summaryrefslogtreecommitdiff
path: root/theories7/Relations/Relation_Definitions.v
blob: 1e38e75314dbca785403f83831f5b124d03ac4e7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(*i $Id: Relation_Definitions.v,v 1.1.2.1 2004/07/16 19:31:38 herbelin Exp $ i*)

Section Relation_Definition.

   Variable A: Type.
   
   Definition relation :=  A -> A -> Prop.

   Variable R: relation.
   

Section General_Properties_of_Relations.

  Definition reflexive : Prop :=  (x: A) (R x x).
  Definition transitive : Prop :=  (x,y,z: A) (R x y) -> (R y z) -> (R x z).
  Definition symmetric : Prop :=  (x,y: A) (R x y) -> (R y x).
  Definition antisymmetric : Prop :=  (x,y: A) (R x y) -> (R y x) -> x=y.

  (* for compatibility with Equivalence in  ../PROGRAMS/ALG/  *)
  Definition equiv := reflexive /\ transitive /\ symmetric.

End General_Properties_of_Relations.



Section Sets_of_Relations.

   Record preorder : Prop := {
       preord_refl  : reflexive;
       preord_trans : transitive }.

   Record order : Prop := {
       ord_refl    : reflexive;
       ord_trans   : transitive;
       ord_antisym : antisymmetric }.

   Record equivalence : Prop := {
       equiv_refl  : reflexive;
       equiv_trans : transitive;
       equiv_sym   : symmetric }.
   
   Record PER : Prop := {
       per_sym   : symmetric;
       per_trans : transitive }.

End Sets_of_Relations.



Section Relations_of_Relations.

  Definition inclusion : relation -> relation -> Prop :=
      [R1,R2: relation] (x,y:A) (R1 x y) -> (R2 x y).

  Definition same_relation : relation -> relation -> Prop :=
      [R1,R2: relation] (inclusion R1 R2) /\ (inclusion R2 R1).
   
  Definition commut : relation -> relation -> Prop :=
      [R1,R2:relation] (x,y:A) (R1 y x) -> (z:A) (R2 z y)
                          -> (EX y':A |(R2 y' x) & (R1 z y')).

End Relations_of_Relations.

   
End Relation_Definition.

Hints Unfold reflexive transitive antisymmetric symmetric : sets v62.

Hints Resolve Build_preorder Build_order Build_equivalence 
	Build_PER preord_refl preord_trans 
	ord_refl ord_trans ord_antisym
	equiv_refl equiv_trans equiv_sym
	per_sym per_trans : sets v62.

Hints Unfold inclusion same_relation commut : sets v62.