summaryrefslogtreecommitdiff
path: root/theories7/Relations/Relation_Operators.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories7/Relations/Relation_Operators.v')
-rwxr-xr-xtheories7/Relations/Relation_Operators.v157
1 files changed, 0 insertions, 157 deletions
diff --git a/theories7/Relations/Relation_Operators.v b/theories7/Relations/Relation_Operators.v
deleted file mode 100755
index 14c2ae30..00000000
--- a/theories7/Relations/Relation_Operators.v
+++ /dev/null
@@ -1,157 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(*i $Id: Relation_Operators.v,v 1.1.2.1 2004/07/16 19:31:38 herbelin Exp $ i*)
-
-(****************************************************************************)
-(* Bruno Barras, Cristina Cornes *)
-(* *)
-(* Some of these definitons were taken from : *)
-(* Constructing Recursion Operators in Type Theory *)
-(* L. Paulson JSC (1986) 2, 325-355 *)
-(****************************************************************************)
-
-Require Relation_Definitions.
-Require PolyList.
-Require PolyListSyntax.
-
-(** Some operators to build relations *)
-
-Section Transitive_Closure.
- Variable A: Set.
- Variable R: (relation A).
-
- Inductive clos_trans : A->A->Prop :=
- t_step: (x,y:A)(R x y)->(clos_trans x y)
- | t_trans: (x,y,z:A)(clos_trans x y)->(clos_trans y z)->(clos_trans x z).
-End Transitive_Closure.
-
-
-Section Reflexive_Transitive_Closure.
- Variable A: Set.
- Variable R: (relation A).
-
- Inductive clos_refl_trans: (relation A) :=
- rt_step: (x,y:A)(R x y)->(clos_refl_trans x y)
- | rt_refl: (x:A)(clos_refl_trans x x)
- | rt_trans: (x,y,z: A)(clos_refl_trans x y)->(clos_refl_trans y z)
- ->(clos_refl_trans x z).
-End Reflexive_Transitive_Closure.
-
-
-Section Reflexive_Symetric_Transitive_Closure.
- Variable A: Set.
- Variable R: (relation A).
-
- Inductive clos_refl_sym_trans: (relation A) :=
- rst_step: (x,y:A)(R x y)->(clos_refl_sym_trans x y)
- | rst_refl: (x:A)(clos_refl_sym_trans x x)
- | rst_sym: (x,y:A)(clos_refl_sym_trans x y)->(clos_refl_sym_trans y x)
- | rst_trans: (x,y,z:A)(clos_refl_sym_trans x y)->(clos_refl_sym_trans y z)
- ->(clos_refl_sym_trans x z).
-End Reflexive_Symetric_Transitive_Closure.
-
-
-Section Transposee.
- Variable A: Set.
- Variable R: (relation A).
-
- Definition transp := [x,y:A](R y x).
-End Transposee.
-
-
-Section Union.
- Variable A: Set.
- Variable R1,R2: (relation A).
-
- Definition union := [x,y:A](R1 x y)\/(R2 x y).
-End Union.
-
-
-Section Disjoint_Union.
-Variable A,B:Set.
-Variable leA: A->A->Prop.
-Variable leB: B->B->Prop.
-
-Inductive le_AsB : A+B->A+B->Prop :=
- le_aa: (x,y:A) (leA x y) -> (le_AsB (inl A B x) (inl A B y))
-| le_ab: (x:A)(y:B) (le_AsB (inl A B x) (inr A B y))
-| le_bb: (x,y:B) (leB x y) -> (le_AsB (inr A B x) (inr A B y)).
-
-End Disjoint_Union.
-
-
-
-Section Lexicographic_Product.
-(* Lexicographic order on dependent pairs *)
-
-Variable A:Set.
-Variable B:A->Set.
-Variable leA: A->A->Prop.
-Variable leB: (x:A)(B x)->(B x)->Prop.
-
-Inductive lexprod : (sigS A B) -> (sigS A B) ->Prop :=
- left_lex : (x,x':A)(y:(B x)) (y':(B x'))
- (leA x x') ->(lexprod (existS A B x y) (existS A B x' y'))
-| right_lex : (x:A) (y,y':(B x))
- (leB x y y') -> (lexprod (existS A B x y) (existS A B x y')).
-End Lexicographic_Product.
-
-
-Section Symmetric_Product.
- Variable A:Set.
- Variable B:Set.
- Variable leA: A->A->Prop.
- Variable leB: B->B->Prop.
-
- Inductive symprod : (A*B) -> (A*B) ->Prop :=
- left_sym : (x,x':A)(leA x x')->(y:B)(symprod (x,y) (x',y))
- | right_sym : (y,y':B)(leB y y')->(x:A)(symprod (x,y) (x,y')).
-
-End Symmetric_Product.
-
-
-Section Swap.
- Variable A:Set.
- Variable R:A->A->Prop.
-
- Inductive swapprod: (A*A)->(A*A)->Prop :=
- sp_noswap: (x,x':A*A)(symprod A A R R x x')->(swapprod x x')
- | sp_swap: (x,y:A)(p:A*A)(symprod A A R R (x,y) p)->(swapprod (y,x) p).
-End Swap.
-
-
-Section Lexicographic_Exponentiation.
-
-Variable A : Set.
-Variable leA : A->A->Prop.
-Local Nil := (nil A).
-Local List := (list A).
-
-Inductive Ltl : List->List->Prop :=
- Lt_nil: (a:A)(x:List)(Ltl Nil (cons a x))
-| Lt_hd : (a,b:A) (leA a b)-> (x,y:(list A))(Ltl (cons a x) (cons b y))
-| Lt_tl : (a:A)(x,y:List)(Ltl x y) -> (Ltl (cons a x) (cons a y)).
-
-
-Inductive Desc : List->Prop :=
- d_nil : (Desc Nil)
-| d_one : (x:A)(Desc (cons x Nil))
-| d_conc : (x,y:A)(l:List)(leA x y)
- -> (Desc l^(cons y Nil))->(Desc (l^(cons y Nil))^(cons x Nil)).
-
-Definition Pow :Set := (sig List Desc).
-
-Definition lex_exp : Pow -> Pow ->Prop :=
- [a,b:Pow](Ltl (proj1_sig List Desc a) (proj1_sig List Desc b)).
-
-End Lexicographic_Exponentiation.
-
-Hints Unfold transp union : sets v62.
-Hints Resolve t_step rt_step rt_refl rst_step rst_refl : sets v62.
-Hints Immediate rst_sym : sets v62.