summaryrefslogtreecommitdiff
path: root/plugins/ring
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/ring')
-rw-r--r--plugins/ring/LegacyArithRing.v88
-rw-r--r--plugins/ring/LegacyNArithRing.v43
-rw-r--r--plugins/ring/LegacyRing.v35
-rw-r--r--plugins/ring/LegacyRing_theory.v374
-rw-r--r--plugins/ring/LegacyZArithRing.v35
-rw-r--r--plugins/ring/Ring_abstract.v700
-rw-r--r--plugins/ring/Ring_normalize.v897
-rw-r--r--plugins/ring/Setoid_ring.v12
-rw-r--r--plugins/ring/Setoid_ring_normalize.v1160
-rw-r--r--plugins/ring/Setoid_ring_theory.v425
-rw-r--r--plugins/ring/g_ring.ml4134
-rw-r--r--plugins/ring/ring.ml928
-rw-r--r--plugins/ring/ring_plugin.mllib3
-rw-r--r--plugins/ring/vo.itarget10
14 files changed, 0 insertions, 4844 deletions
diff --git a/plugins/ring/LegacyArithRing.v b/plugins/ring/LegacyArithRing.v
deleted file mode 100644
index 0d92973e..00000000
--- a/plugins/ring/LegacyArithRing.v
+++ /dev/null
@@ -1,88 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(* Instantiation of the Ring tactic for the naturals of Arith $*)
-
-Require Import Bool.
-Require Export LegacyRing.
-Require Export Arith.
-Require Import Eqdep_dec.
-
-Local Open Scope nat_scope.
-
-Fixpoint nateq (n m:nat) {struct m} : bool :=
- match n, m with
- | O, O => true
- | S n', S m' => nateq n' m'
- | _, _ => false
- end.
-
-Lemma nateq_prop : forall n m:nat, Is_true (nateq n m) -> n = m.
-Proof.
- simple induction n; simple induction m; intros; try contradiction.
- trivial.
- unfold Is_true in H1.
- rewrite (H n1 H1).
- trivial.
-Qed.
-
-Hint Resolve nateq_prop: arithring.
-
-Definition NatTheory : Semi_Ring_Theory plus mult 1 0 nateq.
- split; intros; auto with arith arithring.
-(* apply (fun n m p:nat => plus_reg_l m p n) with (n := n).
- trivial.*)
-Defined.
-
-
-Add Legacy Semi Ring nat plus mult 1 0 nateq NatTheory [ 0 S ].
-
-Goal forall n:nat, S n = 1 + n.
-intro; reflexivity.
-Save S_to_plus_one.
-
-(* Replace all occurrences of (S exp) by (plus (S O) exp), except when
- exp is already O and only for those occurrences than can be reached by going
- down plus and mult operations *)
-Ltac rewrite_S_to_plus_term t :=
- match constr:t with
- | 1 => constr:1
- | (S ?X1) =>
- let t1 := rewrite_S_to_plus_term X1 in
- constr:(1 + t1)
- | (?X1 + ?X2) =>
- let t1 := rewrite_S_to_plus_term X1
- with t2 := rewrite_S_to_plus_term X2 in
- constr:(t1 + t2)
- | (?X1 * ?X2) =>
- let t1 := rewrite_S_to_plus_term X1
- with t2 := rewrite_S_to_plus_term X2 in
- constr:(t1 * t2)
- | _ => constr:t
- end.
-
-(* Apply S_to_plus on both sides of an equality *)
-Ltac rewrite_S_to_plus :=
- match goal with
- | |- (?X1 = ?X2) =>
- try
- let t1 :=
- (**) (**)
- rewrite_S_to_plus_term X1
- with t2 := rewrite_S_to_plus_term X2 in
- change (t1 = t2)
- | |- (?X1 = ?X2) =>
- try
- let t1 :=
- (**) (**)
- rewrite_S_to_plus_term X1
- with t2 := rewrite_S_to_plus_term X2 in
- change (t1 = t2)
- end.
-
-Ltac ring_nat := rewrite_S_to_plus; ring.
diff --git a/plugins/ring/LegacyNArithRing.v b/plugins/ring/LegacyNArithRing.v
deleted file mode 100644
index b358251a..00000000
--- a/plugins/ring/LegacyNArithRing.v
+++ /dev/null
@@ -1,43 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(* Instantiation of the Ring tactic for the binary natural numbers *)
-
-Require Import Bool.
-Require Export LegacyRing.
-Require Export ZArith_base.
-Require Import NArith.
-Require Import Eqdep_dec.
-
-Definition Neq (n m:N) :=
- match (n ?= m)%N with
- | Datatypes.Eq => true
- | _ => false
- end.
-
-Lemma Neq_prop : forall n m:N, Is_true (Neq n m) -> n = m.
- intros n m H; unfold Neq in H.
- apply N.compare_eq.
- destruct (n ?= m)%N; [ reflexivity | contradiction | contradiction ].
-Qed.
-
-Definition NTheory : Semi_Ring_Theory N.add N.mul 1%N 0%N Neq.
- split.
- apply N.add_comm.
- apply N.add_assoc.
- apply N.mul_comm.
- apply N.mul_assoc.
- apply N.add_0_l.
- apply N.mul_1_l.
- apply N.mul_0_l.
- apply N.mul_add_distr_r.
- apply Neq_prop.
-Qed.
-
-Add Legacy Semi Ring
- N N.add N.mul 1%N 0%N Neq NTheory [ Npos 0%N xO xI 1%positive ].
diff --git a/plugins/ring/LegacyRing.v b/plugins/ring/LegacyRing.v
deleted file mode 100644
index 31b7cd7c..00000000
--- a/plugins/ring/LegacyRing.v
+++ /dev/null
@@ -1,35 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-Require Export Bool.
-Require Export LegacyRing_theory.
-Require Export Quote.
-Require Export Ring_normalize.
-Require Export Ring_abstract.
-Declare ML Module "ring_plugin".
-
-(* As an example, we provide an instantation for bool. *)
-(* Other instatiations are given in ArithRing and ZArithRing in the
- same directory *)
-
-Definition BoolTheory :
- Ring_Theory xorb andb true false (fun b:bool => b) eqb.
-split; simpl.
-destruct n; destruct m; reflexivity.
-destruct n; destruct m; destruct p; reflexivity.
-destruct n; destruct m; reflexivity.
-destruct n; destruct m; destruct p; reflexivity.
-destruct n; reflexivity.
-destruct n; reflexivity.
-destruct n; reflexivity.
-destruct n; destruct m; destruct p; reflexivity.
-destruct x; destruct y; reflexivity || simpl; tauto.
-Defined.
-
-Add Legacy Ring bool xorb andb true false (fun b:bool => b) eqb BoolTheory
- [ true false ].
diff --git a/plugins/ring/LegacyRing_theory.v b/plugins/ring/LegacyRing_theory.v
deleted file mode 100644
index 8f07ad26..00000000
--- a/plugins/ring/LegacyRing_theory.v
+++ /dev/null
@@ -1,374 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-Require Export Bool.
-
-Set Implicit Arguments.
-
-Section Theory_of_semi_rings.
-
-Variable A : Type.
-Variable Aplus : A -> A -> A.
-Variable Amult : A -> A -> A.
-Variable Aone : A.
-Variable Azero : A.
-(* There is also a "weakly decidable" equality on A. That means
- that if (A_eq x y)=true then x=y but x=y can arise when
- (A_eq x y)=false. On an abstract ring the function [x,y:A]false
- is a good choice. The proof of A_eq_prop is in this case easy. *)
-Variable Aeq : A -> A -> bool.
-
-Infix "+" := Aplus (at level 50, left associativity).
-Infix "*" := Amult (at level 40, left associativity).
-Notation "0" := Azero.
-Notation "1" := Aone.
-
-Record Semi_Ring_Theory : Prop :=
- {SR_plus_comm : forall n m:A, n + m = m + n;
- SR_plus_assoc : forall n m p:A, n + (m + p) = n + m + p;
- SR_mult_comm : forall n m:A, n * m = m * n;
- SR_mult_assoc : forall n m p:A, n * (m * p) = n * m * p;
- SR_plus_zero_left : forall n:A, 0 + n = n;
- SR_mult_one_left : forall n:A, 1 * n = n;
- SR_mult_zero_left : forall n:A, 0 * n = 0;
- SR_distr_left : forall n m p:A, (n + m) * p = n * p + m * p;
-(* SR_plus_reg_left : forall n m p:A, n + m = n + p -> m = p;*)
- SR_eq_prop : forall x y:A, Is_true (Aeq x y) -> x = y}.
-
-Variable T : Semi_Ring_Theory.
-
-Let plus_comm := SR_plus_comm T.
-Let plus_assoc := SR_plus_assoc T.
-Let mult_comm := SR_mult_comm T.
-Let mult_assoc := SR_mult_assoc T.
-Let plus_zero_left := SR_plus_zero_left T.
-Let mult_one_left := SR_mult_one_left T.
-Let mult_zero_left := SR_mult_zero_left T.
-Let distr_left := SR_distr_left T.
-(*Let plus_reg_left := SR_plus_reg_left T.*)
-
-Hint Resolve plus_comm plus_assoc mult_comm mult_assoc plus_zero_left
- mult_one_left mult_zero_left distr_left (*plus_reg_left*).
-
-(* Lemmas whose form is x=y are also provided in form y=x because Auto does
- not symmetry *)
-Lemma SR_mult_assoc2 : forall n m p:A, n * m * p = n * (m * p).
-symmetry ; eauto. Qed.
-
-Lemma SR_plus_assoc2 : forall n m p:A, n + m + p = n + (m + p).
-symmetry ; eauto. Qed.
-
-Lemma SR_plus_zero_left2 : forall n:A, n = 0 + n.
-symmetry ; eauto. Qed.
-
-Lemma SR_mult_one_left2 : forall n:A, n = 1 * n.
-symmetry ; eauto. Qed.
-
-Lemma SR_mult_zero_left2 : forall n:A, 0 = 0 * n.
-symmetry ; eauto. Qed.
-
-Lemma SR_distr_left2 : forall n m p:A, n * p + m * p = (n + m) * p.
-symmetry ; eauto. Qed.
-
-Lemma SR_plus_permute : forall n m p:A, n + (m + p) = m + (n + p).
-intros.
-rewrite plus_assoc.
-elim (plus_comm m n).
-rewrite <- plus_assoc.
-reflexivity.
-Qed.
-
-Lemma SR_mult_permute : forall n m p:A, n * (m * p) = m * (n * p).
-intros.
-rewrite mult_assoc.
-elim (mult_comm m n).
-rewrite <- mult_assoc.
-reflexivity.
-Qed.
-
-Hint Resolve SR_plus_permute SR_mult_permute.
-
-Lemma SR_distr_right : forall n m p:A, n * (m + p) = n * m + n * p.
-intros.
-repeat rewrite (mult_comm n).
-eauto.
-Qed.
-
-Lemma SR_distr_right2 : forall n m p:A, n * m + n * p = n * (m + p).
-symmetry ; apply SR_distr_right. Qed.
-
-Lemma SR_mult_zero_right : forall n:A, n * 0 = 0.
-intro; rewrite mult_comm; eauto.
-Qed.
-
-Lemma SR_mult_zero_right2 : forall n:A, 0 = n * 0.
-intro; rewrite mult_comm; eauto.
-Qed.
-
-Lemma SR_plus_zero_right : forall n:A, n + 0 = n.
-intro; rewrite plus_comm; eauto.
-Qed.
-Lemma SR_plus_zero_right2 : forall n:A, n = n + 0.
-intro; rewrite plus_comm; eauto.
-Qed.
-
-Lemma SR_mult_one_right : forall n:A, n * 1 = n.
-intro; elim mult_comm; auto.
-Qed.
-
-Lemma SR_mult_one_right2 : forall n:A, n = n * 1.
-intro; elim mult_comm; auto.
-Qed.
-(*
-Lemma SR_plus_reg_right : forall n m p:A, m + n = p + n -> m = p.
-intros n m p; rewrite (plus_comm m n); rewrite (plus_comm p n); eauto.
-Qed.
-*)
-End Theory_of_semi_rings.
-
-Section Theory_of_rings.
-
-Variable A : Type.
-
-Variable Aplus : A -> A -> A.
-Variable Amult : A -> A -> A.
-Variable Aone : A.
-Variable Azero : A.
-Variable Aopp : A -> A.
-Variable Aeq : A -> A -> bool.
-
-Infix "+" := Aplus (at level 50, left associativity).
-Infix "*" := Amult (at level 40, left associativity).
-Notation "0" := Azero.
-Notation "1" := Aone.
-Notation "- x" := (Aopp x).
-
-Record Ring_Theory : Prop :=
- {Th_plus_comm : forall n m:A, n + m = m + n;
- Th_plus_assoc : forall n m p:A, n + (m + p) = n + m + p;
- Th_mult_comm : forall n m:A, n * m = m * n;
- Th_mult_assoc : forall n m p:A, n * (m * p) = n * m * p;
- Th_plus_zero_left : forall n:A, 0 + n = n;
- Th_mult_one_left : forall n:A, 1 * n = n;
- Th_opp_def : forall n:A, n + - n = 0;
- Th_distr_left : forall n m p:A, (n + m) * p = n * p + m * p;
- Th_eq_prop : forall x y:A, Is_true (Aeq x y) -> x = y}.
-
-Variable T : Ring_Theory.
-
-Let plus_comm := Th_plus_comm T.
-Let plus_assoc := Th_plus_assoc T.
-Let mult_comm := Th_mult_comm T.
-Let mult_assoc := Th_mult_assoc T.
-Let plus_zero_left := Th_plus_zero_left T.
-Let mult_one_left := Th_mult_one_left T.
-Let opp_def := Th_opp_def T.
-Let distr_left := Th_distr_left T.
-
-Hint Resolve plus_comm plus_assoc mult_comm mult_assoc plus_zero_left
- mult_one_left opp_def distr_left.
-
-(* Lemmas whose form is x=y are also provided in form y=x because Auto does
- not symmetry *)
-Lemma Th_mult_assoc2 : forall n m p:A, n * m * p = n * (m * p).
-symmetry ; eauto. Qed.
-
-Lemma Th_plus_assoc2 : forall n m p:A, n + m + p = n + (m + p).
-symmetry ; eauto. Qed.
-
-Lemma Th_plus_zero_left2 : forall n:A, n = 0 + n.
-symmetry ; eauto. Qed.
-
-Lemma Th_mult_one_left2 : forall n:A, n = 1 * n.
-symmetry ; eauto. Qed.
-
-Lemma Th_distr_left2 : forall n m p:A, n * p + m * p = (n + m) * p.
-symmetry ; eauto. Qed.
-
-Lemma Th_opp_def2 : forall n:A, 0 = n + - n.
-symmetry ; eauto. Qed.
-
-Lemma Th_plus_permute : forall n m p:A, n + (m + p) = m + (n + p).
-intros.
-rewrite plus_assoc.
-elim (plus_comm m n).
-rewrite <- plus_assoc.
-reflexivity.
-Qed.
-
-Lemma Th_mult_permute : forall n m p:A, n * (m * p) = m * (n * p).
-intros.
-rewrite mult_assoc.
-elim (mult_comm m n).
-rewrite <- mult_assoc.
-reflexivity.
-Qed.
-
-Hint Resolve Th_plus_permute Th_mult_permute.
-
-Lemma aux1 : forall a:A, a + a = a -> a = 0.
-intros.
-generalize (opp_def a).
-pattern a at 1.
-rewrite <- H.
-rewrite <- plus_assoc.
-rewrite opp_def.
-elim plus_comm.
-rewrite plus_zero_left.
-trivial.
-Qed.
-
-Lemma Th_mult_zero_left : forall n:A, 0 * n = 0.
-intros.
-apply aux1.
-rewrite <- distr_left.
-rewrite plus_zero_left.
-reflexivity.
-Qed.
-Hint Resolve Th_mult_zero_left.
-
-Lemma Th_mult_zero_left2 : forall n:A, 0 = 0 * n.
-symmetry ; eauto. Qed.
-
-Lemma aux2 : forall x y z:A, x + y = 0 -> x + z = 0 -> y = z.
-intros.
-rewrite <- (plus_zero_left y).
-elim H0.
-elim plus_assoc.
-elim (plus_comm y z).
-rewrite plus_assoc.
-rewrite H.
-rewrite plus_zero_left.
-reflexivity.
-Qed.
-
-Lemma Th_opp_mult_left : forall x y:A, - (x * y) = - x * y.
-intros.
-apply (aux2 (x:=(x * y)));
- [ apply opp_def | rewrite <- distr_left; rewrite opp_def; auto ].
-Qed.
-Hint Resolve Th_opp_mult_left.
-
-Lemma Th_opp_mult_left2 : forall x y:A, - x * y = - (x * y).
-symmetry ; eauto. Qed.
-
-Lemma Th_mult_zero_right : forall n:A, n * 0 = 0.
-intro; elim mult_comm; eauto.
-Qed.
-
-Lemma Th_mult_zero_right2 : forall n:A, 0 = n * 0.
-intro; elim mult_comm; eauto.
-Qed.
-
-Lemma Th_plus_zero_right : forall n:A, n + 0 = n.
-intro; rewrite plus_comm; eauto.
-Qed.
-
-Lemma Th_plus_zero_right2 : forall n:A, n = n + 0.
-intro; rewrite plus_comm; eauto.
-Qed.
-
-Lemma Th_mult_one_right : forall n:A, n * 1 = n.
-intro; elim mult_comm; eauto.
-Qed.
-
-Lemma Th_mult_one_right2 : forall n:A, n = n * 1.
-intro; elim mult_comm; eauto.
-Qed.
-
-Lemma Th_opp_mult_right : forall x y:A, - (x * y) = x * - y.
-intros; do 2 rewrite (mult_comm x); auto.
-Qed.
-
-Lemma Th_opp_mult_right2 : forall x y:A, x * - y = - (x * y).
-intros; do 2 rewrite (mult_comm x); auto.
-Qed.
-
-Lemma Th_plus_opp_opp : forall x y:A, - x + - y = - (x + y).
-intros.
-apply (aux2 (x:=(x + y)));
- [ elim plus_assoc; rewrite (Th_plus_permute y (- x)); rewrite plus_assoc;
- rewrite opp_def; rewrite plus_zero_left; auto
- | auto ].
-Qed.
-
-Lemma Th_plus_permute_opp : forall n m p:A, - m + (n + p) = n + (- m + p).
-eauto. Qed.
-
-Lemma Th_opp_opp : forall n:A, - - n = n.
-intro; apply (aux2 (x:=(- n))); [ auto | elim plus_comm; auto ].
-Qed.
-Hint Resolve Th_opp_opp.
-
-Lemma Th_opp_opp2 : forall n:A, n = - - n.
-symmetry ; eauto. Qed.
-
-Lemma Th_mult_opp_opp : forall x y:A, - x * - y = x * y.
-intros; rewrite <- Th_opp_mult_left; rewrite <- Th_opp_mult_right; auto.
-Qed.
-
-Lemma Th_mult_opp_opp2 : forall x y:A, x * y = - x * - y.
-symmetry ; apply Th_mult_opp_opp. Qed.
-
-Lemma Th_opp_zero : - 0 = 0.
-rewrite <- (plus_zero_left (- 0)).
-auto. Qed.
-(*
-Lemma Th_plus_reg_left : forall n m p:A, n + m = n + p -> m = p.
-intros; generalize (f_equal (fun z => - n + z) H).
-repeat rewrite plus_assoc.
-rewrite (plus_comm (- n) n).
-rewrite opp_def.
-repeat rewrite Th_plus_zero_left; eauto.
-Qed.
-
-Lemma Th_plus_reg_right : forall n m p:A, m + n = p + n -> m = p.
-intros.
-eapply Th_plus_reg_left with n.
-rewrite (plus_comm n m).
-rewrite (plus_comm n p).
-auto.
-Qed.
-*)
-Lemma Th_distr_right : forall n m p:A, n * (m + p) = n * m + n * p.
-intros.
-repeat rewrite (mult_comm n).
-eauto.
-Qed.
-
-Lemma Th_distr_right2 : forall n m p:A, n * m + n * p = n * (m + p).
-symmetry ; apply Th_distr_right.
-Qed.
-
-End Theory_of_rings.
-
-Hint Resolve Th_mult_zero_left (*Th_plus_reg_left*): core.
-
-Unset Implicit Arguments.
-
-Definition Semi_Ring_Theory_of :
- forall (A:Type) (Aplus Amult:A -> A -> A) (Aone Azero:A)
- (Aopp:A -> A) (Aeq:A -> A -> bool),
- Ring_Theory Aplus Amult Aone Azero Aopp Aeq ->
- Semi_Ring_Theory Aplus Amult Aone Azero Aeq.
-intros until 1; case H.
-split; intros; simpl; eauto.
-Defined.
-
-(* Every ring can be viewed as a semi-ring : this property will be used
- in Abstract_polynom. *)
-Coercion Semi_Ring_Theory_of : Ring_Theory >-> Semi_Ring_Theory.
-
-
-Section product_ring.
-
-End product_ring.
-
-Section power_ring.
-
-End power_ring.
diff --git a/plugins/ring/LegacyZArithRing.v b/plugins/ring/LegacyZArithRing.v
deleted file mode 100644
index 472c91b4..00000000
--- a/plugins/ring/LegacyZArithRing.v
+++ /dev/null
@@ -1,35 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(* Instantiation of the Ring tactic for the binary integers of ZArith *)
-
-Require Export LegacyArithRing.
-Require Export ZArith_base.
-Require Import Eqdep_dec.
-Require Import LegacyRing.
-
-Definition Zeq (x y:Z) :=
- match (x ?= y)%Z with
- | Datatypes.Eq => true
- | _ => false
- end.
-
-Lemma Zeq_prop : forall x y:Z, Is_true (Zeq x y) -> x = y.
- intros x y H; unfold Zeq in H.
- apply Z.compare_eq.
- destruct (x ?= y)%Z; [ reflexivity | contradiction | contradiction ].
-Qed.
-
-Definition ZTheory : Ring_Theory Z.add Z.mul 1%Z 0%Z Z.opp Zeq.
- split; intros; eauto with zarith.
- apply Zeq_prop; assumption.
-Qed.
-
-(* NatConstants and NatTheory are defined in Ring_theory.v *)
-Add Legacy Ring Z Z.add Z.mul 1%Z 0%Z Z.opp Zeq ZTheory
- [ Zpos Zneg 0%Z xO xI 1%positive ].
diff --git a/plugins/ring/Ring_abstract.v b/plugins/ring/Ring_abstract.v
deleted file mode 100644
index 4aec3893..00000000
--- a/plugins/ring/Ring_abstract.v
+++ /dev/null
@@ -1,700 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-Require Import LegacyRing_theory.
-Require Import Quote.
-Require Import Ring_normalize.
-
-Section abstract_semi_rings.
-
-Inductive aspolynomial : Type :=
- | ASPvar : index -> aspolynomial
- | ASP0 : aspolynomial
- | ASP1 : aspolynomial
- | ASPplus : aspolynomial -> aspolynomial -> aspolynomial
- | ASPmult : aspolynomial -> aspolynomial -> aspolynomial.
-
-Inductive abstract_sum : Type :=
- | Nil_acs : abstract_sum
- | Cons_acs : varlist -> abstract_sum -> abstract_sum.
-
-Fixpoint abstract_sum_merge (s1:abstract_sum) :
- abstract_sum -> abstract_sum :=
- match s1 with
- | Cons_acs l1 t1 =>
- (fix asm_aux (s2:abstract_sum) : abstract_sum :=
- match s2 with
- | Cons_acs l2 t2 =>
- if varlist_lt l1 l2
- then Cons_acs l1 (abstract_sum_merge t1 s2)
- else Cons_acs l2 (asm_aux t2)
- | Nil_acs => s1
- end)
- | Nil_acs => fun s2 => s2
- end.
-
-Fixpoint abstract_varlist_insert (l1:varlist) (s2:abstract_sum) {struct s2} :
- abstract_sum :=
- match s2 with
- | Cons_acs l2 t2 =>
- if varlist_lt l1 l2
- then Cons_acs l1 s2
- else Cons_acs l2 (abstract_varlist_insert l1 t2)
- | Nil_acs => Cons_acs l1 Nil_acs
- end.
-
-Fixpoint abstract_sum_scalar (l1:varlist) (s2:abstract_sum) {struct s2} :
- abstract_sum :=
- match s2 with
- | Cons_acs l2 t2 =>
- abstract_varlist_insert (varlist_merge l1 l2)
- (abstract_sum_scalar l1 t2)
- | Nil_acs => Nil_acs
- end.
-
-Fixpoint abstract_sum_prod (s1 s2:abstract_sum) {struct s1} : abstract_sum :=
- match s1 with
- | Cons_acs l1 t1 =>
- abstract_sum_merge (abstract_sum_scalar l1 s2)
- (abstract_sum_prod t1 s2)
- | Nil_acs => Nil_acs
- end.
-
-Fixpoint aspolynomial_normalize (p:aspolynomial) : abstract_sum :=
- match p with
- | ASPvar i => Cons_acs (Cons_var i Nil_var) Nil_acs
- | ASP1 => Cons_acs Nil_var Nil_acs
- | ASP0 => Nil_acs
- | ASPplus l r =>
- abstract_sum_merge (aspolynomial_normalize l)
- (aspolynomial_normalize r)
- | ASPmult l r =>
- abstract_sum_prod (aspolynomial_normalize l) (aspolynomial_normalize r)
- end.
-
-
-
-Variable A : Type.
-Variable Aplus : A -> A -> A.
-Variable Amult : A -> A -> A.
-Variable Aone : A.
-Variable Azero : A.
-Variable Aeq : A -> A -> bool.
-Variable vm : varmap A.
-Variable T : Semi_Ring_Theory Aplus Amult Aone Azero Aeq.
-
-Fixpoint interp_asp (p:aspolynomial) : A :=
- match p with
- | ASPvar i => interp_var Azero vm i
- | ASP0 => Azero
- | ASP1 => Aone
- | ASPplus l r => Aplus (interp_asp l) (interp_asp r)
- | ASPmult l r => Amult (interp_asp l) (interp_asp r)
- end.
-
-(* Local *) Definition iacs_aux :=
- (fix iacs_aux (a:A) (s:abstract_sum) {struct s} : A :=
- match s with
- | Nil_acs => a
- | Cons_acs l t =>
- Aplus a (iacs_aux (interp_vl Amult Aone Azero vm l) t)
- end).
-
-Definition interp_acs (s:abstract_sum) : A :=
- match s with
- | Cons_acs l t => iacs_aux (interp_vl Amult Aone Azero vm l) t
- | Nil_acs => Azero
- end.
-
-Hint Resolve (SR_plus_comm T).
-Hint Resolve (SR_plus_assoc T).
-Hint Resolve (SR_plus_assoc2 T).
-Hint Resolve (SR_mult_comm T).
-Hint Resolve (SR_mult_assoc T).
-Hint Resolve (SR_mult_assoc2 T).
-Hint Resolve (SR_plus_zero_left T).
-Hint Resolve (SR_plus_zero_left2 T).
-Hint Resolve (SR_mult_one_left T).
-Hint Resolve (SR_mult_one_left2 T).
-Hint Resolve (SR_mult_zero_left T).
-Hint Resolve (SR_mult_zero_left2 T).
-Hint Resolve (SR_distr_left T).
-Hint Resolve (SR_distr_left2 T).
-(*Hint Resolve (SR_plus_reg_left T).*)
-Hint Resolve (SR_plus_permute T).
-Hint Resolve (SR_mult_permute T).
-Hint Resolve (SR_distr_right T).
-Hint Resolve (SR_distr_right2 T).
-Hint Resolve (SR_mult_zero_right T).
-Hint Resolve (SR_mult_zero_right2 T).
-Hint Resolve (SR_plus_zero_right T).
-Hint Resolve (SR_plus_zero_right2 T).
-Hint Resolve (SR_mult_one_right T).
-Hint Resolve (SR_mult_one_right2 T).
-(*Hint Resolve (SR_plus_reg_right T).*)
-Hint Resolve eq_refl eq_sym eq_trans.
-Hint Immediate T.
-
-Remark iacs_aux_ok :
- forall (x:A) (s:abstract_sum), iacs_aux x s = Aplus x (interp_acs s).
-Proof.
- simple induction s; simpl; intros.
- trivial.
- reflexivity.
-Qed.
-
-Hint Extern 10 (_ = _ :>A) => rewrite iacs_aux_ok: core.
-
-Lemma abstract_varlist_insert_ok :
- forall (l:varlist) (s:abstract_sum),
- interp_acs (abstract_varlist_insert l s) =
- Aplus (interp_vl Amult Aone Azero vm l) (interp_acs s).
-
- simple induction s.
- trivial.
-
- simpl; intros.
- elim (varlist_lt l v); simpl.
- eauto.
- rewrite iacs_aux_ok.
- rewrite H; auto.
-
-Qed.
-
-Lemma abstract_sum_merge_ok :
- forall x y:abstract_sum,
- interp_acs (abstract_sum_merge x y) = Aplus (interp_acs x) (interp_acs y).
-
-Proof.
- simple induction x.
- trivial.
- simple induction y; intros.
-
- auto.
-
- simpl; elim (varlist_lt v v0); simpl.
- repeat rewrite iacs_aux_ok.
- rewrite H; simpl; auto.
-
- simpl in H0.
- repeat rewrite iacs_aux_ok.
- rewrite H0. simpl; auto.
-Qed.
-
-Lemma abstract_sum_scalar_ok :
- forall (l:varlist) (s:abstract_sum),
- interp_acs (abstract_sum_scalar l s) =
- Amult (interp_vl Amult Aone Azero vm l) (interp_acs s).
-Proof.
- simple induction s.
- simpl; eauto.
-
- simpl; intros.
- rewrite iacs_aux_ok.
- rewrite abstract_varlist_insert_ok.
- rewrite H.
- rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T).
- auto.
-Qed.
-
-Lemma abstract_sum_prod_ok :
- forall x y:abstract_sum,
- interp_acs (abstract_sum_prod x y) = Amult (interp_acs x) (interp_acs y).
-
-Proof.
- simple induction x.
- intros; simpl; eauto.
-
- destruct y as [| v0 a0]; intros.
-
- simpl; rewrite H; eauto.
-
- unfold abstract_sum_prod; fold abstract_sum_prod.
- rewrite abstract_sum_merge_ok.
- rewrite abstract_sum_scalar_ok.
- rewrite H; simpl; auto.
-Qed.
-
-Theorem aspolynomial_normalize_ok :
- forall x:aspolynomial, interp_asp x = interp_acs (aspolynomial_normalize x).
-Proof.
- simple induction x; simpl; intros; trivial.
- rewrite abstract_sum_merge_ok.
- rewrite H; rewrite H0; eauto.
- rewrite abstract_sum_prod_ok.
- rewrite H; rewrite H0; eauto.
-Qed.
-
-End abstract_semi_rings.
-
-Section abstract_rings.
-
-(* In abstract polynomials there is no constants other
- than 0 and 1. An abstract ring is a ring whose operations plus,
- and mult are not functions but constructors. In other words,
- when c1 and c2 are closed, (plus c1 c2) doesn't reduce to a closed
- term. "closed" mean here "without plus and mult". *)
-
-(* this section is not parametrized by a (semi-)ring.
- Nevertheless, they are two different types for semi-rings and rings
- and there will be 2 correction theorems *)
-
-Inductive apolynomial : Type :=
- | APvar : index -> apolynomial
- | AP0 : apolynomial
- | AP1 : apolynomial
- | APplus : apolynomial -> apolynomial -> apolynomial
- | APmult : apolynomial -> apolynomial -> apolynomial
- | APopp : apolynomial -> apolynomial.
-
-(* A canonical "abstract" sum is a list of varlist with the sign "+" or "-".
- Invariant : the list is sorted and there is no varlist is present
- with both signs. +x +x +x -x is forbidden => the canonical form is +x+x *)
-
-Inductive signed_sum : Type :=
- | Nil_varlist : signed_sum
- | Plus_varlist : varlist -> signed_sum -> signed_sum
- | Minus_varlist : varlist -> signed_sum -> signed_sum.
-
-Fixpoint signed_sum_merge (s1:signed_sum) : signed_sum -> signed_sum :=
- match s1 with
- | Plus_varlist l1 t1 =>
- (fix ssm_aux (s2:signed_sum) : signed_sum :=
- match s2 with
- | Plus_varlist l2 t2 =>
- if varlist_lt l1 l2
- then Plus_varlist l1 (signed_sum_merge t1 s2)
- else Plus_varlist l2 (ssm_aux t2)
- | Minus_varlist l2 t2 =>
- if varlist_eq l1 l2
- then signed_sum_merge t1 t2
- else
- if varlist_lt l1 l2
- then Plus_varlist l1 (signed_sum_merge t1 s2)
- else Minus_varlist l2 (ssm_aux t2)
- | Nil_varlist => s1
- end)
- | Minus_varlist l1 t1 =>
- (fix ssm_aux2 (s2:signed_sum) : signed_sum :=
- match s2 with
- | Plus_varlist l2 t2 =>
- if varlist_eq l1 l2
- then signed_sum_merge t1 t2
- else
- if varlist_lt l1 l2
- then Minus_varlist l1 (signed_sum_merge t1 s2)
- else Plus_varlist l2 (ssm_aux2 t2)
- | Minus_varlist l2 t2 =>
- if varlist_lt l1 l2
- then Minus_varlist l1 (signed_sum_merge t1 s2)
- else Minus_varlist l2 (ssm_aux2 t2)
- | Nil_varlist => s1
- end)
- | Nil_varlist => fun s2 => s2
- end.
-
-Fixpoint plus_varlist_insert (l1:varlist) (s2:signed_sum) {struct s2} :
- signed_sum :=
- match s2 with
- | Plus_varlist l2 t2 =>
- if varlist_lt l1 l2
- then Plus_varlist l1 s2
- else Plus_varlist l2 (plus_varlist_insert l1 t2)
- | Minus_varlist l2 t2 =>
- if varlist_eq l1 l2
- then t2
- else
- if varlist_lt l1 l2
- then Plus_varlist l1 s2
- else Minus_varlist l2 (plus_varlist_insert l1 t2)
- | Nil_varlist => Plus_varlist l1 Nil_varlist
- end.
-
-Fixpoint minus_varlist_insert (l1:varlist) (s2:signed_sum) {struct s2} :
- signed_sum :=
- match s2 with
- | Plus_varlist l2 t2 =>
- if varlist_eq l1 l2
- then t2
- else
- if varlist_lt l1 l2
- then Minus_varlist l1 s2
- else Plus_varlist l2 (minus_varlist_insert l1 t2)
- | Minus_varlist l2 t2 =>
- if varlist_lt l1 l2
- then Minus_varlist l1 s2
- else Minus_varlist l2 (minus_varlist_insert l1 t2)
- | Nil_varlist => Minus_varlist l1 Nil_varlist
- end.
-
-Fixpoint signed_sum_opp (s:signed_sum) : signed_sum :=
- match s with
- | Plus_varlist l2 t2 => Minus_varlist l2 (signed_sum_opp t2)
- | Minus_varlist l2 t2 => Plus_varlist l2 (signed_sum_opp t2)
- | Nil_varlist => Nil_varlist
- end.
-
-
-Fixpoint plus_sum_scalar (l1:varlist) (s2:signed_sum) {struct s2} :
- signed_sum :=
- match s2 with
- | Plus_varlist l2 t2 =>
- plus_varlist_insert (varlist_merge l1 l2) (plus_sum_scalar l1 t2)
- | Minus_varlist l2 t2 =>
- minus_varlist_insert (varlist_merge l1 l2) (plus_sum_scalar l1 t2)
- | Nil_varlist => Nil_varlist
- end.
-
-Fixpoint minus_sum_scalar (l1:varlist) (s2:signed_sum) {struct s2} :
- signed_sum :=
- match s2 with
- | Plus_varlist l2 t2 =>
- minus_varlist_insert (varlist_merge l1 l2) (minus_sum_scalar l1 t2)
- | Minus_varlist l2 t2 =>
- plus_varlist_insert (varlist_merge l1 l2) (minus_sum_scalar l1 t2)
- | Nil_varlist => Nil_varlist
- end.
-
-Fixpoint signed_sum_prod (s1 s2:signed_sum) {struct s1} : signed_sum :=
- match s1 with
- | Plus_varlist l1 t1 =>
- signed_sum_merge (plus_sum_scalar l1 s2) (signed_sum_prod t1 s2)
- | Minus_varlist l1 t1 =>
- signed_sum_merge (minus_sum_scalar l1 s2) (signed_sum_prod t1 s2)
- | Nil_varlist => Nil_varlist
- end.
-
-Fixpoint apolynomial_normalize (p:apolynomial) : signed_sum :=
- match p with
- | APvar i => Plus_varlist (Cons_var i Nil_var) Nil_varlist
- | AP1 => Plus_varlist Nil_var Nil_varlist
- | AP0 => Nil_varlist
- | APplus l r =>
- signed_sum_merge (apolynomial_normalize l) (apolynomial_normalize r)
- | APmult l r =>
- signed_sum_prod (apolynomial_normalize l) (apolynomial_normalize r)
- | APopp q => signed_sum_opp (apolynomial_normalize q)
- end.
-
-
-Variable A : Type.
-Variable Aplus : A -> A -> A.
-Variable Amult : A -> A -> A.
-Variable Aone : A.
-Variable Azero : A.
-Variable Aopp : A -> A.
-Variable Aeq : A -> A -> bool.
-Variable vm : varmap A.
-Variable T : Ring_Theory Aplus Amult Aone Azero Aopp Aeq.
-
-(* Local *) Definition isacs_aux :=
- (fix isacs_aux (a:A) (s:signed_sum) {struct s} : A :=
- match s with
- | Nil_varlist => a
- | Plus_varlist l t =>
- Aplus a (isacs_aux (interp_vl Amult Aone Azero vm l) t)
- | Minus_varlist l t =>
- Aplus a
- (isacs_aux (Aopp (interp_vl Amult Aone Azero vm l)) t)
- end).
-
-Definition interp_sacs (s:signed_sum) : A :=
- match s with
- | Plus_varlist l t => isacs_aux (interp_vl Amult Aone Azero vm l) t
- | Minus_varlist l t => isacs_aux (Aopp (interp_vl Amult Aone Azero vm l)) t
- | Nil_varlist => Azero
- end.
-
-Fixpoint interp_ap (p:apolynomial) : A :=
- match p with
- | APvar i => interp_var Azero vm i
- | AP0 => Azero
- | AP1 => Aone
- | APplus l r => Aplus (interp_ap l) (interp_ap r)
- | APmult l r => Amult (interp_ap l) (interp_ap r)
- | APopp q => Aopp (interp_ap q)
- end.
-
-Hint Resolve (Th_plus_comm T).
-Hint Resolve (Th_plus_assoc T).
-Hint Resolve (Th_plus_assoc2 T).
-Hint Resolve (Th_mult_comm T).
-Hint Resolve (Th_mult_assoc T).
-Hint Resolve (Th_mult_assoc2 T).
-Hint Resolve (Th_plus_zero_left T).
-Hint Resolve (Th_plus_zero_left2 T).
-Hint Resolve (Th_mult_one_left T).
-Hint Resolve (Th_mult_one_left2 T).
-Hint Resolve (Th_mult_zero_left T).
-Hint Resolve (Th_mult_zero_left2 T).
-Hint Resolve (Th_distr_left T).
-Hint Resolve (Th_distr_left2 T).
-(*Hint Resolve (Th_plus_reg_left T).*)
-Hint Resolve (Th_plus_permute T).
-Hint Resolve (Th_mult_permute T).
-Hint Resolve (Th_distr_right T).
-Hint Resolve (Th_distr_right2 T).
-Hint Resolve (Th_mult_zero_right2 T).
-Hint Resolve (Th_plus_zero_right T).
-Hint Resolve (Th_plus_zero_right2 T).
-Hint Resolve (Th_mult_one_right T).
-Hint Resolve (Th_mult_one_right2 T).
-(*Hint Resolve (Th_plus_reg_right T).*)
-Hint Resolve eq_refl eq_sym eq_trans.
-Hint Immediate T.
-
-Lemma isacs_aux_ok :
- forall (x:A) (s:signed_sum), isacs_aux x s = Aplus x (interp_sacs s).
-Proof.
- simple induction s; simpl; intros.
- trivial.
- reflexivity.
- reflexivity.
-Qed.
-
-Hint Extern 10 (_ = _ :>A) => rewrite isacs_aux_ok: core.
-
-Ltac solve1 v v0 H H0 :=
- simpl; elim (varlist_lt v v0); simpl; rewrite isacs_aux_ok;
- [ rewrite H; simpl; auto | simpl in H0; rewrite H0; auto ].
-
-Lemma signed_sum_merge_ok :
- forall x y:signed_sum,
- interp_sacs (signed_sum_merge x y) = Aplus (interp_sacs x) (interp_sacs y).
-
- simple induction x.
- intro; simpl; auto.
-
- simple induction y; intros.
-
- auto.
-
- solve1 v v0 H H0.
-
- simpl; generalize (varlist_eq_prop v v0).
- elim (varlist_eq v v0); simpl.
-
- intro Heq; rewrite (Heq I).
- rewrite H.
- repeat rewrite isacs_aux_ok.
- rewrite (Th_plus_permute T).
- repeat rewrite (Th_plus_assoc T).
- rewrite
- (Th_plus_comm T (Aopp (interp_vl Amult Aone Azero vm v0))
- (interp_vl Amult Aone Azero vm v0)).
- rewrite (Th_opp_def T).
- rewrite (Th_plus_zero_left T).
- reflexivity.
-
- solve1 v v0 H H0.
-
- simple induction y; intros.
-
- auto.
-
- simpl; generalize (varlist_eq_prop v v0).
- elim (varlist_eq v v0); simpl.
-
- intro Heq; rewrite (Heq I).
- rewrite H.
- repeat rewrite isacs_aux_ok.
- rewrite (Th_plus_permute T).
- repeat rewrite (Th_plus_assoc T).
- rewrite (Th_opp_def T).
- rewrite (Th_plus_zero_left T).
- reflexivity.
-
- solve1 v v0 H H0.
-
- solve1 v v0 H H0.
-
-Qed.
-
-Ltac solve2 l v H :=
- elim (varlist_lt l v); simpl; rewrite isacs_aux_ok;
- [ auto | rewrite H; auto ].
-
-Lemma plus_varlist_insert_ok :
- forall (l:varlist) (s:signed_sum),
- interp_sacs (plus_varlist_insert l s) =
- Aplus (interp_vl Amult Aone Azero vm l) (interp_sacs s).
-Proof.
-
- simple induction s.
- trivial.
-
- simpl; intros.
- solve2 l v H.
-
- simpl; intros.
- generalize (varlist_eq_prop l v).
- elim (varlist_eq l v); simpl.
-
- intro Heq; rewrite (Heq I).
- repeat rewrite isacs_aux_ok.
- repeat rewrite (Th_plus_assoc T).
- rewrite (Th_opp_def T).
- rewrite (Th_plus_zero_left T).
- reflexivity.
-
- solve2 l v H.
-
-Qed.
-
-Lemma minus_varlist_insert_ok :
- forall (l:varlist) (s:signed_sum),
- interp_sacs (minus_varlist_insert l s) =
- Aplus (Aopp (interp_vl Amult Aone Azero vm l)) (interp_sacs s).
-Proof.
-
- simple induction s.
- trivial.
-
- simpl; intros.
- generalize (varlist_eq_prop l v).
- elim (varlist_eq l v); simpl.
-
- intro Heq; rewrite (Heq I).
- repeat rewrite isacs_aux_ok.
- repeat rewrite (Th_plus_assoc T).
- rewrite
- (Th_plus_comm T (Aopp (interp_vl Amult Aone Azero vm v))
- (interp_vl Amult Aone Azero vm v)).
- rewrite (Th_opp_def T).
- auto.
-
- simpl; intros.
- solve2 l v H.
-
- simpl; intros; solve2 l v H.
-
-Qed.
-
-Lemma signed_sum_opp_ok :
- forall s:signed_sum, interp_sacs (signed_sum_opp s) = Aopp (interp_sacs s).
-Proof.
-
- simple induction s; simpl; intros.
-
- symmetry ; apply (Th_opp_zero T).
-
- repeat rewrite isacs_aux_ok.
- rewrite H.
- rewrite (Th_plus_opp_opp T).
- reflexivity.
-
- repeat rewrite isacs_aux_ok.
- rewrite H.
- rewrite <- (Th_plus_opp_opp T).
- rewrite (Th_opp_opp T).
- reflexivity.
-
-Qed.
-
-Lemma plus_sum_scalar_ok :
- forall (l:varlist) (s:signed_sum),
- interp_sacs (plus_sum_scalar l s) =
- Amult (interp_vl Amult Aone Azero vm l) (interp_sacs s).
-Proof.
-
- simple induction s.
- trivial.
-
- simpl; intros.
- rewrite plus_varlist_insert_ok.
- rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T).
- repeat rewrite isacs_aux_ok.
- rewrite H.
- auto.
-
- simpl; intros.
- rewrite minus_varlist_insert_ok.
- repeat rewrite isacs_aux_ok.
- rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T).
- rewrite H.
- rewrite (Th_distr_right T).
- rewrite <- (Th_opp_mult_right T).
- reflexivity.
-
-Qed.
-
-Lemma minus_sum_scalar_ok :
- forall (l:varlist) (s:signed_sum),
- interp_sacs (minus_sum_scalar l s) =
- Aopp (Amult (interp_vl Amult Aone Azero vm l) (interp_sacs s)).
-Proof.
-
- simple induction s; simpl; intros.
-
- rewrite (Th_mult_zero_right T); symmetry ; apply (Th_opp_zero T).
-
- simpl; intros.
- rewrite minus_varlist_insert_ok.
- rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T).
- repeat rewrite isacs_aux_ok.
- rewrite H.
- rewrite (Th_distr_right T).
- rewrite (Th_plus_opp_opp T).
- reflexivity.
-
- simpl; intros.
- rewrite plus_varlist_insert_ok.
- repeat rewrite isacs_aux_ok.
- rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T).
- rewrite H.
- rewrite (Th_distr_right T).
- rewrite <- (Th_opp_mult_right T).
- rewrite <- (Th_plus_opp_opp T).
- rewrite (Th_opp_opp T).
- reflexivity.
-
-Qed.
-
-Lemma signed_sum_prod_ok :
- forall x y:signed_sum,
- interp_sacs (signed_sum_prod x y) = Amult (interp_sacs x) (interp_sacs y).
-Proof.
-
- simple induction x.
-
- simpl; eauto 1.
-
- intros; simpl.
- rewrite signed_sum_merge_ok.
- rewrite plus_sum_scalar_ok.
- repeat rewrite isacs_aux_ok.
- rewrite H.
- auto.
-
- intros; simpl.
- repeat rewrite isacs_aux_ok.
- rewrite signed_sum_merge_ok.
- rewrite minus_sum_scalar_ok.
- rewrite H.
- rewrite (Th_distr_left T).
- rewrite (Th_opp_mult_left T).
- reflexivity.
-
-Qed.
-
-Theorem apolynomial_normalize_ok :
- forall p:apolynomial, interp_sacs (apolynomial_normalize p) = interp_ap p.
-Proof.
- simple induction p; simpl; auto 1.
- intros.
- rewrite signed_sum_merge_ok.
- rewrite H; rewrite H0; reflexivity.
- intros.
- rewrite signed_sum_prod_ok.
- rewrite H; rewrite H0; reflexivity.
- intros.
- rewrite signed_sum_opp_ok.
- rewrite H; reflexivity.
-Qed.
-
-End abstract_rings.
diff --git a/plugins/ring/Ring_normalize.v b/plugins/ring/Ring_normalize.v
deleted file mode 100644
index 6306c4a7..00000000
--- a/plugins/ring/Ring_normalize.v
+++ /dev/null
@@ -1,897 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-Require Import LegacyRing_theory.
-Require Import Quote.
-
-Set Implicit Arguments.
-
-Lemma index_eq_prop : forall n m:index, Is_true (index_eq n m) -> n = m.
-Proof.
- intros.
- apply index_eq_prop.
- generalize H.
- case (index_eq n m); simpl; trivial; intros.
- contradiction.
-Qed.
-
-Section semi_rings.
-
-Variable A : Type.
-Variable Aplus : A -> A -> A.
-Variable Amult : A -> A -> A.
-Variable Aone : A.
-Variable Azero : A.
-Variable Aeq : A -> A -> bool.
-
-(* Section definitions. *)
-
-
-(******************************************)
-(* Normal abtract Polynomials *)
-(******************************************)
-(* DEFINITIONS :
-- A varlist is a sorted product of one or more variables : x, x*y*z
-- A monom is a constant, a varlist or the product of a constant by a varlist
- variables. 2*x*y, x*y*z, 3 are monoms : 2*3, x*3*y, 4*x*3 are NOT.
-- A canonical sum is either a monom or an ordered sum of monoms
- (the order on monoms is defined later)
-- A normal polynomial it either a constant or a canonical sum or a constant
- plus a canonical sum
-*)
-
-(* varlist is isomorphic to (list var), but we built a special inductive
- for efficiency *)
-Inductive varlist : Type :=
- | Nil_var : varlist
- | Cons_var : index -> varlist -> varlist.
-
-Inductive canonical_sum : Type :=
- | Nil_monom : canonical_sum
- | Cons_monom : A -> varlist -> canonical_sum -> canonical_sum
- | Cons_varlist : varlist -> canonical_sum -> canonical_sum.
-
-(* Order on monoms *)
-
-(* That's the lexicographic order on varlist, extended by :
- - A constant is less than every monom
- - The relation between two varlist is preserved by multiplication by a
- constant.
-
- Examples :
- 3 < x < y
- x*y < x*y*y*z
- 2*x*y < x*y*y*z
- x*y < 54*x*y*y*z
- 4*x*y < 59*x*y*y*z
-*)
-
-Fixpoint varlist_eq (x y:varlist) {struct y} : bool :=
- match x, y with
- | Nil_var, Nil_var => true
- | Cons_var i xrest, Cons_var j yrest =>
- andb (index_eq i j) (varlist_eq xrest yrest)
- | _, _ => false
- end.
-
-Fixpoint varlist_lt (x y:varlist) {struct y} : bool :=
- match x, y with
- | Nil_var, Cons_var _ _ => true
- | Cons_var i xrest, Cons_var j yrest =>
- if index_lt i j
- then true
- else andb (index_eq i j) (varlist_lt xrest yrest)
- | _, _ => false
- end.
-
-(* merges two variables lists *)
-Fixpoint varlist_merge (l1:varlist) : varlist -> varlist :=
- match l1 with
- | Cons_var v1 t1 =>
- (fix vm_aux (l2:varlist) : varlist :=
- match l2 with
- | Cons_var v2 t2 =>
- if index_lt v1 v2
- then Cons_var v1 (varlist_merge t1 l2)
- else Cons_var v2 (vm_aux t2)
- | Nil_var => l1
- end)
- | Nil_var => fun l2 => l2
- end.
-
-(* returns the sum of two canonical sums *)
-Fixpoint canonical_sum_merge (s1:canonical_sum) :
- canonical_sum -> canonical_sum :=
- match s1 with
- | Cons_monom c1 l1 t1 =>
- (fix csm_aux (s2:canonical_sum) : canonical_sum :=
- match s2 with
- | Cons_monom c2 l2 t2 =>
- if varlist_eq l1 l2
- then Cons_monom (Aplus c1 c2) l1 (canonical_sum_merge t1 t2)
- else
- if varlist_lt l1 l2
- then Cons_monom c1 l1 (canonical_sum_merge t1 s2)
- else Cons_monom c2 l2 (csm_aux t2)
- | Cons_varlist l2 t2 =>
- if varlist_eq l1 l2
- then Cons_monom (Aplus c1 Aone) l1 (canonical_sum_merge t1 t2)
- else
- if varlist_lt l1 l2
- then Cons_monom c1 l1 (canonical_sum_merge t1 s2)
- else Cons_varlist l2 (csm_aux t2)
- | Nil_monom => s1
- end)
- | Cons_varlist l1 t1 =>
- (fix csm_aux2 (s2:canonical_sum) : canonical_sum :=
- match s2 with
- | Cons_monom c2 l2 t2 =>
- if varlist_eq l1 l2
- then Cons_monom (Aplus Aone c2) l1 (canonical_sum_merge t1 t2)
- else
- if varlist_lt l1 l2
- then Cons_varlist l1 (canonical_sum_merge t1 s2)
- else Cons_monom c2 l2 (csm_aux2 t2)
- | Cons_varlist l2 t2 =>
- if varlist_eq l1 l2
- then Cons_monom (Aplus Aone Aone) l1 (canonical_sum_merge t1 t2)
- else
- if varlist_lt l1 l2
- then Cons_varlist l1 (canonical_sum_merge t1 s2)
- else Cons_varlist l2 (csm_aux2 t2)
- | Nil_monom => s1
- end)
- | Nil_monom => fun s2 => s2
- end.
-
-(* Insertion of a monom in a canonical sum *)
-Fixpoint monom_insert (c1:A) (l1:varlist) (s2:canonical_sum) {struct s2} :
- canonical_sum :=
- match s2 with
- | Cons_monom c2 l2 t2 =>
- if varlist_eq l1 l2
- then Cons_monom (Aplus c1 c2) l1 t2
- else
- if varlist_lt l1 l2
- then Cons_monom c1 l1 s2
- else Cons_monom c2 l2 (monom_insert c1 l1 t2)
- | Cons_varlist l2 t2 =>
- if varlist_eq l1 l2
- then Cons_monom (Aplus c1 Aone) l1 t2
- else
- if varlist_lt l1 l2
- then Cons_monom c1 l1 s2
- else Cons_varlist l2 (monom_insert c1 l1 t2)
- | Nil_monom => Cons_monom c1 l1 Nil_monom
- end.
-
-Fixpoint varlist_insert (l1:varlist) (s2:canonical_sum) {struct s2} :
- canonical_sum :=
- match s2 with
- | Cons_monom c2 l2 t2 =>
- if varlist_eq l1 l2
- then Cons_monom (Aplus Aone c2) l1 t2
- else
- if varlist_lt l1 l2
- then Cons_varlist l1 s2
- else Cons_monom c2 l2 (varlist_insert l1 t2)
- | Cons_varlist l2 t2 =>
- if varlist_eq l1 l2
- then Cons_monom (Aplus Aone Aone) l1 t2
- else
- if varlist_lt l1 l2
- then Cons_varlist l1 s2
- else Cons_varlist l2 (varlist_insert l1 t2)
- | Nil_monom => Cons_varlist l1 Nil_monom
- end.
-
-(* Computes c0*s *)
-Fixpoint canonical_sum_scalar (c0:A) (s:canonical_sum) {struct s} :
- canonical_sum :=
- match s with
- | Cons_monom c l t => Cons_monom (Amult c0 c) l (canonical_sum_scalar c0 t)
- | Cons_varlist l t => Cons_monom c0 l (canonical_sum_scalar c0 t)
- | Nil_monom => Nil_monom
- end.
-
-(* Computes l0*s *)
-Fixpoint canonical_sum_scalar2 (l0:varlist) (s:canonical_sum) {struct s} :
- canonical_sum :=
- match s with
- | Cons_monom c l t =>
- monom_insert c (varlist_merge l0 l) (canonical_sum_scalar2 l0 t)
- | Cons_varlist l t =>
- varlist_insert (varlist_merge l0 l) (canonical_sum_scalar2 l0 t)
- | Nil_monom => Nil_monom
- end.
-
-(* Computes c0*l0*s *)
-Fixpoint canonical_sum_scalar3 (c0:A) (l0:varlist)
- (s:canonical_sum) {struct s} : canonical_sum :=
- match s with
- | Cons_monom c l t =>
- monom_insert (Amult c0 c) (varlist_merge l0 l)
- (canonical_sum_scalar3 c0 l0 t)
- | Cons_varlist l t =>
- monom_insert c0 (varlist_merge l0 l) (canonical_sum_scalar3 c0 l0 t)
- | Nil_monom => Nil_monom
- end.
-
-(* returns the product of two canonical sums *)
-Fixpoint canonical_sum_prod (s1 s2:canonical_sum) {struct s1} :
- canonical_sum :=
- match s1 with
- | Cons_monom c1 l1 t1 =>
- canonical_sum_merge (canonical_sum_scalar3 c1 l1 s2)
- (canonical_sum_prod t1 s2)
- | Cons_varlist l1 t1 =>
- canonical_sum_merge (canonical_sum_scalar2 l1 s2)
- (canonical_sum_prod t1 s2)
- | Nil_monom => Nil_monom
- end.
-
-(* The type to represent concrete semi-ring polynomials *)
-Inductive spolynomial : Type :=
- | SPvar : index -> spolynomial
- | SPconst : A -> spolynomial
- | SPplus : spolynomial -> spolynomial -> spolynomial
- | SPmult : spolynomial -> spolynomial -> spolynomial.
-
-Fixpoint spolynomial_normalize (p:spolynomial) : canonical_sum :=
- match p with
- | SPvar i => Cons_varlist (Cons_var i Nil_var) Nil_monom
- | SPconst c => Cons_monom c Nil_var Nil_monom
- | SPplus l r =>
- canonical_sum_merge (spolynomial_normalize l) (spolynomial_normalize r)
- | SPmult l r =>
- canonical_sum_prod (spolynomial_normalize l) (spolynomial_normalize r)
- end.
-
-(* Deletion of useless 0 and 1 in canonical sums *)
-Fixpoint canonical_sum_simplify (s:canonical_sum) : canonical_sum :=
- match s with
- | Cons_monom c l t =>
- if Aeq c Azero
- then canonical_sum_simplify t
- else
- if Aeq c Aone
- then Cons_varlist l (canonical_sum_simplify t)
- else Cons_monom c l (canonical_sum_simplify t)
- | Cons_varlist l t => Cons_varlist l (canonical_sum_simplify t)
- | Nil_monom => Nil_monom
- end.
-
-Definition spolynomial_simplify (x:spolynomial) :=
- canonical_sum_simplify (spolynomial_normalize x).
-
-(* End definitions. *)
-
-(* Section interpretation. *)
-
-(*** Here a variable map is defined and the interpetation of a spolynom
- acording to a certain variables map. Once again the choosen definition
- is generic and could be changed ****)
-
-Variable vm : varmap A.
-
-(* Interpretation of list of variables
- * [x1; ... ; xn ] is interpreted as (find v x1)* ... *(find v xn)
- * The unbound variables are mapped to 0. Normally this case sould
- * never occur. Since we want only to prove correctness theorems, which form
- * is : for any varmap and any spolynom ... this is a safe and pain-saving
- * choice *)
-Definition interp_var (i:index) := varmap_find Azero i vm.
-
-(* Local *) Definition ivl_aux :=
- (fix ivl_aux (x:index) (t:varlist) {struct t} : A :=
- match t with
- | Nil_var => interp_var x
- | Cons_var x' t' => Amult (interp_var x) (ivl_aux x' t')
- end).
-
-Definition interp_vl (l:varlist) :=
- match l with
- | Nil_var => Aone
- | Cons_var x t => ivl_aux x t
- end.
-
-(* Local *) Definition interp_m (c:A) (l:varlist) :=
- match l with
- | Nil_var => c
- | Cons_var x t => Amult c (ivl_aux x t)
- end.
-
-(* Local *) Definition ics_aux :=
- (fix ics_aux (a:A) (s:canonical_sum) {struct s} : A :=
- match s with
- | Nil_monom => a
- | Cons_varlist l t => Aplus a (ics_aux (interp_vl l) t)
- | Cons_monom c l t => Aplus a (ics_aux (interp_m c l) t)
- end).
-
-(* Interpretation of a canonical sum *)
-Definition interp_cs (s:canonical_sum) : A :=
- match s with
- | Nil_monom => Azero
- | Cons_varlist l t => ics_aux (interp_vl l) t
- | Cons_monom c l t => ics_aux (interp_m c l) t
- end.
-
-Fixpoint interp_sp (p:spolynomial) : A :=
- match p with
- | SPconst c => c
- | SPvar i => interp_var i
- | SPplus p1 p2 => Aplus (interp_sp p1) (interp_sp p2)
- | SPmult p1 p2 => Amult (interp_sp p1) (interp_sp p2)
- end.
-
-
-(* End interpretation. *)
-
-Unset Implicit Arguments.
-
-(* Section properties. *)
-
-Variable T : Semi_Ring_Theory Aplus Amult Aone Azero Aeq.
-
-Hint Resolve (SR_plus_comm T).
-Hint Resolve (SR_plus_assoc T).
-Hint Resolve (SR_plus_assoc2 T).
-Hint Resolve (SR_mult_comm T).
-Hint Resolve (SR_mult_assoc T).
-Hint Resolve (SR_mult_assoc2 T).
-Hint Resolve (SR_plus_zero_left T).
-Hint Resolve (SR_plus_zero_left2 T).
-Hint Resolve (SR_mult_one_left T).
-Hint Resolve (SR_mult_one_left2 T).
-Hint Resolve (SR_mult_zero_left T).
-Hint Resolve (SR_mult_zero_left2 T).
-Hint Resolve (SR_distr_left T).
-Hint Resolve (SR_distr_left2 T).
-(*Hint Resolve (SR_plus_reg_left T).*)
-Hint Resolve (SR_plus_permute T).
-Hint Resolve (SR_mult_permute T).
-Hint Resolve (SR_distr_right T).
-Hint Resolve (SR_distr_right2 T).
-Hint Resolve (SR_mult_zero_right T).
-Hint Resolve (SR_mult_zero_right2 T).
-Hint Resolve (SR_plus_zero_right T).
-Hint Resolve (SR_plus_zero_right2 T).
-Hint Resolve (SR_mult_one_right T).
-Hint Resolve (SR_mult_one_right2 T).
-(*Hint Resolve (SR_plus_reg_right T).*)
-Hint Resolve eq_refl eq_sym eq_trans.
-Hint Immediate T.
-
-Lemma varlist_eq_prop : forall x y:varlist, Is_true (varlist_eq x y) -> x = y.
-Proof.
- simple induction x; simple induction y; contradiction || (try reflexivity).
- simpl; intros.
- generalize (andb_prop2 _ _ H1); intros; elim H2; intros.
- rewrite (index_eq_prop _ _ H3); rewrite (H v0 H4); reflexivity.
-Qed.
-
-Remark ivl_aux_ok :
- forall (v:varlist) (i:index),
- ivl_aux i v = Amult (interp_var i) (interp_vl v).
-Proof.
- simple induction v; simpl; intros.
- trivial.
- rewrite H; trivial.
-Qed.
-
-Lemma varlist_merge_ok :
- forall x y:varlist,
- interp_vl (varlist_merge x y) = Amult (interp_vl x) (interp_vl y).
-Proof.
- simple induction x.
- simpl; trivial.
- simple induction y.
- simpl; trivial.
- simpl; intros.
- elim (index_lt i i0); simpl; intros.
-
- repeat rewrite ivl_aux_ok.
- rewrite H. simpl.
- rewrite ivl_aux_ok.
- eauto.
-
- repeat rewrite ivl_aux_ok.
- rewrite H0.
- rewrite ivl_aux_ok.
- eauto.
-Qed.
-
-Remark ics_aux_ok :
- forall (x:A) (s:canonical_sum), ics_aux x s = Aplus x (interp_cs s).
-Proof.
- simple induction s; simpl; intros.
- trivial.
- reflexivity.
- reflexivity.
-Qed.
-
-Remark interp_m_ok :
- forall (x:A) (l:varlist), interp_m x l = Amult x (interp_vl l).
-Proof.
- destruct l as [| i v].
- simpl; trivial.
- reflexivity.
-Qed.
-
-Lemma canonical_sum_merge_ok :
- forall x y:canonical_sum,
- interp_cs (canonical_sum_merge x y) = Aplus (interp_cs x) (interp_cs y).
-
-simple induction x; simpl.
-trivial.
-
-simple induction y; simpl; intros.
-(* monom and nil *)
-eauto.
-
-(* monom and monom *)
-generalize (varlist_eq_prop v v0).
-elim (varlist_eq v v0).
-intros; rewrite (H1 I).
-simpl; repeat rewrite ics_aux_ok; rewrite H.
-repeat rewrite interp_m_ok.
-rewrite (SR_distr_left T).
-repeat rewrite <- (SR_plus_assoc T).
-apply f_equal with (f := Aplus (Amult a (interp_vl v0))).
-trivial.
-
-elim (varlist_lt v v0); simpl.
-repeat rewrite ics_aux_ok.
-rewrite H; simpl; rewrite ics_aux_ok; eauto.
-
-rewrite ics_aux_ok; rewrite H0; repeat rewrite ics_aux_ok; simpl;
- eauto.
-
-(* monom and varlist *)
-generalize (varlist_eq_prop v v0).
-elim (varlist_eq v v0).
-intros; rewrite (H1 I).
-simpl; repeat rewrite ics_aux_ok; rewrite H.
-repeat rewrite interp_m_ok.
-rewrite (SR_distr_left T).
-repeat rewrite <- (SR_plus_assoc T).
-apply f_equal with (f := Aplus (Amult a (interp_vl v0))).
-rewrite (SR_mult_one_left T).
-trivial.
-
-elim (varlist_lt v v0); simpl.
-repeat rewrite ics_aux_ok.
-rewrite H; simpl; rewrite ics_aux_ok; eauto.
-rewrite ics_aux_ok; rewrite H0; repeat rewrite ics_aux_ok; simpl;
- eauto.
-
-simple induction y; simpl; intros.
-(* varlist and nil *)
-trivial.
-
-(* varlist and monom *)
-generalize (varlist_eq_prop v v0).
-elim (varlist_eq v v0).
-intros; rewrite (H1 I).
-simpl; repeat rewrite ics_aux_ok; rewrite H.
-repeat rewrite interp_m_ok.
-rewrite (SR_distr_left T).
-repeat rewrite <- (SR_plus_assoc T).
-rewrite (SR_mult_one_left T).
-apply f_equal with (f := Aplus (interp_vl v0)).
-trivial.
-
-elim (varlist_lt v v0); simpl.
-repeat rewrite ics_aux_ok.
-rewrite H; simpl; rewrite ics_aux_ok; eauto.
-rewrite ics_aux_ok; rewrite H0; repeat rewrite ics_aux_ok; simpl;
- eauto.
-
-(* varlist and varlist *)
-generalize (varlist_eq_prop v v0).
-elim (varlist_eq v v0).
-intros; rewrite (H1 I).
-simpl; repeat rewrite ics_aux_ok; rewrite H.
-repeat rewrite interp_m_ok.
-rewrite (SR_distr_left T).
-repeat rewrite <- (SR_plus_assoc T).
-rewrite (SR_mult_one_left T).
-apply f_equal with (f := Aplus (interp_vl v0)).
-trivial.
-
-elim (varlist_lt v v0); simpl.
-repeat rewrite ics_aux_ok.
-rewrite H; simpl; rewrite ics_aux_ok; eauto.
-rewrite ics_aux_ok; rewrite H0; repeat rewrite ics_aux_ok; simpl;
- eauto.
-Qed.
-
-Lemma monom_insert_ok :
- forall (a:A) (l:varlist) (s:canonical_sum),
- interp_cs (monom_insert a l s) =
- Aplus (Amult a (interp_vl l)) (interp_cs s).
-intros; generalize s; simple induction s0.
-
-simpl; rewrite interp_m_ok; trivial.
-
-simpl; intros.
-generalize (varlist_eq_prop l v); elim (varlist_eq l v).
-intro Hr; rewrite (Hr I); simpl; rewrite interp_m_ok;
- repeat rewrite ics_aux_ok; rewrite interp_m_ok; rewrite (SR_distr_left T);
- eauto.
-elim (varlist_lt l v); simpl;
- [ repeat rewrite interp_m_ok; rewrite ics_aux_ok; eauto
- | repeat rewrite interp_m_ok; rewrite ics_aux_ok; rewrite H;
- rewrite ics_aux_ok; eauto ].
-
-simpl; intros.
-generalize (varlist_eq_prop l v); elim (varlist_eq l v).
-intro Hr; rewrite (Hr I); simpl; rewrite interp_m_ok;
- repeat rewrite ics_aux_ok; rewrite (SR_distr_left T);
- rewrite (SR_mult_one_left T); eauto.
-elim (varlist_lt l v); simpl;
- [ repeat rewrite interp_m_ok; rewrite ics_aux_ok; eauto
- | repeat rewrite interp_m_ok; rewrite ics_aux_ok; rewrite H;
- rewrite ics_aux_ok; eauto ].
-Qed.
-
-Lemma varlist_insert_ok :
- forall (l:varlist) (s:canonical_sum),
- interp_cs (varlist_insert l s) = Aplus (interp_vl l) (interp_cs s).
-intros; generalize s; simple induction s0.
-
-simpl; trivial.
-
-simpl; intros.
-generalize (varlist_eq_prop l v); elim (varlist_eq l v).
-intro Hr; rewrite (Hr I); simpl; rewrite interp_m_ok;
- repeat rewrite ics_aux_ok; rewrite interp_m_ok; rewrite (SR_distr_left T);
- rewrite (SR_mult_one_left T); eauto.
-elim (varlist_lt l v); simpl;
- [ repeat rewrite interp_m_ok; rewrite ics_aux_ok; eauto
- | repeat rewrite interp_m_ok; rewrite ics_aux_ok; rewrite H;
- rewrite ics_aux_ok; eauto ].
-
-simpl; intros.
-generalize (varlist_eq_prop l v); elim (varlist_eq l v).
-intro Hr; rewrite (Hr I); simpl; rewrite interp_m_ok;
- repeat rewrite ics_aux_ok; rewrite (SR_distr_left T);
- rewrite (SR_mult_one_left T); eauto.
-elim (varlist_lt l v); simpl;
- [ repeat rewrite interp_m_ok; rewrite ics_aux_ok; eauto
- | repeat rewrite interp_m_ok; rewrite ics_aux_ok; rewrite H;
- rewrite ics_aux_ok; eauto ].
-Qed.
-
-Lemma canonical_sum_scalar_ok :
- forall (a:A) (s:canonical_sum),
- interp_cs (canonical_sum_scalar a s) = Amult a (interp_cs s).
-simple induction s.
-simpl; eauto.
-
-simpl; intros.
-repeat rewrite ics_aux_ok.
-repeat rewrite interp_m_ok.
-rewrite H.
-rewrite (SR_distr_right T).
-repeat rewrite <- (SR_mult_assoc T).
-reflexivity.
-
-simpl; intros.
-repeat rewrite ics_aux_ok.
-repeat rewrite interp_m_ok.
-rewrite H.
-rewrite (SR_distr_right T).
-repeat rewrite <- (SR_mult_assoc T).
-reflexivity.
-Qed.
-
-Lemma canonical_sum_scalar2_ok :
- forall (l:varlist) (s:canonical_sum),
- interp_cs (canonical_sum_scalar2 l s) = Amult (interp_vl l) (interp_cs s).
-simple induction s.
-simpl; trivial.
-
-simpl; intros.
-rewrite monom_insert_ok.
-repeat rewrite ics_aux_ok.
-repeat rewrite interp_m_ok.
-rewrite H.
-rewrite varlist_merge_ok.
-repeat rewrite (SR_distr_right T).
-repeat rewrite <- (SR_mult_assoc T).
-repeat rewrite <- (SR_plus_assoc T).
-rewrite (SR_mult_permute T a (interp_vl l) (interp_vl v)).
-reflexivity.
-
-simpl; intros.
-rewrite varlist_insert_ok.
-repeat rewrite ics_aux_ok.
-repeat rewrite interp_m_ok.
-rewrite H.
-rewrite varlist_merge_ok.
-repeat rewrite (SR_distr_right T).
-repeat rewrite <- (SR_mult_assoc T).
-repeat rewrite <- (SR_plus_assoc T).
-reflexivity.
-Qed.
-
-Lemma canonical_sum_scalar3_ok :
- forall (c:A) (l:varlist) (s:canonical_sum),
- interp_cs (canonical_sum_scalar3 c l s) =
- Amult c (Amult (interp_vl l) (interp_cs s)).
-simple induction s.
-simpl; repeat rewrite (SR_mult_zero_right T); reflexivity.
-
-simpl; intros.
-rewrite monom_insert_ok.
-repeat rewrite ics_aux_ok.
-repeat rewrite interp_m_ok.
-rewrite H.
-rewrite varlist_merge_ok.
-repeat rewrite (SR_distr_right T).
-repeat rewrite <- (SR_mult_assoc T).
-repeat rewrite <- (SR_plus_assoc T).
-rewrite (SR_mult_permute T a (interp_vl l) (interp_vl v)).
-reflexivity.
-
-simpl; intros.
-rewrite monom_insert_ok.
-repeat rewrite ics_aux_ok.
-repeat rewrite interp_m_ok.
-rewrite H.
-rewrite varlist_merge_ok.
-repeat rewrite (SR_distr_right T).
-repeat rewrite <- (SR_mult_assoc T).
-repeat rewrite <- (SR_plus_assoc T).
-rewrite (SR_mult_permute T c (interp_vl l) (interp_vl v)).
-reflexivity.
-Qed.
-
-Lemma canonical_sum_prod_ok :
- forall x y:canonical_sum,
- interp_cs (canonical_sum_prod x y) = Amult (interp_cs x) (interp_cs y).
-simple induction x; simpl; intros.
-trivial.
-
-rewrite canonical_sum_merge_ok.
-rewrite canonical_sum_scalar3_ok.
-rewrite ics_aux_ok.
-rewrite interp_m_ok.
-rewrite H.
-rewrite (SR_mult_assoc T a (interp_vl v) (interp_cs y)).
-symmetry .
-eauto.
-
-rewrite canonical_sum_merge_ok.
-rewrite canonical_sum_scalar2_ok.
-rewrite ics_aux_ok.
-rewrite H.
-trivial.
-Qed.
-
-Theorem spolynomial_normalize_ok :
- forall p:spolynomial, interp_cs (spolynomial_normalize p) = interp_sp p.
-simple induction p; simpl; intros.
-
-reflexivity.
-reflexivity.
-
-rewrite canonical_sum_merge_ok.
-rewrite H; rewrite H0.
-reflexivity.
-
-rewrite canonical_sum_prod_ok.
-rewrite H; rewrite H0.
-reflexivity.
-Qed.
-
-Lemma canonical_sum_simplify_ok :
- forall s:canonical_sum, interp_cs (canonical_sum_simplify s) = interp_cs s.
-simple induction s.
-
-reflexivity.
-
-(* cons_monom *)
-simpl; intros.
-generalize (SR_eq_prop T a Azero).
-elim (Aeq a Azero).
-intro Heq; rewrite (Heq I).
-rewrite H.
-rewrite ics_aux_ok.
-rewrite interp_m_ok.
-rewrite (SR_mult_zero_left T).
-trivial.
-
-intros; simpl.
-generalize (SR_eq_prop T a Aone).
-elim (Aeq a Aone).
-intro Heq; rewrite (Heq I).
-simpl.
-repeat rewrite ics_aux_ok.
-rewrite interp_m_ok.
-rewrite H.
-rewrite (SR_mult_one_left T).
-reflexivity.
-
-simpl.
-repeat rewrite ics_aux_ok.
-rewrite interp_m_ok.
-rewrite H.
-reflexivity.
-
-(* cons_varlist *)
-simpl; intros.
-repeat rewrite ics_aux_ok.
-rewrite H.
-reflexivity.
-
-Qed.
-
-Theorem spolynomial_simplify_ok :
- forall p:spolynomial, interp_cs (spolynomial_simplify p) = interp_sp p.
-intro.
-unfold spolynomial_simplify.
-rewrite canonical_sum_simplify_ok.
-apply spolynomial_normalize_ok.
-Qed.
-
-(* End properties. *)
-End semi_rings.
-
-Arguments Cons_varlist : default implicits.
-Arguments Cons_monom : default implicits.
-Arguments SPconst : default implicits.
-Arguments SPplus : default implicits.
-Arguments SPmult : default implicits.
-
-Section rings.
-
-(* Here the coercion between Ring and Semi-Ring will be useful *)
-
-Set Implicit Arguments.
-
-Variable A : Type.
-Variable Aplus : A -> A -> A.
-Variable Amult : A -> A -> A.
-Variable Aone : A.
-Variable Azero : A.
-Variable Aopp : A -> A.
-Variable Aeq : A -> A -> bool.
-Variable vm : varmap A.
-Variable T : Ring_Theory Aplus Amult Aone Azero Aopp Aeq.
-
-Hint Resolve (Th_plus_comm T).
-Hint Resolve (Th_plus_assoc T).
-Hint Resolve (Th_plus_assoc2 T).
-Hint Resolve (Th_mult_comm T).
-Hint Resolve (Th_mult_assoc T).
-Hint Resolve (Th_mult_assoc2 T).
-Hint Resolve (Th_plus_zero_left T).
-Hint Resolve (Th_plus_zero_left2 T).
-Hint Resolve (Th_mult_one_left T).
-Hint Resolve (Th_mult_one_left2 T).
-Hint Resolve (Th_mult_zero_left T).
-Hint Resolve (Th_mult_zero_left2 T).
-Hint Resolve (Th_distr_left T).
-Hint Resolve (Th_distr_left2 T).
-(*Hint Resolve (Th_plus_reg_left T).*)
-Hint Resolve (Th_plus_permute T).
-Hint Resolve (Th_mult_permute T).
-Hint Resolve (Th_distr_right T).
-Hint Resolve (Th_distr_right2 T).
-Hint Resolve (Th_mult_zero_right T).
-Hint Resolve (Th_mult_zero_right2 T).
-Hint Resolve (Th_plus_zero_right T).
-Hint Resolve (Th_plus_zero_right2 T).
-Hint Resolve (Th_mult_one_right T).
-Hint Resolve (Th_mult_one_right2 T).
-(*Hint Resolve (Th_plus_reg_right T).*)
-Hint Resolve eq_refl eq_sym eq_trans.
-Hint Immediate T.
-
-(*** Definitions *)
-
-Inductive polynomial : Type :=
- | Pvar : index -> polynomial
- | Pconst : A -> polynomial
- | Pplus : polynomial -> polynomial -> polynomial
- | Pmult : polynomial -> polynomial -> polynomial
- | Popp : polynomial -> polynomial.
-
-Fixpoint polynomial_normalize (x:polynomial) : canonical_sum A :=
- match x with
- | Pplus l r =>
- canonical_sum_merge Aplus Aone (polynomial_normalize l)
- (polynomial_normalize r)
- | Pmult l r =>
- canonical_sum_prod Aplus Amult Aone (polynomial_normalize l)
- (polynomial_normalize r)
- | Pconst c => Cons_monom c Nil_var (Nil_monom A)
- | Pvar i => Cons_varlist (Cons_var i Nil_var) (Nil_monom A)
- | Popp p =>
- canonical_sum_scalar3 Aplus Amult Aone (Aopp Aone) Nil_var
- (polynomial_normalize p)
- end.
-
-Definition polynomial_simplify (x:polynomial) :=
- canonical_sum_simplify Aone Azero Aeq (polynomial_normalize x).
-
-Fixpoint spolynomial_of (x:polynomial) : spolynomial A :=
- match x with
- | Pplus l r => SPplus (spolynomial_of l) (spolynomial_of r)
- | Pmult l r => SPmult (spolynomial_of l) (spolynomial_of r)
- | Pconst c => SPconst c
- | Pvar i => SPvar A i
- | Popp p => SPmult (SPconst (Aopp Aone)) (spolynomial_of p)
- end.
-
-(*** Interpretation *)
-
-Fixpoint interp_p (p:polynomial) : A :=
- match p with
- | Pconst c => c
- | Pvar i => varmap_find Azero i vm
- | Pplus p1 p2 => Aplus (interp_p p1) (interp_p p2)
- | Pmult p1 p2 => Amult (interp_p p1) (interp_p p2)
- | Popp p1 => Aopp (interp_p p1)
- end.
-
-(*** Properties *)
-
-Unset Implicit Arguments.
-
-Lemma spolynomial_of_ok :
- forall p:polynomial,
- interp_p p = interp_sp Aplus Amult Azero vm (spolynomial_of p).
-simple induction p; reflexivity || (simpl; intros).
-rewrite H; rewrite H0; reflexivity.
-rewrite H; rewrite H0; reflexivity.
-rewrite H.
-rewrite (Th_opp_mult_left2 T).
-rewrite (Th_mult_one_left T).
-reflexivity.
-Qed.
-
-Theorem polynomial_normalize_ok :
- forall p:polynomial,
- polynomial_normalize p =
- spolynomial_normalize Aplus Amult Aone (spolynomial_of p).
-simple induction p; reflexivity || (simpl; intros).
-rewrite H; rewrite H0; reflexivity.
-rewrite H; rewrite H0; reflexivity.
-rewrite H; simpl.
-elim
- (canonical_sum_scalar3 Aplus Amult Aone (Aopp Aone) Nil_var
- (spolynomial_normalize Aplus Amult Aone (spolynomial_of p0)));
- [ reflexivity
- | simpl; intros; rewrite H0; reflexivity
- | simpl; intros; rewrite H0; reflexivity ].
-Qed.
-
-Theorem polynomial_simplify_ok :
- forall p:polynomial,
- interp_cs Aplus Amult Aone Azero vm (polynomial_simplify p) = interp_p p.
-intro.
-unfold polynomial_simplify.
-rewrite spolynomial_of_ok.
-rewrite polynomial_normalize_ok.
-rewrite (canonical_sum_simplify_ok A Aplus Amult Aone Azero Aeq vm T).
-rewrite (spolynomial_normalize_ok A Aplus Amult Aone Azero Aeq vm T).
-reflexivity.
-Qed.
-
-End rings.
-
-Infix "+" := Pplus : ring_scope.
-Infix "*" := Pmult : ring_scope.
-Notation "- x" := (Popp x) : ring_scope.
-Notation "[ x ]" := (Pvar x) (at level 0) : ring_scope.
-
-Delimit Scope ring_scope with ring.
diff --git a/plugins/ring/Setoid_ring.v b/plugins/ring/Setoid_ring.v
deleted file mode 100644
index 4b484483..00000000
--- a/plugins/ring/Setoid_ring.v
+++ /dev/null
@@ -1,12 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-Require Export Setoid_ring_theory.
-Require Export Quote.
-Require Export Setoid_ring_normalize.
-Declare ML Module "ring_plugin".
diff --git a/plugins/ring/Setoid_ring_normalize.v b/plugins/ring/Setoid_ring_normalize.v
deleted file mode 100644
index e71be89a..00000000
--- a/plugins/ring/Setoid_ring_normalize.v
+++ /dev/null
@@ -1,1160 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-Require Import Setoid_ring_theory.
-Require Import Quote.
-
-Set Implicit Arguments.
-
-Lemma index_eq_prop : forall n m:index, Is_true (index_eq n m) -> n = m.
-Proof.
- simple induction n; simple induction m; simpl;
- try reflexivity || contradiction.
- intros; rewrite (H i0); trivial.
- intros; rewrite (H i0); trivial.
-Qed.
-
-Section setoid.
-
-Variable A : Type.
-Variable Aequiv : A -> A -> Prop.
-Variable Aplus : A -> A -> A.
-Variable Amult : A -> A -> A.
-Variable Aone : A.
-Variable Azero : A.
-Variable Aopp : A -> A.
-Variable Aeq : A -> A -> bool.
-
-Variable S : Setoid_Theory A Aequiv.
-
-Add Setoid A Aequiv S as Asetoid.
-
-Variable plus_morph :
- forall a a0:A, Aequiv a a0 ->
- forall a1 a2:A, Aequiv a1 a2 ->
- Aequiv (Aplus a a1) (Aplus a0 a2).
-Variable mult_morph :
- forall a a0:A, Aequiv a a0 ->
- forall a1 a2:A, Aequiv a1 a2 ->
- Aequiv (Amult a a1) (Amult a0 a2).
-Variable opp_morph : forall a a0:A, Aequiv a a0 -> Aequiv (Aopp a) (Aopp a0).
-
-Add Morphism Aplus : Aplus_ext.
-intros; apply plus_morph; assumption.
-Qed.
-
-Add Morphism Amult : Amult_ext.
-intros; apply mult_morph; assumption.
-Qed.
-
-Add Morphism Aopp : Aopp_ext.
-exact opp_morph.
-Qed.
-
-Let equiv_refl := Seq_refl A Aequiv S.
-Let equiv_sym := Seq_sym A Aequiv S.
-Let equiv_trans := Seq_trans A Aequiv S.
-
-Hint Resolve equiv_refl equiv_trans.
-Hint Immediate equiv_sym.
-
-Section semi_setoid_rings.
-
-(* Section definitions. *)
-
-
-(******************************************)
-(* Normal abtract Polynomials *)
-(******************************************)
-(* DEFINITIONS :
-- A varlist is a sorted product of one or more variables : x, x*y*z
-- A monom is a constant, a varlist or the product of a constant by a varlist
- variables. 2*x*y, x*y*z, 3 are monoms : 2*3, x*3*y, 4*x*3 are NOT.
-- A canonical sum is either a monom or an ordered sum of monoms
- (the order on monoms is defined later)
-- A normal polynomial it either a constant or a canonical sum or a constant
- plus a canonical sum
-*)
-
-(* varlist is isomorphic to (list var), but we built a special inductive
- for efficiency *)
-Inductive varlist : Type :=
- | Nil_var : varlist
- | Cons_var : index -> varlist -> varlist.
-
-Inductive canonical_sum : Type :=
- | Nil_monom : canonical_sum
- | Cons_monom : A -> varlist -> canonical_sum -> canonical_sum
- | Cons_varlist : varlist -> canonical_sum -> canonical_sum.
-
-(* Order on monoms *)
-
-(* That's the lexicographic order on varlist, extended by :
- - A constant is less than every monom
- - The relation between two varlist is preserved by multiplication by a
- constant.
-
- Examples :
- 3 < x < y
- x*y < x*y*y*z
- 2*x*y < x*y*y*z
- x*y < 54*x*y*y*z
- 4*x*y < 59*x*y*y*z
-*)
-
-Fixpoint varlist_eq (x y:varlist) {struct y} : bool :=
- match x, y with
- | Nil_var, Nil_var => true
- | Cons_var i xrest, Cons_var j yrest =>
- andb (index_eq i j) (varlist_eq xrest yrest)
- | _, _ => false
- end.
-
-Fixpoint varlist_lt (x y:varlist) {struct y} : bool :=
- match x, y with
- | Nil_var, Cons_var _ _ => true
- | Cons_var i xrest, Cons_var j yrest =>
- if index_lt i j
- then true
- else andb (index_eq i j) (varlist_lt xrest yrest)
- | _, _ => false
- end.
-
-(* merges two variables lists *)
-Fixpoint varlist_merge (l1:varlist) : varlist -> varlist :=
- match l1 with
- | Cons_var v1 t1 =>
- (fix vm_aux (l2:varlist) : varlist :=
- match l2 with
- | Cons_var v2 t2 =>
- if index_lt v1 v2
- then Cons_var v1 (varlist_merge t1 l2)
- else Cons_var v2 (vm_aux t2)
- | Nil_var => l1
- end)
- | Nil_var => fun l2 => l2
- end.
-
-(* returns the sum of two canonical sums *)
-Fixpoint canonical_sum_merge (s1:canonical_sum) :
- canonical_sum -> canonical_sum :=
- match s1 with
- | Cons_monom c1 l1 t1 =>
- (fix csm_aux (s2:canonical_sum) : canonical_sum :=
- match s2 with
- | Cons_monom c2 l2 t2 =>
- if varlist_eq l1 l2
- then Cons_monom (Aplus c1 c2) l1 (canonical_sum_merge t1 t2)
- else
- if varlist_lt l1 l2
- then Cons_monom c1 l1 (canonical_sum_merge t1 s2)
- else Cons_monom c2 l2 (csm_aux t2)
- | Cons_varlist l2 t2 =>
- if varlist_eq l1 l2
- then Cons_monom (Aplus c1 Aone) l1 (canonical_sum_merge t1 t2)
- else
- if varlist_lt l1 l2
- then Cons_monom c1 l1 (canonical_sum_merge t1 s2)
- else Cons_varlist l2 (csm_aux t2)
- | Nil_monom => s1
- end)
- | Cons_varlist l1 t1 =>
- (fix csm_aux2 (s2:canonical_sum) : canonical_sum :=
- match s2 with
- | Cons_monom c2 l2 t2 =>
- if varlist_eq l1 l2
- then Cons_monom (Aplus Aone c2) l1 (canonical_sum_merge t1 t2)
- else
- if varlist_lt l1 l2
- then Cons_varlist l1 (canonical_sum_merge t1 s2)
- else Cons_monom c2 l2 (csm_aux2 t2)
- | Cons_varlist l2 t2 =>
- if varlist_eq l1 l2
- then Cons_monom (Aplus Aone Aone) l1 (canonical_sum_merge t1 t2)
- else
- if varlist_lt l1 l2
- then Cons_varlist l1 (canonical_sum_merge t1 s2)
- else Cons_varlist l2 (csm_aux2 t2)
- | Nil_monom => s1
- end)
- | Nil_monom => fun s2 => s2
- end.
-
-(* Insertion of a monom in a canonical sum *)
-Fixpoint monom_insert (c1:A) (l1:varlist) (s2:canonical_sum) {struct s2} :
- canonical_sum :=
- match s2 with
- | Cons_monom c2 l2 t2 =>
- if varlist_eq l1 l2
- then Cons_monom (Aplus c1 c2) l1 t2
- else
- if varlist_lt l1 l2
- then Cons_monom c1 l1 s2
- else Cons_monom c2 l2 (monom_insert c1 l1 t2)
- | Cons_varlist l2 t2 =>
- if varlist_eq l1 l2
- then Cons_monom (Aplus c1 Aone) l1 t2
- else
- if varlist_lt l1 l2
- then Cons_monom c1 l1 s2
- else Cons_varlist l2 (monom_insert c1 l1 t2)
- | Nil_monom => Cons_monom c1 l1 Nil_monom
- end.
-
-Fixpoint varlist_insert (l1:varlist) (s2:canonical_sum) {struct s2} :
- canonical_sum :=
- match s2 with
- | Cons_monom c2 l2 t2 =>
- if varlist_eq l1 l2
- then Cons_monom (Aplus Aone c2) l1 t2
- else
- if varlist_lt l1 l2
- then Cons_varlist l1 s2
- else Cons_monom c2 l2 (varlist_insert l1 t2)
- | Cons_varlist l2 t2 =>
- if varlist_eq l1 l2
- then Cons_monom (Aplus Aone Aone) l1 t2
- else
- if varlist_lt l1 l2
- then Cons_varlist l1 s2
- else Cons_varlist l2 (varlist_insert l1 t2)
- | Nil_monom => Cons_varlist l1 Nil_monom
- end.
-
-(* Computes c0*s *)
-Fixpoint canonical_sum_scalar (c0:A) (s:canonical_sum) {struct s} :
- canonical_sum :=
- match s with
- | Cons_monom c l t => Cons_monom (Amult c0 c) l (canonical_sum_scalar c0 t)
- | Cons_varlist l t => Cons_monom c0 l (canonical_sum_scalar c0 t)
- | Nil_monom => Nil_monom
- end.
-
-(* Computes l0*s *)
-Fixpoint canonical_sum_scalar2 (l0:varlist) (s:canonical_sum) {struct s} :
- canonical_sum :=
- match s with
- | Cons_monom c l t =>
- monom_insert c (varlist_merge l0 l) (canonical_sum_scalar2 l0 t)
- | Cons_varlist l t =>
- varlist_insert (varlist_merge l0 l) (canonical_sum_scalar2 l0 t)
- | Nil_monom => Nil_monom
- end.
-
-(* Computes c0*l0*s *)
-Fixpoint canonical_sum_scalar3 (c0:A) (l0:varlist)
- (s:canonical_sum) {struct s} : canonical_sum :=
- match s with
- | Cons_monom c l t =>
- monom_insert (Amult c0 c) (varlist_merge l0 l)
- (canonical_sum_scalar3 c0 l0 t)
- | Cons_varlist l t =>
- monom_insert c0 (varlist_merge l0 l) (canonical_sum_scalar3 c0 l0 t)
- | Nil_monom => Nil_monom
- end.
-
-(* returns the product of two canonical sums *)
-Fixpoint canonical_sum_prod (s1 s2:canonical_sum) {struct s1} :
- canonical_sum :=
- match s1 with
- | Cons_monom c1 l1 t1 =>
- canonical_sum_merge (canonical_sum_scalar3 c1 l1 s2)
- (canonical_sum_prod t1 s2)
- | Cons_varlist l1 t1 =>
- canonical_sum_merge (canonical_sum_scalar2 l1 s2)
- (canonical_sum_prod t1 s2)
- | Nil_monom => Nil_monom
- end.
-
-(* The type to represent concrete semi-setoid-ring polynomials *)
-
-Inductive setspolynomial : Type :=
- | SetSPvar : index -> setspolynomial
- | SetSPconst : A -> setspolynomial
- | SetSPplus : setspolynomial -> setspolynomial -> setspolynomial
- | SetSPmult : setspolynomial -> setspolynomial -> setspolynomial.
-
-Fixpoint setspolynomial_normalize (p:setspolynomial) : canonical_sum :=
- match p with
- | SetSPplus l r =>
- canonical_sum_merge (setspolynomial_normalize l)
- (setspolynomial_normalize r)
- | SetSPmult l r =>
- canonical_sum_prod (setspolynomial_normalize l)
- (setspolynomial_normalize r)
- | SetSPconst c => Cons_monom c Nil_var Nil_monom
- | SetSPvar i => Cons_varlist (Cons_var i Nil_var) Nil_monom
- end.
-
-Fixpoint canonical_sum_simplify (s:canonical_sum) : canonical_sum :=
- match s with
- | Cons_monom c l t =>
- if Aeq c Azero
- then canonical_sum_simplify t
- else
- if Aeq c Aone
- then Cons_varlist l (canonical_sum_simplify t)
- else Cons_monom c l (canonical_sum_simplify t)
- | Cons_varlist l t => Cons_varlist l (canonical_sum_simplify t)
- | Nil_monom => Nil_monom
- end.
-
-Definition setspolynomial_simplify (x:setspolynomial) :=
- canonical_sum_simplify (setspolynomial_normalize x).
-
-Variable vm : varmap A.
-
-Definition interp_var (i:index) := varmap_find Azero i vm.
-
-Definition ivl_aux :=
- (fix ivl_aux (x:index) (t:varlist) {struct t} : A :=
- match t with
- | Nil_var => interp_var x
- | Cons_var x' t' => Amult (interp_var x) (ivl_aux x' t')
- end).
-
-Definition interp_vl (l:varlist) :=
- match l with
- | Nil_var => Aone
- | Cons_var x t => ivl_aux x t
- end.
-
-Definition interp_m (c:A) (l:varlist) :=
- match l with
- | Nil_var => c
- | Cons_var x t => Amult c (ivl_aux x t)
- end.
-
-Definition ics_aux :=
- (fix ics_aux (a:A) (s:canonical_sum) {struct s} : A :=
- match s with
- | Nil_monom => a
- | Cons_varlist l t => Aplus a (ics_aux (interp_vl l) t)
- | Cons_monom c l t => Aplus a (ics_aux (interp_m c l) t)
- end).
-
-Definition interp_setcs (s:canonical_sum) : A :=
- match s with
- | Nil_monom => Azero
- | Cons_varlist l t => ics_aux (interp_vl l) t
- | Cons_monom c l t => ics_aux (interp_m c l) t
- end.
-
-Fixpoint interp_setsp (p:setspolynomial) : A :=
- match p with
- | SetSPconst c => c
- | SetSPvar i => interp_var i
- | SetSPplus p1 p2 => Aplus (interp_setsp p1) (interp_setsp p2)
- | SetSPmult p1 p2 => Amult (interp_setsp p1) (interp_setsp p2)
- end.
-
-(* End interpretation. *)
-
-Unset Implicit Arguments.
-
-(* Section properties. *)
-
-Variable T : Semi_Setoid_Ring_Theory Aequiv Aplus Amult Aone Azero Aeq.
-
-Hint Resolve (SSR_plus_comm T).
-Hint Resolve (SSR_plus_assoc T).
-Hint Resolve (SSR_plus_assoc2 S T).
-Hint Resolve (SSR_mult_comm T).
-Hint Resolve (SSR_mult_assoc T).
-Hint Resolve (SSR_mult_assoc2 S T).
-Hint Resolve (SSR_plus_zero_left T).
-Hint Resolve (SSR_plus_zero_left2 S T).
-Hint Resolve (SSR_mult_one_left T).
-Hint Resolve (SSR_mult_one_left2 S T).
-Hint Resolve (SSR_mult_zero_left T).
-Hint Resolve (SSR_mult_zero_left2 S T).
-Hint Resolve (SSR_distr_left T).
-Hint Resolve (SSR_distr_left2 S T).
-Hint Resolve (SSR_plus_reg_left T).
-Hint Resolve (SSR_plus_permute S plus_morph T).
-Hint Resolve (SSR_mult_permute S mult_morph T).
-Hint Resolve (SSR_distr_right S plus_morph T).
-Hint Resolve (SSR_distr_right2 S plus_morph T).
-Hint Resolve (SSR_mult_zero_right S T).
-Hint Resolve (SSR_mult_zero_right2 S T).
-Hint Resolve (SSR_plus_zero_right S T).
-Hint Resolve (SSR_plus_zero_right2 S T).
-Hint Resolve (SSR_mult_one_right S T).
-Hint Resolve (SSR_mult_one_right2 S T).
-Hint Resolve (SSR_plus_reg_right S T).
-Hint Resolve eq_refl eq_sym eq_trans.
-Hint Immediate T.
-
-Lemma varlist_eq_prop : forall x y:varlist, Is_true (varlist_eq x y) -> x = y.
-Proof.
- simple induction x; simple induction y; contradiction || (try reflexivity).
- simpl; intros.
- generalize (andb_prop2 _ _ H1); intros; elim H2; intros.
- rewrite (index_eq_prop _ _ H3); rewrite (H v0 H4); reflexivity.
-Qed.
-
-Remark ivl_aux_ok :
- forall (v:varlist) (i:index),
- Aequiv (ivl_aux i v) (Amult (interp_var i) (interp_vl v)).
-Proof.
- simple induction v; simpl; intros.
- trivial.
- rewrite (H i); trivial.
-Qed.
-
-Lemma varlist_merge_ok :
- forall x y:varlist,
- Aequiv (interp_vl (varlist_merge x y)) (Amult (interp_vl x) (interp_vl y)).
-Proof.
- simple induction x.
- simpl; trivial.
- simple induction y.
- simpl; trivial.
- simpl; intros.
- elim (index_lt i i0); simpl; intros.
-
- rewrite (ivl_aux_ok v i).
- rewrite (ivl_aux_ok v0 i0).
- rewrite (ivl_aux_ok (varlist_merge v (Cons_var i0 v0)) i).
- rewrite (H (Cons_var i0 v0)).
- simpl.
- rewrite (ivl_aux_ok v0 i0).
- eauto.
-
- rewrite (ivl_aux_ok v i).
- rewrite (ivl_aux_ok v0 i0).
- rewrite
- (ivl_aux_ok
- ((fix vm_aux (l2:varlist) : varlist :=
- match l2 with
- | Nil_var => Cons_var i v
- | Cons_var v2 t2 =>
- if index_lt i v2
- then Cons_var i (varlist_merge v l2)
- else Cons_var v2 (vm_aux t2)
- end) v0) i0).
- rewrite H0.
- rewrite (ivl_aux_ok v i).
- eauto.
-Qed.
-
-Remark ics_aux_ok :
- forall (x:A) (s:canonical_sum),
- Aequiv (ics_aux x s) (Aplus x (interp_setcs s)).
-Proof.
- simple induction s; simpl; intros; trivial.
-Qed.
-
-Remark interp_m_ok :
- forall (x:A) (l:varlist), Aequiv (interp_m x l) (Amult x (interp_vl l)).
-Proof.
- destruct l as [| i v]; trivial.
-Qed.
-
-Hint Resolve ivl_aux_ok.
-Hint Resolve ics_aux_ok.
-Hint Resolve interp_m_ok.
-
-(* Hints Resolve ivl_aux_ok ics_aux_ok interp_m_ok. *)
-
-Lemma canonical_sum_merge_ok :
- forall x y:canonical_sum,
- Aequiv (interp_setcs (canonical_sum_merge x y))
- (Aplus (interp_setcs x) (interp_setcs y)).
-Proof.
-simple induction x; simpl.
-trivial.
-
-simple induction y; simpl; intros.
-eauto.
-
-generalize (varlist_eq_prop v v0).
-elim (varlist_eq v v0).
-intros; rewrite (H1 I).
-simpl.
-rewrite (ics_aux_ok (interp_m a v0) c).
-rewrite (ics_aux_ok (interp_m a0 v0) c0).
-rewrite (ics_aux_ok (interp_m (Aplus a a0) v0) (canonical_sum_merge c c0)).
-rewrite (H c0).
-rewrite (interp_m_ok (Aplus a a0) v0).
-rewrite (interp_m_ok a v0).
-rewrite (interp_m_ok a0 v0).
-setoid_replace (Amult (Aplus a a0) (interp_vl v0)) with
- (Aplus (Amult a (interp_vl v0)) (Amult a0 (interp_vl v0)));
- [ idtac | trivial ].
-setoid_replace
- (Aplus (Aplus (Amult a (interp_vl v0)) (Amult a0 (interp_vl v0)))
- (Aplus (interp_setcs c) (interp_setcs c0))) with
- (Aplus (Amult a (interp_vl v0))
- (Aplus (Amult a0 (interp_vl v0))
- (Aplus (interp_setcs c) (interp_setcs c0))));
- [ idtac | trivial ].
-setoid_replace
- (Aplus (Aplus (Amult a (interp_vl v0)) (interp_setcs c))
- (Aplus (Amult a0 (interp_vl v0)) (interp_setcs c0))) with
- (Aplus (Amult a (interp_vl v0))
- (Aplus (interp_setcs c)
- (Aplus (Amult a0 (interp_vl v0)) (interp_setcs c0))));
- [ idtac | trivial ].
-auto.
-
-elim (varlist_lt v v0); simpl.
-intro.
-rewrite
- (ics_aux_ok (interp_m a v) (canonical_sum_merge c (Cons_monom a0 v0 c0)))
- .
-rewrite (ics_aux_ok (interp_m a v) c).
-rewrite (ics_aux_ok (interp_m a0 v0) c0).
-rewrite (H (Cons_monom a0 v0 c0)); simpl.
-rewrite (ics_aux_ok (interp_m a0 v0) c0); auto.
-
-intro.
-rewrite
- (ics_aux_ok (interp_m a0 v0)
- ((fix csm_aux (s2:canonical_sum) : canonical_sum :=
- match s2 with
- | Nil_monom => Cons_monom a v c
- | Cons_monom c2 l2 t2 =>
- if varlist_eq v l2
- then Cons_monom (Aplus a c2) v (canonical_sum_merge c t2)
- else
- if varlist_lt v l2
- then Cons_monom a v (canonical_sum_merge c s2)
- else Cons_monom c2 l2 (csm_aux t2)
- | Cons_varlist l2 t2 =>
- if varlist_eq v l2
- then Cons_monom (Aplus a Aone) v (canonical_sum_merge c t2)
- else
- if varlist_lt v l2
- then Cons_monom a v (canonical_sum_merge c s2)
- else Cons_varlist l2 (csm_aux t2)
- end) c0)).
-rewrite H0.
-rewrite (ics_aux_ok (interp_m a v) c);
- rewrite (ics_aux_ok (interp_m a0 v0) c0); simpl;
- auto.
-
-generalize (varlist_eq_prop v v0).
-elim (varlist_eq v v0).
-intros; rewrite (H1 I).
-simpl.
-rewrite (ics_aux_ok (interp_m (Aplus a Aone) v0) (canonical_sum_merge c c0));
- rewrite (ics_aux_ok (interp_m a v0) c);
- rewrite (ics_aux_ok (interp_vl v0) c0).
-rewrite (H c0).
-rewrite (interp_m_ok (Aplus a Aone) v0).
-rewrite (interp_m_ok a v0).
-setoid_replace (Amult (Aplus a Aone) (interp_vl v0)) with
- (Aplus (Amult a (interp_vl v0)) (Amult Aone (interp_vl v0)));
- [ idtac | trivial ].
-setoid_replace
- (Aplus (Aplus (Amult a (interp_vl v0)) (Amult Aone (interp_vl v0)))
- (Aplus (interp_setcs c) (interp_setcs c0))) with
- (Aplus (Amult a (interp_vl v0))
- (Aplus (Amult Aone (interp_vl v0))
- (Aplus (interp_setcs c) (interp_setcs c0))));
- [ idtac | trivial ].
-setoid_replace
- (Aplus (Aplus (Amult a (interp_vl v0)) (interp_setcs c))
- (Aplus (interp_vl v0) (interp_setcs c0))) with
- (Aplus (Amult a (interp_vl v0))
- (Aplus (interp_setcs c) (Aplus (interp_vl v0) (interp_setcs c0))));
- [ idtac | trivial ].
-setoid_replace (Amult Aone (interp_vl v0)) with (interp_vl v0);
- [ idtac | trivial ].
-auto.
-
-elim (varlist_lt v v0); simpl.
-intro.
-rewrite
- (ics_aux_ok (interp_m a v) (canonical_sum_merge c (Cons_varlist v0 c0)))
- ; rewrite (ics_aux_ok (interp_m a v) c);
- rewrite (ics_aux_ok (interp_vl v0) c0).
-rewrite (H (Cons_varlist v0 c0)); simpl.
-rewrite (ics_aux_ok (interp_vl v0) c0).
-auto.
-
-intro.
-rewrite
- (ics_aux_ok (interp_vl v0)
- ((fix csm_aux (s2:canonical_sum) : canonical_sum :=
- match s2 with
- | Nil_monom => Cons_monom a v c
- | Cons_monom c2 l2 t2 =>
- if varlist_eq v l2
- then Cons_monom (Aplus a c2) v (canonical_sum_merge c t2)
- else
- if varlist_lt v l2
- then Cons_monom a v (canonical_sum_merge c s2)
- else Cons_monom c2 l2 (csm_aux t2)
- | Cons_varlist l2 t2 =>
- if varlist_eq v l2
- then Cons_monom (Aplus a Aone) v (canonical_sum_merge c t2)
- else
- if varlist_lt v l2
- then Cons_monom a v (canonical_sum_merge c s2)
- else Cons_varlist l2 (csm_aux t2)
- end) c0)); rewrite H0.
-rewrite (ics_aux_ok (interp_m a v) c); rewrite (ics_aux_ok (interp_vl v0) c0);
- simpl.
-auto.
-
-simple induction y; simpl; intros.
-trivial.
-
-generalize (varlist_eq_prop v v0).
-elim (varlist_eq v v0).
-intros; rewrite (H1 I).
-simpl.
-rewrite (ics_aux_ok (interp_m (Aplus Aone a) v0) (canonical_sum_merge c c0));
- rewrite (ics_aux_ok (interp_vl v0) c);
- rewrite (ics_aux_ok (interp_m a v0) c0); rewrite (H c0).
-rewrite (interp_m_ok (Aplus Aone a) v0); rewrite (interp_m_ok a v0).
-setoid_replace (Amult (Aplus Aone a) (interp_vl v0)) with
- (Aplus (Amult Aone (interp_vl v0)) (Amult a (interp_vl v0)));
- [ idtac | trivial ].
-setoid_replace
- (Aplus (Aplus (Amult Aone (interp_vl v0)) (Amult a (interp_vl v0)))
- (Aplus (interp_setcs c) (interp_setcs c0))) with
- (Aplus (Amult Aone (interp_vl v0))
- (Aplus (Amult a (interp_vl v0))
- (Aplus (interp_setcs c) (interp_setcs c0))));
- [ idtac | trivial ].
-setoid_replace
- (Aplus (Aplus (interp_vl v0) (interp_setcs c))
- (Aplus (Amult a (interp_vl v0)) (interp_setcs c0))) with
- (Aplus (interp_vl v0)
- (Aplus (interp_setcs c)
- (Aplus (Amult a (interp_vl v0)) (interp_setcs c0))));
- [ idtac | trivial ].
-auto.
-
-elim (varlist_lt v v0); simpl; intros.
-rewrite
- (ics_aux_ok (interp_vl v) (canonical_sum_merge c (Cons_monom a v0 c0)))
- ; rewrite (ics_aux_ok (interp_vl v) c);
- rewrite (ics_aux_ok (interp_m a v0) c0).
-rewrite (H (Cons_monom a v0 c0)); simpl.
-rewrite (ics_aux_ok (interp_m a v0) c0); auto.
-
-rewrite
- (ics_aux_ok (interp_m a v0)
- ((fix csm_aux2 (s2:canonical_sum) : canonical_sum :=
- match s2 with
- | Nil_monom => Cons_varlist v c
- | Cons_monom c2 l2 t2 =>
- if varlist_eq v l2
- then Cons_monom (Aplus Aone c2) v (canonical_sum_merge c t2)
- else
- if varlist_lt v l2
- then Cons_varlist v (canonical_sum_merge c s2)
- else Cons_monom c2 l2 (csm_aux2 t2)
- | Cons_varlist l2 t2 =>
- if varlist_eq v l2
- then Cons_monom (Aplus Aone Aone) v (canonical_sum_merge c t2)
- else
- if varlist_lt v l2
- then Cons_varlist v (canonical_sum_merge c s2)
- else Cons_varlist l2 (csm_aux2 t2)
- end) c0)); rewrite H0.
-rewrite (ics_aux_ok (interp_vl v) c); rewrite (ics_aux_ok (interp_m a v0) c0);
- simpl; auto.
-
-generalize (varlist_eq_prop v v0).
-elim (varlist_eq v v0); intros.
-rewrite (H1 I); simpl.
-rewrite
- (ics_aux_ok (interp_m (Aplus Aone Aone) v0) (canonical_sum_merge c c0))
- ; rewrite (ics_aux_ok (interp_vl v0) c);
- rewrite (ics_aux_ok (interp_vl v0) c0); rewrite (H c0).
-rewrite (interp_m_ok (Aplus Aone Aone) v0).
-setoid_replace (Amult (Aplus Aone Aone) (interp_vl v0)) with
- (Aplus (Amult Aone (interp_vl v0)) (Amult Aone (interp_vl v0)));
- [ idtac | trivial ].
-setoid_replace
- (Aplus (Aplus (Amult Aone (interp_vl v0)) (Amult Aone (interp_vl v0)))
- (Aplus (interp_setcs c) (interp_setcs c0))) with
- (Aplus (Amult Aone (interp_vl v0))
- (Aplus (Amult Aone (interp_vl v0))
- (Aplus (interp_setcs c) (interp_setcs c0))));
- [ idtac | trivial ].
-setoid_replace
- (Aplus (Aplus (interp_vl v0) (interp_setcs c))
- (Aplus (interp_vl v0) (interp_setcs c0))) with
- (Aplus (interp_vl v0)
- (Aplus (interp_setcs c) (Aplus (interp_vl v0) (interp_setcs c0))));
-[ idtac | trivial ].
-setoid_replace (Amult Aone (interp_vl v0)) with (interp_vl v0); auto.
-
-elim (varlist_lt v v0); simpl.
-rewrite
- (ics_aux_ok (interp_vl v) (canonical_sum_merge c (Cons_varlist v0 c0)))
- ; rewrite (ics_aux_ok (interp_vl v) c);
- rewrite (ics_aux_ok (interp_vl v0) c0); rewrite (H (Cons_varlist v0 c0));
- simpl.
-rewrite (ics_aux_ok (interp_vl v0) c0); auto.
-
-rewrite
- (ics_aux_ok (interp_vl v0)
- ((fix csm_aux2 (s2:canonical_sum) : canonical_sum :=
- match s2 with
- | Nil_monom => Cons_varlist v c
- | Cons_monom c2 l2 t2 =>
- if varlist_eq v l2
- then Cons_monom (Aplus Aone c2) v (canonical_sum_merge c t2)
- else
- if varlist_lt v l2
- then Cons_varlist v (canonical_sum_merge c s2)
- else Cons_monom c2 l2 (csm_aux2 t2)
- | Cons_varlist l2 t2 =>
- if varlist_eq v l2
- then Cons_monom (Aplus Aone Aone) v (canonical_sum_merge c t2)
- else
- if varlist_lt v l2
- then Cons_varlist v (canonical_sum_merge c s2)
- else Cons_varlist l2 (csm_aux2 t2)
- end) c0)); rewrite H0.
-rewrite (ics_aux_ok (interp_vl v) c); rewrite (ics_aux_ok (interp_vl v0) c0);
- simpl; auto.
-Qed.
-
-Lemma monom_insert_ok :
- forall (a:A) (l:varlist) (s:canonical_sum),
- Aequiv (interp_setcs (monom_insert a l s))
- (Aplus (Amult a (interp_vl l)) (interp_setcs s)).
-Proof.
-simple induction s; intros.
-simpl; rewrite (interp_m_ok a l); trivial.
-
-simpl; generalize (varlist_eq_prop l v); elim (varlist_eq l v).
-intro Hr; rewrite (Hr I); simpl.
-rewrite (ics_aux_ok (interp_m (Aplus a a0) v) c);
- rewrite (ics_aux_ok (interp_m a0 v) c).
-rewrite (interp_m_ok (Aplus a a0) v); rewrite (interp_m_ok a0 v).
-setoid_replace (Amult (Aplus a a0) (interp_vl v)) with
- (Aplus (Amult a (interp_vl v)) (Amult a0 (interp_vl v)));
- [ idtac | trivial ].
-auto.
-
-elim (varlist_lt l v); simpl; intros.
-rewrite (ics_aux_ok (interp_m a0 v) c).
-rewrite (interp_m_ok a0 v); rewrite (interp_m_ok a l).
-auto.
-
-rewrite (ics_aux_ok (interp_m a0 v) (monom_insert a l c));
- rewrite (ics_aux_ok (interp_m a0 v) c); rewrite H.
-auto.
-
-simpl.
-generalize (varlist_eq_prop l v); elim (varlist_eq l v).
-intro Hr; rewrite (Hr I); simpl.
-rewrite (ics_aux_ok (interp_m (Aplus a Aone) v) c);
- rewrite (ics_aux_ok (interp_vl v) c).
-rewrite (interp_m_ok (Aplus a Aone) v).
-setoid_replace (Amult (Aplus a Aone) (interp_vl v)) with
- (Aplus (Amult a (interp_vl v)) (Amult Aone (interp_vl v)));
- [ idtac | trivial ].
-setoid_replace (Amult Aone (interp_vl v)) with (interp_vl v);
- [ idtac | trivial ].
-auto.
-
-elim (varlist_lt l v); simpl; intros; auto.
-rewrite (ics_aux_ok (interp_vl v) (monom_insert a l c)); rewrite H.
-rewrite (ics_aux_ok (interp_vl v) c); auto.
-Qed.
-
-Lemma varlist_insert_ok :
- forall (l:varlist) (s:canonical_sum),
- Aequiv (interp_setcs (varlist_insert l s))
- (Aplus (interp_vl l) (interp_setcs s)).
-Proof.
-simple induction s; simpl; intros.
-trivial.
-
-generalize (varlist_eq_prop l v); elim (varlist_eq l v).
-intro Hr; rewrite (Hr I); simpl.
-rewrite (ics_aux_ok (interp_m (Aplus Aone a) v) c);
- rewrite (ics_aux_ok (interp_m a v) c).
-rewrite (interp_m_ok (Aplus Aone a) v); rewrite (interp_m_ok a v).
-setoid_replace (Amult (Aplus Aone a) (interp_vl v)) with
- (Aplus (Amult Aone (interp_vl v)) (Amult a (interp_vl v)));
- [ idtac | trivial ].
-setoid_replace (Amult Aone (interp_vl v)) with (interp_vl v); auto.
-
-elim (varlist_lt l v); simpl; intros; auto.
-rewrite (ics_aux_ok (interp_m a v) (varlist_insert l c));
- rewrite (ics_aux_ok (interp_m a v) c).
-rewrite (interp_m_ok a v).
-rewrite H; auto.
-
-generalize (varlist_eq_prop l v); elim (varlist_eq l v).
-intro Hr; rewrite (Hr I); simpl.
-rewrite (ics_aux_ok (interp_m (Aplus Aone Aone) v) c);
- rewrite (ics_aux_ok (interp_vl v) c).
-rewrite (interp_m_ok (Aplus Aone Aone) v).
-setoid_replace (Amult (Aplus Aone Aone) (interp_vl v)) with
- (Aplus (Amult Aone (interp_vl v)) (Amult Aone (interp_vl v)));
- [ idtac | trivial ].
-setoid_replace (Amult Aone (interp_vl v)) with (interp_vl v); auto.
-
-elim (varlist_lt l v); simpl; intros; auto.
-rewrite (ics_aux_ok (interp_vl v) (varlist_insert l c)).
-rewrite H.
-rewrite (ics_aux_ok (interp_vl v) c); auto.
-Qed.
-
-Lemma canonical_sum_scalar_ok :
- forall (a:A) (s:canonical_sum),
- Aequiv (interp_setcs (canonical_sum_scalar a s))
- (Amult a (interp_setcs s)).
-Proof.
-simple induction s; simpl; intros.
-trivial.
-
-rewrite (ics_aux_ok (interp_m (Amult a a0) v) (canonical_sum_scalar a c));
- rewrite (ics_aux_ok (interp_m a0 v) c).
-rewrite (interp_m_ok (Amult a a0) v); rewrite (interp_m_ok a0 v).
-rewrite H.
-setoid_replace (Amult a (Aplus (Amult a0 (interp_vl v)) (interp_setcs c)))
- with (Aplus (Amult a (Amult a0 (interp_vl v))) (Amult a (interp_setcs c)));
- [ idtac | trivial ].
-auto.
-
-rewrite (ics_aux_ok (interp_m a v) (canonical_sum_scalar a c));
- rewrite (ics_aux_ok (interp_vl v) c); rewrite H.
-rewrite (interp_m_ok a v).
-auto.
-Qed.
-
-Lemma canonical_sum_scalar2_ok :
- forall (l:varlist) (s:canonical_sum),
- Aequiv (interp_setcs (canonical_sum_scalar2 l s))
- (Amult (interp_vl l) (interp_setcs s)).
-Proof.
-simple induction s; simpl; intros; auto.
-rewrite (monom_insert_ok a (varlist_merge l v) (canonical_sum_scalar2 l c)).
-rewrite (ics_aux_ok (interp_m a v) c).
-rewrite (interp_m_ok a v).
-rewrite H.
-rewrite (varlist_merge_ok l v).
-setoid_replace
- (Amult (interp_vl l) (Aplus (Amult a (interp_vl v)) (interp_setcs c))) with
- (Aplus (Amult (interp_vl l) (Amult a (interp_vl v)))
- (Amult (interp_vl l) (interp_setcs c)));
- [ idtac | trivial ].
-auto.
-
-rewrite (varlist_insert_ok (varlist_merge l v) (canonical_sum_scalar2 l c)).
-rewrite (ics_aux_ok (interp_vl v) c).
-rewrite H.
-rewrite (varlist_merge_ok l v).
-auto.
-Qed.
-
-Lemma canonical_sum_scalar3_ok :
- forall (c:A) (l:varlist) (s:canonical_sum),
- Aequiv (interp_setcs (canonical_sum_scalar3 c l s))
- (Amult c (Amult (interp_vl l) (interp_setcs s))).
-Proof.
-simple induction s; simpl; intros.
-rewrite (SSR_mult_zero_right S T (interp_vl l)).
-auto.
-
-rewrite
- (monom_insert_ok (Amult c a) (varlist_merge l v)
- (canonical_sum_scalar3 c l c0)).
-rewrite (ics_aux_ok (interp_m a v) c0).
-rewrite (interp_m_ok a v).
-rewrite H.
-rewrite (varlist_merge_ok l v).
-setoid_replace
- (Amult (interp_vl l) (Aplus (Amult a (interp_vl v)) (interp_setcs c0))) with
- (Aplus (Amult (interp_vl l) (Amult a (interp_vl v)))
- (Amult (interp_vl l) (interp_setcs c0)));
- [ idtac | trivial ].
-setoid_replace
- (Amult c
- (Aplus (Amult (interp_vl l) (Amult a (interp_vl v)))
- (Amult (interp_vl l) (interp_setcs c0)))) with
- (Aplus (Amult c (Amult (interp_vl l) (Amult a (interp_vl v))))
- (Amult c (Amult (interp_vl l) (interp_setcs c0))));
- [ idtac | trivial ].
-setoid_replace (Amult (Amult c a) (Amult (interp_vl l) (interp_vl v))) with
- (Amult c (Amult a (Amult (interp_vl l) (interp_vl v))));
- [ idtac | trivial ].
-auto.
-
-rewrite
- (monom_insert_ok c (varlist_merge l v) (canonical_sum_scalar3 c l c0))
- .
-rewrite (ics_aux_ok (interp_vl v) c0).
-rewrite H.
-rewrite (varlist_merge_ok l v).
-setoid_replace
- (Aplus (Amult c (Amult (interp_vl l) (interp_vl v)))
- (Amult c (Amult (interp_vl l) (interp_setcs c0)))) with
- (Amult c
- (Aplus (Amult (interp_vl l) (interp_vl v))
- (Amult (interp_vl l) (interp_setcs c0))));
- [ idtac | trivial ].
-auto.
-Qed.
-
-Lemma canonical_sum_prod_ok :
- forall x y:canonical_sum,
- Aequiv (interp_setcs (canonical_sum_prod x y))
- (Amult (interp_setcs x) (interp_setcs y)).
-Proof.
-simple induction x; simpl; intros.
-trivial.
-
-rewrite
- (canonical_sum_merge_ok (canonical_sum_scalar3 a v y)
- (canonical_sum_prod c y)).
-rewrite (canonical_sum_scalar3_ok a v y).
-rewrite (ics_aux_ok (interp_m a v) c).
-rewrite (interp_m_ok a v).
-rewrite (H y).
-setoid_replace (Amult a (Amult (interp_vl v) (interp_setcs y))) with
- (Amult (Amult a (interp_vl v)) (interp_setcs y));
- [ idtac | trivial ].
-setoid_replace
- (Amult (Aplus (Amult a (interp_vl v)) (interp_setcs c)) (interp_setcs y))
- with
- (Aplus (Amult (Amult a (interp_vl v)) (interp_setcs y))
- (Amult (interp_setcs c) (interp_setcs y)));
- [ idtac | trivial ].
-trivial.
-
-rewrite
- (canonical_sum_merge_ok (canonical_sum_scalar2 v y) (canonical_sum_prod c y))
- .
-rewrite (canonical_sum_scalar2_ok v y).
-rewrite (ics_aux_ok (interp_vl v) c).
-rewrite (H y).
-trivial.
-Qed.
-
-Theorem setspolynomial_normalize_ok :
- forall p:setspolynomial,
- Aequiv (interp_setcs (setspolynomial_normalize p)) (interp_setsp p).
-Proof.
-simple induction p; simpl; intros; trivial.
-rewrite
- (canonical_sum_merge_ok (setspolynomial_normalize s)
- (setspolynomial_normalize s0)).
-rewrite H; rewrite H0; trivial.
-
-rewrite
- (canonical_sum_prod_ok (setspolynomial_normalize s)
- (setspolynomial_normalize s0)).
-rewrite H; rewrite H0; trivial.
-Qed.
-
-Lemma canonical_sum_simplify_ok :
- forall s:canonical_sum,
- Aequiv (interp_setcs (canonical_sum_simplify s)) (interp_setcs s).
-Proof.
-simple induction s; simpl; intros.
-trivial.
-
-generalize (SSR_eq_prop T a Azero).
-elim (Aeq a Azero).
-simpl.
-intros.
-rewrite (ics_aux_ok (interp_m a v) c).
-rewrite (interp_m_ok a v).
-rewrite (H0 I).
-setoid_replace (Amult Azero (interp_vl v)) with Azero;
- [ idtac | trivial ].
-rewrite H.
-trivial.
-
-intros; simpl.
-generalize (SSR_eq_prop T a Aone).
-elim (Aeq a Aone).
-intros.
-rewrite (ics_aux_ok (interp_m a v) c).
-rewrite (interp_m_ok a v).
-rewrite (H1 I).
-simpl.
-rewrite (ics_aux_ok (interp_vl v) (canonical_sum_simplify c)).
-rewrite H.
-auto.
-
-simpl.
-intros.
-rewrite (ics_aux_ok (interp_m a v) (canonical_sum_simplify c)).
-rewrite (ics_aux_ok (interp_m a v) c).
-rewrite H; trivial.
-
-rewrite (ics_aux_ok (interp_vl v) (canonical_sum_simplify c)).
-rewrite H.
-auto.
-Qed.
-
-Theorem setspolynomial_simplify_ok :
- forall p:setspolynomial,
- Aequiv (interp_setcs (setspolynomial_simplify p)) (interp_setsp p).
-Proof.
-intro.
-unfold setspolynomial_simplify.
-rewrite (canonical_sum_simplify_ok (setspolynomial_normalize p)).
-exact (setspolynomial_normalize_ok p).
-Qed.
-
-End semi_setoid_rings.
-
-Arguments Cons_varlist : default implicits.
-Arguments Cons_monom : default implicits.
-Arguments SetSPconst : default implicits.
-Arguments SetSPplus : default implicits.
-Arguments SetSPmult : default implicits.
-
-
-
-Section setoid_rings.
-
-Set Implicit Arguments.
-
-Variable vm : varmap A.
-Variable T : Setoid_Ring_Theory Aequiv Aplus Amult Aone Azero Aopp Aeq.
-
-Hint Resolve (STh_plus_comm T).
-Hint Resolve (STh_plus_assoc T).
-Hint Resolve (STh_plus_assoc2 S T).
-Hint Resolve (STh_mult_comm T).
-Hint Resolve (STh_mult_assoc T).
-Hint Resolve (STh_mult_assoc2 S T).
-Hint Resolve (STh_plus_zero_left T).
-Hint Resolve (STh_plus_zero_left2 S T).
-Hint Resolve (STh_mult_one_left T).
-Hint Resolve (STh_mult_one_left2 S T).
-Hint Resolve (STh_mult_zero_left S plus_morph mult_morph T).
-Hint Resolve (STh_mult_zero_left2 S plus_morph mult_morph T).
-Hint Resolve (STh_distr_left T).
-Hint Resolve (STh_distr_left2 S T).
-Hint Resolve (STh_plus_reg_left S plus_morph T).
-Hint Resolve (STh_plus_permute S plus_morph T).
-Hint Resolve (STh_mult_permute S mult_morph T).
-Hint Resolve (STh_distr_right S plus_morph T).
-Hint Resolve (STh_distr_right2 S plus_morph T).
-Hint Resolve (STh_mult_zero_right S plus_morph mult_morph T).
-Hint Resolve (STh_mult_zero_right2 S plus_morph mult_morph T).
-Hint Resolve (STh_plus_zero_right S T).
-Hint Resolve (STh_plus_zero_right2 S T).
-Hint Resolve (STh_mult_one_right S T).
-Hint Resolve (STh_mult_one_right2 S T).
-Hint Resolve (STh_plus_reg_right S plus_morph T).
-Hint Resolve eq_refl eq_sym eq_trans.
-Hint Immediate T.
-
-
-(*** Definitions *)
-
-Inductive setpolynomial : Type :=
- | SetPvar : index -> setpolynomial
- | SetPconst : A -> setpolynomial
- | SetPplus : setpolynomial -> setpolynomial -> setpolynomial
- | SetPmult : setpolynomial -> setpolynomial -> setpolynomial
- | SetPopp : setpolynomial -> setpolynomial.
-
-Fixpoint setpolynomial_normalize (x:setpolynomial) : canonical_sum :=
- match x with
- | SetPplus l r =>
- canonical_sum_merge (setpolynomial_normalize l)
- (setpolynomial_normalize r)
- | SetPmult l r =>
- canonical_sum_prod (setpolynomial_normalize l)
- (setpolynomial_normalize r)
- | SetPconst c => Cons_monom c Nil_var Nil_monom
- | SetPvar i => Cons_varlist (Cons_var i Nil_var) Nil_monom
- | SetPopp p =>
- canonical_sum_scalar3 (Aopp Aone) Nil_var (setpolynomial_normalize p)
- end.
-
-Definition setpolynomial_simplify (x:setpolynomial) :=
- canonical_sum_simplify (setpolynomial_normalize x).
-
-Fixpoint setspolynomial_of (x:setpolynomial) : setspolynomial :=
- match x with
- | SetPplus l r => SetSPplus (setspolynomial_of l) (setspolynomial_of r)
- | SetPmult l r => SetSPmult (setspolynomial_of l) (setspolynomial_of r)
- | SetPconst c => SetSPconst c
- | SetPvar i => SetSPvar i
- | SetPopp p => SetSPmult (SetSPconst (Aopp Aone)) (setspolynomial_of p)
- end.
-
-(*** Interpretation *)
-
-Fixpoint interp_setp (p:setpolynomial) : A :=
- match p with
- | SetPconst c => c
- | SetPvar i => varmap_find Azero i vm
- | SetPplus p1 p2 => Aplus (interp_setp p1) (interp_setp p2)
- | SetPmult p1 p2 => Amult (interp_setp p1) (interp_setp p2)
- | SetPopp p1 => Aopp (interp_setp p1)
- end.
-
-(*** Properties *)
-
-Unset Implicit Arguments.
-
-Lemma setspolynomial_of_ok :
- forall p:setpolynomial,
- Aequiv (interp_setp p) (interp_setsp vm (setspolynomial_of p)).
-simple induction p; trivial; simpl; intros.
-rewrite H; rewrite H0; trivial.
-rewrite H; rewrite H0; trivial.
-rewrite H.
-rewrite
- (STh_opp_mult_left2 S plus_morph mult_morph T Aone
- (interp_setsp vm (setspolynomial_of s))).
-rewrite (STh_mult_one_left T (interp_setsp vm (setspolynomial_of s))).
-trivial.
-Qed.
-
-Theorem setpolynomial_normalize_ok :
- forall p:setpolynomial,
- setpolynomial_normalize p = setspolynomial_normalize (setspolynomial_of p).
-simple induction p; trivial; simpl; intros.
-rewrite H; rewrite H0; reflexivity.
-rewrite H; rewrite H0; reflexivity.
-rewrite H; simpl.
-elim
- (canonical_sum_scalar3 (Aopp Aone) Nil_var
- (setspolynomial_normalize (setspolynomial_of s)));
- [ reflexivity
- | simpl; intros; rewrite H0; reflexivity
- | simpl; intros; rewrite H0; reflexivity ].
-Qed.
-
-Theorem setpolynomial_simplify_ok :
- forall p:setpolynomial,
- Aequiv (interp_setcs vm (setpolynomial_simplify p)) (interp_setp p).
-intro.
-unfold setpolynomial_simplify.
-rewrite (setspolynomial_of_ok p).
-rewrite setpolynomial_normalize_ok.
-rewrite
- (canonical_sum_simplify_ok vm
- (Semi_Setoid_Ring_Theory_of A Aequiv S Aplus Amult Aone Azero Aopp Aeq
- plus_morph mult_morph T)
- (setspolynomial_normalize (setspolynomial_of p)))
- .
-rewrite
- (setspolynomial_normalize_ok vm
- (Semi_Setoid_Ring_Theory_of A Aequiv S Aplus Amult Aone Azero Aopp Aeq
- plus_morph mult_morph T) (setspolynomial_of p))
- .
-trivial.
-Qed.
-
-End setoid_rings.
-
-End setoid.
diff --git a/plugins/ring/Setoid_ring_theory.v b/plugins/ring/Setoid_ring_theory.v
deleted file mode 100644
index bb88f646..00000000
--- a/plugins/ring/Setoid_ring_theory.v
+++ /dev/null
@@ -1,425 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-Require Export Bool.
-Require Export Setoid.
-
-Set Implicit Arguments.
-
-Section Setoid_rings.
-
-Variable A : Type.
-Variable Aequiv : A -> A -> Prop.
-
-Infix Local "==" := Aequiv (at level 70, no associativity).
-
-Variable S : Setoid_Theory A Aequiv.
-
-Add Setoid A Aequiv S as Asetoid.
-
-Variable Aplus : A -> A -> A.
-Variable Amult : A -> A -> A.
-Variable Aone : A.
-Variable Azero : A.
-Variable Aopp : A -> A.
-Variable Aeq : A -> A -> bool.
-
-Infix "+" := Aplus (at level 50, left associativity).
-Infix "*" := Amult (at level 40, left associativity).
-Notation "0" := Azero.
-Notation "1" := Aone.
-Notation "- x" := (Aopp x).
-
-Variable plus_morph :
- forall a a0:A, a == a0 -> forall a1 a2:A, a1 == a2 -> a + a1 == a0 + a2.
-Variable mult_morph :
- forall a a0:A, a == a0 -> forall a1 a2:A, a1 == a2 -> a * a1 == a0 * a2.
-Variable opp_morph : forall a a0:A, a == a0 -> - a == - a0.
-
-Add Morphism Aplus : Aplus_ext.
-intros; apply plus_morph; assumption.
-Qed.
-
-Add Morphism Amult : Amult_ext.
-intros; apply mult_morph; assumption.
-Qed.
-
-Add Morphism Aopp : Aopp_ext.
-exact opp_morph.
-Qed.
-
-Section Theory_of_semi_setoid_rings.
-
-Record Semi_Setoid_Ring_Theory : Prop :=
- {SSR_plus_comm : forall n m:A, n + m == m + n;
- SSR_plus_assoc : forall n m p:A, n + (m + p) == n + m + p;
- SSR_mult_comm : forall n m:A, n * m == m * n;
- SSR_mult_assoc : forall n m p:A, n * (m * p) == n * m * p;
- SSR_plus_zero_left : forall n:A, 0 + n == n;
- SSR_mult_one_left : forall n:A, 1 * n == n;
- SSR_mult_zero_left : forall n:A, 0 * n == 0;
- SSR_distr_left : forall n m p:A, (n + m) * p == n * p + m * p;
- SSR_plus_reg_left : forall n m p:A, n + m == n + p -> m == p;
- SSR_eq_prop : forall x y:A, Is_true (Aeq x y) -> x == y}.
-
-Variable T : Semi_Setoid_Ring_Theory.
-
-Let plus_comm := SSR_plus_comm T.
-Let plus_assoc := SSR_plus_assoc T.
-Let mult_comm := SSR_mult_comm T.
-Let mult_assoc := SSR_mult_assoc T.
-Let plus_zero_left := SSR_plus_zero_left T.
-Let mult_one_left := SSR_mult_one_left T.
-Let mult_zero_left := SSR_mult_zero_left T.
-Let distr_left := SSR_distr_left T.
-Let plus_reg_left := SSR_plus_reg_left T.
-Let equiv_refl := Seq_refl A Aequiv S.
-Let equiv_sym := Seq_sym A Aequiv S.
-Let equiv_trans := Seq_trans A Aequiv S.
-
-Hint Resolve plus_comm plus_assoc mult_comm mult_assoc plus_zero_left
- mult_one_left mult_zero_left distr_left plus_reg_left
- equiv_refl (*equiv_sym*).
-Hint Immediate equiv_sym.
-
-(* Lemmas whose form is x=y are also provided in form y=x because
- Auto does not symmetry *)
-Lemma SSR_mult_assoc2 : forall n m p:A, n * m * p == n * (m * p).
-auto. Qed.
-
-Lemma SSR_plus_assoc2 : forall n m p:A, n + m + p == n + (m + p).
-auto. Qed.
-
-Lemma SSR_plus_zero_left2 : forall n:A, n == 0 + n.
-auto. Qed.
-
-Lemma SSR_mult_one_left2 : forall n:A, n == 1 * n.
-auto. Qed.
-
-Lemma SSR_mult_zero_left2 : forall n:A, 0 == 0 * n.
-auto. Qed.
-
-Lemma SSR_distr_left2 : forall n m p:A, n * p + m * p == (n + m) * p.
-auto. Qed.
-
-Lemma SSR_plus_permute : forall n m p:A, n + (m + p) == m + (n + p).
-intros.
-rewrite (plus_assoc n m p).
-rewrite (plus_comm n m).
-rewrite <- (plus_assoc m n p).
-trivial.
-Qed.
-
-Lemma SSR_mult_permute : forall n m p:A, n * (m * p) == m * (n * p).
-intros.
-rewrite (mult_assoc n m p).
-rewrite (mult_comm n m).
-rewrite <- (mult_assoc m n p).
-trivial.
-Qed.
-
-Hint Resolve SSR_plus_permute SSR_mult_permute.
-
-Lemma SSR_distr_right : forall n m p:A, n * (m + p) == n * m + n * p.
-intros.
-rewrite (mult_comm n (m + p)).
-rewrite (mult_comm n m).
-rewrite (mult_comm n p).
-auto.
-Qed.
-
-Lemma SSR_distr_right2 : forall n m p:A, n * m + n * p == n * (m + p).
-intros.
-apply equiv_sym.
-apply SSR_distr_right.
-Qed.
-
-Lemma SSR_mult_zero_right : forall n:A, n * 0 == 0.
-intro; rewrite (mult_comm n 0); auto.
-Qed.
-
-Lemma SSR_mult_zero_right2 : forall n:A, 0 == n * 0.
-intro; rewrite (mult_comm n 0); auto.
-Qed.
-
-Lemma SSR_plus_zero_right : forall n:A, n + 0 == n.
-intro; rewrite (plus_comm n 0); auto.
-Qed.
-
-Lemma SSR_plus_zero_right2 : forall n:A, n == n + 0.
-intro; rewrite (plus_comm n 0); auto.
-Qed.
-
-Lemma SSR_mult_one_right : forall n:A, n * 1 == n.
-intro; rewrite (mult_comm n 1); auto.
-Qed.
-
-Lemma SSR_mult_one_right2 : forall n:A, n == n * 1.
-intro; rewrite (mult_comm n 1); auto.
-Qed.
-
-Lemma SSR_plus_reg_right : forall n m p:A, m + n == p + n -> m == p.
-intros n m p; rewrite (plus_comm m n); rewrite (plus_comm p n).
-intro; apply plus_reg_left with n; trivial.
-Qed.
-
-End Theory_of_semi_setoid_rings.
-
-Section Theory_of_setoid_rings.
-
-Record Setoid_Ring_Theory : Prop :=
- {STh_plus_comm : forall n m:A, n + m == m + n;
- STh_plus_assoc : forall n m p:A, n + (m + p) == n + m + p;
- STh_mult_comm : forall n m:A, n * m == m * n;
- STh_mult_assoc : forall n m p:A, n * (m * p) == n * m * p;
- STh_plus_zero_left : forall n:A, 0 + n == n;
- STh_mult_one_left : forall n:A, 1 * n == n;
- STh_opp_def : forall n:A, n + - n == 0;
- STh_distr_left : forall n m p:A, (n + m) * p == n * p + m * p;
- STh_eq_prop : forall x y:A, Is_true (Aeq x y) -> x == y}.
-
-Variable T : Setoid_Ring_Theory.
-
-Let plus_comm := STh_plus_comm T.
-Let plus_assoc := STh_plus_assoc T.
-Let mult_comm := STh_mult_comm T.
-Let mult_assoc := STh_mult_assoc T.
-Let plus_zero_left := STh_plus_zero_left T.
-Let mult_one_left := STh_mult_one_left T.
-Let opp_def := STh_opp_def T.
-Let distr_left := STh_distr_left T.
-Let equiv_refl := Seq_refl A Aequiv S.
-Let equiv_sym := Seq_sym A Aequiv S.
-Let equiv_trans := Seq_trans A Aequiv S.
-
-Hint Resolve plus_comm plus_assoc mult_comm mult_assoc plus_zero_left
- mult_one_left opp_def distr_left equiv_refl equiv_sym.
-
-(* Lemmas whose form is x=y are also provided in form y=x because Auto does
- not symmetry *)
-
-Lemma STh_mult_assoc2 : forall n m p:A, n * m * p == n * (m * p).
-auto. Qed.
-
-Lemma STh_plus_assoc2 : forall n m p:A, n + m + p == n + (m + p).
-auto. Qed.
-
-Lemma STh_plus_zero_left2 : forall n:A, n == 0 + n.
-auto. Qed.
-
-Lemma STh_mult_one_left2 : forall n:A, n == 1 * n.
-auto. Qed.
-
-Lemma STh_distr_left2 : forall n m p:A, n * p + m * p == (n + m) * p.
-auto. Qed.
-
-Lemma STh_opp_def2 : forall n:A, 0 == n + - n.
-auto. Qed.
-
-Lemma STh_plus_permute : forall n m p:A, n + (m + p) == m + (n + p).
-intros.
-rewrite (plus_assoc n m p).
-rewrite (plus_comm n m).
-rewrite <- (plus_assoc m n p).
-trivial.
-Qed.
-
-Lemma STh_mult_permute : forall n m p:A, n * (m * p) == m * (n * p).
-intros.
-rewrite (mult_assoc n m p).
-rewrite (mult_comm n m).
-rewrite <- (mult_assoc m n p).
-trivial.
-Qed.
-
-Hint Resolve STh_plus_permute STh_mult_permute.
-
-Lemma Saux1 : forall a:A, a + a == a -> a == 0.
-intros.
-rewrite <- (plus_zero_left a).
-rewrite (plus_comm 0 a).
-setoid_replace (a + 0) with (a + (a + - a)) by auto.
-rewrite (plus_assoc a a (- a)).
-rewrite H.
-apply opp_def.
-Qed.
-
-Lemma STh_mult_zero_left : forall n:A, 0 * n == 0.
-intros.
-apply Saux1.
-rewrite <- (distr_left 0 0 n).
-rewrite (plus_zero_left 0).
-trivial.
-Qed.
-Hint Resolve STh_mult_zero_left.
-
-Lemma STh_mult_zero_left2 : forall n:A, 0 == 0 * n.
-auto.
-Qed.
-
-Lemma Saux2 : forall x y z:A, x + y == 0 -> x + z == 0 -> y == z.
-intros.
-rewrite <- (plus_zero_left y).
-rewrite <- H0.
-rewrite <- (plus_assoc x z y).
-rewrite (plus_comm z y).
-rewrite (plus_assoc x y z).
-rewrite H.
-auto.
-Qed.
-
-Lemma STh_opp_mult_left : forall x y:A, - (x * y) == - x * y.
-intros.
-apply Saux2 with (x * y); auto.
-rewrite <- (distr_left x (- x) y).
-rewrite (opp_def x).
-auto.
-Qed.
-Hint Resolve STh_opp_mult_left.
-
-Lemma STh_opp_mult_left2 : forall x y:A, - x * y == - (x * y).
-auto.
-Qed.
-
-Lemma STh_mult_zero_right : forall n:A, n * 0 == 0.
-intro; rewrite (mult_comm n 0); auto.
-Qed.
-
-Lemma STh_mult_zero_right2 : forall n:A, 0 == n * 0.
-intro; rewrite (mult_comm n 0); auto.
-Qed.
-
-Lemma STh_plus_zero_right : forall n:A, n + 0 == n.
-intro; rewrite (plus_comm n 0); auto.
-Qed.
-
-Lemma STh_plus_zero_right2 : forall n:A, n == n + 0.
-intro; rewrite (plus_comm n 0); auto.
-Qed.
-
-Lemma STh_mult_one_right : forall n:A, n * 1 == n.
-intro; rewrite (mult_comm n 1); auto.
-Qed.
-
-Lemma STh_mult_one_right2 : forall n:A, n == n * 1.
-intro; rewrite (mult_comm n 1); auto.
-Qed.
-
-Lemma STh_opp_mult_right : forall x y:A, - (x * y) == x * - y.
-intros.
-rewrite (mult_comm x y).
-rewrite (mult_comm x (- y)).
-auto.
-Qed.
-
-Lemma STh_opp_mult_right2 : forall x y:A, x * - y == - (x * y).
-intros.
-rewrite (mult_comm x y).
-rewrite (mult_comm x (- y)).
-auto.
-Qed.
-
-Lemma STh_plus_opp_opp : forall x y:A, - x + - y == - (x + y).
-intros.
-apply Saux2 with (x + y); auto.
-rewrite (STh_plus_permute (x + y) (- x) (- y)).
-rewrite <- (plus_assoc x y (- y)).
-rewrite (opp_def y); rewrite (STh_plus_zero_right x).
-rewrite (STh_opp_def2 x); trivial.
-Qed.
-
-Lemma STh_plus_permute_opp : forall n m p:A, - m + (n + p) == n + (- m + p).
-auto.
-Qed.
-
-Lemma STh_opp_opp : forall n:A, - - n == n.
-intro.
-apply Saux2 with (- n); auto.
-rewrite (plus_comm (- n) n); auto.
-Qed.
-Hint Resolve STh_opp_opp.
-
-Lemma STh_opp_opp2 : forall n:A, n == - - n.
-auto.
-Qed.
-
-Lemma STh_mult_opp_opp : forall x y:A, - x * - y == x * y.
-intros.
-rewrite (STh_opp_mult_left2 x (- y)).
-rewrite (STh_opp_mult_right2 x y).
-trivial.
-Qed.
-
-Lemma STh_mult_opp_opp2 : forall x y:A, x * y == - x * - y.
-intros.
-apply equiv_sym.
-apply STh_mult_opp_opp.
-Qed.
-
-Lemma STh_opp_zero : - 0 == 0.
-rewrite <- (plus_zero_left (- 0)).
-trivial.
-Qed.
-
-Lemma STh_plus_reg_left : forall n m p:A, n + m == n + p -> m == p.
-intros.
-rewrite <- (plus_zero_left m).
-rewrite <- (plus_zero_left p).
-rewrite <- (opp_def n).
-rewrite (plus_comm n (- n)).
-rewrite <- (plus_assoc (- n) n m).
-rewrite <- (plus_assoc (- n) n p).
-auto.
-Qed.
-
-Lemma STh_plus_reg_right : forall n m p:A, m + n == p + n -> m == p.
-intros.
-apply STh_plus_reg_left with n.
-rewrite (plus_comm n m); rewrite (plus_comm n p); assumption.
-Qed.
-
-Lemma STh_distr_right : forall n m p:A, n * (m + p) == n * m + n * p.
-intros.
-rewrite (mult_comm n (m + p)).
-rewrite (mult_comm n m).
-rewrite (mult_comm n p).
-trivial.
-Qed.
-
-Lemma STh_distr_right2 : forall n m p:A, n * m + n * p == n * (m + p).
-intros.
-apply equiv_sym.
-apply STh_distr_right.
-Qed.
-
-End Theory_of_setoid_rings.
-
-Hint Resolve STh_mult_zero_left STh_plus_reg_left: core.
-
-Unset Implicit Arguments.
-
-Definition Semi_Setoid_Ring_Theory_of :
- Setoid_Ring_Theory -> Semi_Setoid_Ring_Theory.
-intros until 1; case H.
-split; intros; simpl; eauto.
-Defined.
-
-Coercion Semi_Setoid_Ring_Theory_of : Setoid_Ring_Theory >->
- Semi_Setoid_Ring_Theory.
-
-
-
-Section product_ring.
-
-End product_ring.
-
-Section power_ring.
-
-End power_ring.
-
-End Setoid_rings.
diff --git a/plugins/ring/g_ring.ml4 b/plugins/ring/g_ring.ml4
deleted file mode 100644
index f2e904b1..00000000
--- a/plugins/ring/g_ring.ml4
+++ /dev/null
@@ -1,134 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(*i camlp4deps: "parsing/grammar.cma" i*)
-
-open Quote
-open Ring
-open Tacticals
-
-TACTIC EXTEND ring
-| [ "legacy" "ring" constr_list(l) ] -> [ polynom l ]
-END
-
-(* The vernac commands "Add Ring" and co *)
-
-let cset_of_constrarg_list l =
- List.fold_right ConstrSet.add (List.map constr_of l) ConstrSet.empty
-
-VERNAC COMMAND EXTEND AddRing
- [ "Add" "Legacy" "Ring"
- constr(a) constr(aplus) constr(amult) constr(aone) constr(azero)
- constr(aopp) constr(aeq) constr(t) "[" ne_constr_list(l) "]" ]
- -> [ add_theory true false false
- (constr_of a)
- None
- None
- None
- (constr_of aplus)
- (constr_of amult)
- (constr_of aone)
- (constr_of azero)
- (Some (constr_of aopp))
- (constr_of aeq)
- (constr_of t)
- (cset_of_constrarg_list l) ]
-
-| [ "Add" "Legacy" "Semi" "Ring"
- constr(a) constr(aplus) constr(amult) constr(aone) constr(azero)
- constr(aeq) constr(t) "[" ne_constr_list(l) "]" ]
- -> [ add_theory false false false
- (constr_of a)
- None
- None
- None
- (constr_of aplus)
- (constr_of amult)
- (constr_of aone)
- (constr_of azero)
- None
- (constr_of aeq)
- (constr_of t)
- (cset_of_constrarg_list l) ]
-
-| [ "Add" "Legacy" "Abstract" "Ring"
- constr(a) constr(aplus) constr(amult) constr(aone)
- constr(azero) constr(aopp) constr(aeq) constr(t) ]
- -> [ add_theory true true false
- (constr_of a)
- None
- None
- None
- (constr_of aplus)
- (constr_of amult)
- (constr_of aone)
- (constr_of azero)
- (Some (constr_of aopp))
- (constr_of aeq)
- (constr_of t)
- ConstrSet.empty ]
-
-| [ "Add" "Legacy" "Abstract" "Semi" "Ring"
- constr(a) constr(aplus) constr(amult) constr(aone)
- constr(azero) constr(aeq) constr(t) ]
- -> [ add_theory false true false
- (constr_of a)
- None
- None
- None
- (constr_of aplus)
- (constr_of amult)
- (constr_of aone)
- (constr_of azero)
- None
- (constr_of aeq)
- (constr_of t)
- ConstrSet.empty ]
-
-| [ "Add" "Legacy" "Setoid" "Ring"
- constr(a) constr(aequiv) constr(asetth) constr(aplus) constr(amult)
- constr(aone) constr(azero) constr(aopp) constr(aeq) constr(pm)
- constr(mm) constr(om) constr(t) "[" ne_constr_list(l) "]" ]
- -> [ add_theory true false true
- (constr_of a)
- (Some (constr_of aequiv))
- (Some (constr_of asetth))
- (Some {
- plusm = (constr_of pm);
- multm = (constr_of mm);
- oppm = Some (constr_of om) })
- (constr_of aplus)
- (constr_of amult)
- (constr_of aone)
- (constr_of azero)
- (Some (constr_of aopp))
- (constr_of aeq)
- (constr_of t)
- (cset_of_constrarg_list l) ]
-
-| [ "Add" "Legacy" "Semi" "Setoid" "Ring"
- constr(a) constr(aequiv) constr(asetth) constr(aplus)
- constr(amult) constr(aone) constr(azero) constr(aeq)
- constr(pm) constr(mm) constr(t) "[" ne_constr_list(l) "]" ]
- -> [ add_theory false false true
- (constr_of a)
- (Some (constr_of aequiv))
- (Some (constr_of asetth))
- (Some {
- plusm = (constr_of pm);
- multm = (constr_of mm);
- oppm = None })
- (constr_of aplus)
- (constr_of amult)
- (constr_of aone)
- (constr_of azero)
- None
- (constr_of aeq)
- (constr_of t)
- (cset_of_constrarg_list l) ]
-END
diff --git a/plugins/ring/ring.ml b/plugins/ring/ring.ml
deleted file mode 100644
index db88a05c..00000000
--- a/plugins/ring/ring.ml
+++ /dev/null
@@ -1,928 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(* ML part of the Ring tactic *)
-
-open Pp
-open Util
-open Flags
-open Term
-open Names
-open Libnames
-open Nameops
-open Reductionops
-open Tacticals
-open Tacexpr
-open Tacmach
-open Printer
-open Equality
-open Vernacinterp
-open Vernacexpr
-open Libobject
-open Closure
-open Tacred
-open Tactics
-open Pattern
-open Hiddentac
-open Nametab
-open Quote
-open Mod_subst
-
-let mt_evd = Evd.empty
-let constr_of c = Constrintern.interp_constr mt_evd (Global.env()) c
-
-let ring_dir = ["Coq";"ring"]
-let setoids_dir = ["Coq";"Setoids"]
-
-let ring_constant = Coqlib.gen_constant_in_modules "Ring"
- [ring_dir@["LegacyRing_theory"];
- ring_dir@["Setoid_ring_theory"];
- ring_dir@["Ring_normalize"];
- ring_dir@["Ring_abstract"];
- setoids_dir@["Setoid"];
- ring_dir@["Setoid_ring_normalize"]]
-
-(* Ring theory *)
-let coq_Ring_Theory = lazy (ring_constant "Ring_Theory")
-let coq_Semi_Ring_Theory = lazy (ring_constant "Semi_Ring_Theory")
-
-(* Setoid ring theory *)
-let coq_Setoid_Ring_Theory = lazy (ring_constant "Setoid_Ring_Theory")
-let coq_Semi_Setoid_Ring_Theory = lazy(ring_constant "Semi_Setoid_Ring_Theory")
-
-(* Ring normalize *)
-let coq_SPplus = lazy (ring_constant "SPplus")
-let coq_SPmult = lazy (ring_constant "SPmult")
-let coq_SPvar = lazy (ring_constant "SPvar")
-let coq_SPconst = lazy (ring_constant "SPconst")
-let coq_Pplus = lazy (ring_constant "Pplus")
-let coq_Pmult = lazy (ring_constant "Pmult")
-let coq_Pvar = lazy (ring_constant "Pvar")
-let coq_Pconst = lazy (ring_constant "Pconst")
-let coq_Popp = lazy (ring_constant "Popp")
-let coq_interp_sp = lazy (ring_constant "interp_sp")
-let coq_interp_p = lazy (ring_constant "interp_p")
-let coq_interp_cs = lazy (ring_constant "interp_cs")
-let coq_spolynomial_simplify = lazy (ring_constant "spolynomial_simplify")
-let coq_polynomial_simplify = lazy (ring_constant "polynomial_simplify")
-let coq_spolynomial_simplify_ok = lazy(ring_constant "spolynomial_simplify_ok")
-let coq_polynomial_simplify_ok = lazy (ring_constant "polynomial_simplify_ok")
-
-(* Setoid theory *)
-let coq_Setoid_Theory = lazy(ring_constant "Setoid_Theory")
-
-let coq_seq_refl = lazy(ring_constant "Seq_refl")
-let coq_seq_sym = lazy(ring_constant "Seq_sym")
-let coq_seq_trans = lazy(ring_constant "Seq_trans")
-
-(* Setoid Ring normalize *)
-let coq_SetSPplus = lazy (ring_constant "SetSPplus")
-let coq_SetSPmult = lazy (ring_constant "SetSPmult")
-let coq_SetSPvar = lazy (ring_constant "SetSPvar")
-let coq_SetSPconst = lazy (ring_constant "SetSPconst")
-let coq_SetPplus = lazy (ring_constant "SetPplus")
-let coq_SetPmult = lazy (ring_constant "SetPmult")
-let coq_SetPvar = lazy (ring_constant "SetPvar")
-let coq_SetPconst = lazy (ring_constant "SetPconst")
-let coq_SetPopp = lazy (ring_constant "SetPopp")
-let coq_interp_setsp = lazy (ring_constant "interp_setsp")
-let coq_interp_setp = lazy (ring_constant "interp_setp")
-let coq_interp_setcs = lazy (ring_constant "interp_setcs")
-let coq_setspolynomial_simplify =
- lazy (ring_constant "setspolynomial_simplify")
-let coq_setpolynomial_simplify =
- lazy (ring_constant "setpolynomial_simplify")
-let coq_setspolynomial_simplify_ok =
- lazy (ring_constant "setspolynomial_simplify_ok")
-let coq_setpolynomial_simplify_ok =
- lazy (ring_constant "setpolynomial_simplify_ok")
-
-(* Ring abstract *)
-let coq_ASPplus = lazy (ring_constant "ASPplus")
-let coq_ASPmult = lazy (ring_constant "ASPmult")
-let coq_ASPvar = lazy (ring_constant "ASPvar")
-let coq_ASP0 = lazy (ring_constant "ASP0")
-let coq_ASP1 = lazy (ring_constant "ASP1")
-let coq_APplus = lazy (ring_constant "APplus")
-let coq_APmult = lazy (ring_constant "APmult")
-let coq_APvar = lazy (ring_constant "APvar")
-let coq_AP0 = lazy (ring_constant "AP0")
-let coq_AP1 = lazy (ring_constant "AP1")
-let coq_APopp = lazy (ring_constant "APopp")
-let coq_interp_asp = lazy (ring_constant "interp_asp")
-let coq_interp_ap = lazy (ring_constant "interp_ap")
-let coq_interp_acs = lazy (ring_constant "interp_acs")
-let coq_interp_sacs = lazy (ring_constant "interp_sacs")
-let coq_aspolynomial_normalize = lazy (ring_constant "aspolynomial_normalize")
-let coq_apolynomial_normalize = lazy (ring_constant "apolynomial_normalize")
-let coq_aspolynomial_normalize_ok =
- lazy (ring_constant "aspolynomial_normalize_ok")
-let coq_apolynomial_normalize_ok =
- lazy (ring_constant "apolynomial_normalize_ok")
-
-(* Logic --> to be found in Coqlib *)
-open Coqlib
-
-let mkLApp(fc,v) = mkApp(Lazy.force fc, v)
-
-(*********** Useful types and functions ************)
-
-module OperSet =
- Set.Make (struct
- type t = global_reference
- let compare = (RefOrdered.compare : t->t->int)
- end)
-
-type morph =
- { plusm : constr;
- multm : constr;
- oppm : constr option;
- }
-
-type theory =
- { th_ring : bool; (* false for a semi-ring *)
- th_abstract : bool;
- th_setoid : bool; (* true for a setoid ring *)
- th_equiv : constr option;
- th_setoid_th : constr option;
- th_morph : morph option;
- th_a : constr; (* e.g. nat *)
- th_plus : constr;
- th_mult : constr;
- th_one : constr;
- th_zero : constr;
- th_opp : constr option; (* None if semi-ring *)
- th_eq : constr;
- th_t : constr; (* e.g. NatTheory *)
- th_closed : ConstrSet.t; (* e.g. [S; O] *)
- (* Must be empty for an abstract ring *)
- }
-
-(* Theories are stored in a table which is synchronised with the Reset
- mechanism. *)
-
-module Cmap = Map.Make(struct type t = constr let compare = constr_ord end)
-
-let theories_map = ref Cmap.empty
-
-let theories_map_add (c,t) = theories_map := Cmap.add c t !theories_map
-let theories_map_find c = Cmap.find c !theories_map
-let theories_map_mem c = Cmap.mem c !theories_map
-
-let _ =
- Summary.declare_summary "tactic-ring-table"
- { Summary.freeze_function = (fun () -> !theories_map);
- Summary.unfreeze_function = (fun t -> theories_map := t);
- Summary.init_function = (fun () -> theories_map := Cmap.empty) }
-
-(* declare a new type of object in the environment, "tactic-ring-theory"
- The functions theory_to_obj and obj_to_theory do the conversions
- between theories and environement objects. *)
-
-
-let subst_morph subst morph =
- let plusm' = subst_mps subst morph.plusm in
- let multm' = subst_mps subst morph.multm in
- let oppm' = Option.smartmap (subst_mps subst) morph.oppm in
- if plusm' == morph.plusm
- && multm' == morph.multm
- && oppm' == morph.oppm then
- morph
- else
- { plusm = plusm' ;
- multm = multm' ;
- oppm = oppm' ;
- }
-
-let subst_set subst cset =
- let same = ref true in
- let copy_subst c newset =
- let c' = subst_mps subst c in
- if not (c' == c) then same := false;
- ConstrSet.add c' newset
- in
- let cset' = ConstrSet.fold copy_subst cset ConstrSet.empty in
- if !same then cset else cset'
-
-let subst_theory subst th =
- let th_equiv' = Option.smartmap (subst_mps subst) th.th_equiv in
- let th_setoid_th' = Option.smartmap (subst_mps subst) th.th_setoid_th in
- let th_morph' = Option.smartmap (subst_morph subst) th.th_morph in
- let th_a' = subst_mps subst th.th_a in
- let th_plus' = subst_mps subst th.th_plus in
- let th_mult' = subst_mps subst th.th_mult in
- let th_one' = subst_mps subst th.th_one in
- let th_zero' = subst_mps subst th.th_zero in
- let th_opp' = Option.smartmap (subst_mps subst) th.th_opp in
- let th_eq' = subst_mps subst th.th_eq in
- let th_t' = subst_mps subst th.th_t in
- let th_closed' = subst_set subst th.th_closed in
- if th_equiv' == th.th_equiv
- && th_setoid_th' == th.th_setoid_th
- && th_morph' == th.th_morph
- && th_a' == th.th_a
- && th_plus' == th.th_plus
- && th_mult' == th.th_mult
- && th_one' == th.th_one
- && th_zero' == th.th_zero
- && th_opp' == th.th_opp
- && th_eq' == th.th_eq
- && th_t' == th.th_t
- && th_closed' == th.th_closed
- then
- th
- else
- { th_ring = th.th_ring ;
- th_abstract = th.th_abstract ;
- th_setoid = th.th_setoid ;
- th_equiv = th_equiv' ;
- th_setoid_th = th_setoid_th' ;
- th_morph = th_morph' ;
- th_a = th_a' ;
- th_plus = th_plus' ;
- th_mult = th_mult' ;
- th_one = th_one' ;
- th_zero = th_zero' ;
- th_opp = th_opp' ;
- th_eq = th_eq' ;
- th_t = th_t' ;
- th_closed = th_closed' ;
- }
-
-
-let subst_th (subst,(c,th as obj)) =
- let c' = subst_mps subst c in
- let th' = subst_theory subst th in
- if c' == c && th' == th then obj else
- (c',th')
-
-
-let theory_to_obj : constr * theory -> obj =
- let cache_th (_,(c, th)) = theories_map_add (c,th) in
- declare_object {(default_object "tactic-ring-theory") with
- open_function = (fun i o -> if i=1 then cache_th o);
- cache_function = cache_th;
- subst_function = subst_th;
- classify_function = (fun x -> Substitute x) }
-
-(* from the set A, guess the associated theory *)
-(* With this simple solution, the theory to use is automatically guessed *)
-(* But only one theory can be declared for a given Set *)
-
-let guess_theory a =
- try
- theories_map_find a
- with Not_found ->
- errorlabstrm "Ring"
- (str "No Declared Ring Theory for " ++
- pr_lconstr a ++ fnl () ++
- str "Use Add [Semi] Ring to declare it")
-
-(* Looks up an option *)
-
-let unbox = function
- | Some w -> w
- | None -> anomaly "Ring : Not in case of a setoid ring."
-
-(* Protects the convertibility test against undue exceptions when using it
- with untyped terms *)
-
-let safe_pf_conv_x gl c1 c2 =
- try pf_conv_x gl c1 c2 with e when Errors.noncritical e -> false
-
-
-(* Add a Ring or a Semi-Ring to the database after a type verification *)
-
-let implement_theory env t th args =
- is_conv env Evd.empty (Typing.type_of env Evd.empty t) (mkLApp (th, args))
-
-(* (\* The following test checks whether the provided morphism is the default *)
-(* one for the given operation. In principle the test is too strict, since *)
-(* it should possible to provide another proof for the same fact (proof *)
-(* irrelevance). In particular, the error message is be not very explicative. *\) *)
-let states_compatibility_for env plus mult opp morphs =
- let check op compat = true in
-(* is_conv env Evd.empty (Setoid_replace.default_morphism op).Setoid_replace.lem *)
-(* compat in *)
- check plus morphs.plusm &&
- check mult morphs.multm &&
- (match (opp,morphs.oppm) with
- None, None -> true
- | Some opp, Some compat -> check opp compat
- | _,_ -> assert false)
-
-let add_theory want_ring want_abstract want_setoid a aequiv asetth amorph aplus amult aone azero aopp aeq t cset =
- if theories_map_mem a then errorlabstrm "Add Semi Ring"
- (str "A (Semi-)(Setoid-)Ring Structure is already declared for " ++
- pr_lconstr a);
- let env = Global.env () in
- if (want_ring & want_setoid & (
- not (implement_theory env t coq_Setoid_Ring_Theory
- [| a; (unbox aequiv); aplus; amult; aone; azero; (unbox aopp); aeq|])
- ||
- not (implement_theory env (unbox asetth) coq_Setoid_Theory
- [| a; (unbox aequiv) |]) ||
- not (states_compatibility_for env aplus amult aopp (unbox amorph))
- )) then
- errorlabstrm "addring" (str "Not a valid Setoid-Ring theory");
- if (not want_ring & want_setoid & (
- not (implement_theory env t coq_Semi_Setoid_Ring_Theory
- [| a; (unbox aequiv); aplus; amult; aone; azero; aeq|]) ||
- not (implement_theory env (unbox asetth) coq_Setoid_Theory
- [| a; (unbox aequiv) |]) ||
- not (states_compatibility_for env aplus amult aopp (unbox amorph))))
- then
- errorlabstrm "addring" (str "Not a valid Semi-Setoid-Ring theory");
- if (want_ring & not want_setoid &
- not (implement_theory env t coq_Ring_Theory
- [| a; aplus; amult; aone; azero; (unbox aopp); aeq |])) then
- errorlabstrm "addring" (str "Not a valid Ring theory");
- if (not want_ring & not want_setoid &
- not (implement_theory env t coq_Semi_Ring_Theory
- [| a; aplus; amult; aone; azero; aeq |])) then
- errorlabstrm "addring" (str "Not a valid Semi-Ring theory");
- Lib.add_anonymous_leaf
- (theory_to_obj
- (a, { th_ring = want_ring;
- th_abstract = want_abstract;
- th_setoid = want_setoid;
- th_equiv = aequiv;
- th_setoid_th = asetth;
- th_morph = amorph;
- th_a = a;
- th_plus = aplus;
- th_mult = amult;
- th_one = aone;
- th_zero = azero;
- th_opp = aopp;
- th_eq = aeq;
- th_t = t;
- th_closed = cset }))
-
-(******** The tactic itself *********)
-
-(*
- gl : goal sigma
- th : semi-ring theory (concrete)
- cl : constr list [c1; c2; ...]
-
-Builds
- - a list of tuples [(c1, c'1, c''1, c'1_eq_c''1); ... ]
- where c'i is convertible with ci and
- c'i_eq_c''i is a proof of equality of c'i and c''i
-
-*)
-
-module Constrhash = Hashtbl.Make
- (struct type t = constr
- let equal = eq_constr
- let hash = hash_constr
- end)
-
-let build_spolynom gl th lc =
- let varhash = (Constrhash.create 17 : constr Constrhash.t) in
- let varlist = ref ([] : constr list) in (* list of variables *)
- let counter = ref 1 in (* number of variables created + 1 *)
- (* aux creates the spolynom p by a recursive destructuration of c
- and builds the varmap with side-effects *)
- let rec aux c =
- match (kind_of_term (strip_outer_cast c)) with
- | App (binop,[|c1; c2|]) when safe_pf_conv_x gl binop th.th_plus ->
- mkLApp(coq_SPplus, [|th.th_a; aux c1; aux c2 |])
- | App (binop,[|c1; c2|]) when safe_pf_conv_x gl binop th.th_mult ->
- mkLApp(coq_SPmult, [|th.th_a; aux c1; aux c2 |])
- | _ when closed_under th.th_closed c ->
- mkLApp(coq_SPconst, [|th.th_a; c |])
- | _ ->
- try Constrhash.find varhash c
- with Not_found ->
- let newvar =
- mkLApp(coq_SPvar, [|th.th_a; (path_of_int !counter) |]) in
- begin
- incr counter;
- varlist := c :: !varlist;
- Constrhash.add varhash c newvar;
- newvar
- end
- in
- let lp = List.map aux lc in
- let v = btree_of_array (Array.of_list (List.rev !varlist)) th.th_a in
- List.map
- (fun p ->
- (mkLApp (coq_interp_sp,
- [|th.th_a; th.th_plus; th.th_mult; th.th_zero; v; p |]),
- mkLApp (coq_interp_cs,
- [|th.th_a; th.th_plus; th.th_mult; th.th_one; th.th_zero; v;
- pf_reduce cbv_betadeltaiota gl
- (mkLApp (coq_spolynomial_simplify,
- [| th.th_a; th.th_plus; th.th_mult;
- th.th_one; th.th_zero;
- th.th_eq; p|])) |]),
- mkLApp (coq_spolynomial_simplify_ok,
- [| th.th_a; th.th_plus; th.th_mult; th.th_one; th.th_zero;
- th.th_eq; v; th.th_t; p |])))
- lp
-
-(*
- gl : goal sigma
- th : ring theory (concrete)
- cl : constr list [c1; c2; ...]
-
-Builds
- - a list of tuples [(c1, c'1, c''1, c'1_eq_c''1); ... ]
- where c'i is convertible with ci and
- c'i_eq_c''i is a proof of equality of c'i and c''i
-
-*)
-
-let build_polynom gl th lc =
- let varhash = (Constrhash.create 17 : constr Constrhash.t) in
- let varlist = ref ([] : constr list) in (* list of variables *)
- let counter = ref 1 in (* number of variables created + 1 *)
- let rec aux c =
- match (kind_of_term (strip_outer_cast c)) with
- | App (binop, [|c1; c2|]) when safe_pf_conv_x gl binop th.th_plus ->
- mkLApp(coq_Pplus, [|th.th_a; aux c1; aux c2 |])
- | App (binop, [|c1; c2|]) when safe_pf_conv_x gl binop th.th_mult ->
- mkLApp(coq_Pmult, [|th.th_a; aux c1; aux c2 |])
- (* The special case of Z.sub *)
- | App (binop, [|c1; c2|])
- when safe_pf_conv_x gl c
- (mkApp (th.th_plus, [|c1; mkApp(unbox th.th_opp, [|c2|])|])) ->
- mkLApp(coq_Pplus,
- [|th.th_a; aux c1;
- mkLApp(coq_Popp, [|th.th_a; aux c2|]) |])
- | App (unop, [|c1|]) when safe_pf_conv_x gl unop (unbox th.th_opp) ->
- mkLApp(coq_Popp, [|th.th_a; aux c1|])
- | _ when closed_under th.th_closed c ->
- mkLApp(coq_Pconst, [|th.th_a; c |])
- | _ ->
- try Constrhash.find varhash c
- with Not_found ->
- let newvar =
- mkLApp(coq_Pvar, [|th.th_a; (path_of_int !counter) |]) in
- begin
- incr counter;
- varlist := c :: !varlist;
- Constrhash.add varhash c newvar;
- newvar
- end
- in
- let lp = List.map aux lc in
- let v = (btree_of_array (Array.of_list (List.rev !varlist)) th.th_a) in
- List.map
- (fun p ->
- (mkLApp(coq_interp_p,
- [| th.th_a; th.th_plus; th.th_mult; th.th_zero;
- (unbox th.th_opp); v; p |])),
- mkLApp(coq_interp_cs,
- [| th.th_a; th.th_plus; th.th_mult; th.th_one; th.th_zero; v;
- pf_reduce cbv_betadeltaiota gl
- (mkLApp(coq_polynomial_simplify,
- [| th.th_a; th.th_plus; th.th_mult;
- th.th_one; th.th_zero;
- (unbox th.th_opp); th.th_eq; p |])) |]),
- mkLApp(coq_polynomial_simplify_ok,
- [| th.th_a; th.th_plus; th.th_mult; th.th_one; th.th_zero;
- (unbox th.th_opp); th.th_eq; v; th.th_t; p |]))
- lp
-
-(*
- gl : goal sigma
- th : semi-ring theory (abstract)
- cl : constr list [c1; c2; ...]
-
-Builds
- - a list of tuples [(c1, c'1, c''1, c'1_eq_c''1); ... ]
- where c'i is convertible with ci and
- c'i_eq_c''i is a proof of equality of c'i and c''i
-
-*)
-
-let build_aspolynom gl th lc =
- let varhash = (Constrhash.create 17 : constr Constrhash.t) in
- let varlist = ref ([] : constr list) in (* list of variables *)
- let counter = ref 1 in (* number of variables created + 1 *)
- (* aux creates the aspolynom p by a recursive destructuration of c
- and builds the varmap with side-effects *)
- let rec aux c =
- match (kind_of_term (strip_outer_cast c)) with
- | App (binop, [|c1; c2|]) when safe_pf_conv_x gl binop th.th_plus ->
- mkLApp(coq_ASPplus, [| aux c1; aux c2 |])
- | App (binop, [|c1; c2|]) when safe_pf_conv_x gl binop th.th_mult ->
- mkLApp(coq_ASPmult, [| aux c1; aux c2 |])
- | _ when safe_pf_conv_x gl c th.th_zero -> Lazy.force coq_ASP0
- | _ when safe_pf_conv_x gl c th.th_one -> Lazy.force coq_ASP1
- | _ ->
- try Constrhash.find varhash c
- with Not_found ->
- let newvar = mkLApp(coq_ASPvar, [|(path_of_int !counter) |]) in
- begin
- incr counter;
- varlist := c :: !varlist;
- Constrhash.add varhash c newvar;
- newvar
- end
- in
- let lp = List.map aux lc in
- let v = btree_of_array (Array.of_list (List.rev !varlist)) th.th_a in
- List.map
- (fun p ->
- (mkLApp(coq_interp_asp,
- [| th.th_a; th.th_plus; th.th_mult;
- th.th_one; th.th_zero; v; p |]),
- mkLApp(coq_interp_acs,
- [| th.th_a; th.th_plus; th.th_mult;
- th.th_one; th.th_zero; v;
- pf_reduce cbv_betadeltaiota gl
- (mkLApp(coq_aspolynomial_normalize,[|p|])) |]),
- mkLApp(coq_spolynomial_simplify_ok,
- [| th.th_a; th.th_plus; th.th_mult; th.th_one; th.th_zero;
- th.th_eq; v; th.th_t; p |])))
- lp
-
-(*
- gl : goal sigma
- th : ring theory (abstract)
- cl : constr list [c1; c2; ...]
-
-Builds
- - a list of tuples [(c1, c'1, c''1, c'1_eq_c''1); ... ]
- where c'i is convertible with ci and
- c'i_eq_c''i is a proof of equality of c'i and c''i
-
-*)
-
-let build_apolynom gl th lc =
- let varhash = (Constrhash.create 17 : constr Constrhash.t) in
- let varlist = ref ([] : constr list) in (* list of variables *)
- let counter = ref 1 in (* number of variables created + 1 *)
- let rec aux c =
- match (kind_of_term (strip_outer_cast c)) with
- | App (binop, [|c1; c2|]) when safe_pf_conv_x gl binop th.th_plus ->
- mkLApp(coq_APplus, [| aux c1; aux c2 |])
- | App (binop, [|c1; c2|]) when safe_pf_conv_x gl binop th.th_mult ->
- mkLApp(coq_APmult, [| aux c1; aux c2 |])
- (* The special case of Z.sub *)
- | App (binop, [|c1; c2|])
- when safe_pf_conv_x gl c
- (mkApp(th.th_plus, [|c1; mkApp(unbox th.th_opp,[|c2|]) |])) ->
- mkLApp(coq_APplus,
- [|aux c1; mkLApp(coq_APopp,[|aux c2|]) |])
- | App (unop, [|c1|]) when safe_pf_conv_x gl unop (unbox th.th_opp) ->
- mkLApp(coq_APopp, [| aux c1 |])
- | _ when safe_pf_conv_x gl c th.th_zero -> Lazy.force coq_AP0
- | _ when safe_pf_conv_x gl c th.th_one -> Lazy.force coq_AP1
- | _ ->
- try Constrhash.find varhash c
- with Not_found ->
- let newvar =
- mkLApp(coq_APvar, [| path_of_int !counter |]) in
- begin
- incr counter;
- varlist := c :: !varlist;
- Constrhash.add varhash c newvar;
- newvar
- end
- in
- let lp = List.map aux lc in
- let v = (btree_of_array (Array.of_list (List.rev !varlist)) th.th_a) in
- List.map
- (fun p ->
- (mkLApp(coq_interp_ap,
- [| th.th_a; th.th_plus; th.th_mult; th.th_one;
- th.th_zero; (unbox th.th_opp); v; p |]),
- mkLApp(coq_interp_sacs,
- [| th.th_a; th.th_plus; th.th_mult;
- th.th_one; th.th_zero; (unbox th.th_opp); v;
- pf_reduce cbv_betadeltaiota gl
- (mkLApp(coq_apolynomial_normalize, [|p|])) |]),
- mkLApp(coq_apolynomial_normalize_ok,
- [| th.th_a; th.th_plus; th.th_mult; th.th_one; th.th_zero;
- (unbox th.th_opp); th.th_eq; v; th.th_t; p |])))
- lp
-
-(*
- gl : goal sigma
- th : setoid ring theory (concrete)
- cl : constr list [c1; c2; ...]
-
-Builds
- - a list of tuples [(c1, c'1, c''1, c'1_eq_c''1); ... ]
- where c'i is convertible with ci and
- c'i_eq_c''i is a proof of equality of c'i and c''i
-
-*)
-
-let build_setpolynom gl th lc =
- let varhash = (Constrhash.create 17 : constr Constrhash.t) in
- let varlist = ref ([] : constr list) in (* list of variables *)
- let counter = ref 1 in (* number of variables created + 1 *)
- let rec aux c =
- match (kind_of_term (strip_outer_cast c)) with
- | App (binop, [|c1; c2|]) when safe_pf_conv_x gl binop th.th_plus ->
- mkLApp(coq_SetPplus, [|th.th_a; aux c1; aux c2 |])
- | App (binop, [|c1; c2|]) when safe_pf_conv_x gl binop th.th_mult ->
- mkLApp(coq_SetPmult, [|th.th_a; aux c1; aux c2 |])
- (* The special case of Z.sub *)
- | App (binop, [|c1; c2|])
- when safe_pf_conv_x gl c
- (mkApp(th.th_plus, [|c1; mkApp(unbox th.th_opp,[|c2|])|])) ->
- mkLApp(coq_SetPplus,
- [| th.th_a; aux c1;
- mkLApp(coq_SetPopp, [|th.th_a; aux c2|]) |])
- | App (unop, [|c1|]) when safe_pf_conv_x gl unop (unbox th.th_opp) ->
- mkLApp(coq_SetPopp, [| th.th_a; aux c1 |])
- | _ when closed_under th.th_closed c ->
- mkLApp(coq_SetPconst, [| th.th_a; c |])
- | _ ->
- try Constrhash.find varhash c
- with Not_found ->
- let newvar =
- mkLApp(coq_SetPvar, [| th.th_a; path_of_int !counter |]) in
- begin
- incr counter;
- varlist := c :: !varlist;
- Constrhash.add varhash c newvar;
- newvar
- end
- in
- let lp = List.map aux lc in
- let v = (btree_of_array (Array.of_list (List.rev !varlist)) th.th_a) in
- List.map
- (fun p ->
- (mkLApp(coq_interp_setp,
- [| th.th_a; th.th_plus; th.th_mult; th.th_zero;
- (unbox th.th_opp); v; p |]),
- mkLApp(coq_interp_setcs,
- [| th.th_a; th.th_plus; th.th_mult; th.th_one; th.th_zero; v;
- pf_reduce cbv_betadeltaiota gl
- (mkLApp(coq_setpolynomial_simplify,
- [| th.th_a; th.th_plus; th.th_mult;
- th.th_one; th.th_zero;
- (unbox th.th_opp); th.th_eq; p |])) |]),
- mkLApp(coq_setpolynomial_simplify_ok,
- [| th.th_a; (unbox th.th_equiv); th.th_plus;
- th.th_mult; th.th_one; th.th_zero;(unbox th.th_opp);
- th.th_eq; (unbox th.th_setoid_th);
- (unbox th.th_morph).plusm; (unbox th.th_morph).multm;
- (unbox (unbox th.th_morph).oppm); v; th.th_t; p |])))
- lp
-
-(*
- gl : goal sigma
- th : semi setoid ring theory (concrete)
- cl : constr list [c1; c2; ...]
-
-Builds
- - a list of tuples [(c1, c'1, c''1, c'1_eq_c''1); ... ]
- where c'i is convertible with ci and
- c'i_eq_c''i is a proof of equality of c'i and c''i
-
-*)
-
-let build_setspolynom gl th lc =
- let varhash = (Constrhash.create 17 : constr Constrhash.t) in
- let varlist = ref ([] : constr list) in (* list of variables *)
- let counter = ref 1 in (* number of variables created + 1 *)
- let rec aux c =
- match (kind_of_term (strip_outer_cast c)) with
- | App (binop, [|c1; c2|]) when safe_pf_conv_x gl binop th.th_plus ->
- mkLApp(coq_SetSPplus, [|th.th_a; aux c1; aux c2 |])
- | App (binop, [|c1; c2|]) when safe_pf_conv_x gl binop th.th_mult ->
- mkLApp(coq_SetSPmult, [| th.th_a; aux c1; aux c2 |])
- | _ when closed_under th.th_closed c ->
- mkLApp(coq_SetSPconst, [| th.th_a; c |])
- | _ ->
- try Constrhash.find varhash c
- with Not_found ->
- let newvar =
- mkLApp(coq_SetSPvar, [|th.th_a; path_of_int !counter |]) in
- begin
- incr counter;
- varlist := c :: !varlist;
- Constrhash.add varhash c newvar;
- newvar
- end
- in
- let lp = List.map aux lc in
- let v = (btree_of_array (Array.of_list (List.rev !varlist)) th.th_a) in
- List.map
- (fun p ->
- (mkLApp(coq_interp_setsp,
- [| th.th_a; th.th_plus; th.th_mult; th.th_zero; v; p |]),
- mkLApp(coq_interp_setcs,
- [| th.th_a; th.th_plus; th.th_mult; th.th_one; th.th_zero; v;
- pf_reduce cbv_betadeltaiota gl
- (mkLApp(coq_setspolynomial_simplify,
- [| th.th_a; th.th_plus; th.th_mult;
- th.th_one; th.th_zero;
- th.th_eq; p |])) |]),
- mkLApp(coq_setspolynomial_simplify_ok,
- [| th.th_a; (unbox th.th_equiv); th.th_plus;
- th.th_mult; th.th_one; th.th_zero; th.th_eq;
- (unbox th.th_setoid_th);
- (unbox th.th_morph).plusm;
- (unbox th.th_morph).multm; v; th.th_t; p |])))
- lp
-
-module SectionPathSet =
- Set.Make(struct
- type t = full_path
- let compare = Pervasives.compare
- end)
-
-(* Avec l'uniformisation des red_kind, on perd ici sur la structure
- SectionPathSet; peut-être faudra-t-il la déplacer dans Closure *)
-let constants_to_unfold =
-(* List.fold_right SectionPathSet.add *)
- let transform s =
- let sp = path_of_string s in
- let dir, id = repr_path sp in
- Libnames.encode_con dir id
- in
- List.map transform
- [ "Coq.ring.Ring_normalize.interp_cs";
- "Coq.ring.Ring_normalize.interp_var";
- "Coq.ring.Ring_normalize.interp_vl";
- "Coq.ring.Ring_abstract.interp_acs";
- "Coq.ring.Ring_abstract.interp_sacs";
- "Coq.quote.Quote.varmap_find";
- (* anciennement des Local devenus Definition *)
- "Coq.ring.Ring_normalize.ics_aux";
- "Coq.ring.Ring_normalize.ivl_aux";
- "Coq.ring.Ring_normalize.interp_m";
- "Coq.ring.Ring_abstract.iacs_aux";
- "Coq.ring.Ring_abstract.isacs_aux";
- "Coq.ring.Setoid_ring_normalize.interp_cs";
- "Coq.ring.Setoid_ring_normalize.interp_var";
- "Coq.ring.Setoid_ring_normalize.interp_vl";
- "Coq.ring.Setoid_ring_normalize.ics_aux";
- "Coq.ring.Setoid_ring_normalize.ivl_aux";
- "Coq.ring.Setoid_ring_normalize.interp_m";
- ]
-(* SectionPathSet.empty *)
-
-(* Unfolds the functions interp and find_btree in the term c of goal gl *)
-open RedFlags
-let polynom_unfold_tac =
- let flags =
- (mkflags(fBETA::fIOTA::(List.map fCONST constants_to_unfold))) in
- reduct_in_concl (cbv_norm_flags flags,DEFAULTcast)
-
-let polynom_unfold_tac_in_term gl =
- let flags =
- (mkflags(fBETA::fIOTA::fZETA::(List.map fCONST constants_to_unfold)))
- in
- cbv_norm_flags flags (pf_env gl) (project gl)
-
-(* lc : constr list *)
-(* th : theory associated to t *)
-(* op : clause (None for conclusion or Some id for hypothesis id) *)
-(* gl : goal *)
-(* Does the rewriting c_i -> (interp R RC v (polynomial_simplify p_i))
- where the ring R, the Ring theory RC, the varmap v and the polynomials p_i
- are guessed and such that c_i = (interp R RC v p_i) *)
-let raw_polynom th op lc gl =
- (* first we sort the terms : if t' is a subterm of t it must appear
- after t in the list. This is to avoid that the normalization of t'
- modifies t in a non-desired way *)
- let lc = sort_subterm gl lc in
- let ltriplets =
- if th.th_setoid then
- if th.th_ring
- then build_setpolynom gl th lc
- else build_setspolynom gl th lc
- else
- if th.th_ring then
- if th.th_abstract
- then build_apolynom gl th lc
- else build_polynom gl th lc
- else
- if th.th_abstract
- then build_aspolynom gl th lc
- else build_spolynom gl th lc in
- let polynom_tac =
- List.fold_right2
- (fun ci (c'i, c''i, c'i_eq_c''i) tac ->
- let c'''i =
- if !term_quality then polynom_unfold_tac_in_term gl c''i else c''i
- in
- if !term_quality && safe_pf_conv_x gl c'''i ci then
- tac (* convertible terms *)
- else if th.th_setoid
- then
- (tclORELSE
- (tclORELSE
- (h_exact c'i_eq_c''i)
- (h_exact (mkLApp(coq_seq_sym,
- [| th.th_a; (unbox th.th_equiv);
- (unbox th.th_setoid_th);
- c'''i; ci; c'i_eq_c''i |]))))
- (tclTHENS
- (tclORELSE
- (Equality.general_rewrite true
- Termops.all_occurrences true false c'i_eq_c''i)
- (Equality.general_rewrite false
- Termops.all_occurrences true false c'i_eq_c''i))
- [tac]))
- else
- (tclORELSE
- (tclORELSE
- (h_exact c'i_eq_c''i)
- (h_exact (mkApp(build_coq_eq_sym (),
- [|th.th_a; c'''i; ci; c'i_eq_c''i |]))))
- (tclTHENS
- (elim_type
- (mkApp(build_coq_eq (), [|th.th_a; c'''i; ci |])))
- [ tac;
- h_exact c'i_eq_c''i ]))
-)
- lc ltriplets polynom_unfold_tac
- in
- polynom_tac gl
-
-let guess_eq_tac th =
- (tclORELSE reflexivity
- (tclTHEN
- polynom_unfold_tac
- (tclTHEN
- (* Normalized sums associate on the right *)
- (tclREPEAT
- (tclTHENFIRST
- (apply (mkApp(build_coq_f_equal2 (),
- [| th.th_a; th.th_a; th.th_a;
- th.th_plus |])))
- reflexivity))
- (tclTRY
- (tclTHENLAST
- (apply (mkApp(build_coq_f_equal2 (),
- [| th.th_a; th.th_a; th.th_a;
- th.th_plus |])))
- reflexivity)))))
-
-let guess_equiv_tac th =
- (tclORELSE (apply (mkLApp(coq_seq_refl,
- [| th.th_a; (unbox th.th_equiv);
- (unbox th.th_setoid_th)|])))
- (tclTHEN
- polynom_unfold_tac
- (tclREPEAT
- (tclORELSE
- (apply (unbox th.th_morph).plusm)
- (apply (unbox th.th_morph).multm)))))
-
-let match_with_equiv c = match (kind_of_term c) with
- | App (e,a) ->
- if (List.mem e []) (* (Setoid_replace.equiv_list ())) *)
- then Some (decompose_app c)
- else None
- | _ -> None
-
-let polynom lc gl =
- Coqlib.check_required_library ["Coq";"ring";"LegacyRing"];
- match lc with
- (* If no argument is given, try to recognize either an equality or
- a declared relation with arguments c1 ... cn,
- do "Ring c1 c2 ... cn" and then try to apply the simplification
- theorems declared for the relation *)
- | [] ->
- (try
- match Hipattern.match_with_equation (pf_concl gl) with
- | _,_,Hipattern.PolymorphicLeibnizEq (t,c1,c2) ->
- let th = guess_theory t in
- (tclTHEN (raw_polynom th None [c1;c2]) (guess_eq_tac th)) gl
- | _,_,Hipattern.HeterogenousEq (t1,c1,t2,c2)
- when safe_pf_conv_x gl t1 t2 ->
- let th = guess_theory t1 in
- (tclTHEN (raw_polynom th None [c1;c2]) (guess_eq_tac th)) gl
- | _ -> raise Exit
- with Hipattern.NoEquationFound | Exit ->
- (match match_with_equiv (pf_concl gl) with
- | Some (equiv, c1::args) ->
- let t = (pf_type_of gl c1) in
- let th = (guess_theory t) in
- if List.exists
- (fun c2 -> not (safe_pf_conv_x gl t (pf_type_of gl c2))) args
- then
- errorlabstrm "Ring :"
- (str" All terms must have the same type");
- (tclTHEN (raw_polynom th None (c1::args)) (guess_equiv_tac th)) gl
- | _ -> errorlabstrm "polynom :"
- (str" This goal is not an equality nor a setoid equivalence")))
- (* Elsewhere, guess the theory, check that all terms have the same type
- and apply raw_polynom *)
- | c :: lc' ->
- let t = pf_type_of gl c in
- let th = guess_theory t in
- if List.exists
- (fun c1 -> not (safe_pf_conv_x gl t (pf_type_of gl c1))) lc'
- then
- errorlabstrm "Ring :"
- (str" All terms must have the same type");
- (tclTHEN (raw_polynom th None lc) polynom_unfold_tac) gl
diff --git a/plugins/ring/ring_plugin.mllib b/plugins/ring/ring_plugin.mllib
deleted file mode 100644
index 3c5f995f..00000000
--- a/plugins/ring/ring_plugin.mllib
+++ /dev/null
@@ -1,3 +0,0 @@
-Ring
-G_ring
-Ring_plugin_mod
diff --git a/plugins/ring/vo.itarget b/plugins/ring/vo.itarget
deleted file mode 100644
index da387be8..00000000
--- a/plugins/ring/vo.itarget
+++ /dev/null
@@ -1,10 +0,0 @@
-LegacyArithRing.vo
-LegacyNArithRing.vo
-LegacyRing_theory.vo
-LegacyRing.vo
-LegacyZArithRing.vo
-Ring_abstract.vo
-Ring_normalize.vo
-Setoid_ring_normalize.vo
-Setoid_ring_theory.vo
-Setoid_ring.vo