summaryrefslogtreecommitdiff
path: root/plugins/ring/Setoid_ring_theory.v
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/ring/Setoid_ring_theory.v')
-rw-r--r--plugins/ring/Setoid_ring_theory.v425
1 files changed, 0 insertions, 425 deletions
diff --git a/plugins/ring/Setoid_ring_theory.v b/plugins/ring/Setoid_ring_theory.v
deleted file mode 100644
index bb88f646..00000000
--- a/plugins/ring/Setoid_ring_theory.v
+++ /dev/null
@@ -1,425 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-Require Export Bool.
-Require Export Setoid.
-
-Set Implicit Arguments.
-
-Section Setoid_rings.
-
-Variable A : Type.
-Variable Aequiv : A -> A -> Prop.
-
-Infix Local "==" := Aequiv (at level 70, no associativity).
-
-Variable S : Setoid_Theory A Aequiv.
-
-Add Setoid A Aequiv S as Asetoid.
-
-Variable Aplus : A -> A -> A.
-Variable Amult : A -> A -> A.
-Variable Aone : A.
-Variable Azero : A.
-Variable Aopp : A -> A.
-Variable Aeq : A -> A -> bool.
-
-Infix "+" := Aplus (at level 50, left associativity).
-Infix "*" := Amult (at level 40, left associativity).
-Notation "0" := Azero.
-Notation "1" := Aone.
-Notation "- x" := (Aopp x).
-
-Variable plus_morph :
- forall a a0:A, a == a0 -> forall a1 a2:A, a1 == a2 -> a + a1 == a0 + a2.
-Variable mult_morph :
- forall a a0:A, a == a0 -> forall a1 a2:A, a1 == a2 -> a * a1 == a0 * a2.
-Variable opp_morph : forall a a0:A, a == a0 -> - a == - a0.
-
-Add Morphism Aplus : Aplus_ext.
-intros; apply plus_morph; assumption.
-Qed.
-
-Add Morphism Amult : Amult_ext.
-intros; apply mult_morph; assumption.
-Qed.
-
-Add Morphism Aopp : Aopp_ext.
-exact opp_morph.
-Qed.
-
-Section Theory_of_semi_setoid_rings.
-
-Record Semi_Setoid_Ring_Theory : Prop :=
- {SSR_plus_comm : forall n m:A, n + m == m + n;
- SSR_plus_assoc : forall n m p:A, n + (m + p) == n + m + p;
- SSR_mult_comm : forall n m:A, n * m == m * n;
- SSR_mult_assoc : forall n m p:A, n * (m * p) == n * m * p;
- SSR_plus_zero_left : forall n:A, 0 + n == n;
- SSR_mult_one_left : forall n:A, 1 * n == n;
- SSR_mult_zero_left : forall n:A, 0 * n == 0;
- SSR_distr_left : forall n m p:A, (n + m) * p == n * p + m * p;
- SSR_plus_reg_left : forall n m p:A, n + m == n + p -> m == p;
- SSR_eq_prop : forall x y:A, Is_true (Aeq x y) -> x == y}.
-
-Variable T : Semi_Setoid_Ring_Theory.
-
-Let plus_comm := SSR_plus_comm T.
-Let plus_assoc := SSR_plus_assoc T.
-Let mult_comm := SSR_mult_comm T.
-Let mult_assoc := SSR_mult_assoc T.
-Let plus_zero_left := SSR_plus_zero_left T.
-Let mult_one_left := SSR_mult_one_left T.
-Let mult_zero_left := SSR_mult_zero_left T.
-Let distr_left := SSR_distr_left T.
-Let plus_reg_left := SSR_plus_reg_left T.
-Let equiv_refl := Seq_refl A Aequiv S.
-Let equiv_sym := Seq_sym A Aequiv S.
-Let equiv_trans := Seq_trans A Aequiv S.
-
-Hint Resolve plus_comm plus_assoc mult_comm mult_assoc plus_zero_left
- mult_one_left mult_zero_left distr_left plus_reg_left
- equiv_refl (*equiv_sym*).
-Hint Immediate equiv_sym.
-
-(* Lemmas whose form is x=y are also provided in form y=x because
- Auto does not symmetry *)
-Lemma SSR_mult_assoc2 : forall n m p:A, n * m * p == n * (m * p).
-auto. Qed.
-
-Lemma SSR_plus_assoc2 : forall n m p:A, n + m + p == n + (m + p).
-auto. Qed.
-
-Lemma SSR_plus_zero_left2 : forall n:A, n == 0 + n.
-auto. Qed.
-
-Lemma SSR_mult_one_left2 : forall n:A, n == 1 * n.
-auto. Qed.
-
-Lemma SSR_mult_zero_left2 : forall n:A, 0 == 0 * n.
-auto. Qed.
-
-Lemma SSR_distr_left2 : forall n m p:A, n * p + m * p == (n + m) * p.
-auto. Qed.
-
-Lemma SSR_plus_permute : forall n m p:A, n + (m + p) == m + (n + p).
-intros.
-rewrite (plus_assoc n m p).
-rewrite (plus_comm n m).
-rewrite <- (plus_assoc m n p).
-trivial.
-Qed.
-
-Lemma SSR_mult_permute : forall n m p:A, n * (m * p) == m * (n * p).
-intros.
-rewrite (mult_assoc n m p).
-rewrite (mult_comm n m).
-rewrite <- (mult_assoc m n p).
-trivial.
-Qed.
-
-Hint Resolve SSR_plus_permute SSR_mult_permute.
-
-Lemma SSR_distr_right : forall n m p:A, n * (m + p) == n * m + n * p.
-intros.
-rewrite (mult_comm n (m + p)).
-rewrite (mult_comm n m).
-rewrite (mult_comm n p).
-auto.
-Qed.
-
-Lemma SSR_distr_right2 : forall n m p:A, n * m + n * p == n * (m + p).
-intros.
-apply equiv_sym.
-apply SSR_distr_right.
-Qed.
-
-Lemma SSR_mult_zero_right : forall n:A, n * 0 == 0.
-intro; rewrite (mult_comm n 0); auto.
-Qed.
-
-Lemma SSR_mult_zero_right2 : forall n:A, 0 == n * 0.
-intro; rewrite (mult_comm n 0); auto.
-Qed.
-
-Lemma SSR_plus_zero_right : forall n:A, n + 0 == n.
-intro; rewrite (plus_comm n 0); auto.
-Qed.
-
-Lemma SSR_plus_zero_right2 : forall n:A, n == n + 0.
-intro; rewrite (plus_comm n 0); auto.
-Qed.
-
-Lemma SSR_mult_one_right : forall n:A, n * 1 == n.
-intro; rewrite (mult_comm n 1); auto.
-Qed.
-
-Lemma SSR_mult_one_right2 : forall n:A, n == n * 1.
-intro; rewrite (mult_comm n 1); auto.
-Qed.
-
-Lemma SSR_plus_reg_right : forall n m p:A, m + n == p + n -> m == p.
-intros n m p; rewrite (plus_comm m n); rewrite (plus_comm p n).
-intro; apply plus_reg_left with n; trivial.
-Qed.
-
-End Theory_of_semi_setoid_rings.
-
-Section Theory_of_setoid_rings.
-
-Record Setoid_Ring_Theory : Prop :=
- {STh_plus_comm : forall n m:A, n + m == m + n;
- STh_plus_assoc : forall n m p:A, n + (m + p) == n + m + p;
- STh_mult_comm : forall n m:A, n * m == m * n;
- STh_mult_assoc : forall n m p:A, n * (m * p) == n * m * p;
- STh_plus_zero_left : forall n:A, 0 + n == n;
- STh_mult_one_left : forall n:A, 1 * n == n;
- STh_opp_def : forall n:A, n + - n == 0;
- STh_distr_left : forall n m p:A, (n + m) * p == n * p + m * p;
- STh_eq_prop : forall x y:A, Is_true (Aeq x y) -> x == y}.
-
-Variable T : Setoid_Ring_Theory.
-
-Let plus_comm := STh_plus_comm T.
-Let plus_assoc := STh_plus_assoc T.
-Let mult_comm := STh_mult_comm T.
-Let mult_assoc := STh_mult_assoc T.
-Let plus_zero_left := STh_plus_zero_left T.
-Let mult_one_left := STh_mult_one_left T.
-Let opp_def := STh_opp_def T.
-Let distr_left := STh_distr_left T.
-Let equiv_refl := Seq_refl A Aequiv S.
-Let equiv_sym := Seq_sym A Aequiv S.
-Let equiv_trans := Seq_trans A Aequiv S.
-
-Hint Resolve plus_comm plus_assoc mult_comm mult_assoc plus_zero_left
- mult_one_left opp_def distr_left equiv_refl equiv_sym.
-
-(* Lemmas whose form is x=y are also provided in form y=x because Auto does
- not symmetry *)
-
-Lemma STh_mult_assoc2 : forall n m p:A, n * m * p == n * (m * p).
-auto. Qed.
-
-Lemma STh_plus_assoc2 : forall n m p:A, n + m + p == n + (m + p).
-auto. Qed.
-
-Lemma STh_plus_zero_left2 : forall n:A, n == 0 + n.
-auto. Qed.
-
-Lemma STh_mult_one_left2 : forall n:A, n == 1 * n.
-auto. Qed.
-
-Lemma STh_distr_left2 : forall n m p:A, n * p + m * p == (n + m) * p.
-auto. Qed.
-
-Lemma STh_opp_def2 : forall n:A, 0 == n + - n.
-auto. Qed.
-
-Lemma STh_plus_permute : forall n m p:A, n + (m + p) == m + (n + p).
-intros.
-rewrite (plus_assoc n m p).
-rewrite (plus_comm n m).
-rewrite <- (plus_assoc m n p).
-trivial.
-Qed.
-
-Lemma STh_mult_permute : forall n m p:A, n * (m * p) == m * (n * p).
-intros.
-rewrite (mult_assoc n m p).
-rewrite (mult_comm n m).
-rewrite <- (mult_assoc m n p).
-trivial.
-Qed.
-
-Hint Resolve STh_plus_permute STh_mult_permute.
-
-Lemma Saux1 : forall a:A, a + a == a -> a == 0.
-intros.
-rewrite <- (plus_zero_left a).
-rewrite (plus_comm 0 a).
-setoid_replace (a + 0) with (a + (a + - a)) by auto.
-rewrite (plus_assoc a a (- a)).
-rewrite H.
-apply opp_def.
-Qed.
-
-Lemma STh_mult_zero_left : forall n:A, 0 * n == 0.
-intros.
-apply Saux1.
-rewrite <- (distr_left 0 0 n).
-rewrite (plus_zero_left 0).
-trivial.
-Qed.
-Hint Resolve STh_mult_zero_left.
-
-Lemma STh_mult_zero_left2 : forall n:A, 0 == 0 * n.
-auto.
-Qed.
-
-Lemma Saux2 : forall x y z:A, x + y == 0 -> x + z == 0 -> y == z.
-intros.
-rewrite <- (plus_zero_left y).
-rewrite <- H0.
-rewrite <- (plus_assoc x z y).
-rewrite (plus_comm z y).
-rewrite (plus_assoc x y z).
-rewrite H.
-auto.
-Qed.
-
-Lemma STh_opp_mult_left : forall x y:A, - (x * y) == - x * y.
-intros.
-apply Saux2 with (x * y); auto.
-rewrite <- (distr_left x (- x) y).
-rewrite (opp_def x).
-auto.
-Qed.
-Hint Resolve STh_opp_mult_left.
-
-Lemma STh_opp_mult_left2 : forall x y:A, - x * y == - (x * y).
-auto.
-Qed.
-
-Lemma STh_mult_zero_right : forall n:A, n * 0 == 0.
-intro; rewrite (mult_comm n 0); auto.
-Qed.
-
-Lemma STh_mult_zero_right2 : forall n:A, 0 == n * 0.
-intro; rewrite (mult_comm n 0); auto.
-Qed.
-
-Lemma STh_plus_zero_right : forall n:A, n + 0 == n.
-intro; rewrite (plus_comm n 0); auto.
-Qed.
-
-Lemma STh_plus_zero_right2 : forall n:A, n == n + 0.
-intro; rewrite (plus_comm n 0); auto.
-Qed.
-
-Lemma STh_mult_one_right : forall n:A, n * 1 == n.
-intro; rewrite (mult_comm n 1); auto.
-Qed.
-
-Lemma STh_mult_one_right2 : forall n:A, n == n * 1.
-intro; rewrite (mult_comm n 1); auto.
-Qed.
-
-Lemma STh_opp_mult_right : forall x y:A, - (x * y) == x * - y.
-intros.
-rewrite (mult_comm x y).
-rewrite (mult_comm x (- y)).
-auto.
-Qed.
-
-Lemma STh_opp_mult_right2 : forall x y:A, x * - y == - (x * y).
-intros.
-rewrite (mult_comm x y).
-rewrite (mult_comm x (- y)).
-auto.
-Qed.
-
-Lemma STh_plus_opp_opp : forall x y:A, - x + - y == - (x + y).
-intros.
-apply Saux2 with (x + y); auto.
-rewrite (STh_plus_permute (x + y) (- x) (- y)).
-rewrite <- (plus_assoc x y (- y)).
-rewrite (opp_def y); rewrite (STh_plus_zero_right x).
-rewrite (STh_opp_def2 x); trivial.
-Qed.
-
-Lemma STh_plus_permute_opp : forall n m p:A, - m + (n + p) == n + (- m + p).
-auto.
-Qed.
-
-Lemma STh_opp_opp : forall n:A, - - n == n.
-intro.
-apply Saux2 with (- n); auto.
-rewrite (plus_comm (- n) n); auto.
-Qed.
-Hint Resolve STh_opp_opp.
-
-Lemma STh_opp_opp2 : forall n:A, n == - - n.
-auto.
-Qed.
-
-Lemma STh_mult_opp_opp : forall x y:A, - x * - y == x * y.
-intros.
-rewrite (STh_opp_mult_left2 x (- y)).
-rewrite (STh_opp_mult_right2 x y).
-trivial.
-Qed.
-
-Lemma STh_mult_opp_opp2 : forall x y:A, x * y == - x * - y.
-intros.
-apply equiv_sym.
-apply STh_mult_opp_opp.
-Qed.
-
-Lemma STh_opp_zero : - 0 == 0.
-rewrite <- (plus_zero_left (- 0)).
-trivial.
-Qed.
-
-Lemma STh_plus_reg_left : forall n m p:A, n + m == n + p -> m == p.
-intros.
-rewrite <- (plus_zero_left m).
-rewrite <- (plus_zero_left p).
-rewrite <- (opp_def n).
-rewrite (plus_comm n (- n)).
-rewrite <- (plus_assoc (- n) n m).
-rewrite <- (plus_assoc (- n) n p).
-auto.
-Qed.
-
-Lemma STh_plus_reg_right : forall n m p:A, m + n == p + n -> m == p.
-intros.
-apply STh_plus_reg_left with n.
-rewrite (plus_comm n m); rewrite (plus_comm n p); assumption.
-Qed.
-
-Lemma STh_distr_right : forall n m p:A, n * (m + p) == n * m + n * p.
-intros.
-rewrite (mult_comm n (m + p)).
-rewrite (mult_comm n m).
-rewrite (mult_comm n p).
-trivial.
-Qed.
-
-Lemma STh_distr_right2 : forall n m p:A, n * m + n * p == n * (m + p).
-intros.
-apply equiv_sym.
-apply STh_distr_right.
-Qed.
-
-End Theory_of_setoid_rings.
-
-Hint Resolve STh_mult_zero_left STh_plus_reg_left: core.
-
-Unset Implicit Arguments.
-
-Definition Semi_Setoid_Ring_Theory_of :
- Setoid_Ring_Theory -> Semi_Setoid_Ring_Theory.
-intros until 1; case H.
-split; intros; simpl; eauto.
-Defined.
-
-Coercion Semi_Setoid_Ring_Theory_of : Setoid_Ring_Theory >->
- Semi_Setoid_Ring_Theory.
-
-
-
-Section product_ring.
-
-End product_ring.
-
-Section power_ring.
-
-End power_ring.
-
-End Setoid_rings.