summaryrefslogtreecommitdiff
path: root/theories/Numbers/NatInt/NZAddOrder.v
blob: 50d1c42f2eefd7c3d1293471612f3885088784f8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)
(*                      Evgeny Makarov, INRIA, 2007                     *)
(************************************************************************)

(*i $Id: NZAddOrder.v 11040 2008-06-03 00:04:16Z letouzey $ i*)

Require Import NZAxioms.
Require Import NZOrder.

Module NZAddOrderPropFunct (Import NZOrdAxiomsMod : NZOrdAxiomsSig).
Module Export NZOrderPropMod := NZOrderPropFunct NZOrdAxiomsMod.
Open Local Scope NatIntScope.

Theorem NZadd_lt_mono_l : forall n m p : NZ, n < m <-> p + n < p + m.
Proof.
intros n m p; NZinduct p.
now do 2 rewrite NZadd_0_l.
intro p. do 2 rewrite NZadd_succ_l. now rewrite <- NZsucc_lt_mono.
Qed.

Theorem NZadd_lt_mono_r : forall n m p : NZ, n < m <-> n + p < m + p.
Proof.
intros n m p.
rewrite (NZadd_comm n p); rewrite (NZadd_comm m p); apply NZadd_lt_mono_l.
Qed.

Theorem NZadd_lt_mono : forall n m p q : NZ, n < m -> p < q -> n + p < m + q.
Proof.
intros n m p q H1 H2.
apply NZlt_trans with (m + p);
[now apply -> NZadd_lt_mono_r | now apply -> NZadd_lt_mono_l].
Qed.

Theorem NZadd_le_mono_l : forall n m p : NZ, n <= m <-> p + n <= p + m.
Proof.
intros n m p; NZinduct p.
now do 2 rewrite NZadd_0_l.
intro p. do 2 rewrite NZadd_succ_l. now rewrite <- NZsucc_le_mono.
Qed.

Theorem NZadd_le_mono_r : forall n m p : NZ, n <= m <-> n + p <= m + p.
Proof.
intros n m p.
rewrite (NZadd_comm n p); rewrite (NZadd_comm m p); apply NZadd_le_mono_l.
Qed.

Theorem NZadd_le_mono : forall n m p q : NZ, n <= m -> p <= q -> n + p <= m + q.
Proof.
intros n m p q H1 H2.
apply NZle_trans with (m + p);
[now apply -> NZadd_le_mono_r | now apply -> NZadd_le_mono_l].
Qed.

Theorem NZadd_lt_le_mono : forall n m p q : NZ, n < m -> p <= q -> n + p < m + q.
Proof.
intros n m p q H1 H2.
apply NZlt_le_trans with (m + p);
[now apply -> NZadd_lt_mono_r | now apply -> NZadd_le_mono_l].
Qed.

Theorem NZadd_le_lt_mono : forall n m p q : NZ, n <= m -> p < q -> n + p < m + q.
Proof.
intros n m p q H1 H2.
apply NZle_lt_trans with (m + p);
[now apply -> NZadd_le_mono_r | now apply -> NZadd_lt_mono_l].
Qed.

Theorem NZadd_pos_pos : forall n m : NZ, 0 < n -> 0 < m -> 0 < n + m.
Proof.
intros n m H1 H2. rewrite <- (NZadd_0_l 0). now apply NZadd_lt_mono.
Qed.

Theorem NZadd_pos_nonneg : forall n m : NZ, 0 < n -> 0 <= m -> 0 < n + m.
Proof.
intros n m H1 H2. rewrite <- (NZadd_0_l 0). now apply NZadd_lt_le_mono.
Qed.

Theorem NZadd_nonneg_pos : forall n m : NZ, 0 <= n -> 0 < m -> 0 < n + m.
Proof.
intros n m H1 H2. rewrite <- (NZadd_0_l 0). now apply NZadd_le_lt_mono.
Qed.

Theorem NZadd_nonneg_nonneg : forall n m : NZ, 0 <= n -> 0 <= m -> 0 <= n + m.
Proof.
intros n m H1 H2. rewrite <- (NZadd_0_l 0). now apply NZadd_le_mono.
Qed.

Theorem NZlt_add_pos_l : forall n m : NZ, 0 < n -> m < n + m.
Proof.
intros n m H. apply -> (NZadd_lt_mono_r 0 n m) in H.
now rewrite NZadd_0_l in H.
Qed.

Theorem NZlt_add_pos_r : forall n m : NZ, 0 < n -> m < m + n.
Proof.
intros; rewrite NZadd_comm; now apply NZlt_add_pos_l.
Qed.

Theorem NZle_lt_add_lt : forall n m p q : NZ, n <= m -> p + m < q + n -> p < q.
Proof.
intros n m p q H1 H2. destruct (NZle_gt_cases q p); [| assumption].
pose proof (NZadd_le_mono q p n m H H1) as H3. apply <- NZnle_gt in H2.
false_hyp H3 H2.
Qed.

Theorem NZlt_le_add_lt : forall n m p q : NZ, n < m -> p + m <= q + n -> p < q.
Proof.
intros n m p q H1 H2. destruct (NZle_gt_cases q p); [| assumption].
pose proof (NZadd_le_lt_mono q p n m H H1) as H3. apply <- NZnle_gt in H3.
false_hyp H2 H3.
Qed.

Theorem NZle_le_add_le : forall n m p q : NZ, n <= m -> p + m <= q + n -> p <= q.
Proof.
intros n m p q H1 H2. destruct (NZle_gt_cases p q); [assumption |].
pose proof (NZadd_lt_le_mono q p n m H H1) as H3. apply <- NZnle_gt in H3.
false_hyp H2 H3.
Qed.

Theorem NZadd_lt_cases : forall n m p q : NZ, n + m < p + q -> n < p \/ m < q.
Proof.
intros n m p q H;
destruct (NZle_gt_cases p n) as [H1 | H1].
destruct (NZle_gt_cases q m) as [H2 | H2].
pose proof (NZadd_le_mono p n q m H1 H2) as H3. apply -> NZle_ngt in H3.
false_hyp H H3.
now right. now left.
Qed.

Theorem NZadd_le_cases : forall n m p q : NZ, n + m <= p + q -> n <= p \/ m <= q.
Proof.
intros n m p q H.
destruct (NZle_gt_cases n p) as [H1 | H1]. now left.
destruct (NZle_gt_cases m q) as [H2 | H2]. now right.
assert (H3 : p + q < n + m) by now apply NZadd_lt_mono.
apply -> NZle_ngt in H. false_hyp H3 H.
Qed.

Theorem NZadd_neg_cases : forall n m : NZ, n + m < 0 -> n < 0 \/ m < 0.
Proof.
intros n m H; apply NZadd_lt_cases; now rewrite NZadd_0_l.
Qed.

Theorem NZadd_pos_cases : forall n m : NZ, 0 < n + m -> 0 < n \/ 0 < m.
Proof.
intros n m H; apply NZadd_lt_cases; now rewrite NZadd_0_l.
Qed.

Theorem NZadd_nonpos_cases : forall n m : NZ, n + m <= 0 -> n <= 0 \/ m <= 0.
Proof.
intros n m H; apply NZadd_le_cases; now rewrite NZadd_0_l.
Qed.

Theorem NZadd_nonneg_cases : forall n m : NZ, 0 <= n + m -> 0 <= n \/ 0 <= m.
Proof.
intros n m H; apply NZadd_le_cases; now rewrite NZadd_0_l.
Qed.

End NZAddOrderPropFunct.