summaryrefslogtreecommitdiff
path: root/theories/Numbers/NatInt/NZMulOrder.v
blob: c707bf73dcda117eb304c02c74205e2a5e02b403 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)
(*                      Evgeny Makarov, INRIA, 2007                     *)
(************************************************************************)

(*i $Id: NZMulOrder.v 11040 2008-06-03 00:04:16Z letouzey $ i*)

Require Import NZAxioms.
Require Import NZAddOrder.

Module NZMulOrderPropFunct (Import NZOrdAxiomsMod : NZOrdAxiomsSig).
Module Export NZAddOrderPropMod := NZAddOrderPropFunct NZOrdAxiomsMod.
Open Local Scope NatIntScope.

Theorem NZmul_lt_pred :
  forall p q n m : NZ, S p == q -> (p * n < p * m <-> q * n + m < q * m + n).
Proof.
intros p q n m H. rewrite <- H. do 2 rewrite NZmul_succ_l.
rewrite <- (NZadd_assoc (p * n) n m).
rewrite <- (NZadd_assoc (p * m) m n).
rewrite (NZadd_comm n m). now rewrite <- NZadd_lt_mono_r.
Qed.

Theorem NZmul_lt_mono_pos_l : forall p n m : NZ, 0 < p -> (n < m <-> p * n < p * m).
Proof.
NZord_induct p.
intros n m H; false_hyp H NZlt_irrefl.
intros p H IH n m H1. do 2 rewrite NZmul_succ_l.
le_elim H. assert (LR : forall n m : NZ, n < m -> p * n + n < p * m + m).
intros n1 m1 H2. apply NZadd_lt_mono; [now apply -> IH | assumption].
split; [apply LR |]. intro H2. apply -> NZlt_dne; intro H3.
apply <- NZle_ngt in H3. le_elim H3.
apply NZlt_asymm in H2. apply H2. now apply LR.
rewrite H3 in H2; false_hyp H2 NZlt_irrefl.
rewrite <- H; do 2 rewrite NZmul_0_l; now do 2 rewrite NZadd_0_l.
intros p H1 _ n m H2. apply NZlt_asymm in H1. false_hyp H2 H1.
Qed.

Theorem NZmul_lt_mono_pos_r : forall p n m : NZ, 0 < p -> (n < m <-> n * p < m * p).
Proof.
intros p n m.
rewrite (NZmul_comm n p); rewrite (NZmul_comm m p). now apply NZmul_lt_mono_pos_l.
Qed.

Theorem NZmul_lt_mono_neg_l : forall p n m : NZ, p < 0 -> (n < m <-> p * m < p * n).
Proof.
NZord_induct p.
intros n m H; false_hyp H NZlt_irrefl.
intros p H1 _ n m H2. apply NZlt_succ_l in H2. apply <- NZnle_gt in H2. false_hyp H1 H2.
intros p H IH n m H1. apply <- NZle_succ_l in H.
le_elim H. assert (LR : forall n m : NZ, n < m -> p * m < p * n).
intros n1 m1 H2. apply (NZle_lt_add_lt n1 m1).
now apply NZlt_le_incl. do 2 rewrite <- NZmul_succ_l. now apply -> IH.
split; [apply LR |]. intro H2. apply -> NZlt_dne; intro H3.
apply <- NZle_ngt in H3. le_elim H3.
apply NZlt_asymm in H2. apply H2. now apply LR.
rewrite H3 in H2; false_hyp H2 NZlt_irrefl.
rewrite (NZmul_lt_pred p (S p)) by reflexivity.
rewrite H; do 2 rewrite NZmul_0_l; now do 2 rewrite NZadd_0_l.
Qed.

Theorem NZmul_lt_mono_neg_r : forall p n m : NZ, p < 0 -> (n < m <-> m * p < n * p).
Proof.
intros p n m.
rewrite (NZmul_comm n p); rewrite (NZmul_comm m p). now apply NZmul_lt_mono_neg_l.
Qed.

Theorem NZmul_le_mono_nonneg_l : forall n m p : NZ, 0 <= p -> n <= m -> p * n <= p * m.
Proof.
intros n m p H1 H2. le_elim H1.
le_elim H2. apply NZlt_le_incl. now apply -> NZmul_lt_mono_pos_l.
apply NZeq_le_incl; now rewrite H2.
apply NZeq_le_incl; rewrite <- H1; now do 2 rewrite NZmul_0_l.
Qed.

Theorem NZmul_le_mono_nonpos_l : forall n m p : NZ, p <= 0 -> n <= m -> p * m <= p * n.
Proof.
intros n m p H1 H2. le_elim H1.
le_elim H2. apply NZlt_le_incl. now apply -> NZmul_lt_mono_neg_l.
apply NZeq_le_incl; now rewrite H2.
apply NZeq_le_incl; rewrite H1; now do 2 rewrite NZmul_0_l.
Qed.

Theorem NZmul_le_mono_nonneg_r : forall n m p : NZ, 0 <= p -> n <= m -> n * p <= m * p.
Proof.
intros n m p H1 H2; rewrite (NZmul_comm n p); rewrite (NZmul_comm m p);
now apply NZmul_le_mono_nonneg_l.
Qed.

Theorem NZmul_le_mono_nonpos_r : forall n m p : NZ, p <= 0 -> n <= m -> m * p <= n * p.
Proof.
intros n m p H1 H2; rewrite (NZmul_comm n p); rewrite (NZmul_comm m p);
now apply NZmul_le_mono_nonpos_l.
Qed.

Theorem NZmul_cancel_l : forall n m p : NZ, p ~= 0 -> (p * n == p * m <-> n == m).
Proof.
intros n m p H; split; intro H1.
destruct (NZlt_trichotomy p 0) as [H2 | [H2 | H2]].
apply -> NZeq_dne; intro H3. apply -> NZlt_gt_cases in H3. destruct H3 as [H3 | H3].
assert (H4 : p * m < p * n); [now apply -> NZmul_lt_mono_neg_l |].
rewrite H1 in H4; false_hyp H4 NZlt_irrefl.
assert (H4 : p * n < p * m); [now apply -> NZmul_lt_mono_neg_l |].
rewrite H1 in H4; false_hyp H4 NZlt_irrefl.
false_hyp H2 H.
apply -> NZeq_dne; intro H3. apply -> NZlt_gt_cases in H3. destruct H3 as [H3 | H3].
assert (H4 : p * n < p * m) by (now apply -> NZmul_lt_mono_pos_l).
rewrite H1 in H4; false_hyp H4 NZlt_irrefl.
assert (H4 : p * m < p * n) by (now apply -> NZmul_lt_mono_pos_l).
rewrite H1 in H4; false_hyp H4 NZlt_irrefl.
now rewrite H1.
Qed.

Theorem NZmul_cancel_r : forall n m p : NZ, p ~= 0 -> (n * p == m * p <-> n == m).
Proof.
intros n m p. rewrite (NZmul_comm n p), (NZmul_comm m p); apply NZmul_cancel_l.
Qed.

Theorem NZmul_id_l : forall n m : NZ, m ~= 0 -> (n * m == m <-> n == 1).
Proof.
intros n m H.
stepl (n * m == 1 * m) by now rewrite NZmul_1_l. now apply NZmul_cancel_r.
Qed.

Theorem NZmul_id_r : forall n m : NZ, n ~= 0 -> (n * m == n <-> m == 1).
Proof.
intros n m; rewrite NZmul_comm; apply NZmul_id_l.
Qed.

Theorem NZmul_le_mono_pos_l : forall n m p : NZ, 0 < p -> (n <= m <-> p * n <= p * m).
Proof.
intros n m p H; do 2 rewrite NZlt_eq_cases.
rewrite (NZmul_lt_mono_pos_l p n m) by assumption.
now rewrite -> (NZmul_cancel_l n m p) by
(intro H1; rewrite H1 in H; false_hyp H NZlt_irrefl).
Qed.

Theorem NZmul_le_mono_pos_r : forall n m p : NZ, 0 < p -> (n <= m <-> n * p <= m * p).
Proof.
intros n m p. rewrite (NZmul_comm n p); rewrite (NZmul_comm m p);
apply NZmul_le_mono_pos_l.
Qed.

Theorem NZmul_le_mono_neg_l : forall n m p : NZ, p < 0 -> (n <= m <-> p * m <= p * n).
Proof.
intros n m p H; do 2 rewrite NZlt_eq_cases.
rewrite (NZmul_lt_mono_neg_l p n m); [| assumption].
rewrite -> (NZmul_cancel_l m n p) by (intro H1; rewrite H1 in H; false_hyp H NZlt_irrefl).
now setoid_replace (n == m) with (m == n) using relation iff by (split; now intro).
Qed.

Theorem NZmul_le_mono_neg_r : forall n m p : NZ, p < 0 -> (n <= m <-> m * p <= n * p).
Proof.
intros n m p. rewrite (NZmul_comm n p); rewrite (NZmul_comm m p);
apply NZmul_le_mono_neg_l.
Qed.

Theorem NZmul_lt_mono_nonneg :
  forall n m p q : NZ, 0 <= n -> n < m -> 0 <= p -> p < q -> n * p < m * q.
Proof.
intros n m p q H1 H2 H3 H4.
apply NZle_lt_trans with (m * p).
apply NZmul_le_mono_nonneg_r; [assumption | now apply NZlt_le_incl].
apply -> NZmul_lt_mono_pos_l; [assumption | now apply NZle_lt_trans with n].
Qed.

(* There are still many variants of the theorem above. One can assume 0 < n
or 0 < p or n <= m or p <= q. *)

Theorem NZmul_le_mono_nonneg :
  forall n m p q : NZ, 0 <= n -> n <= m -> 0 <= p -> p <= q -> n * p <= m * q.
Proof.
intros n m p q H1 H2 H3 H4.
le_elim H2; le_elim H4.
apply NZlt_le_incl; now apply NZmul_lt_mono_nonneg.
rewrite <- H4; apply NZmul_le_mono_nonneg_r; [assumption | now apply NZlt_le_incl].
rewrite <- H2; apply NZmul_le_mono_nonneg_l; [assumption | now apply NZlt_le_incl].
rewrite H2; rewrite H4; now apply NZeq_le_incl.
Qed.

Theorem NZmul_pos_pos : forall n m : NZ, 0 < n -> 0 < m -> 0 < n * m.
Proof.
intros n m H1 H2.
rewrite <- (NZmul_0_l m). now apply -> NZmul_lt_mono_pos_r.
Qed.

Theorem NZmul_neg_neg : forall n m : NZ, n < 0 -> m < 0 -> 0 < n * m.
Proof.
intros n m H1 H2.
rewrite <- (NZmul_0_l m). now apply -> NZmul_lt_mono_neg_r.
Qed.

Theorem NZmul_pos_neg : forall n m : NZ, 0 < n -> m < 0 -> n * m < 0.
Proof.
intros n m H1 H2.
rewrite <- (NZmul_0_l m). now apply -> NZmul_lt_mono_neg_r.
Qed.

Theorem NZmul_neg_pos : forall n m : NZ, n < 0 -> 0 < m -> n * m < 0.
Proof.
intros; rewrite NZmul_comm; now apply NZmul_pos_neg.
Qed.

Theorem NZlt_1_mul_pos : forall n m : NZ, 1 < n -> 0 < m -> 1 < n * m.
Proof.
intros n m H1 H2. apply -> (NZmul_lt_mono_pos_r m) in H1.
rewrite NZmul_1_l in H1. now apply NZlt_1_l with m.
assumption.
Qed.

Theorem NZeq_mul_0 : forall n m : NZ, n * m == 0 <-> n == 0 \/ m == 0.
Proof.
intros n m; split.
intro H; destruct (NZlt_trichotomy n 0) as [H1 | [H1 | H1]];
destruct (NZlt_trichotomy m 0) as [H2 | [H2 | H2]];
try (now right); try (now left).
elimtype False; now apply (NZlt_neq 0 (n * m)); [apply NZmul_neg_neg |].
elimtype False; now apply (NZlt_neq (n * m) 0); [apply NZmul_neg_pos |].
elimtype False; now apply (NZlt_neq (n * m) 0); [apply NZmul_pos_neg |].
elimtype False; now apply (NZlt_neq 0 (n * m)); [apply NZmul_pos_pos |].
intros [H | H]. now rewrite H, NZmul_0_l. now rewrite H, NZmul_0_r.
Qed.

Theorem NZneq_mul_0 : forall n m : NZ, n ~= 0 /\ m ~= 0 <-> n * m ~= 0.
Proof.
intros n m; split; intro H.
intro H1; apply -> NZeq_mul_0 in H1. tauto.
split; intro H1; rewrite H1 in H;
(rewrite NZmul_0_l in H || rewrite NZmul_0_r in H); now apply H.
Qed.

Theorem NZeq_square_0 : forall n : NZ, n * n == 0 <-> n == 0.
Proof.
intro n; rewrite NZeq_mul_0; tauto.
Qed.

Theorem NZeq_mul_0_l : forall n m : NZ, n * m == 0 -> m ~= 0 -> n == 0.
Proof.
intros n m H1 H2. apply -> NZeq_mul_0 in H1. destruct H1 as [H1 | H1].
assumption. false_hyp H1 H2.
Qed.

Theorem NZeq_mul_0_r : forall n m : NZ, n * m == 0 -> n ~= 0 -> m == 0.
Proof.
intros n m H1 H2; apply -> NZeq_mul_0 in H1. destruct H1 as [H1 | H1].
false_hyp H1 H2. assumption.
Qed.

Theorem NZlt_0_mul : forall n m : NZ, 0 < n * m <-> (0 < n /\ 0 < m) \/ (m < 0 /\ n < 0).
Proof.
intros n m; split; [intro H | intros [[H1 H2] | [H1 H2]]].
destruct (NZlt_trichotomy n 0) as [H1 | [H1 | H1]];
[| rewrite H1 in H; rewrite NZmul_0_l in H; false_hyp H NZlt_irrefl |];
(destruct (NZlt_trichotomy m 0) as [H2 | [H2 | H2]];
[| rewrite H2 in H; rewrite NZmul_0_r in H; false_hyp H NZlt_irrefl |]);
try (left; now split); try (right; now split).
assert (H3 : n * m < 0) by now apply NZmul_neg_pos.
elimtype False; now apply (NZlt_asymm (n * m) 0).
assert (H3 : n * m < 0) by now apply NZmul_pos_neg.
elimtype False; now apply (NZlt_asymm (n * m) 0).
now apply NZmul_pos_pos. now apply NZmul_neg_neg.
Qed.

Theorem NZsquare_lt_mono_nonneg : forall n m : NZ, 0 <= n -> n < m -> n * n < m * m.
Proof.
intros n m H1 H2. now apply NZmul_lt_mono_nonneg.
Qed.

Theorem NZsquare_le_mono_nonneg : forall n m : NZ, 0 <= n -> n <= m -> n * n <= m * m.
Proof.
intros n m H1 H2. now apply NZmul_le_mono_nonneg.
Qed.

(* The converse theorems require nonnegativity (or nonpositivity) of the
other variable *)

Theorem NZsquare_lt_simpl_nonneg : forall n m : NZ, 0 <= m -> n * n < m * m -> n < m.
Proof.
intros n m H1 H2. destruct (NZlt_ge_cases n 0).
now apply NZlt_le_trans with 0.
destruct (NZlt_ge_cases n m).
assumption. assert (F : m * m <= n * n) by now apply NZsquare_le_mono_nonneg.
apply -> NZle_ngt in F. false_hyp H2 F.
Qed.

Theorem NZsquare_le_simpl_nonneg : forall n m : NZ, 0 <= m -> n * n <= m * m -> n <= m.
Proof.
intros n m H1 H2. destruct (NZlt_ge_cases n 0).
apply NZlt_le_incl; now apply NZlt_le_trans with 0.
destruct (NZle_gt_cases n m).
assumption. assert (F : m * m < n * n) by now apply NZsquare_lt_mono_nonneg.
apply -> NZlt_nge in F. false_hyp H2 F.
Qed.

Theorem NZmul_2_mono_l : forall n m : NZ, n < m -> 1 + (1 + 1) * n < (1 + 1) * m.
Proof.
intros n m H. apply <- NZle_succ_l in H.
apply -> (NZmul_le_mono_pos_l (S n) m (1 + 1)) in H.
repeat rewrite NZmul_add_distr_r in *; repeat rewrite NZmul_1_l in *.
repeat rewrite NZadd_succ_r in *. repeat rewrite NZadd_succ_l in *. rewrite NZadd_0_l.
now apply -> NZle_succ_l.
apply NZadd_pos_pos; now apply NZlt_succ_diag_r.
Qed.

End NZMulOrderPropFunct.