summaryrefslogtreecommitdiff
path: root/theories/Numbers/NatInt
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Numbers/NatInt')
-rw-r--r--theories/Numbers/NatInt/NZAdd.v91
-rw-r--r--theories/Numbers/NatInt/NZAddOrder.v166
-rw-r--r--theories/Numbers/NatInt/NZAxioms.v99
-rw-r--r--theories/Numbers/NatInt/NZBase.v84
-rw-r--r--theories/Numbers/NatInt/NZMul.v80
-rw-r--r--theories/Numbers/NatInt/NZMulOrder.v310
-rw-r--r--theories/Numbers/NatInt/NZOrder.v666
7 files changed, 1496 insertions, 0 deletions
diff --git a/theories/Numbers/NatInt/NZAdd.v b/theories/Numbers/NatInt/NZAdd.v
new file mode 100644
index 00000000..c9bb5c95
--- /dev/null
+++ b/theories/Numbers/NatInt/NZAdd.v
@@ -0,0 +1,91 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Evgeny Makarov, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: NZAdd.v 11040 2008-06-03 00:04:16Z letouzey $ i*)
+
+Require Import NZAxioms.
+Require Import NZBase.
+
+Module NZAddPropFunct (Import NZAxiomsMod : NZAxiomsSig).
+Module Export NZBasePropMod := NZBasePropFunct NZAxiomsMod.
+Open Local Scope NatIntScope.
+
+Theorem NZadd_0_r : forall n : NZ, n + 0 == n.
+Proof.
+NZinduct n. now rewrite NZadd_0_l.
+intro. rewrite NZadd_succ_l. now rewrite NZsucc_inj_wd.
+Qed.
+
+Theorem NZadd_succ_r : forall n m : NZ, n + S m == S (n + m).
+Proof.
+intros n m; NZinduct n.
+now do 2 rewrite NZadd_0_l.
+intro. repeat rewrite NZadd_succ_l. now rewrite NZsucc_inj_wd.
+Qed.
+
+Theorem NZadd_comm : forall n m : NZ, n + m == m + n.
+Proof.
+intros n m; NZinduct n.
+rewrite NZadd_0_l; now rewrite NZadd_0_r.
+intros n. rewrite NZadd_succ_l; rewrite NZadd_succ_r. now rewrite NZsucc_inj_wd.
+Qed.
+
+Theorem NZadd_1_l : forall n : NZ, 1 + n == S n.
+Proof.
+intro n; rewrite NZadd_succ_l; now rewrite NZadd_0_l.
+Qed.
+
+Theorem NZadd_1_r : forall n : NZ, n + 1 == S n.
+Proof.
+intro n; rewrite NZadd_comm; apply NZadd_1_l.
+Qed.
+
+Theorem NZadd_assoc : forall n m p : NZ, n + (m + p) == (n + m) + p.
+Proof.
+intros n m p; NZinduct n.
+now do 2 rewrite NZadd_0_l.
+intro. do 3 rewrite NZadd_succ_l. now rewrite NZsucc_inj_wd.
+Qed.
+
+Theorem NZadd_shuffle1 : forall n m p q : NZ, (n + m) + (p + q) == (n + p) + (m + q).
+Proof.
+intros n m p q.
+rewrite <- (NZadd_assoc n m (p + q)). rewrite (NZadd_comm m (p + q)).
+rewrite <- (NZadd_assoc p q m). rewrite (NZadd_assoc n p (q + m)).
+now rewrite (NZadd_comm q m).
+Qed.
+
+Theorem NZadd_shuffle2 : forall n m p q : NZ, (n + m) + (p + q) == (n + q) + (m + p).
+Proof.
+intros n m p q.
+rewrite <- (NZadd_assoc n m (p + q)). rewrite (NZadd_assoc m p q).
+rewrite (NZadd_comm (m + p) q). now rewrite <- (NZadd_assoc n q (m + p)).
+Qed.
+
+Theorem NZadd_cancel_l : forall n m p : NZ, p + n == p + m <-> n == m.
+Proof.
+intros n m p; NZinduct p.
+now do 2 rewrite NZadd_0_l.
+intro p. do 2 rewrite NZadd_succ_l. now rewrite NZsucc_inj_wd.
+Qed.
+
+Theorem NZadd_cancel_r : forall n m p : NZ, n + p == m + p <-> n == m.
+Proof.
+intros n m p. rewrite (NZadd_comm n p); rewrite (NZadd_comm m p).
+apply NZadd_cancel_l.
+Qed.
+
+Theorem NZsub_1_r : forall n : NZ, n - 1 == P n.
+Proof.
+intro n; rewrite NZsub_succ_r; now rewrite NZsub_0_r.
+Qed.
+
+End NZAddPropFunct.
+
diff --git a/theories/Numbers/NatInt/NZAddOrder.v b/theories/Numbers/NatInt/NZAddOrder.v
new file mode 100644
index 00000000..50d1c42f
--- /dev/null
+++ b/theories/Numbers/NatInt/NZAddOrder.v
@@ -0,0 +1,166 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Evgeny Makarov, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: NZAddOrder.v 11040 2008-06-03 00:04:16Z letouzey $ i*)
+
+Require Import NZAxioms.
+Require Import NZOrder.
+
+Module NZAddOrderPropFunct (Import NZOrdAxiomsMod : NZOrdAxiomsSig).
+Module Export NZOrderPropMod := NZOrderPropFunct NZOrdAxiomsMod.
+Open Local Scope NatIntScope.
+
+Theorem NZadd_lt_mono_l : forall n m p : NZ, n < m <-> p + n < p + m.
+Proof.
+intros n m p; NZinduct p.
+now do 2 rewrite NZadd_0_l.
+intro p. do 2 rewrite NZadd_succ_l. now rewrite <- NZsucc_lt_mono.
+Qed.
+
+Theorem NZadd_lt_mono_r : forall n m p : NZ, n < m <-> n + p < m + p.
+Proof.
+intros n m p.
+rewrite (NZadd_comm n p); rewrite (NZadd_comm m p); apply NZadd_lt_mono_l.
+Qed.
+
+Theorem NZadd_lt_mono : forall n m p q : NZ, n < m -> p < q -> n + p < m + q.
+Proof.
+intros n m p q H1 H2.
+apply NZlt_trans with (m + p);
+[now apply -> NZadd_lt_mono_r | now apply -> NZadd_lt_mono_l].
+Qed.
+
+Theorem NZadd_le_mono_l : forall n m p : NZ, n <= m <-> p + n <= p + m.
+Proof.
+intros n m p; NZinduct p.
+now do 2 rewrite NZadd_0_l.
+intro p. do 2 rewrite NZadd_succ_l. now rewrite <- NZsucc_le_mono.
+Qed.
+
+Theorem NZadd_le_mono_r : forall n m p : NZ, n <= m <-> n + p <= m + p.
+Proof.
+intros n m p.
+rewrite (NZadd_comm n p); rewrite (NZadd_comm m p); apply NZadd_le_mono_l.
+Qed.
+
+Theorem NZadd_le_mono : forall n m p q : NZ, n <= m -> p <= q -> n + p <= m + q.
+Proof.
+intros n m p q H1 H2.
+apply NZle_trans with (m + p);
+[now apply -> NZadd_le_mono_r | now apply -> NZadd_le_mono_l].
+Qed.
+
+Theorem NZadd_lt_le_mono : forall n m p q : NZ, n < m -> p <= q -> n + p < m + q.
+Proof.
+intros n m p q H1 H2.
+apply NZlt_le_trans with (m + p);
+[now apply -> NZadd_lt_mono_r | now apply -> NZadd_le_mono_l].
+Qed.
+
+Theorem NZadd_le_lt_mono : forall n m p q : NZ, n <= m -> p < q -> n + p < m + q.
+Proof.
+intros n m p q H1 H2.
+apply NZle_lt_trans with (m + p);
+[now apply -> NZadd_le_mono_r | now apply -> NZadd_lt_mono_l].
+Qed.
+
+Theorem NZadd_pos_pos : forall n m : NZ, 0 < n -> 0 < m -> 0 < n + m.
+Proof.
+intros n m H1 H2. rewrite <- (NZadd_0_l 0). now apply NZadd_lt_mono.
+Qed.
+
+Theorem NZadd_pos_nonneg : forall n m : NZ, 0 < n -> 0 <= m -> 0 < n + m.
+Proof.
+intros n m H1 H2. rewrite <- (NZadd_0_l 0). now apply NZadd_lt_le_mono.
+Qed.
+
+Theorem NZadd_nonneg_pos : forall n m : NZ, 0 <= n -> 0 < m -> 0 < n + m.
+Proof.
+intros n m H1 H2. rewrite <- (NZadd_0_l 0). now apply NZadd_le_lt_mono.
+Qed.
+
+Theorem NZadd_nonneg_nonneg : forall n m : NZ, 0 <= n -> 0 <= m -> 0 <= n + m.
+Proof.
+intros n m H1 H2. rewrite <- (NZadd_0_l 0). now apply NZadd_le_mono.
+Qed.
+
+Theorem NZlt_add_pos_l : forall n m : NZ, 0 < n -> m < n + m.
+Proof.
+intros n m H. apply -> (NZadd_lt_mono_r 0 n m) in H.
+now rewrite NZadd_0_l in H.
+Qed.
+
+Theorem NZlt_add_pos_r : forall n m : NZ, 0 < n -> m < m + n.
+Proof.
+intros; rewrite NZadd_comm; now apply NZlt_add_pos_l.
+Qed.
+
+Theorem NZle_lt_add_lt : forall n m p q : NZ, n <= m -> p + m < q + n -> p < q.
+Proof.
+intros n m p q H1 H2. destruct (NZle_gt_cases q p); [| assumption].
+pose proof (NZadd_le_mono q p n m H H1) as H3. apply <- NZnle_gt in H2.
+false_hyp H3 H2.
+Qed.
+
+Theorem NZlt_le_add_lt : forall n m p q : NZ, n < m -> p + m <= q + n -> p < q.
+Proof.
+intros n m p q H1 H2. destruct (NZle_gt_cases q p); [| assumption].
+pose proof (NZadd_le_lt_mono q p n m H H1) as H3. apply <- NZnle_gt in H3.
+false_hyp H2 H3.
+Qed.
+
+Theorem NZle_le_add_le : forall n m p q : NZ, n <= m -> p + m <= q + n -> p <= q.
+Proof.
+intros n m p q H1 H2. destruct (NZle_gt_cases p q); [assumption |].
+pose proof (NZadd_lt_le_mono q p n m H H1) as H3. apply <- NZnle_gt in H3.
+false_hyp H2 H3.
+Qed.
+
+Theorem NZadd_lt_cases : forall n m p q : NZ, n + m < p + q -> n < p \/ m < q.
+Proof.
+intros n m p q H;
+destruct (NZle_gt_cases p n) as [H1 | H1].
+destruct (NZle_gt_cases q m) as [H2 | H2].
+pose proof (NZadd_le_mono p n q m H1 H2) as H3. apply -> NZle_ngt in H3.
+false_hyp H H3.
+now right. now left.
+Qed.
+
+Theorem NZadd_le_cases : forall n m p q : NZ, n + m <= p + q -> n <= p \/ m <= q.
+Proof.
+intros n m p q H.
+destruct (NZle_gt_cases n p) as [H1 | H1]. now left.
+destruct (NZle_gt_cases m q) as [H2 | H2]. now right.
+assert (H3 : p + q < n + m) by now apply NZadd_lt_mono.
+apply -> NZle_ngt in H. false_hyp H3 H.
+Qed.
+
+Theorem NZadd_neg_cases : forall n m : NZ, n + m < 0 -> n < 0 \/ m < 0.
+Proof.
+intros n m H; apply NZadd_lt_cases; now rewrite NZadd_0_l.
+Qed.
+
+Theorem NZadd_pos_cases : forall n m : NZ, 0 < n + m -> 0 < n \/ 0 < m.
+Proof.
+intros n m H; apply NZadd_lt_cases; now rewrite NZadd_0_l.
+Qed.
+
+Theorem NZadd_nonpos_cases : forall n m : NZ, n + m <= 0 -> n <= 0 \/ m <= 0.
+Proof.
+intros n m H; apply NZadd_le_cases; now rewrite NZadd_0_l.
+Qed.
+
+Theorem NZadd_nonneg_cases : forall n m : NZ, 0 <= n + m -> 0 <= n \/ 0 <= m.
+Proof.
+intros n m H; apply NZadd_le_cases; now rewrite NZadd_0_l.
+Qed.
+
+End NZAddOrderPropFunct.
+
diff --git a/theories/Numbers/NatInt/NZAxioms.v b/theories/Numbers/NatInt/NZAxioms.v
new file mode 100644
index 00000000..26933646
--- /dev/null
+++ b/theories/Numbers/NatInt/NZAxioms.v
@@ -0,0 +1,99 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Evgeny Makarov, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: NZAxioms.v 11040 2008-06-03 00:04:16Z letouzey $ i*)
+
+Require Export NumPrelude.
+
+Module Type NZAxiomsSig.
+
+Parameter Inline NZ : Type.
+Parameter Inline NZeq : NZ -> NZ -> Prop.
+Parameter Inline NZ0 : NZ.
+Parameter Inline NZsucc : NZ -> NZ.
+Parameter Inline NZpred : NZ -> NZ.
+Parameter Inline NZadd : NZ -> NZ -> NZ.
+Parameter Inline NZsub : NZ -> NZ -> NZ.
+Parameter Inline NZmul : NZ -> NZ -> NZ.
+
+(* Unary subtraction (opp) is not defined on natural numbers, so we have
+ it for integers only *)
+
+Axiom NZeq_equiv : equiv NZ NZeq.
+Add Relation NZ NZeq
+ reflexivity proved by (proj1 NZeq_equiv)
+ symmetry proved by (proj2 (proj2 NZeq_equiv))
+ transitivity proved by (proj1 (proj2 NZeq_equiv))
+as NZeq_rel.
+
+Add Morphism NZsucc with signature NZeq ==> NZeq as NZsucc_wd.
+Add Morphism NZpred with signature NZeq ==> NZeq as NZpred_wd.
+Add Morphism NZadd with signature NZeq ==> NZeq ==> NZeq as NZadd_wd.
+Add Morphism NZsub with signature NZeq ==> NZeq ==> NZeq as NZsub_wd.
+Add Morphism NZmul with signature NZeq ==> NZeq ==> NZeq as NZmul_wd.
+
+Delimit Scope NatIntScope with NatInt.
+Open Local Scope NatIntScope.
+Notation "x == y" := (NZeq x y) (at level 70) : NatIntScope.
+Notation "x ~= y" := (~ NZeq x y) (at level 70) : NatIntScope.
+Notation "0" := NZ0 : NatIntScope.
+Notation S := NZsucc.
+Notation P := NZpred.
+Notation "1" := (S 0) : NatIntScope.
+Notation "x + y" := (NZadd x y) : NatIntScope.
+Notation "x - y" := (NZsub x y) : NatIntScope.
+Notation "x * y" := (NZmul x y) : NatIntScope.
+
+Axiom NZpred_succ : forall n : NZ, P (S n) == n.
+
+Axiom NZinduction :
+ forall A : NZ -> Prop, predicate_wd NZeq A ->
+ A 0 -> (forall n : NZ, A n <-> A (S n)) -> forall n : NZ, A n.
+
+Axiom NZadd_0_l : forall n : NZ, 0 + n == n.
+Axiom NZadd_succ_l : forall n m : NZ, (S n) + m == S (n + m).
+
+Axiom NZsub_0_r : forall n : NZ, n - 0 == n.
+Axiom NZsub_succ_r : forall n m : NZ, n - (S m) == P (n - m).
+
+Axiom NZmul_0_l : forall n : NZ, 0 * n == 0.
+Axiom NZmul_succ_l : forall n m : NZ, S n * m == n * m + m.
+
+End NZAxiomsSig.
+
+Module Type NZOrdAxiomsSig.
+Declare Module Export NZAxiomsMod : NZAxiomsSig.
+Open Local Scope NatIntScope.
+
+Parameter Inline NZlt : NZ -> NZ -> Prop.
+Parameter Inline NZle : NZ -> NZ -> Prop.
+Parameter Inline NZmin : NZ -> NZ -> NZ.
+Parameter Inline NZmax : NZ -> NZ -> NZ.
+
+Add Morphism NZlt with signature NZeq ==> NZeq ==> iff as NZlt_wd.
+Add Morphism NZle with signature NZeq ==> NZeq ==> iff as NZle_wd.
+Add Morphism NZmin with signature NZeq ==> NZeq ==> NZeq as NZmin_wd.
+Add Morphism NZmax with signature NZeq ==> NZeq ==> NZeq as NZmax_wd.
+
+Notation "x < y" := (NZlt x y) : NatIntScope.
+Notation "x <= y" := (NZle x y) : NatIntScope.
+Notation "x > y" := (NZlt y x) (only parsing) : NatIntScope.
+Notation "x >= y" := (NZle y x) (only parsing) : NatIntScope.
+
+Axiom NZlt_eq_cases : forall n m : NZ, n <= m <-> n < m \/ n == m.
+Axiom NZlt_irrefl : forall n : NZ, ~ (n < n).
+Axiom NZlt_succ_r : forall n m : NZ, n < S m <-> n <= m.
+
+Axiom NZmin_l : forall n m : NZ, n <= m -> NZmin n m == n.
+Axiom NZmin_r : forall n m : NZ, m <= n -> NZmin n m == m.
+Axiom NZmax_l : forall n m : NZ, m <= n -> NZmax n m == n.
+Axiom NZmax_r : forall n m : NZ, n <= m -> NZmax n m == m.
+
+End NZOrdAxiomsSig.
diff --git a/theories/Numbers/NatInt/NZBase.v b/theories/Numbers/NatInt/NZBase.v
new file mode 100644
index 00000000..8b01e353
--- /dev/null
+++ b/theories/Numbers/NatInt/NZBase.v
@@ -0,0 +1,84 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Evgeny Makarov, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: NZBase.v 10934 2008-05-15 21:58:20Z letouzey $ i*)
+
+Require Import NZAxioms.
+
+Module NZBasePropFunct (Import NZAxiomsMod : NZAxiomsSig).
+Open Local Scope NatIntScope.
+
+Theorem NZneq_symm : forall n m : NZ, n ~= m -> m ~= n.
+Proof.
+intros n m H1 H2; symmetry in H2; false_hyp H2 H1.
+Qed.
+
+Theorem NZE_stepl : forall x y z : NZ, x == y -> x == z -> z == y.
+Proof.
+intros x y z H1 H2; now rewrite <- H1.
+Qed.
+
+Declare Left Step NZE_stepl.
+(* The right step lemma is just the transitivity of NZeq *)
+Declare Right Step (proj1 (proj2 NZeq_equiv)).
+
+Theorem NZsucc_inj : forall n1 n2 : NZ, S n1 == S n2 -> n1 == n2.
+Proof.
+intros n1 n2 H.
+apply NZpred_wd in H. now do 2 rewrite NZpred_succ in H.
+Qed.
+
+(* The following theorem is useful as an equivalence for proving
+bidirectional induction steps *)
+Theorem NZsucc_inj_wd : forall n1 n2 : NZ, S n1 == S n2 <-> n1 == n2.
+Proof.
+intros; split.
+apply NZsucc_inj.
+apply NZsucc_wd.
+Qed.
+
+Theorem NZsucc_inj_wd_neg : forall n m : NZ, S n ~= S m <-> n ~= m.
+Proof.
+intros; now rewrite NZsucc_inj_wd.
+Qed.
+
+(* We cannot prove that the predecessor is injective, nor that it is
+left-inverse to the successor at this point *)
+
+Section CentralInduction.
+
+Variable A : predicate NZ.
+
+Hypothesis A_wd : predicate_wd NZeq A.
+
+Add Morphism A with signature NZeq ==> iff as A_morph.
+Proof. apply A_wd. Qed.
+
+Theorem NZcentral_induction :
+ forall z : NZ, A z ->
+ (forall n : NZ, A n <-> A (S n)) ->
+ forall n : NZ, A n.
+Proof.
+intros z Base Step; revert Base; pattern z; apply NZinduction.
+solve_predicate_wd.
+intro; now apply NZinduction.
+intro; pose proof (Step n); tauto.
+Qed.
+
+End CentralInduction.
+
+Tactic Notation "NZinduct" ident(n) :=
+ induction_maker n ltac:(apply NZinduction).
+
+Tactic Notation "NZinduct" ident(n) constr(u) :=
+ induction_maker n ltac:(apply NZcentral_induction with (z := u)).
+
+End NZBasePropFunct.
+
diff --git a/theories/Numbers/NatInt/NZMul.v b/theories/Numbers/NatInt/NZMul.v
new file mode 100644
index 00000000..fda8b7a3
--- /dev/null
+++ b/theories/Numbers/NatInt/NZMul.v
@@ -0,0 +1,80 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Evgeny Makarov, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: NZMul.v 11040 2008-06-03 00:04:16Z letouzey $ i*)
+
+Require Import NZAxioms.
+Require Import NZAdd.
+
+Module NZMulPropFunct (Import NZAxiomsMod : NZAxiomsSig).
+Module Export NZAddPropMod := NZAddPropFunct NZAxiomsMod.
+Open Local Scope NatIntScope.
+
+Theorem NZmul_0_r : forall n : NZ, n * 0 == 0.
+Proof.
+NZinduct n.
+now rewrite NZmul_0_l.
+intro. rewrite NZmul_succ_l. now rewrite NZadd_0_r.
+Qed.
+
+Theorem NZmul_succ_r : forall n m : NZ, n * (S m) == n * m + n.
+Proof.
+intros n m; NZinduct n.
+do 2 rewrite NZmul_0_l; now rewrite NZadd_0_l.
+intro n. do 2 rewrite NZmul_succ_l. do 2 rewrite NZadd_succ_r.
+rewrite NZsucc_inj_wd. rewrite <- (NZadd_assoc (n * m) m n).
+rewrite (NZadd_comm m n). rewrite NZadd_assoc.
+now rewrite NZadd_cancel_r.
+Qed.
+
+Theorem NZmul_comm : forall n m : NZ, n * m == m * n.
+Proof.
+intros n m; NZinduct n.
+rewrite NZmul_0_l; now rewrite NZmul_0_r.
+intro. rewrite NZmul_succ_l; rewrite NZmul_succ_r. now rewrite NZadd_cancel_r.
+Qed.
+
+Theorem NZmul_add_distr_r : forall n m p : NZ, (n + m) * p == n * p + m * p.
+Proof.
+intros n m p; NZinduct n.
+rewrite NZmul_0_l. now do 2 rewrite NZadd_0_l.
+intro n. rewrite NZadd_succ_l. do 2 rewrite NZmul_succ_l.
+rewrite <- (NZadd_assoc (n * p) p (m * p)).
+rewrite (NZadd_comm p (m * p)). rewrite (NZadd_assoc (n * p) (m * p) p).
+now rewrite NZadd_cancel_r.
+Qed.
+
+Theorem NZmul_add_distr_l : forall n m p : NZ, n * (m + p) == n * m + n * p.
+Proof.
+intros n m p.
+rewrite (NZmul_comm n (m + p)). rewrite (NZmul_comm n m).
+rewrite (NZmul_comm n p). apply NZmul_add_distr_r.
+Qed.
+
+Theorem NZmul_assoc : forall n m p : NZ, n * (m * p) == (n * m) * p.
+Proof.
+intros n m p; NZinduct n.
+now do 3 rewrite NZmul_0_l.
+intro n. do 2 rewrite NZmul_succ_l. rewrite NZmul_add_distr_r.
+now rewrite NZadd_cancel_r.
+Qed.
+
+Theorem NZmul_1_l : forall n : NZ, 1 * n == n.
+Proof.
+intro n. rewrite NZmul_succ_l; rewrite NZmul_0_l. now rewrite NZadd_0_l.
+Qed.
+
+Theorem NZmul_1_r : forall n : NZ, n * 1 == n.
+Proof.
+intro n; rewrite NZmul_comm; apply NZmul_1_l.
+Qed.
+
+End NZMulPropFunct.
+
diff --git a/theories/Numbers/NatInt/NZMulOrder.v b/theories/Numbers/NatInt/NZMulOrder.v
new file mode 100644
index 00000000..c707bf73
--- /dev/null
+++ b/theories/Numbers/NatInt/NZMulOrder.v
@@ -0,0 +1,310 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Evgeny Makarov, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: NZMulOrder.v 11040 2008-06-03 00:04:16Z letouzey $ i*)
+
+Require Import NZAxioms.
+Require Import NZAddOrder.
+
+Module NZMulOrderPropFunct (Import NZOrdAxiomsMod : NZOrdAxiomsSig).
+Module Export NZAddOrderPropMod := NZAddOrderPropFunct NZOrdAxiomsMod.
+Open Local Scope NatIntScope.
+
+Theorem NZmul_lt_pred :
+ forall p q n m : NZ, S p == q -> (p * n < p * m <-> q * n + m < q * m + n).
+Proof.
+intros p q n m H. rewrite <- H. do 2 rewrite NZmul_succ_l.
+rewrite <- (NZadd_assoc (p * n) n m).
+rewrite <- (NZadd_assoc (p * m) m n).
+rewrite (NZadd_comm n m). now rewrite <- NZadd_lt_mono_r.
+Qed.
+
+Theorem NZmul_lt_mono_pos_l : forall p n m : NZ, 0 < p -> (n < m <-> p * n < p * m).
+Proof.
+NZord_induct p.
+intros n m H; false_hyp H NZlt_irrefl.
+intros p H IH n m H1. do 2 rewrite NZmul_succ_l.
+le_elim H. assert (LR : forall n m : NZ, n < m -> p * n + n < p * m + m).
+intros n1 m1 H2. apply NZadd_lt_mono; [now apply -> IH | assumption].
+split; [apply LR |]. intro H2. apply -> NZlt_dne; intro H3.
+apply <- NZle_ngt in H3. le_elim H3.
+apply NZlt_asymm in H2. apply H2. now apply LR.
+rewrite H3 in H2; false_hyp H2 NZlt_irrefl.
+rewrite <- H; do 2 rewrite NZmul_0_l; now do 2 rewrite NZadd_0_l.
+intros p H1 _ n m H2. apply NZlt_asymm in H1. false_hyp H2 H1.
+Qed.
+
+Theorem NZmul_lt_mono_pos_r : forall p n m : NZ, 0 < p -> (n < m <-> n * p < m * p).
+Proof.
+intros p n m.
+rewrite (NZmul_comm n p); rewrite (NZmul_comm m p). now apply NZmul_lt_mono_pos_l.
+Qed.
+
+Theorem NZmul_lt_mono_neg_l : forall p n m : NZ, p < 0 -> (n < m <-> p * m < p * n).
+Proof.
+NZord_induct p.
+intros n m H; false_hyp H NZlt_irrefl.
+intros p H1 _ n m H2. apply NZlt_succ_l in H2. apply <- NZnle_gt in H2. false_hyp H1 H2.
+intros p H IH n m H1. apply <- NZle_succ_l in H.
+le_elim H. assert (LR : forall n m : NZ, n < m -> p * m < p * n).
+intros n1 m1 H2. apply (NZle_lt_add_lt n1 m1).
+now apply NZlt_le_incl. do 2 rewrite <- NZmul_succ_l. now apply -> IH.
+split; [apply LR |]. intro H2. apply -> NZlt_dne; intro H3.
+apply <- NZle_ngt in H3. le_elim H3.
+apply NZlt_asymm in H2. apply H2. now apply LR.
+rewrite H3 in H2; false_hyp H2 NZlt_irrefl.
+rewrite (NZmul_lt_pred p (S p)) by reflexivity.
+rewrite H; do 2 rewrite NZmul_0_l; now do 2 rewrite NZadd_0_l.
+Qed.
+
+Theorem NZmul_lt_mono_neg_r : forall p n m : NZ, p < 0 -> (n < m <-> m * p < n * p).
+Proof.
+intros p n m.
+rewrite (NZmul_comm n p); rewrite (NZmul_comm m p). now apply NZmul_lt_mono_neg_l.
+Qed.
+
+Theorem NZmul_le_mono_nonneg_l : forall n m p : NZ, 0 <= p -> n <= m -> p * n <= p * m.
+Proof.
+intros n m p H1 H2. le_elim H1.
+le_elim H2. apply NZlt_le_incl. now apply -> NZmul_lt_mono_pos_l.
+apply NZeq_le_incl; now rewrite H2.
+apply NZeq_le_incl; rewrite <- H1; now do 2 rewrite NZmul_0_l.
+Qed.
+
+Theorem NZmul_le_mono_nonpos_l : forall n m p : NZ, p <= 0 -> n <= m -> p * m <= p * n.
+Proof.
+intros n m p H1 H2. le_elim H1.
+le_elim H2. apply NZlt_le_incl. now apply -> NZmul_lt_mono_neg_l.
+apply NZeq_le_incl; now rewrite H2.
+apply NZeq_le_incl; rewrite H1; now do 2 rewrite NZmul_0_l.
+Qed.
+
+Theorem NZmul_le_mono_nonneg_r : forall n m p : NZ, 0 <= p -> n <= m -> n * p <= m * p.
+Proof.
+intros n m p H1 H2; rewrite (NZmul_comm n p); rewrite (NZmul_comm m p);
+now apply NZmul_le_mono_nonneg_l.
+Qed.
+
+Theorem NZmul_le_mono_nonpos_r : forall n m p : NZ, p <= 0 -> n <= m -> m * p <= n * p.
+Proof.
+intros n m p H1 H2; rewrite (NZmul_comm n p); rewrite (NZmul_comm m p);
+now apply NZmul_le_mono_nonpos_l.
+Qed.
+
+Theorem NZmul_cancel_l : forall n m p : NZ, p ~= 0 -> (p * n == p * m <-> n == m).
+Proof.
+intros n m p H; split; intro H1.
+destruct (NZlt_trichotomy p 0) as [H2 | [H2 | H2]].
+apply -> NZeq_dne; intro H3. apply -> NZlt_gt_cases in H3. destruct H3 as [H3 | H3].
+assert (H4 : p * m < p * n); [now apply -> NZmul_lt_mono_neg_l |].
+rewrite H1 in H4; false_hyp H4 NZlt_irrefl.
+assert (H4 : p * n < p * m); [now apply -> NZmul_lt_mono_neg_l |].
+rewrite H1 in H4; false_hyp H4 NZlt_irrefl.
+false_hyp H2 H.
+apply -> NZeq_dne; intro H3. apply -> NZlt_gt_cases in H3. destruct H3 as [H3 | H3].
+assert (H4 : p * n < p * m) by (now apply -> NZmul_lt_mono_pos_l).
+rewrite H1 in H4; false_hyp H4 NZlt_irrefl.
+assert (H4 : p * m < p * n) by (now apply -> NZmul_lt_mono_pos_l).
+rewrite H1 in H4; false_hyp H4 NZlt_irrefl.
+now rewrite H1.
+Qed.
+
+Theorem NZmul_cancel_r : forall n m p : NZ, p ~= 0 -> (n * p == m * p <-> n == m).
+Proof.
+intros n m p. rewrite (NZmul_comm n p), (NZmul_comm m p); apply NZmul_cancel_l.
+Qed.
+
+Theorem NZmul_id_l : forall n m : NZ, m ~= 0 -> (n * m == m <-> n == 1).
+Proof.
+intros n m H.
+stepl (n * m == 1 * m) by now rewrite NZmul_1_l. now apply NZmul_cancel_r.
+Qed.
+
+Theorem NZmul_id_r : forall n m : NZ, n ~= 0 -> (n * m == n <-> m == 1).
+Proof.
+intros n m; rewrite NZmul_comm; apply NZmul_id_l.
+Qed.
+
+Theorem NZmul_le_mono_pos_l : forall n m p : NZ, 0 < p -> (n <= m <-> p * n <= p * m).
+Proof.
+intros n m p H; do 2 rewrite NZlt_eq_cases.
+rewrite (NZmul_lt_mono_pos_l p n m) by assumption.
+now rewrite -> (NZmul_cancel_l n m p) by
+(intro H1; rewrite H1 in H; false_hyp H NZlt_irrefl).
+Qed.
+
+Theorem NZmul_le_mono_pos_r : forall n m p : NZ, 0 < p -> (n <= m <-> n * p <= m * p).
+Proof.
+intros n m p. rewrite (NZmul_comm n p); rewrite (NZmul_comm m p);
+apply NZmul_le_mono_pos_l.
+Qed.
+
+Theorem NZmul_le_mono_neg_l : forall n m p : NZ, p < 0 -> (n <= m <-> p * m <= p * n).
+Proof.
+intros n m p H; do 2 rewrite NZlt_eq_cases.
+rewrite (NZmul_lt_mono_neg_l p n m); [| assumption].
+rewrite -> (NZmul_cancel_l m n p) by (intro H1; rewrite H1 in H; false_hyp H NZlt_irrefl).
+now setoid_replace (n == m) with (m == n) using relation iff by (split; now intro).
+Qed.
+
+Theorem NZmul_le_mono_neg_r : forall n m p : NZ, p < 0 -> (n <= m <-> m * p <= n * p).
+Proof.
+intros n m p. rewrite (NZmul_comm n p); rewrite (NZmul_comm m p);
+apply NZmul_le_mono_neg_l.
+Qed.
+
+Theorem NZmul_lt_mono_nonneg :
+ forall n m p q : NZ, 0 <= n -> n < m -> 0 <= p -> p < q -> n * p < m * q.
+Proof.
+intros n m p q H1 H2 H3 H4.
+apply NZle_lt_trans with (m * p).
+apply NZmul_le_mono_nonneg_r; [assumption | now apply NZlt_le_incl].
+apply -> NZmul_lt_mono_pos_l; [assumption | now apply NZle_lt_trans with n].
+Qed.
+
+(* There are still many variants of the theorem above. One can assume 0 < n
+or 0 < p or n <= m or p <= q. *)
+
+Theorem NZmul_le_mono_nonneg :
+ forall n m p q : NZ, 0 <= n -> n <= m -> 0 <= p -> p <= q -> n * p <= m * q.
+Proof.
+intros n m p q H1 H2 H3 H4.
+le_elim H2; le_elim H4.
+apply NZlt_le_incl; now apply NZmul_lt_mono_nonneg.
+rewrite <- H4; apply NZmul_le_mono_nonneg_r; [assumption | now apply NZlt_le_incl].
+rewrite <- H2; apply NZmul_le_mono_nonneg_l; [assumption | now apply NZlt_le_incl].
+rewrite H2; rewrite H4; now apply NZeq_le_incl.
+Qed.
+
+Theorem NZmul_pos_pos : forall n m : NZ, 0 < n -> 0 < m -> 0 < n * m.
+Proof.
+intros n m H1 H2.
+rewrite <- (NZmul_0_l m). now apply -> NZmul_lt_mono_pos_r.
+Qed.
+
+Theorem NZmul_neg_neg : forall n m : NZ, n < 0 -> m < 0 -> 0 < n * m.
+Proof.
+intros n m H1 H2.
+rewrite <- (NZmul_0_l m). now apply -> NZmul_lt_mono_neg_r.
+Qed.
+
+Theorem NZmul_pos_neg : forall n m : NZ, 0 < n -> m < 0 -> n * m < 0.
+Proof.
+intros n m H1 H2.
+rewrite <- (NZmul_0_l m). now apply -> NZmul_lt_mono_neg_r.
+Qed.
+
+Theorem NZmul_neg_pos : forall n m : NZ, n < 0 -> 0 < m -> n * m < 0.
+Proof.
+intros; rewrite NZmul_comm; now apply NZmul_pos_neg.
+Qed.
+
+Theorem NZlt_1_mul_pos : forall n m : NZ, 1 < n -> 0 < m -> 1 < n * m.
+Proof.
+intros n m H1 H2. apply -> (NZmul_lt_mono_pos_r m) in H1.
+rewrite NZmul_1_l in H1. now apply NZlt_1_l with m.
+assumption.
+Qed.
+
+Theorem NZeq_mul_0 : forall n m : NZ, n * m == 0 <-> n == 0 \/ m == 0.
+Proof.
+intros n m; split.
+intro H; destruct (NZlt_trichotomy n 0) as [H1 | [H1 | H1]];
+destruct (NZlt_trichotomy m 0) as [H2 | [H2 | H2]];
+try (now right); try (now left).
+elimtype False; now apply (NZlt_neq 0 (n * m)); [apply NZmul_neg_neg |].
+elimtype False; now apply (NZlt_neq (n * m) 0); [apply NZmul_neg_pos |].
+elimtype False; now apply (NZlt_neq (n * m) 0); [apply NZmul_pos_neg |].
+elimtype False; now apply (NZlt_neq 0 (n * m)); [apply NZmul_pos_pos |].
+intros [H | H]. now rewrite H, NZmul_0_l. now rewrite H, NZmul_0_r.
+Qed.
+
+Theorem NZneq_mul_0 : forall n m : NZ, n ~= 0 /\ m ~= 0 <-> n * m ~= 0.
+Proof.
+intros n m; split; intro H.
+intro H1; apply -> NZeq_mul_0 in H1. tauto.
+split; intro H1; rewrite H1 in H;
+(rewrite NZmul_0_l in H || rewrite NZmul_0_r in H); now apply H.
+Qed.
+
+Theorem NZeq_square_0 : forall n : NZ, n * n == 0 <-> n == 0.
+Proof.
+intro n; rewrite NZeq_mul_0; tauto.
+Qed.
+
+Theorem NZeq_mul_0_l : forall n m : NZ, n * m == 0 -> m ~= 0 -> n == 0.
+Proof.
+intros n m H1 H2. apply -> NZeq_mul_0 in H1. destruct H1 as [H1 | H1].
+assumption. false_hyp H1 H2.
+Qed.
+
+Theorem NZeq_mul_0_r : forall n m : NZ, n * m == 0 -> n ~= 0 -> m == 0.
+Proof.
+intros n m H1 H2; apply -> NZeq_mul_0 in H1. destruct H1 as [H1 | H1].
+false_hyp H1 H2. assumption.
+Qed.
+
+Theorem NZlt_0_mul : forall n m : NZ, 0 < n * m <-> (0 < n /\ 0 < m) \/ (m < 0 /\ n < 0).
+Proof.
+intros n m; split; [intro H | intros [[H1 H2] | [H1 H2]]].
+destruct (NZlt_trichotomy n 0) as [H1 | [H1 | H1]];
+[| rewrite H1 in H; rewrite NZmul_0_l in H; false_hyp H NZlt_irrefl |];
+(destruct (NZlt_trichotomy m 0) as [H2 | [H2 | H2]];
+[| rewrite H2 in H; rewrite NZmul_0_r in H; false_hyp H NZlt_irrefl |]);
+try (left; now split); try (right; now split).
+assert (H3 : n * m < 0) by now apply NZmul_neg_pos.
+elimtype False; now apply (NZlt_asymm (n * m) 0).
+assert (H3 : n * m < 0) by now apply NZmul_pos_neg.
+elimtype False; now apply (NZlt_asymm (n * m) 0).
+now apply NZmul_pos_pos. now apply NZmul_neg_neg.
+Qed.
+
+Theorem NZsquare_lt_mono_nonneg : forall n m : NZ, 0 <= n -> n < m -> n * n < m * m.
+Proof.
+intros n m H1 H2. now apply NZmul_lt_mono_nonneg.
+Qed.
+
+Theorem NZsquare_le_mono_nonneg : forall n m : NZ, 0 <= n -> n <= m -> n * n <= m * m.
+Proof.
+intros n m H1 H2. now apply NZmul_le_mono_nonneg.
+Qed.
+
+(* The converse theorems require nonnegativity (or nonpositivity) of the
+other variable *)
+
+Theorem NZsquare_lt_simpl_nonneg : forall n m : NZ, 0 <= m -> n * n < m * m -> n < m.
+Proof.
+intros n m H1 H2. destruct (NZlt_ge_cases n 0).
+now apply NZlt_le_trans with 0.
+destruct (NZlt_ge_cases n m).
+assumption. assert (F : m * m <= n * n) by now apply NZsquare_le_mono_nonneg.
+apply -> NZle_ngt in F. false_hyp H2 F.
+Qed.
+
+Theorem NZsquare_le_simpl_nonneg : forall n m : NZ, 0 <= m -> n * n <= m * m -> n <= m.
+Proof.
+intros n m H1 H2. destruct (NZlt_ge_cases n 0).
+apply NZlt_le_incl; now apply NZlt_le_trans with 0.
+destruct (NZle_gt_cases n m).
+assumption. assert (F : m * m < n * n) by now apply NZsquare_lt_mono_nonneg.
+apply -> NZlt_nge in F. false_hyp H2 F.
+Qed.
+
+Theorem NZmul_2_mono_l : forall n m : NZ, n < m -> 1 + (1 + 1) * n < (1 + 1) * m.
+Proof.
+intros n m H. apply <- NZle_succ_l in H.
+apply -> (NZmul_le_mono_pos_l (S n) m (1 + 1)) in H.
+repeat rewrite NZmul_add_distr_r in *; repeat rewrite NZmul_1_l in *.
+repeat rewrite NZadd_succ_r in *. repeat rewrite NZadd_succ_l in *. rewrite NZadd_0_l.
+now apply -> NZle_succ_l.
+apply NZadd_pos_pos; now apply NZlt_succ_diag_r.
+Qed.
+
+End NZMulOrderPropFunct.
diff --git a/theories/Numbers/NatInt/NZOrder.v b/theories/Numbers/NatInt/NZOrder.v
new file mode 100644
index 00000000..15004824
--- /dev/null
+++ b/theories/Numbers/NatInt/NZOrder.v
@@ -0,0 +1,666 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Evgeny Makarov, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: NZOrder.v 11040 2008-06-03 00:04:16Z letouzey $ i*)
+
+Require Import NZAxioms.
+Require Import NZMul.
+Require Import Decidable.
+
+Module NZOrderPropFunct (Import NZOrdAxiomsMod : NZOrdAxiomsSig).
+Module Export NZMulPropMod := NZMulPropFunct NZAxiomsMod.
+Open Local Scope NatIntScope.
+
+Ltac le_elim H := rewrite NZlt_eq_cases in H; destruct H as [H | H].
+
+Theorem NZlt_le_incl : forall n m : NZ, n < m -> n <= m.
+Proof.
+intros; apply <- NZlt_eq_cases; now left.
+Qed.
+
+Theorem NZeq_le_incl : forall n m : NZ, n == m -> n <= m.
+Proof.
+intros; apply <- NZlt_eq_cases; now right.
+Qed.
+
+Lemma NZlt_stepl : forall x y z : NZ, x < y -> x == z -> z < y.
+Proof.
+intros x y z H1 H2; now rewrite <- H2.
+Qed.
+
+Lemma NZlt_stepr : forall x y z : NZ, x < y -> y == z -> x < z.
+Proof.
+intros x y z H1 H2; now rewrite <- H2.
+Qed.
+
+Lemma NZle_stepl : forall x y z : NZ, x <= y -> x == z -> z <= y.
+Proof.
+intros x y z H1 H2; now rewrite <- H2.
+Qed.
+
+Lemma NZle_stepr : forall x y z : NZ, x <= y -> y == z -> x <= z.
+Proof.
+intros x y z H1 H2; now rewrite <- H2.
+Qed.
+
+Declare Left Step NZlt_stepl.
+Declare Right Step NZlt_stepr.
+Declare Left Step NZle_stepl.
+Declare Right Step NZle_stepr.
+
+Theorem NZlt_neq : forall n m : NZ, n < m -> n ~= m.
+Proof.
+intros n m H1 H2; rewrite H2 in H1; false_hyp H1 NZlt_irrefl.
+Qed.
+
+Theorem NZle_neq : forall n m : NZ, n < m <-> n <= m /\ n ~= m.
+Proof.
+intros n m; split; [intro H | intros [H1 H2]].
+split. now apply NZlt_le_incl. now apply NZlt_neq.
+le_elim H1. assumption. false_hyp H1 H2.
+Qed.
+
+Theorem NZle_refl : forall n : NZ, n <= n.
+Proof.
+intro; now apply NZeq_le_incl.
+Qed.
+
+Theorem NZlt_succ_diag_r : forall n : NZ, n < S n.
+Proof.
+intro n. rewrite NZlt_succ_r. now apply NZeq_le_incl.
+Qed.
+
+Theorem NZle_succ_diag_r : forall n : NZ, n <= S n.
+Proof.
+intro; apply NZlt_le_incl; apply NZlt_succ_diag_r.
+Qed.
+
+Theorem NZlt_0_1 : 0 < 1.
+Proof.
+apply NZlt_succ_diag_r.
+Qed.
+
+Theorem NZle_0_1 : 0 <= 1.
+Proof.
+apply NZle_succ_diag_r.
+Qed.
+
+Theorem NZlt_lt_succ_r : forall n m : NZ, n < m -> n < S m.
+Proof.
+intros. rewrite NZlt_succ_r. now apply NZlt_le_incl.
+Qed.
+
+Theorem NZle_le_succ_r : forall n m : NZ, n <= m -> n <= S m.
+Proof.
+intros n m H. rewrite <- NZlt_succ_r in H. now apply NZlt_le_incl.
+Qed.
+
+Theorem NZle_succ_r : forall n m : NZ, n <= S m <-> n <= m \/ n == S m.
+Proof.
+intros n m; rewrite NZlt_eq_cases. now rewrite NZlt_succ_r.
+Qed.
+
+(* The following theorem is a special case of neq_succ_iter_l below,
+but we prove it separately *)
+
+Theorem NZneq_succ_diag_l : forall n : NZ, S n ~= n.
+Proof.
+intros n H. pose proof (NZlt_succ_diag_r n) as H1. rewrite H in H1.
+false_hyp H1 NZlt_irrefl.
+Qed.
+
+Theorem NZneq_succ_diag_r : forall n : NZ, n ~= S n.
+Proof.
+intro n; apply NZneq_symm; apply NZneq_succ_diag_l.
+Qed.
+
+Theorem NZnlt_succ_diag_l : forall n : NZ, ~ S n < n.
+Proof.
+intros n H; apply NZlt_lt_succ_r in H. false_hyp H NZlt_irrefl.
+Qed.
+
+Theorem NZnle_succ_diag_l : forall n : NZ, ~ S n <= n.
+Proof.
+intros n H; le_elim H.
+false_hyp H NZnlt_succ_diag_l. false_hyp H NZneq_succ_diag_l.
+Qed.
+
+Theorem NZle_succ_l : forall n m : NZ, S n <= m <-> n < m.
+Proof.
+intro n; NZinduct m n.
+setoid_replace (n < n) with False using relation iff by
+ (apply -> neg_false; apply NZlt_irrefl).
+now setoid_replace (S n <= n) with False using relation iff by
+ (apply -> neg_false; apply NZnle_succ_diag_l).
+intro m. rewrite NZlt_succ_r. rewrite NZle_succ_r.
+rewrite NZsucc_inj_wd.
+rewrite (NZlt_eq_cases n m).
+rewrite or_cancel_r.
+reflexivity.
+intros H1 H2; rewrite H2 in H1; false_hyp H1 NZnle_succ_diag_l.
+apply NZlt_neq.
+Qed.
+
+Theorem NZlt_succ_l : forall n m : NZ, S n < m -> n < m.
+Proof.
+intros n m H; apply -> NZle_succ_l; now apply NZlt_le_incl.
+Qed.
+
+Theorem NZsucc_lt_mono : forall n m : NZ, n < m <-> S n < S m.
+Proof.
+intros n m. rewrite <- NZle_succ_l. symmetry. apply NZlt_succ_r.
+Qed.
+
+Theorem NZsucc_le_mono : forall n m : NZ, n <= m <-> S n <= S m.
+Proof.
+intros n m. do 2 rewrite NZlt_eq_cases.
+rewrite <- NZsucc_lt_mono; now rewrite NZsucc_inj_wd.
+Qed.
+
+Theorem NZlt_asymm : forall n m, n < m -> ~ m < n.
+Proof.
+intros n m; NZinduct n m.
+intros H _; false_hyp H NZlt_irrefl.
+intro n; split; intros H H1 H2.
+apply NZlt_succ_l in H1. apply -> NZlt_succ_r in H2. le_elim H2.
+now apply H. rewrite H2 in H1; false_hyp H1 NZlt_irrefl.
+apply NZlt_lt_succ_r in H2. apply <- NZle_succ_l in H1. le_elim H1.
+now apply H. rewrite H1 in H2; false_hyp H2 NZlt_irrefl.
+Qed.
+
+Theorem NZlt_trans : forall n m p : NZ, n < m -> m < p -> n < p.
+Proof.
+intros n m p; NZinduct p m.
+intros _ H; false_hyp H NZlt_irrefl.
+intro p. do 2 rewrite NZlt_succ_r.
+split; intros H H1 H2.
+apply NZlt_le_incl; le_elim H2; [now apply H | now rewrite H2 in H1].
+assert (n <= p) as H3. apply H. assumption. now apply NZlt_le_incl.
+le_elim H3. assumption. rewrite <- H3 in H2.
+elimtype False; now apply (NZlt_asymm n m).
+Qed.
+
+Theorem NZle_trans : forall n m p : NZ, n <= m -> m <= p -> n <= p.
+Proof.
+intros n m p H1 H2; le_elim H1.
+le_elim H2. apply NZlt_le_incl; now apply NZlt_trans with (m := m).
+apply NZlt_le_incl; now rewrite <- H2. now rewrite H1.
+Qed.
+
+Theorem NZle_lt_trans : forall n m p : NZ, n <= m -> m < p -> n < p.
+Proof.
+intros n m p H1 H2; le_elim H1.
+now apply NZlt_trans with (m := m). now rewrite H1.
+Qed.
+
+Theorem NZlt_le_trans : forall n m p : NZ, n < m -> m <= p -> n < p.
+Proof.
+intros n m p H1 H2; le_elim H2.
+now apply NZlt_trans with (m := m). now rewrite <- H2.
+Qed.
+
+Theorem NZle_antisymm : forall n m : NZ, n <= m -> m <= n -> n == m.
+Proof.
+intros n m H1 H2; now (le_elim H1; le_elim H2);
+[elimtype False; apply (NZlt_asymm n m) | | |].
+Qed.
+
+Theorem NZlt_1_l : forall n m : NZ, 0 < n -> n < m -> 1 < m.
+Proof.
+intros n m H1 H2. apply <- NZle_succ_l in H1. now apply NZle_lt_trans with n.
+Qed.
+
+(** Trichotomy, decidability, and double negation elimination *)
+
+Theorem NZlt_trichotomy : forall n m : NZ, n < m \/ n == m \/ m < n.
+Proof.
+intros n m; NZinduct n m.
+right; now left.
+intro n; rewrite NZlt_succ_r. stepr ((S n < m \/ S n == m) \/ m <= n) by tauto.
+rewrite <- (NZlt_eq_cases (S n) m).
+setoid_replace (n == m) with (m == n) using relation iff by now split.
+stepl (n < m \/ m < n \/ m == n) by tauto. rewrite <- NZlt_eq_cases.
+apply or_iff_compat_r. symmetry; apply NZle_succ_l.
+Qed.
+
+(* Decidability of equality, even though true in each finite ring, does not
+have a uniform proof. Otherwise, the proof for two fixed numbers would
+reduce to a normal form that will say if the numbers are equal or not,
+which cannot be true in all finite rings. Therefore, we prove decidability
+in the presence of order. *)
+
+Theorem NZeq_dec : forall n m : NZ, decidable (n == m).
+Proof.
+intros n m; destruct (NZlt_trichotomy n m) as [H | [H | H]].
+right; intro H1; rewrite H1 in H; false_hyp H NZlt_irrefl.
+now left.
+right; intro H1; rewrite H1 in H; false_hyp H NZlt_irrefl.
+Qed.
+
+(* DNE stands for double-negation elimination *)
+
+Theorem NZeq_dne : forall n m, ~ ~ n == m <-> n == m.
+Proof.
+intros n m; split; intro H.
+destruct (NZeq_dec n m) as [H1 | H1].
+assumption. false_hyp H1 H.
+intro H1; now apply H1.
+Qed.
+
+Theorem NZlt_gt_cases : forall n m : NZ, n ~= m <-> n < m \/ n > m.
+Proof.
+intros n m; split.
+pose proof (NZlt_trichotomy n m); tauto.
+intros H H1; destruct H as [H | H]; rewrite H1 in H; false_hyp H NZlt_irrefl.
+Qed.
+
+Theorem NZle_gt_cases : forall n m : NZ, n <= m \/ n > m.
+Proof.
+intros n m; destruct (NZlt_trichotomy n m) as [H | [H | H]].
+left; now apply NZlt_le_incl. left; now apply NZeq_le_incl. now right.
+Qed.
+
+(* The following theorem is cleary redundant, but helps not to
+remember whether one has to say le_gt_cases or lt_ge_cases *)
+
+Theorem NZlt_ge_cases : forall n m : NZ, n < m \/ n >= m.
+Proof.
+intros n m; destruct (NZle_gt_cases m n); try (now left); try (now right).
+Qed.
+
+Theorem NZle_ge_cases : forall n m : NZ, n <= m \/ n >= m.
+Proof.
+intros n m; destruct (NZle_gt_cases n m) as [H | H].
+now left. right; now apply NZlt_le_incl.
+Qed.
+
+Theorem NZle_ngt : forall n m : NZ, n <= m <-> ~ n > m.
+Proof.
+intros n m. split; intro H; [intro H1 |].
+eapply NZle_lt_trans in H; [| eassumption ..]. false_hyp H NZlt_irrefl.
+destruct (NZle_gt_cases n m) as [H1 | H1].
+assumption. false_hyp H1 H.
+Qed.
+
+(* Redundant but useful *)
+
+Theorem NZnlt_ge : forall n m : NZ, ~ n < m <-> n >= m.
+Proof.
+intros n m; symmetry; apply NZle_ngt.
+Qed.
+
+Theorem NZlt_dec : forall n m : NZ, decidable (n < m).
+Proof.
+intros n m; destruct (NZle_gt_cases m n);
+[right; now apply -> NZle_ngt | now left].
+Qed.
+
+Theorem NZlt_dne : forall n m, ~ ~ n < m <-> n < m.
+Proof.
+intros n m; split; intro H;
+[destruct (NZlt_dec n m) as [H1 | H1]; [assumption | false_hyp H1 H] |
+intro H1; false_hyp H H1].
+Qed.
+
+Theorem NZnle_gt : forall n m : NZ, ~ n <= m <-> n > m.
+Proof.
+intros n m. rewrite NZle_ngt. apply NZlt_dne.
+Qed.
+
+(* Redundant but useful *)
+
+Theorem NZlt_nge : forall n m : NZ, n < m <-> ~ n >= m.
+Proof.
+intros n m; symmetry; apply NZnle_gt.
+Qed.
+
+Theorem NZle_dec : forall n m : NZ, decidable (n <= m).
+Proof.
+intros n m; destruct (NZle_gt_cases n m);
+[now left | right; now apply <- NZnle_gt].
+Qed.
+
+Theorem NZle_dne : forall n m : NZ, ~ ~ n <= m <-> n <= m.
+Proof.
+intros n m; split; intro H;
+[destruct (NZle_dec n m) as [H1 | H1]; [assumption | false_hyp H1 H] |
+intro H1; false_hyp H H1].
+Qed.
+
+Theorem NZnlt_succ_r : forall n m : NZ, ~ m < S n <-> n < m.
+Proof.
+intros n m; rewrite NZlt_succ_r; apply NZnle_gt.
+Qed.
+
+(* The difference between integers and natural numbers is that for
+every integer there is a predecessor, which is not true for natural
+numbers. However, for both classes, every number that is bigger than
+some other number has a predecessor. The proof of this fact by regular
+induction does not go through, so we need to use strong
+(course-of-value) induction. *)
+
+Lemma NZlt_exists_pred_strong :
+ forall z n m : NZ, z < m -> m <= n -> exists k : NZ, m == S k /\ z <= k.
+Proof.
+intro z; NZinduct n z.
+intros m H1 H2; apply <- NZnle_gt in H1; false_hyp H2 H1.
+intro n; split; intros IH m H1 H2.
+apply -> NZle_succ_r in H2; destruct H2 as [H2 | H2].
+now apply IH. exists n. now split; [| rewrite <- NZlt_succ_r; rewrite <- H2].
+apply IH. assumption. now apply NZle_le_succ_r.
+Qed.
+
+Theorem NZlt_exists_pred :
+ forall z n : NZ, z < n -> exists k : NZ, n == S k /\ z <= k.
+Proof.
+intros z n H; apply NZlt_exists_pred_strong with (z := z) (n := n).
+assumption. apply NZle_refl.
+Qed.
+
+(** A corollary of having an order is that NZ is infinite *)
+
+(* This section about infinity of NZ relies on the type nat and can be
+safely removed *)
+
+Definition NZsucc_iter (n : nat) (m : NZ) :=
+ nat_rect (fun _ => NZ) m (fun _ l => S l) n.
+
+Theorem NZlt_succ_iter_r :
+ forall (n : nat) (m : NZ), m < NZsucc_iter (Datatypes.S n) m.
+Proof.
+intros n m; induction n as [| n IH]; simpl in *.
+apply NZlt_succ_diag_r. now apply NZlt_lt_succ_r.
+Qed.
+
+Theorem NZneq_succ_iter_l :
+ forall (n : nat) (m : NZ), NZsucc_iter (Datatypes.S n) m ~= m.
+Proof.
+intros n m H. pose proof (NZlt_succ_iter_r n m) as H1. rewrite H in H1.
+false_hyp H1 NZlt_irrefl.
+Qed.
+
+(* End of the section about the infinity of NZ *)
+
+(** Stronger variant of induction with assumptions n >= 0 (n < 0)
+in the induction step *)
+
+Section Induction.
+
+Variable A : NZ -> Prop.
+Hypothesis A_wd : predicate_wd NZeq A.
+
+Add Morphism A with signature NZeq ==> iff as A_morph.
+Proof. apply A_wd. Qed.
+
+Section Center.
+
+Variable z : NZ. (* A z is the basis of induction *)
+
+Section RightInduction.
+
+Let A' (n : NZ) := forall m : NZ, z <= m -> m < n -> A m.
+Let right_step := forall n : NZ, z <= n -> A n -> A (S n).
+Let right_step' := forall n : NZ, z <= n -> A' n -> A n.
+Let right_step'' := forall n : NZ, A' n <-> A' (S n).
+
+Lemma NZrs_rs' : A z -> right_step -> right_step'.
+Proof.
+intros Az RS n H1 H2.
+le_elim H1. apply NZlt_exists_pred in H1. destruct H1 as [k [H3 H4]].
+rewrite H3. apply RS; [assumption | apply H2; [assumption | rewrite H3; apply NZlt_succ_diag_r]].
+rewrite <- H1; apply Az.
+Qed.
+
+Lemma NZrs'_rs'' : right_step' -> right_step''.
+Proof.
+intros RS' n; split; intros H1 m H2 H3.
+apply -> NZlt_succ_r in H3; le_elim H3;
+[now apply H1 | rewrite H3 in *; now apply RS'].
+apply H1; [assumption | now apply NZlt_lt_succ_r].
+Qed.
+
+Lemma NZrbase : A' z.
+Proof.
+intros m H1 H2. apply -> NZle_ngt in H1. false_hyp H2 H1.
+Qed.
+
+Lemma NZA'A_right : (forall n : NZ, A' n) -> forall n : NZ, z <= n -> A n.
+Proof.
+intros H1 n H2. apply H1 with (n := S n); [assumption | apply NZlt_succ_diag_r].
+Qed.
+
+Theorem NZstrong_right_induction: right_step' -> forall n : NZ, z <= n -> A n.
+Proof.
+intro RS'; apply NZA'A_right; unfold A'; NZinduct n z;
+[apply NZrbase | apply NZrs'_rs''; apply RS'].
+Qed.
+
+Theorem NZright_induction : A z -> right_step -> forall n : NZ, z <= n -> A n.
+Proof.
+intros Az RS; apply NZstrong_right_induction; now apply NZrs_rs'.
+Qed.
+
+Theorem NZright_induction' :
+ (forall n : NZ, n <= z -> A n) -> right_step -> forall n : NZ, A n.
+Proof.
+intros L R n.
+destruct (NZlt_trichotomy n z) as [H | [H | H]].
+apply L; now apply NZlt_le_incl.
+apply L; now apply NZeq_le_incl.
+apply NZright_induction. apply L; now apply NZeq_le_incl. assumption. now apply NZlt_le_incl.
+Qed.
+
+Theorem NZstrong_right_induction' :
+ (forall n : NZ, n <= z -> A n) -> right_step' -> forall n : NZ, A n.
+Proof.
+intros L R n.
+destruct (NZlt_trichotomy n z) as [H | [H | H]].
+apply L; now apply NZlt_le_incl.
+apply L; now apply NZeq_le_incl.
+apply NZstrong_right_induction. assumption. now apply NZlt_le_incl.
+Qed.
+
+End RightInduction.
+
+Section LeftInduction.
+
+Let A' (n : NZ) := forall m : NZ, m <= z -> n <= m -> A m.
+Let left_step := forall n : NZ, n < z -> A (S n) -> A n.
+Let left_step' := forall n : NZ, n <= z -> A' (S n) -> A n.
+Let left_step'' := forall n : NZ, A' n <-> A' (S n).
+
+Lemma NZls_ls' : A z -> left_step -> left_step'.
+Proof.
+intros Az LS n H1 H2. le_elim H1.
+apply LS; [assumption | apply H2; [now apply <- NZle_succ_l | now apply NZeq_le_incl]].
+rewrite H1; apply Az.
+Qed.
+
+Lemma NZls'_ls'' : left_step' -> left_step''.
+Proof.
+intros LS' n; split; intros H1 m H2 H3.
+apply -> NZle_succ_l in H3. apply NZlt_le_incl in H3. now apply H1.
+le_elim H3.
+apply <- NZle_succ_l in H3. now apply H1.
+rewrite <- H3 in *; now apply LS'.
+Qed.
+
+Lemma NZlbase : A' (S z).
+Proof.
+intros m H1 H2. apply -> NZle_succ_l in H2.
+apply -> NZle_ngt in H1. false_hyp H2 H1.
+Qed.
+
+Lemma NZA'A_left : (forall n : NZ, A' n) -> forall n : NZ, n <= z -> A n.
+Proof.
+intros H1 n H2. apply H1 with (n := n); [assumption | now apply NZeq_le_incl].
+Qed.
+
+Theorem NZstrong_left_induction: left_step' -> forall n : NZ, n <= z -> A n.
+Proof.
+intro LS'; apply NZA'A_left; unfold A'; NZinduct n (S z);
+[apply NZlbase | apply NZls'_ls''; apply LS'].
+Qed.
+
+Theorem NZleft_induction : A z -> left_step -> forall n : NZ, n <= z -> A n.
+Proof.
+intros Az LS; apply NZstrong_left_induction; now apply NZls_ls'.
+Qed.
+
+Theorem NZleft_induction' :
+ (forall n : NZ, z <= n -> A n) -> left_step -> forall n : NZ, A n.
+Proof.
+intros R L n.
+destruct (NZlt_trichotomy n z) as [H | [H | H]].
+apply NZleft_induction. apply R. now apply NZeq_le_incl. assumption. now apply NZlt_le_incl.
+rewrite H; apply R; now apply NZeq_le_incl.
+apply R; now apply NZlt_le_incl.
+Qed.
+
+Theorem NZstrong_left_induction' :
+ (forall n : NZ, z <= n -> A n) -> left_step' -> forall n : NZ, A n.
+Proof.
+intros R L n.
+destruct (NZlt_trichotomy n z) as [H | [H | H]].
+apply NZstrong_left_induction; auto. now apply NZlt_le_incl.
+rewrite H; apply R; now apply NZeq_le_incl.
+apply R; now apply NZlt_le_incl.
+Qed.
+
+End LeftInduction.
+
+Theorem NZorder_induction :
+ A z ->
+ (forall n : NZ, z <= n -> A n -> A (S n)) ->
+ (forall n : NZ, n < z -> A (S n) -> A n) ->
+ forall n : NZ, A n.
+Proof.
+intros Az RS LS n.
+destruct (NZlt_trichotomy n z) as [H | [H | H]].
+now apply NZleft_induction; [| | apply NZlt_le_incl].
+now rewrite H.
+now apply NZright_induction; [| | apply NZlt_le_incl].
+Qed.
+
+Theorem NZorder_induction' :
+ A z ->
+ (forall n : NZ, z <= n -> A n -> A (S n)) ->
+ (forall n : NZ, n <= z -> A n -> A (P n)) ->
+ forall n : NZ, A n.
+Proof.
+intros Az AS AP n; apply NZorder_induction; try assumption.
+intros m H1 H2. apply AP in H2; [| now apply <- NZle_succ_l].
+unfold predicate_wd, fun_wd in A_wd; apply -> (A_wd (P (S m)) m);
+[assumption | apply NZpred_succ].
+Qed.
+
+End Center.
+
+Theorem NZorder_induction_0 :
+ A 0 ->
+ (forall n : NZ, 0 <= n -> A n -> A (S n)) ->
+ (forall n : NZ, n < 0 -> A (S n) -> A n) ->
+ forall n : NZ, A n.
+Proof (NZorder_induction 0).
+
+Theorem NZorder_induction'_0 :
+ A 0 ->
+ (forall n : NZ, 0 <= n -> A n -> A (S n)) ->
+ (forall n : NZ, n <= 0 -> A n -> A (P n)) ->
+ forall n : NZ, A n.
+Proof (NZorder_induction' 0).
+
+(** Elimintation principle for < *)
+
+Theorem NZlt_ind : forall (n : NZ),
+ A (S n) ->
+ (forall m : NZ, n < m -> A m -> A (S m)) ->
+ forall m : NZ, n < m -> A m.
+Proof.
+intros n H1 H2 m H3.
+apply NZright_induction with (S n); [assumption | | now apply <- NZle_succ_l].
+intros; apply H2; try assumption. now apply -> NZle_succ_l.
+Qed.
+
+(** Elimintation principle for <= *)
+
+Theorem NZle_ind : forall (n : NZ),
+ A n ->
+ (forall m : NZ, n <= m -> A m -> A (S m)) ->
+ forall m : NZ, n <= m -> A m.
+Proof.
+intros n H1 H2 m H3.
+now apply NZright_induction with n.
+Qed.
+
+End Induction.
+
+Tactic Notation "NZord_induct" ident(n) :=
+ induction_maker n ltac:(apply NZorder_induction_0).
+
+Tactic Notation "NZord_induct" ident(n) constr(z) :=
+ induction_maker n ltac:(apply NZorder_induction with z).
+
+Section WF.
+
+Variable z : NZ.
+
+Let Rlt (n m : NZ) := z <= n /\ n < m.
+Let Rgt (n m : NZ) := m < n /\ n <= z.
+
+Add Morphism Rlt with signature NZeq ==> NZeq ==> iff as Rlt_wd.
+Proof.
+intros x1 x2 H1 x3 x4 H2; unfold Rlt; rewrite H1; now rewrite H2.
+Qed.
+
+Add Morphism Rgt with signature NZeq ==> NZeq ==> iff as Rgt_wd.
+Proof.
+intros x1 x2 H1 x3 x4 H2; unfold Rgt; rewrite H1; now rewrite H2.
+Qed.
+
+Lemma NZAcc_lt_wd : predicate_wd NZeq (Acc Rlt).
+Proof.
+unfold predicate_wd, fun_wd.
+intros x1 x2 H; split; intro H1; destruct H1 as [H2];
+constructor; intros; apply H2; now (rewrite H || rewrite <- H).
+Qed.
+
+Lemma NZAcc_gt_wd : predicate_wd NZeq (Acc Rgt).
+Proof.
+unfold predicate_wd, fun_wd.
+intros x1 x2 H; split; intro H1; destruct H1 as [H2];
+constructor; intros; apply H2; now (rewrite H || rewrite <- H).
+Qed.
+
+Theorem NZlt_wf : well_founded Rlt.
+Proof.
+unfold well_founded.
+apply NZstrong_right_induction' with (z := z).
+apply NZAcc_lt_wd.
+intros n H; constructor; intros y [H1 H2].
+apply <- NZnle_gt in H2. elim H2. now apply NZle_trans with z.
+intros n H1 H2; constructor; intros m [H3 H4]. now apply H2.
+Qed.
+
+Theorem NZgt_wf : well_founded Rgt.
+Proof.
+unfold well_founded.
+apply NZstrong_left_induction' with (z := z).
+apply NZAcc_gt_wd.
+intros n H; constructor; intros y [H1 H2].
+apply <- NZnle_gt in H2. elim H2. now apply NZle_lt_trans with n.
+intros n H1 H2; constructor; intros m [H3 H4].
+apply H2. assumption. now apply <- NZle_succ_l.
+Qed.
+
+End WF.
+
+End NZOrderPropFunct.
+