summaryrefslogtreecommitdiff
path: root/plugins/ring/Setoid_ring_normalize.v
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/ring/Setoid_ring_normalize.v')
-rw-r--r--plugins/ring/Setoid_ring_normalize.v1160
1 files changed, 0 insertions, 1160 deletions
diff --git a/plugins/ring/Setoid_ring_normalize.v b/plugins/ring/Setoid_ring_normalize.v
deleted file mode 100644
index e71be89a..00000000
--- a/plugins/ring/Setoid_ring_normalize.v
+++ /dev/null
@@ -1,1160 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-Require Import Setoid_ring_theory.
-Require Import Quote.
-
-Set Implicit Arguments.
-
-Lemma index_eq_prop : forall n m:index, Is_true (index_eq n m) -> n = m.
-Proof.
- simple induction n; simple induction m; simpl;
- try reflexivity || contradiction.
- intros; rewrite (H i0); trivial.
- intros; rewrite (H i0); trivial.
-Qed.
-
-Section setoid.
-
-Variable A : Type.
-Variable Aequiv : A -> A -> Prop.
-Variable Aplus : A -> A -> A.
-Variable Amult : A -> A -> A.
-Variable Aone : A.
-Variable Azero : A.
-Variable Aopp : A -> A.
-Variable Aeq : A -> A -> bool.
-
-Variable S : Setoid_Theory A Aequiv.
-
-Add Setoid A Aequiv S as Asetoid.
-
-Variable plus_morph :
- forall a a0:A, Aequiv a a0 ->
- forall a1 a2:A, Aequiv a1 a2 ->
- Aequiv (Aplus a a1) (Aplus a0 a2).
-Variable mult_morph :
- forall a a0:A, Aequiv a a0 ->
- forall a1 a2:A, Aequiv a1 a2 ->
- Aequiv (Amult a a1) (Amult a0 a2).
-Variable opp_morph : forall a a0:A, Aequiv a a0 -> Aequiv (Aopp a) (Aopp a0).
-
-Add Morphism Aplus : Aplus_ext.
-intros; apply plus_morph; assumption.
-Qed.
-
-Add Morphism Amult : Amult_ext.
-intros; apply mult_morph; assumption.
-Qed.
-
-Add Morphism Aopp : Aopp_ext.
-exact opp_morph.
-Qed.
-
-Let equiv_refl := Seq_refl A Aequiv S.
-Let equiv_sym := Seq_sym A Aequiv S.
-Let equiv_trans := Seq_trans A Aequiv S.
-
-Hint Resolve equiv_refl equiv_trans.
-Hint Immediate equiv_sym.
-
-Section semi_setoid_rings.
-
-(* Section definitions. *)
-
-
-(******************************************)
-(* Normal abtract Polynomials *)
-(******************************************)
-(* DEFINITIONS :
-- A varlist is a sorted product of one or more variables : x, x*y*z
-- A monom is a constant, a varlist or the product of a constant by a varlist
- variables. 2*x*y, x*y*z, 3 are monoms : 2*3, x*3*y, 4*x*3 are NOT.
-- A canonical sum is either a monom or an ordered sum of monoms
- (the order on monoms is defined later)
-- A normal polynomial it either a constant or a canonical sum or a constant
- plus a canonical sum
-*)
-
-(* varlist is isomorphic to (list var), but we built a special inductive
- for efficiency *)
-Inductive varlist : Type :=
- | Nil_var : varlist
- | Cons_var : index -> varlist -> varlist.
-
-Inductive canonical_sum : Type :=
- | Nil_monom : canonical_sum
- | Cons_monom : A -> varlist -> canonical_sum -> canonical_sum
- | Cons_varlist : varlist -> canonical_sum -> canonical_sum.
-
-(* Order on monoms *)
-
-(* That's the lexicographic order on varlist, extended by :
- - A constant is less than every monom
- - The relation between two varlist is preserved by multiplication by a
- constant.
-
- Examples :
- 3 < x < y
- x*y < x*y*y*z
- 2*x*y < x*y*y*z
- x*y < 54*x*y*y*z
- 4*x*y < 59*x*y*y*z
-*)
-
-Fixpoint varlist_eq (x y:varlist) {struct y} : bool :=
- match x, y with
- | Nil_var, Nil_var => true
- | Cons_var i xrest, Cons_var j yrest =>
- andb (index_eq i j) (varlist_eq xrest yrest)
- | _, _ => false
- end.
-
-Fixpoint varlist_lt (x y:varlist) {struct y} : bool :=
- match x, y with
- | Nil_var, Cons_var _ _ => true
- | Cons_var i xrest, Cons_var j yrest =>
- if index_lt i j
- then true
- else andb (index_eq i j) (varlist_lt xrest yrest)
- | _, _ => false
- end.
-
-(* merges two variables lists *)
-Fixpoint varlist_merge (l1:varlist) : varlist -> varlist :=
- match l1 with
- | Cons_var v1 t1 =>
- (fix vm_aux (l2:varlist) : varlist :=
- match l2 with
- | Cons_var v2 t2 =>
- if index_lt v1 v2
- then Cons_var v1 (varlist_merge t1 l2)
- else Cons_var v2 (vm_aux t2)
- | Nil_var => l1
- end)
- | Nil_var => fun l2 => l2
- end.
-
-(* returns the sum of two canonical sums *)
-Fixpoint canonical_sum_merge (s1:canonical_sum) :
- canonical_sum -> canonical_sum :=
- match s1 with
- | Cons_monom c1 l1 t1 =>
- (fix csm_aux (s2:canonical_sum) : canonical_sum :=
- match s2 with
- | Cons_monom c2 l2 t2 =>
- if varlist_eq l1 l2
- then Cons_monom (Aplus c1 c2) l1 (canonical_sum_merge t1 t2)
- else
- if varlist_lt l1 l2
- then Cons_monom c1 l1 (canonical_sum_merge t1 s2)
- else Cons_monom c2 l2 (csm_aux t2)
- | Cons_varlist l2 t2 =>
- if varlist_eq l1 l2
- then Cons_monom (Aplus c1 Aone) l1 (canonical_sum_merge t1 t2)
- else
- if varlist_lt l1 l2
- then Cons_monom c1 l1 (canonical_sum_merge t1 s2)
- else Cons_varlist l2 (csm_aux t2)
- | Nil_monom => s1
- end)
- | Cons_varlist l1 t1 =>
- (fix csm_aux2 (s2:canonical_sum) : canonical_sum :=
- match s2 with
- | Cons_monom c2 l2 t2 =>
- if varlist_eq l1 l2
- then Cons_monom (Aplus Aone c2) l1 (canonical_sum_merge t1 t2)
- else
- if varlist_lt l1 l2
- then Cons_varlist l1 (canonical_sum_merge t1 s2)
- else Cons_monom c2 l2 (csm_aux2 t2)
- | Cons_varlist l2 t2 =>
- if varlist_eq l1 l2
- then Cons_monom (Aplus Aone Aone) l1 (canonical_sum_merge t1 t2)
- else
- if varlist_lt l1 l2
- then Cons_varlist l1 (canonical_sum_merge t1 s2)
- else Cons_varlist l2 (csm_aux2 t2)
- | Nil_monom => s1
- end)
- | Nil_monom => fun s2 => s2
- end.
-
-(* Insertion of a monom in a canonical sum *)
-Fixpoint monom_insert (c1:A) (l1:varlist) (s2:canonical_sum) {struct s2} :
- canonical_sum :=
- match s2 with
- | Cons_monom c2 l2 t2 =>
- if varlist_eq l1 l2
- then Cons_monom (Aplus c1 c2) l1 t2
- else
- if varlist_lt l1 l2
- then Cons_monom c1 l1 s2
- else Cons_monom c2 l2 (monom_insert c1 l1 t2)
- | Cons_varlist l2 t2 =>
- if varlist_eq l1 l2
- then Cons_monom (Aplus c1 Aone) l1 t2
- else
- if varlist_lt l1 l2
- then Cons_monom c1 l1 s2
- else Cons_varlist l2 (monom_insert c1 l1 t2)
- | Nil_monom => Cons_monom c1 l1 Nil_monom
- end.
-
-Fixpoint varlist_insert (l1:varlist) (s2:canonical_sum) {struct s2} :
- canonical_sum :=
- match s2 with
- | Cons_monom c2 l2 t2 =>
- if varlist_eq l1 l2
- then Cons_monom (Aplus Aone c2) l1 t2
- else
- if varlist_lt l1 l2
- then Cons_varlist l1 s2
- else Cons_monom c2 l2 (varlist_insert l1 t2)
- | Cons_varlist l2 t2 =>
- if varlist_eq l1 l2
- then Cons_monom (Aplus Aone Aone) l1 t2
- else
- if varlist_lt l1 l2
- then Cons_varlist l1 s2
- else Cons_varlist l2 (varlist_insert l1 t2)
- | Nil_monom => Cons_varlist l1 Nil_monom
- end.
-
-(* Computes c0*s *)
-Fixpoint canonical_sum_scalar (c0:A) (s:canonical_sum) {struct s} :
- canonical_sum :=
- match s with
- | Cons_monom c l t => Cons_monom (Amult c0 c) l (canonical_sum_scalar c0 t)
- | Cons_varlist l t => Cons_monom c0 l (canonical_sum_scalar c0 t)
- | Nil_monom => Nil_monom
- end.
-
-(* Computes l0*s *)
-Fixpoint canonical_sum_scalar2 (l0:varlist) (s:canonical_sum) {struct s} :
- canonical_sum :=
- match s with
- | Cons_monom c l t =>
- monom_insert c (varlist_merge l0 l) (canonical_sum_scalar2 l0 t)
- | Cons_varlist l t =>
- varlist_insert (varlist_merge l0 l) (canonical_sum_scalar2 l0 t)
- | Nil_monom => Nil_monom
- end.
-
-(* Computes c0*l0*s *)
-Fixpoint canonical_sum_scalar3 (c0:A) (l0:varlist)
- (s:canonical_sum) {struct s} : canonical_sum :=
- match s with
- | Cons_monom c l t =>
- monom_insert (Amult c0 c) (varlist_merge l0 l)
- (canonical_sum_scalar3 c0 l0 t)
- | Cons_varlist l t =>
- monom_insert c0 (varlist_merge l0 l) (canonical_sum_scalar3 c0 l0 t)
- | Nil_monom => Nil_monom
- end.
-
-(* returns the product of two canonical sums *)
-Fixpoint canonical_sum_prod (s1 s2:canonical_sum) {struct s1} :
- canonical_sum :=
- match s1 with
- | Cons_monom c1 l1 t1 =>
- canonical_sum_merge (canonical_sum_scalar3 c1 l1 s2)
- (canonical_sum_prod t1 s2)
- | Cons_varlist l1 t1 =>
- canonical_sum_merge (canonical_sum_scalar2 l1 s2)
- (canonical_sum_prod t1 s2)
- | Nil_monom => Nil_monom
- end.
-
-(* The type to represent concrete semi-setoid-ring polynomials *)
-
-Inductive setspolynomial : Type :=
- | SetSPvar : index -> setspolynomial
- | SetSPconst : A -> setspolynomial
- | SetSPplus : setspolynomial -> setspolynomial -> setspolynomial
- | SetSPmult : setspolynomial -> setspolynomial -> setspolynomial.
-
-Fixpoint setspolynomial_normalize (p:setspolynomial) : canonical_sum :=
- match p with
- | SetSPplus l r =>
- canonical_sum_merge (setspolynomial_normalize l)
- (setspolynomial_normalize r)
- | SetSPmult l r =>
- canonical_sum_prod (setspolynomial_normalize l)
- (setspolynomial_normalize r)
- | SetSPconst c => Cons_monom c Nil_var Nil_monom
- | SetSPvar i => Cons_varlist (Cons_var i Nil_var) Nil_monom
- end.
-
-Fixpoint canonical_sum_simplify (s:canonical_sum) : canonical_sum :=
- match s with
- | Cons_monom c l t =>
- if Aeq c Azero
- then canonical_sum_simplify t
- else
- if Aeq c Aone
- then Cons_varlist l (canonical_sum_simplify t)
- else Cons_monom c l (canonical_sum_simplify t)
- | Cons_varlist l t => Cons_varlist l (canonical_sum_simplify t)
- | Nil_monom => Nil_monom
- end.
-
-Definition setspolynomial_simplify (x:setspolynomial) :=
- canonical_sum_simplify (setspolynomial_normalize x).
-
-Variable vm : varmap A.
-
-Definition interp_var (i:index) := varmap_find Azero i vm.
-
-Definition ivl_aux :=
- (fix ivl_aux (x:index) (t:varlist) {struct t} : A :=
- match t with
- | Nil_var => interp_var x
- | Cons_var x' t' => Amult (interp_var x) (ivl_aux x' t')
- end).
-
-Definition interp_vl (l:varlist) :=
- match l with
- | Nil_var => Aone
- | Cons_var x t => ivl_aux x t
- end.
-
-Definition interp_m (c:A) (l:varlist) :=
- match l with
- | Nil_var => c
- | Cons_var x t => Amult c (ivl_aux x t)
- end.
-
-Definition ics_aux :=
- (fix ics_aux (a:A) (s:canonical_sum) {struct s} : A :=
- match s with
- | Nil_monom => a
- | Cons_varlist l t => Aplus a (ics_aux (interp_vl l) t)
- | Cons_monom c l t => Aplus a (ics_aux (interp_m c l) t)
- end).
-
-Definition interp_setcs (s:canonical_sum) : A :=
- match s with
- | Nil_monom => Azero
- | Cons_varlist l t => ics_aux (interp_vl l) t
- | Cons_monom c l t => ics_aux (interp_m c l) t
- end.
-
-Fixpoint interp_setsp (p:setspolynomial) : A :=
- match p with
- | SetSPconst c => c
- | SetSPvar i => interp_var i
- | SetSPplus p1 p2 => Aplus (interp_setsp p1) (interp_setsp p2)
- | SetSPmult p1 p2 => Amult (interp_setsp p1) (interp_setsp p2)
- end.
-
-(* End interpretation. *)
-
-Unset Implicit Arguments.
-
-(* Section properties. *)
-
-Variable T : Semi_Setoid_Ring_Theory Aequiv Aplus Amult Aone Azero Aeq.
-
-Hint Resolve (SSR_plus_comm T).
-Hint Resolve (SSR_plus_assoc T).
-Hint Resolve (SSR_plus_assoc2 S T).
-Hint Resolve (SSR_mult_comm T).
-Hint Resolve (SSR_mult_assoc T).
-Hint Resolve (SSR_mult_assoc2 S T).
-Hint Resolve (SSR_plus_zero_left T).
-Hint Resolve (SSR_plus_zero_left2 S T).
-Hint Resolve (SSR_mult_one_left T).
-Hint Resolve (SSR_mult_one_left2 S T).
-Hint Resolve (SSR_mult_zero_left T).
-Hint Resolve (SSR_mult_zero_left2 S T).
-Hint Resolve (SSR_distr_left T).
-Hint Resolve (SSR_distr_left2 S T).
-Hint Resolve (SSR_plus_reg_left T).
-Hint Resolve (SSR_plus_permute S plus_morph T).
-Hint Resolve (SSR_mult_permute S mult_morph T).
-Hint Resolve (SSR_distr_right S plus_morph T).
-Hint Resolve (SSR_distr_right2 S plus_morph T).
-Hint Resolve (SSR_mult_zero_right S T).
-Hint Resolve (SSR_mult_zero_right2 S T).
-Hint Resolve (SSR_plus_zero_right S T).
-Hint Resolve (SSR_plus_zero_right2 S T).
-Hint Resolve (SSR_mult_one_right S T).
-Hint Resolve (SSR_mult_one_right2 S T).
-Hint Resolve (SSR_plus_reg_right S T).
-Hint Resolve eq_refl eq_sym eq_trans.
-Hint Immediate T.
-
-Lemma varlist_eq_prop : forall x y:varlist, Is_true (varlist_eq x y) -> x = y.
-Proof.
- simple induction x; simple induction y; contradiction || (try reflexivity).
- simpl; intros.
- generalize (andb_prop2 _ _ H1); intros; elim H2; intros.
- rewrite (index_eq_prop _ _ H3); rewrite (H v0 H4); reflexivity.
-Qed.
-
-Remark ivl_aux_ok :
- forall (v:varlist) (i:index),
- Aequiv (ivl_aux i v) (Amult (interp_var i) (interp_vl v)).
-Proof.
- simple induction v; simpl; intros.
- trivial.
- rewrite (H i); trivial.
-Qed.
-
-Lemma varlist_merge_ok :
- forall x y:varlist,
- Aequiv (interp_vl (varlist_merge x y)) (Amult (interp_vl x) (interp_vl y)).
-Proof.
- simple induction x.
- simpl; trivial.
- simple induction y.
- simpl; trivial.
- simpl; intros.
- elim (index_lt i i0); simpl; intros.
-
- rewrite (ivl_aux_ok v i).
- rewrite (ivl_aux_ok v0 i0).
- rewrite (ivl_aux_ok (varlist_merge v (Cons_var i0 v0)) i).
- rewrite (H (Cons_var i0 v0)).
- simpl.
- rewrite (ivl_aux_ok v0 i0).
- eauto.
-
- rewrite (ivl_aux_ok v i).
- rewrite (ivl_aux_ok v0 i0).
- rewrite
- (ivl_aux_ok
- ((fix vm_aux (l2:varlist) : varlist :=
- match l2 with
- | Nil_var => Cons_var i v
- | Cons_var v2 t2 =>
- if index_lt i v2
- then Cons_var i (varlist_merge v l2)
- else Cons_var v2 (vm_aux t2)
- end) v0) i0).
- rewrite H0.
- rewrite (ivl_aux_ok v i).
- eauto.
-Qed.
-
-Remark ics_aux_ok :
- forall (x:A) (s:canonical_sum),
- Aequiv (ics_aux x s) (Aplus x (interp_setcs s)).
-Proof.
- simple induction s; simpl; intros; trivial.
-Qed.
-
-Remark interp_m_ok :
- forall (x:A) (l:varlist), Aequiv (interp_m x l) (Amult x (interp_vl l)).
-Proof.
- destruct l as [| i v]; trivial.
-Qed.
-
-Hint Resolve ivl_aux_ok.
-Hint Resolve ics_aux_ok.
-Hint Resolve interp_m_ok.
-
-(* Hints Resolve ivl_aux_ok ics_aux_ok interp_m_ok. *)
-
-Lemma canonical_sum_merge_ok :
- forall x y:canonical_sum,
- Aequiv (interp_setcs (canonical_sum_merge x y))
- (Aplus (interp_setcs x) (interp_setcs y)).
-Proof.
-simple induction x; simpl.
-trivial.
-
-simple induction y; simpl; intros.
-eauto.
-
-generalize (varlist_eq_prop v v0).
-elim (varlist_eq v v0).
-intros; rewrite (H1 I).
-simpl.
-rewrite (ics_aux_ok (interp_m a v0) c).
-rewrite (ics_aux_ok (interp_m a0 v0) c0).
-rewrite (ics_aux_ok (interp_m (Aplus a a0) v0) (canonical_sum_merge c c0)).
-rewrite (H c0).
-rewrite (interp_m_ok (Aplus a a0) v0).
-rewrite (interp_m_ok a v0).
-rewrite (interp_m_ok a0 v0).
-setoid_replace (Amult (Aplus a a0) (interp_vl v0)) with
- (Aplus (Amult a (interp_vl v0)) (Amult a0 (interp_vl v0)));
- [ idtac | trivial ].
-setoid_replace
- (Aplus (Aplus (Amult a (interp_vl v0)) (Amult a0 (interp_vl v0)))
- (Aplus (interp_setcs c) (interp_setcs c0))) with
- (Aplus (Amult a (interp_vl v0))
- (Aplus (Amult a0 (interp_vl v0))
- (Aplus (interp_setcs c) (interp_setcs c0))));
- [ idtac | trivial ].
-setoid_replace
- (Aplus (Aplus (Amult a (interp_vl v0)) (interp_setcs c))
- (Aplus (Amult a0 (interp_vl v0)) (interp_setcs c0))) with
- (Aplus (Amult a (interp_vl v0))
- (Aplus (interp_setcs c)
- (Aplus (Amult a0 (interp_vl v0)) (interp_setcs c0))));
- [ idtac | trivial ].
-auto.
-
-elim (varlist_lt v v0); simpl.
-intro.
-rewrite
- (ics_aux_ok (interp_m a v) (canonical_sum_merge c (Cons_monom a0 v0 c0)))
- .
-rewrite (ics_aux_ok (interp_m a v) c).
-rewrite (ics_aux_ok (interp_m a0 v0) c0).
-rewrite (H (Cons_monom a0 v0 c0)); simpl.
-rewrite (ics_aux_ok (interp_m a0 v0) c0); auto.
-
-intro.
-rewrite
- (ics_aux_ok (interp_m a0 v0)
- ((fix csm_aux (s2:canonical_sum) : canonical_sum :=
- match s2 with
- | Nil_monom => Cons_monom a v c
- | Cons_monom c2 l2 t2 =>
- if varlist_eq v l2
- then Cons_monom (Aplus a c2) v (canonical_sum_merge c t2)
- else
- if varlist_lt v l2
- then Cons_monom a v (canonical_sum_merge c s2)
- else Cons_monom c2 l2 (csm_aux t2)
- | Cons_varlist l2 t2 =>
- if varlist_eq v l2
- then Cons_monom (Aplus a Aone) v (canonical_sum_merge c t2)
- else
- if varlist_lt v l2
- then Cons_monom a v (canonical_sum_merge c s2)
- else Cons_varlist l2 (csm_aux t2)
- end) c0)).
-rewrite H0.
-rewrite (ics_aux_ok (interp_m a v) c);
- rewrite (ics_aux_ok (interp_m a0 v0) c0); simpl;
- auto.
-
-generalize (varlist_eq_prop v v0).
-elim (varlist_eq v v0).
-intros; rewrite (H1 I).
-simpl.
-rewrite (ics_aux_ok (interp_m (Aplus a Aone) v0) (canonical_sum_merge c c0));
- rewrite (ics_aux_ok (interp_m a v0) c);
- rewrite (ics_aux_ok (interp_vl v0) c0).
-rewrite (H c0).
-rewrite (interp_m_ok (Aplus a Aone) v0).
-rewrite (interp_m_ok a v0).
-setoid_replace (Amult (Aplus a Aone) (interp_vl v0)) with
- (Aplus (Amult a (interp_vl v0)) (Amult Aone (interp_vl v0)));
- [ idtac | trivial ].
-setoid_replace
- (Aplus (Aplus (Amult a (interp_vl v0)) (Amult Aone (interp_vl v0)))
- (Aplus (interp_setcs c) (interp_setcs c0))) with
- (Aplus (Amult a (interp_vl v0))
- (Aplus (Amult Aone (interp_vl v0))
- (Aplus (interp_setcs c) (interp_setcs c0))));
- [ idtac | trivial ].
-setoid_replace
- (Aplus (Aplus (Amult a (interp_vl v0)) (interp_setcs c))
- (Aplus (interp_vl v0) (interp_setcs c0))) with
- (Aplus (Amult a (interp_vl v0))
- (Aplus (interp_setcs c) (Aplus (interp_vl v0) (interp_setcs c0))));
- [ idtac | trivial ].
-setoid_replace (Amult Aone (interp_vl v0)) with (interp_vl v0);
- [ idtac | trivial ].
-auto.
-
-elim (varlist_lt v v0); simpl.
-intro.
-rewrite
- (ics_aux_ok (interp_m a v) (canonical_sum_merge c (Cons_varlist v0 c0)))
- ; rewrite (ics_aux_ok (interp_m a v) c);
- rewrite (ics_aux_ok (interp_vl v0) c0).
-rewrite (H (Cons_varlist v0 c0)); simpl.
-rewrite (ics_aux_ok (interp_vl v0) c0).
-auto.
-
-intro.
-rewrite
- (ics_aux_ok (interp_vl v0)
- ((fix csm_aux (s2:canonical_sum) : canonical_sum :=
- match s2 with
- | Nil_monom => Cons_monom a v c
- | Cons_monom c2 l2 t2 =>
- if varlist_eq v l2
- then Cons_monom (Aplus a c2) v (canonical_sum_merge c t2)
- else
- if varlist_lt v l2
- then Cons_monom a v (canonical_sum_merge c s2)
- else Cons_monom c2 l2 (csm_aux t2)
- | Cons_varlist l2 t2 =>
- if varlist_eq v l2
- then Cons_monom (Aplus a Aone) v (canonical_sum_merge c t2)
- else
- if varlist_lt v l2
- then Cons_monom a v (canonical_sum_merge c s2)
- else Cons_varlist l2 (csm_aux t2)
- end) c0)); rewrite H0.
-rewrite (ics_aux_ok (interp_m a v) c); rewrite (ics_aux_ok (interp_vl v0) c0);
- simpl.
-auto.
-
-simple induction y; simpl; intros.
-trivial.
-
-generalize (varlist_eq_prop v v0).
-elim (varlist_eq v v0).
-intros; rewrite (H1 I).
-simpl.
-rewrite (ics_aux_ok (interp_m (Aplus Aone a) v0) (canonical_sum_merge c c0));
- rewrite (ics_aux_ok (interp_vl v0) c);
- rewrite (ics_aux_ok (interp_m a v0) c0); rewrite (H c0).
-rewrite (interp_m_ok (Aplus Aone a) v0); rewrite (interp_m_ok a v0).
-setoid_replace (Amult (Aplus Aone a) (interp_vl v0)) with
- (Aplus (Amult Aone (interp_vl v0)) (Amult a (interp_vl v0)));
- [ idtac | trivial ].
-setoid_replace
- (Aplus (Aplus (Amult Aone (interp_vl v0)) (Amult a (interp_vl v0)))
- (Aplus (interp_setcs c) (interp_setcs c0))) with
- (Aplus (Amult Aone (interp_vl v0))
- (Aplus (Amult a (interp_vl v0))
- (Aplus (interp_setcs c) (interp_setcs c0))));
- [ idtac | trivial ].
-setoid_replace
- (Aplus (Aplus (interp_vl v0) (interp_setcs c))
- (Aplus (Amult a (interp_vl v0)) (interp_setcs c0))) with
- (Aplus (interp_vl v0)
- (Aplus (interp_setcs c)
- (Aplus (Amult a (interp_vl v0)) (interp_setcs c0))));
- [ idtac | trivial ].
-auto.
-
-elim (varlist_lt v v0); simpl; intros.
-rewrite
- (ics_aux_ok (interp_vl v) (canonical_sum_merge c (Cons_monom a v0 c0)))
- ; rewrite (ics_aux_ok (interp_vl v) c);
- rewrite (ics_aux_ok (interp_m a v0) c0).
-rewrite (H (Cons_monom a v0 c0)); simpl.
-rewrite (ics_aux_ok (interp_m a v0) c0); auto.
-
-rewrite
- (ics_aux_ok (interp_m a v0)
- ((fix csm_aux2 (s2:canonical_sum) : canonical_sum :=
- match s2 with
- | Nil_monom => Cons_varlist v c
- | Cons_monom c2 l2 t2 =>
- if varlist_eq v l2
- then Cons_monom (Aplus Aone c2) v (canonical_sum_merge c t2)
- else
- if varlist_lt v l2
- then Cons_varlist v (canonical_sum_merge c s2)
- else Cons_monom c2 l2 (csm_aux2 t2)
- | Cons_varlist l2 t2 =>
- if varlist_eq v l2
- then Cons_monom (Aplus Aone Aone) v (canonical_sum_merge c t2)
- else
- if varlist_lt v l2
- then Cons_varlist v (canonical_sum_merge c s2)
- else Cons_varlist l2 (csm_aux2 t2)
- end) c0)); rewrite H0.
-rewrite (ics_aux_ok (interp_vl v) c); rewrite (ics_aux_ok (interp_m a v0) c0);
- simpl; auto.
-
-generalize (varlist_eq_prop v v0).
-elim (varlist_eq v v0); intros.
-rewrite (H1 I); simpl.
-rewrite
- (ics_aux_ok (interp_m (Aplus Aone Aone) v0) (canonical_sum_merge c c0))
- ; rewrite (ics_aux_ok (interp_vl v0) c);
- rewrite (ics_aux_ok (interp_vl v0) c0); rewrite (H c0).
-rewrite (interp_m_ok (Aplus Aone Aone) v0).
-setoid_replace (Amult (Aplus Aone Aone) (interp_vl v0)) with
- (Aplus (Amult Aone (interp_vl v0)) (Amult Aone (interp_vl v0)));
- [ idtac | trivial ].
-setoid_replace
- (Aplus (Aplus (Amult Aone (interp_vl v0)) (Amult Aone (interp_vl v0)))
- (Aplus (interp_setcs c) (interp_setcs c0))) with
- (Aplus (Amult Aone (interp_vl v0))
- (Aplus (Amult Aone (interp_vl v0))
- (Aplus (interp_setcs c) (interp_setcs c0))));
- [ idtac | trivial ].
-setoid_replace
- (Aplus (Aplus (interp_vl v0) (interp_setcs c))
- (Aplus (interp_vl v0) (interp_setcs c0))) with
- (Aplus (interp_vl v0)
- (Aplus (interp_setcs c) (Aplus (interp_vl v0) (interp_setcs c0))));
-[ idtac | trivial ].
-setoid_replace (Amult Aone (interp_vl v0)) with (interp_vl v0); auto.
-
-elim (varlist_lt v v0); simpl.
-rewrite
- (ics_aux_ok (interp_vl v) (canonical_sum_merge c (Cons_varlist v0 c0)))
- ; rewrite (ics_aux_ok (interp_vl v) c);
- rewrite (ics_aux_ok (interp_vl v0) c0); rewrite (H (Cons_varlist v0 c0));
- simpl.
-rewrite (ics_aux_ok (interp_vl v0) c0); auto.
-
-rewrite
- (ics_aux_ok (interp_vl v0)
- ((fix csm_aux2 (s2:canonical_sum) : canonical_sum :=
- match s2 with
- | Nil_monom => Cons_varlist v c
- | Cons_monom c2 l2 t2 =>
- if varlist_eq v l2
- then Cons_monom (Aplus Aone c2) v (canonical_sum_merge c t2)
- else
- if varlist_lt v l2
- then Cons_varlist v (canonical_sum_merge c s2)
- else Cons_monom c2 l2 (csm_aux2 t2)
- | Cons_varlist l2 t2 =>
- if varlist_eq v l2
- then Cons_monom (Aplus Aone Aone) v (canonical_sum_merge c t2)
- else
- if varlist_lt v l2
- then Cons_varlist v (canonical_sum_merge c s2)
- else Cons_varlist l2 (csm_aux2 t2)
- end) c0)); rewrite H0.
-rewrite (ics_aux_ok (interp_vl v) c); rewrite (ics_aux_ok (interp_vl v0) c0);
- simpl; auto.
-Qed.
-
-Lemma monom_insert_ok :
- forall (a:A) (l:varlist) (s:canonical_sum),
- Aequiv (interp_setcs (monom_insert a l s))
- (Aplus (Amult a (interp_vl l)) (interp_setcs s)).
-Proof.
-simple induction s; intros.
-simpl; rewrite (interp_m_ok a l); trivial.
-
-simpl; generalize (varlist_eq_prop l v); elim (varlist_eq l v).
-intro Hr; rewrite (Hr I); simpl.
-rewrite (ics_aux_ok (interp_m (Aplus a a0) v) c);
- rewrite (ics_aux_ok (interp_m a0 v) c).
-rewrite (interp_m_ok (Aplus a a0) v); rewrite (interp_m_ok a0 v).
-setoid_replace (Amult (Aplus a a0) (interp_vl v)) with
- (Aplus (Amult a (interp_vl v)) (Amult a0 (interp_vl v)));
- [ idtac | trivial ].
-auto.
-
-elim (varlist_lt l v); simpl; intros.
-rewrite (ics_aux_ok (interp_m a0 v) c).
-rewrite (interp_m_ok a0 v); rewrite (interp_m_ok a l).
-auto.
-
-rewrite (ics_aux_ok (interp_m a0 v) (monom_insert a l c));
- rewrite (ics_aux_ok (interp_m a0 v) c); rewrite H.
-auto.
-
-simpl.
-generalize (varlist_eq_prop l v); elim (varlist_eq l v).
-intro Hr; rewrite (Hr I); simpl.
-rewrite (ics_aux_ok (interp_m (Aplus a Aone) v) c);
- rewrite (ics_aux_ok (interp_vl v) c).
-rewrite (interp_m_ok (Aplus a Aone) v).
-setoid_replace (Amult (Aplus a Aone) (interp_vl v)) with
- (Aplus (Amult a (interp_vl v)) (Amult Aone (interp_vl v)));
- [ idtac | trivial ].
-setoid_replace (Amult Aone (interp_vl v)) with (interp_vl v);
- [ idtac | trivial ].
-auto.
-
-elim (varlist_lt l v); simpl; intros; auto.
-rewrite (ics_aux_ok (interp_vl v) (monom_insert a l c)); rewrite H.
-rewrite (ics_aux_ok (interp_vl v) c); auto.
-Qed.
-
-Lemma varlist_insert_ok :
- forall (l:varlist) (s:canonical_sum),
- Aequiv (interp_setcs (varlist_insert l s))
- (Aplus (interp_vl l) (interp_setcs s)).
-Proof.
-simple induction s; simpl; intros.
-trivial.
-
-generalize (varlist_eq_prop l v); elim (varlist_eq l v).
-intro Hr; rewrite (Hr I); simpl.
-rewrite (ics_aux_ok (interp_m (Aplus Aone a) v) c);
- rewrite (ics_aux_ok (interp_m a v) c).
-rewrite (interp_m_ok (Aplus Aone a) v); rewrite (interp_m_ok a v).
-setoid_replace (Amult (Aplus Aone a) (interp_vl v)) with
- (Aplus (Amult Aone (interp_vl v)) (Amult a (interp_vl v)));
- [ idtac | trivial ].
-setoid_replace (Amult Aone (interp_vl v)) with (interp_vl v); auto.
-
-elim (varlist_lt l v); simpl; intros; auto.
-rewrite (ics_aux_ok (interp_m a v) (varlist_insert l c));
- rewrite (ics_aux_ok (interp_m a v) c).
-rewrite (interp_m_ok a v).
-rewrite H; auto.
-
-generalize (varlist_eq_prop l v); elim (varlist_eq l v).
-intro Hr; rewrite (Hr I); simpl.
-rewrite (ics_aux_ok (interp_m (Aplus Aone Aone) v) c);
- rewrite (ics_aux_ok (interp_vl v) c).
-rewrite (interp_m_ok (Aplus Aone Aone) v).
-setoid_replace (Amult (Aplus Aone Aone) (interp_vl v)) with
- (Aplus (Amult Aone (interp_vl v)) (Amult Aone (interp_vl v)));
- [ idtac | trivial ].
-setoid_replace (Amult Aone (interp_vl v)) with (interp_vl v); auto.
-
-elim (varlist_lt l v); simpl; intros; auto.
-rewrite (ics_aux_ok (interp_vl v) (varlist_insert l c)).
-rewrite H.
-rewrite (ics_aux_ok (interp_vl v) c); auto.
-Qed.
-
-Lemma canonical_sum_scalar_ok :
- forall (a:A) (s:canonical_sum),
- Aequiv (interp_setcs (canonical_sum_scalar a s))
- (Amult a (interp_setcs s)).
-Proof.
-simple induction s; simpl; intros.
-trivial.
-
-rewrite (ics_aux_ok (interp_m (Amult a a0) v) (canonical_sum_scalar a c));
- rewrite (ics_aux_ok (interp_m a0 v) c).
-rewrite (interp_m_ok (Amult a a0) v); rewrite (interp_m_ok a0 v).
-rewrite H.
-setoid_replace (Amult a (Aplus (Amult a0 (interp_vl v)) (interp_setcs c)))
- with (Aplus (Amult a (Amult a0 (interp_vl v))) (Amult a (interp_setcs c)));
- [ idtac | trivial ].
-auto.
-
-rewrite (ics_aux_ok (interp_m a v) (canonical_sum_scalar a c));
- rewrite (ics_aux_ok (interp_vl v) c); rewrite H.
-rewrite (interp_m_ok a v).
-auto.
-Qed.
-
-Lemma canonical_sum_scalar2_ok :
- forall (l:varlist) (s:canonical_sum),
- Aequiv (interp_setcs (canonical_sum_scalar2 l s))
- (Amult (interp_vl l) (interp_setcs s)).
-Proof.
-simple induction s; simpl; intros; auto.
-rewrite (monom_insert_ok a (varlist_merge l v) (canonical_sum_scalar2 l c)).
-rewrite (ics_aux_ok (interp_m a v) c).
-rewrite (interp_m_ok a v).
-rewrite H.
-rewrite (varlist_merge_ok l v).
-setoid_replace
- (Amult (interp_vl l) (Aplus (Amult a (interp_vl v)) (interp_setcs c))) with
- (Aplus (Amult (interp_vl l) (Amult a (interp_vl v)))
- (Amult (interp_vl l) (interp_setcs c)));
- [ idtac | trivial ].
-auto.
-
-rewrite (varlist_insert_ok (varlist_merge l v) (canonical_sum_scalar2 l c)).
-rewrite (ics_aux_ok (interp_vl v) c).
-rewrite H.
-rewrite (varlist_merge_ok l v).
-auto.
-Qed.
-
-Lemma canonical_sum_scalar3_ok :
- forall (c:A) (l:varlist) (s:canonical_sum),
- Aequiv (interp_setcs (canonical_sum_scalar3 c l s))
- (Amult c (Amult (interp_vl l) (interp_setcs s))).
-Proof.
-simple induction s; simpl; intros.
-rewrite (SSR_mult_zero_right S T (interp_vl l)).
-auto.
-
-rewrite
- (monom_insert_ok (Amult c a) (varlist_merge l v)
- (canonical_sum_scalar3 c l c0)).
-rewrite (ics_aux_ok (interp_m a v) c0).
-rewrite (interp_m_ok a v).
-rewrite H.
-rewrite (varlist_merge_ok l v).
-setoid_replace
- (Amult (interp_vl l) (Aplus (Amult a (interp_vl v)) (interp_setcs c0))) with
- (Aplus (Amult (interp_vl l) (Amult a (interp_vl v)))
- (Amult (interp_vl l) (interp_setcs c0)));
- [ idtac | trivial ].
-setoid_replace
- (Amult c
- (Aplus (Amult (interp_vl l) (Amult a (interp_vl v)))
- (Amult (interp_vl l) (interp_setcs c0)))) with
- (Aplus (Amult c (Amult (interp_vl l) (Amult a (interp_vl v))))
- (Amult c (Amult (interp_vl l) (interp_setcs c0))));
- [ idtac | trivial ].
-setoid_replace (Amult (Amult c a) (Amult (interp_vl l) (interp_vl v))) with
- (Amult c (Amult a (Amult (interp_vl l) (interp_vl v))));
- [ idtac | trivial ].
-auto.
-
-rewrite
- (monom_insert_ok c (varlist_merge l v) (canonical_sum_scalar3 c l c0))
- .
-rewrite (ics_aux_ok (interp_vl v) c0).
-rewrite H.
-rewrite (varlist_merge_ok l v).
-setoid_replace
- (Aplus (Amult c (Amult (interp_vl l) (interp_vl v)))
- (Amult c (Amult (interp_vl l) (interp_setcs c0)))) with
- (Amult c
- (Aplus (Amult (interp_vl l) (interp_vl v))
- (Amult (interp_vl l) (interp_setcs c0))));
- [ idtac | trivial ].
-auto.
-Qed.
-
-Lemma canonical_sum_prod_ok :
- forall x y:canonical_sum,
- Aequiv (interp_setcs (canonical_sum_prod x y))
- (Amult (interp_setcs x) (interp_setcs y)).
-Proof.
-simple induction x; simpl; intros.
-trivial.
-
-rewrite
- (canonical_sum_merge_ok (canonical_sum_scalar3 a v y)
- (canonical_sum_prod c y)).
-rewrite (canonical_sum_scalar3_ok a v y).
-rewrite (ics_aux_ok (interp_m a v) c).
-rewrite (interp_m_ok a v).
-rewrite (H y).
-setoid_replace (Amult a (Amult (interp_vl v) (interp_setcs y))) with
- (Amult (Amult a (interp_vl v)) (interp_setcs y));
- [ idtac | trivial ].
-setoid_replace
- (Amult (Aplus (Amult a (interp_vl v)) (interp_setcs c)) (interp_setcs y))
- with
- (Aplus (Amult (Amult a (interp_vl v)) (interp_setcs y))
- (Amult (interp_setcs c) (interp_setcs y)));
- [ idtac | trivial ].
-trivial.
-
-rewrite
- (canonical_sum_merge_ok (canonical_sum_scalar2 v y) (canonical_sum_prod c y))
- .
-rewrite (canonical_sum_scalar2_ok v y).
-rewrite (ics_aux_ok (interp_vl v) c).
-rewrite (H y).
-trivial.
-Qed.
-
-Theorem setspolynomial_normalize_ok :
- forall p:setspolynomial,
- Aequiv (interp_setcs (setspolynomial_normalize p)) (interp_setsp p).
-Proof.
-simple induction p; simpl; intros; trivial.
-rewrite
- (canonical_sum_merge_ok (setspolynomial_normalize s)
- (setspolynomial_normalize s0)).
-rewrite H; rewrite H0; trivial.
-
-rewrite
- (canonical_sum_prod_ok (setspolynomial_normalize s)
- (setspolynomial_normalize s0)).
-rewrite H; rewrite H0; trivial.
-Qed.
-
-Lemma canonical_sum_simplify_ok :
- forall s:canonical_sum,
- Aequiv (interp_setcs (canonical_sum_simplify s)) (interp_setcs s).
-Proof.
-simple induction s; simpl; intros.
-trivial.
-
-generalize (SSR_eq_prop T a Azero).
-elim (Aeq a Azero).
-simpl.
-intros.
-rewrite (ics_aux_ok (interp_m a v) c).
-rewrite (interp_m_ok a v).
-rewrite (H0 I).
-setoid_replace (Amult Azero (interp_vl v)) with Azero;
- [ idtac | trivial ].
-rewrite H.
-trivial.
-
-intros; simpl.
-generalize (SSR_eq_prop T a Aone).
-elim (Aeq a Aone).
-intros.
-rewrite (ics_aux_ok (interp_m a v) c).
-rewrite (interp_m_ok a v).
-rewrite (H1 I).
-simpl.
-rewrite (ics_aux_ok (interp_vl v) (canonical_sum_simplify c)).
-rewrite H.
-auto.
-
-simpl.
-intros.
-rewrite (ics_aux_ok (interp_m a v) (canonical_sum_simplify c)).
-rewrite (ics_aux_ok (interp_m a v) c).
-rewrite H; trivial.
-
-rewrite (ics_aux_ok (interp_vl v) (canonical_sum_simplify c)).
-rewrite H.
-auto.
-Qed.
-
-Theorem setspolynomial_simplify_ok :
- forall p:setspolynomial,
- Aequiv (interp_setcs (setspolynomial_simplify p)) (interp_setsp p).
-Proof.
-intro.
-unfold setspolynomial_simplify.
-rewrite (canonical_sum_simplify_ok (setspolynomial_normalize p)).
-exact (setspolynomial_normalize_ok p).
-Qed.
-
-End semi_setoid_rings.
-
-Arguments Cons_varlist : default implicits.
-Arguments Cons_monom : default implicits.
-Arguments SetSPconst : default implicits.
-Arguments SetSPplus : default implicits.
-Arguments SetSPmult : default implicits.
-
-
-
-Section setoid_rings.
-
-Set Implicit Arguments.
-
-Variable vm : varmap A.
-Variable T : Setoid_Ring_Theory Aequiv Aplus Amult Aone Azero Aopp Aeq.
-
-Hint Resolve (STh_plus_comm T).
-Hint Resolve (STh_plus_assoc T).
-Hint Resolve (STh_plus_assoc2 S T).
-Hint Resolve (STh_mult_comm T).
-Hint Resolve (STh_mult_assoc T).
-Hint Resolve (STh_mult_assoc2 S T).
-Hint Resolve (STh_plus_zero_left T).
-Hint Resolve (STh_plus_zero_left2 S T).
-Hint Resolve (STh_mult_one_left T).
-Hint Resolve (STh_mult_one_left2 S T).
-Hint Resolve (STh_mult_zero_left S plus_morph mult_morph T).
-Hint Resolve (STh_mult_zero_left2 S plus_morph mult_morph T).
-Hint Resolve (STh_distr_left T).
-Hint Resolve (STh_distr_left2 S T).
-Hint Resolve (STh_plus_reg_left S plus_morph T).
-Hint Resolve (STh_plus_permute S plus_morph T).
-Hint Resolve (STh_mult_permute S mult_morph T).
-Hint Resolve (STh_distr_right S plus_morph T).
-Hint Resolve (STh_distr_right2 S plus_morph T).
-Hint Resolve (STh_mult_zero_right S plus_morph mult_morph T).
-Hint Resolve (STh_mult_zero_right2 S plus_morph mult_morph T).
-Hint Resolve (STh_plus_zero_right S T).
-Hint Resolve (STh_plus_zero_right2 S T).
-Hint Resolve (STh_mult_one_right S T).
-Hint Resolve (STh_mult_one_right2 S T).
-Hint Resolve (STh_plus_reg_right S plus_morph T).
-Hint Resolve eq_refl eq_sym eq_trans.
-Hint Immediate T.
-
-
-(*** Definitions *)
-
-Inductive setpolynomial : Type :=
- | SetPvar : index -> setpolynomial
- | SetPconst : A -> setpolynomial
- | SetPplus : setpolynomial -> setpolynomial -> setpolynomial
- | SetPmult : setpolynomial -> setpolynomial -> setpolynomial
- | SetPopp : setpolynomial -> setpolynomial.
-
-Fixpoint setpolynomial_normalize (x:setpolynomial) : canonical_sum :=
- match x with
- | SetPplus l r =>
- canonical_sum_merge (setpolynomial_normalize l)
- (setpolynomial_normalize r)
- | SetPmult l r =>
- canonical_sum_prod (setpolynomial_normalize l)
- (setpolynomial_normalize r)
- | SetPconst c => Cons_monom c Nil_var Nil_monom
- | SetPvar i => Cons_varlist (Cons_var i Nil_var) Nil_monom
- | SetPopp p =>
- canonical_sum_scalar3 (Aopp Aone) Nil_var (setpolynomial_normalize p)
- end.
-
-Definition setpolynomial_simplify (x:setpolynomial) :=
- canonical_sum_simplify (setpolynomial_normalize x).
-
-Fixpoint setspolynomial_of (x:setpolynomial) : setspolynomial :=
- match x with
- | SetPplus l r => SetSPplus (setspolynomial_of l) (setspolynomial_of r)
- | SetPmult l r => SetSPmult (setspolynomial_of l) (setspolynomial_of r)
- | SetPconst c => SetSPconst c
- | SetPvar i => SetSPvar i
- | SetPopp p => SetSPmult (SetSPconst (Aopp Aone)) (setspolynomial_of p)
- end.
-
-(*** Interpretation *)
-
-Fixpoint interp_setp (p:setpolynomial) : A :=
- match p with
- | SetPconst c => c
- | SetPvar i => varmap_find Azero i vm
- | SetPplus p1 p2 => Aplus (interp_setp p1) (interp_setp p2)
- | SetPmult p1 p2 => Amult (interp_setp p1) (interp_setp p2)
- | SetPopp p1 => Aopp (interp_setp p1)
- end.
-
-(*** Properties *)
-
-Unset Implicit Arguments.
-
-Lemma setspolynomial_of_ok :
- forall p:setpolynomial,
- Aequiv (interp_setp p) (interp_setsp vm (setspolynomial_of p)).
-simple induction p; trivial; simpl; intros.
-rewrite H; rewrite H0; trivial.
-rewrite H; rewrite H0; trivial.
-rewrite H.
-rewrite
- (STh_opp_mult_left2 S plus_morph mult_morph T Aone
- (interp_setsp vm (setspolynomial_of s))).
-rewrite (STh_mult_one_left T (interp_setsp vm (setspolynomial_of s))).
-trivial.
-Qed.
-
-Theorem setpolynomial_normalize_ok :
- forall p:setpolynomial,
- setpolynomial_normalize p = setspolynomial_normalize (setspolynomial_of p).
-simple induction p; trivial; simpl; intros.
-rewrite H; rewrite H0; reflexivity.
-rewrite H; rewrite H0; reflexivity.
-rewrite H; simpl.
-elim
- (canonical_sum_scalar3 (Aopp Aone) Nil_var
- (setspolynomial_normalize (setspolynomial_of s)));
- [ reflexivity
- | simpl; intros; rewrite H0; reflexivity
- | simpl; intros; rewrite H0; reflexivity ].
-Qed.
-
-Theorem setpolynomial_simplify_ok :
- forall p:setpolynomial,
- Aequiv (interp_setcs vm (setpolynomial_simplify p)) (interp_setp p).
-intro.
-unfold setpolynomial_simplify.
-rewrite (setspolynomial_of_ok p).
-rewrite setpolynomial_normalize_ok.
-rewrite
- (canonical_sum_simplify_ok vm
- (Semi_Setoid_Ring_Theory_of A Aequiv S Aplus Amult Aone Azero Aopp Aeq
- plus_morph mult_morph T)
- (setspolynomial_normalize (setspolynomial_of p)))
- .
-rewrite
- (setspolynomial_normalize_ok vm
- (Semi_Setoid_Ring_Theory_of A Aequiv S Aplus Amult Aone Azero Aopp Aeq
- plus_morph mult_morph T) (setspolynomial_of p))
- .
-trivial.
-Qed.
-
-End setoid_rings.
-
-End setoid.