14c2ae30..00000000
--- a/theories7/Relations/Relation_Operators.v
+++ /dev/null
@@ -1,157 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(*i $Id: Relation_Operators.v,v 1.1.2.1 2004/07/16 19:31:38 herbelin Exp $ i*)
-
-(****************************************************************************)
-(* Bruno Barras, Cristina Cornes *)
-(* *)
-(* Some of these definitons were taken from : *)
-(* Constructing Recursion Operators in Type Theory *)
-(* L. Paulson JSC (1986) 2, 325-355 *)
-(****************************************************************************)
-
-Require Relation_Definitions.
-Require PolyList.
-Require PolyListSyntax.
-
-(** Some operators to build relations *)
-
-Section Transitive_Closure.
- Variable A: Set.
- Variable R: (relation A).
-
- Inductive clos_trans : A->A->Prop :=
- t_step: (x,y:A)(R x y)->(clos_trans x y)
- | t_trans: (x,y,z:A)(clos_trans x y)->(clos_trans y z)->(clos_trans x z).
-End Transitive_Closure.
-
-
-Section Reflexive_Transitive_Closure.
- Variable A: Set.
- Variable R: (relation A).
-
- Inductive clos_refl_trans: (relation A) :=
- rt_step: (x,y:A)(R x y)->(clos_refl_trans x y)
- | rt_refl: (x:A)(clos_refl_trans x x)
- | rt_trans: (x,y,z: A)(clos_refl_trans x y)->(clos_refl_trans y z)
- ->(clos_refl_trans x z).
-End Reflexive_Transitive_Closure.
-
-
-Section Reflexive_Symetric_Transitive_Closure.
- Variable A: Set.
- Variable R: (relation A).
-
- Inductive clos_refl_sym_trans: (relation A) :=
- rst_step: (x,y:A)(R x y)->(clos_refl_sym_trans x y)
- | rst_refl: (x:A)(clos_refl_sym_trans x x)
- | rst_sym: (x,y:A)(clos_refl_sym_trans x y)->(clos_refl_sym_trans y x)
- | rst_trans: (x,y,z:A)(clos_refl_sym_trans x y)->(clos_refl_sym_trans y z)
- ->(clos_refl_sym_trans x z).
-End Reflexive_Symetric_Transitive_Closure.
-
-
-Section Transposee.
- Variable A: Set.
- Variable R: (relation A).
-
- Definition transp := [x,y:A](R y x).
-End Transposee.
-
-
-Section Union.
- Variable A: Set.
- Variable R1,R2: (relation A).
-
- Definition union := [x,y:A](R1 x y)\/(R2 x y).
-End Union.
-
-
-Section Disjoint_Union.
-Variable A,B:Set.
-Variable leA: A->A->Prop.
-Variable leB: B->B->Prop.
-
-Inductive le_AsB : A+B->A+B->Prop :=
- le_aa: (x,y:A) (leA x y) -> (le_AsB (inl A B x) (inl A B y))
-| le_ab: (x:A)(y:B) (le_AsB (inl A B x) (inr A B y))
-| le_bb: (x,y:B) (leB x y) -> (le_AsB (inr A B x) (inr A B y)).
-
-End Disjoint_Union.
-
-
-
-Section Lexicographic_Product.
-(* Lexicographic order on dependent pairs *)
-
-Variable A:Set.
-Variable B:A->Set.
-Variable leA: A->A->Prop.
-Variable leB: (x:A)(B x)->(B x)->Prop.
-
-Inductive lexprod : (sigS A B) -> (sigS A B) ->Prop :=
- left_lex : (x,x':A)(y:(B x)) (y':(B x'))
- (leA x x') ->(lexprod (existS A B x y) (existS A B x' y'))
-| right_lex : (x:A) (y,y':(B x))
- (leB x y y') -> (lexprod (existS A B x y) (existS A B x y')).
-End Lexicographic_Product.
-
-
-Section Symmetric_Product.
- Variable A:Set.
- Variable B:Set.
- Variable leA: A->A->Prop.
- Variable leB: B->B->Prop.
-
- Inductive symprod : (A*B) -> (A*B) ->Prop :=
- left_sym : (x,x':A)(leA x x')->(y:B)(symprod (x,y) (x',y))
- | right_sym : (y,y':B)(leB y y')->(x:A)(symprod (x,y) (x,y')).
-
-End Symmetric_Product.
-
-
-Section Swap.
- Variable A:Set.
- Variable R:A->A->Prop.
-
- Inductive swapprod: (A*A)->(A*A)->Prop :=
- sp_noswap: (x,x':A*A)(symprod A A R R x x')->(swapprod x x')
- | sp_swap: (x,y:A)(p:A*A)(symprod A A R R (x,y) p)->(swapprod (y,x) p).
-End Swap.
-
-
-Section Lexicographic_Exponentiation.
-
-Variable A : Set.
-Variable leA : A->A->Prop.
-Local Nil := (nil A).
-Local List := (list A).
-
-Inductive Ltl : List->List->Prop :=
- Lt_nil: (a:A)(x:List)(Ltl Nil (cons a x))
-| Lt_hd : (a,b:A) (leA a b)-> (x,y:(list A))(Ltl (cons a x) (cons b y))
-| Lt_tl : (a:A)(x,y:List)(Ltl x y) -> (Ltl (cons a x) (cons a y)).
-
-
-Inductive Desc : List->Prop :=
- d_nil : (Desc Nil)
-| d_one : (x:A)(Desc (cons x Nil))
-| d_conc : (x,y:A)(l:List)(leA x y)
- -> (Desc l^(cons y Nil))->(Desc (l^(cons y Nil))^(cons x Nil)).
-
-Definition Pow :Set := (sig List Desc).
-
-Definition lex_exp : Pow -> Pow ->Prop :=
- [a,b:Pow](Ltl (proj1_sig List Desc a) (proj1_sig List Desc b)).
-
-End Lexicographic_Exponentiation.
-
-Hints Unfold transp union : sets v62.
-Hints Resolve t_step rt_step rt_refl rst_step rst_refl : sets v62.
-Hints Immediate rst_sym : sets v62.
diff --git a/theories7/Relations/Relations.v b/theories7/Relations/Relations.v
deleted file mode 100755
index 694d0eec..00000000
--- a/theories7/Relations/Relations.v
+++ /dev/null
@@ -1,28 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(*i $Id: Relations.v,v 1.1.2.1 2004/07/16 19:31:38 herbelin Exp $ i*)
-
-Require Export Relation_Definitions.
-Require Export Relation_Operators.
-Require Export Operators_Properties.
-
-Lemma inverse_image_of_equivalence : (A,B:Set)(f:A->B)
- (r:(relation B))(equivalence B r)->(equivalence A [x,y:A](r (f x) (f y))).
-Intros; Split; Elim H; Red; Auto.
-Intros _ equiv_trans _ x y z H0 H1; Apply equiv_trans with (f y); Assumption.
-Qed.
-
-Lemma inverse_image_of_eq : (A,B:Set)(f:A->B)
- (equivalence A [x,y:A](f x)=(f y)).
-Split; Red;
-[ (* reflexivity *) Reflexivity
-| (* transitivity *) Intros; Transitivity (f y); Assumption
-| (* symmetry *) Intros; Symmetry; Assumption
-].
-Qed.
diff --git a/theories7/Relations/Rstar.v b/theories7/Relations/Rstar.v
deleted file mode 100755
index 3747b45e..00000000
--- a/theories7/Relations/Rstar.v
+++ /dev/null
@@ -1,78 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(*i $Id: Rstar.v,v 1.1.2.1 2004/07/16 19:31:38 herbelin Exp $ i*)
-
-(** Properties of a binary relation [R] on type [A] *)
-
-Section Rstar.
-
-Variable A : Type.
-Variable R : A->A->Prop.
-
-(** Definition of the reflexive-transitive closure [R*] of [R] *)
-(** Smallest reflexive [P] containing [R o P] *)
-
-Definition Rstar := [x,y:A](P:A->A->Prop)
- ((u:A)(P u u))->((u:A)(v:A)(w:A)(R u v)->(P v w)->(P u w)) -> (P x y).
-
-Theorem Rstar_reflexive: (x:A)(Rstar x x).
- Proof [x:A][P:A->A->Prop]
- [h1:(u:A)(P u u)][h2:(u:A)(v:A)(w:A)(R u v)->(P v w)->(P u w)]
- (h1 x).
-
-Theorem Rstar_R: (x:A)(y:A)(z:A)(R x y)->(Rstar y z)->(Rstar x z).
- Proof [x:A][y:A][z:A][t1:(R x y)][t2:(Rstar y z)]
- [P:A->A->Prop]
- [h1:(u:A)(P u u)][h2:(u:A)(v:A)(w:A)(R u v)->(P v w)->(P u w)]
- (h2 x y z t1 (t2 P h1 h2)).
-
-(** We conclude with transitivity of [Rstar] : *)
-
-Theorem Rstar_transitive: (x:A)(y:A)(z:A)(Rstar x y)->(Rstar y z)->(Rstar x z).
- Proof [x:A][y:A][z:A][h:(Rstar x y)]
- (h ([u:A][v:A](Rstar v z)->(Rstar u z))
- ([u:A][t:(Rstar u z)]t)
- ([u:A][v:A][w:A][t1:(R u v)][t2:(Rstar w z)->(Rstar v z)]
- [t3:(Rstar w z)](Rstar_R u v z t1 (t2 t3)))).
-
-(** Another characterization of [R*] *)
-(** Smallest reflexive [P] containing [R o R*] *)
-
-Definition Rstar' := [x:A][y:A](P:A->A->Prop)
- ((P x x))->((u:A)(R x u)->(Rstar u y)->(P x y)) -> (P x y).
-
-Theorem Rstar'_reflexive: (x:A)(Rstar' x x).
- Proof [x:A][P:A->A->Prop][h:(P x x)][h':(u:A)(R x u)->(Rstar u x)->(P x x)]h.
-
-Theorem Rstar'_R: (x:A)(y:A)(z:A)(R x z)->(Rstar z y)->(Rstar' x y).
- Proof [x:A][y:A][z:A][t1:(R x z)][t2:(Rstar z y)]
- [P:A->A->Prop][h1:(P x x)]
- [h2:(u:A)(R x u)->(Rstar u y)->(P x y)](h2 z t1 t2).
-
-(** Equivalence of the two definitions: *)
-
-Theorem Rstar'_Rstar: (x:A)(y:A)(Rstar' x y)->(Rstar x y).
- Proof [x:A][y:A][h:(Rstar' x y)]
- (h Rstar (Rstar_reflexive x) ([u:A](Rstar_R x u y))).
-
-Theorem Rstar_Rstar': (x:A)(y:A)(Rstar x y)->(Rstar' x y).
- Proof [x:A][y:A][h:(Rstar x y)](h Rstar' ([u:A](Rstar'_reflexive u))
- ([u:A][v:A][w:A][h1:(R u v)][h2:(Rstar' v w)]
- (Rstar'_R u w v h1 (Rstar'_Rstar v w h2)))).
-
-
-(** Property of Commutativity of two relations *)
-
-Definition commut := [A:Set][R1,R2:A->A->Prop]
- (x,y:A)(R1 y x)->(z:A)(R2 z y)
- ->(EX y':A |(R2 y' x) & (R1 z y')).
-
-
-End Rstar.
-