aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/models/image/cifar10/cifar10_multi_gpu_train.py
blob: 54bc41f4443b414278f3f772777c4df8b0df4d5a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
"""A binary to train CIFAR-10 using multiple GPU's with synchronous updates.

Accuracy:
cifar10_multi_gpu_train.py achieves ~86% accuracy after 100K steps (256
epochs of data) as judged by cifar10_eval.py.

Speed: With batch_size 128.

System        | Step Time (sec/batch)  |     Accuracy
--------------------------------------------------------------------
1 Tesla K20m  | 0.35-0.60              | ~86% at 60K steps  (5 hours)
1 Tesla K40m  | 0.25-0.35              | ~86% at 100K steps (4 hours)
2 Tesla K20m  | 0.13-0.20              | ~84% at 30K steps  (2.5 hours)
3 Tesla K20m  | 0.13-0.18              | ~84% at 30K steps
4 Tesla K20m  | ~0.10                  | ~84% at 30K steps

Usage:
Please see the tutorial and website for how to download the CIFAR-10
data set, compile the program and train the model.

http://tensorflow.org/tutorials/deep_cnn/
"""
from datetime import datetime
import os.path
import re
import time

# pylint: disable=unused-import,g-bad-import-order
import tensorflow.python.platform
from tensorflow.python.platform import gfile
import numpy as np
import tensorflow as tf
from tensorflow.models.image.cifar10 import cifar10
# pylint: disable=unused-import,g-bad-import-order

FLAGS = tf.app.flags.FLAGS

tf.app.flags.DEFINE_string('train_dir', '/tmp/cifar10_train',
                           """Directory where to write event logs """
                           """and checkpoint.""")
tf.app.flags.DEFINE_integer('max_steps', 1000000,
                            """Number of batches to run.""")
tf.app.flags.DEFINE_integer('num_gpus', 1,
                            """How many GPUs to use.""")
tf.app.flags.DEFINE_boolean('log_device_placement', False,
                            """Whether to log device placement.""")


def tower_loss(scope):
  """Calculate the total loss on a single tower running the CIFAR model.

  Args:
    scope: unique prefix string identifying the CIFAR tower, e.g. 'tower_0'

  Returns:
     Tensor of shape [] containing the total loss for a batch of data
  """
  # Get images and labels for CIFAR-10.
  images, labels = cifar10.distorted_inputs()

  # Build inference Graph.
  logits = cifar10.inference(images)

  # Build the portion of the Graph calculating the losses. Note that we will
  # assemble the total_loss using a custom function below.
  _ = cifar10.loss(logits, labels)

  # Assemble all of the losses for the current tower only.
  losses = tf.get_collection('losses', scope)

  # Calculate the total loss for the current tower.
  total_loss = tf.add_n(losses, name='total_loss')

  # Compute the moving average of all individual losses and the total loss.
  loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
  loss_averages_op = loss_averages.apply(losses + [total_loss])

  # Attach a scalar summmary to all individual losses and the total loss; do the
  # same for the averaged version of the losses.
  for l in losses + [total_loss]:
    # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
    # session. This helps the clarity of presentation on tensorboard.
    loss_name = re.sub('%s_[0-9]*/' % cifar10.TOWER_NAME, '', l.op.name)
    # Name each loss as '(raw)' and name the moving average version of the loss
    # as the original loss name.
    tf.scalar_summary(loss_name +' (raw)', l)
    tf.scalar_summary(loss_name, loss_averages.average(l))

  with tf.control_dependencies([loss_averages_op]):
    total_loss = tf.identity(total_loss)
  return total_loss


def average_gradients(tower_grads):
  """Calculate the average gradient for each shared variable across all towers.

  Note that this function provides a synchronization point across all towers.

  Args:
    tower_grads: List of lists of (gradient, variable) tuples. The outer list
      is over individual gradients. The inner list is over the gradient
      calculation for each tower.
  Returns:
     List of pairs of (gradient, variable) where the gradient has been averaged
     across all towers.
  """
  average_grads = []
  for grad_and_vars in zip(*tower_grads):
    # Note that each grad_and_vars looks like the following:
    #   ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN))
    grads = []
    for g, _ in grad_and_vars:
      # Add 0 dimension to the gradients to represent the tower.
      expanded_g = tf.expand_dims(g, 0)

      # Append on a 'tower' dimension which we will average over below.
      grads.append(expanded_g)

    # Average over the 'tower' dimension.
    grad = tf.concat(0, grads)
    grad = tf.reduce_mean(grad, 0)

    # Keep in mind that the Variables are redundant because they are shared
    # across towers. So .. we will just return the first tower's pointer to
    # the Variable.
    v = grad_and_vars[0][1]
    grad_and_var = (grad, v)
    average_grads.append(grad_and_var)
  return average_grads


def train():
  """Train CIFAR-10 for a number of steps."""
  with tf.Graph().as_default(), tf.device('/cpu:0'):
    # Create a variable to count the number of train() calls. This equals the
    # number of batches processed * FLAGS.num_gpus.
    global_step = tf.get_variable(
        'global_step', [],
        initializer=tf.constant_initializer(0), trainable=False)

    # Calculate the learning rate schedule.
    num_batches_per_epoch = (cifar10.NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN /
                             FLAGS.batch_size)
    decay_steps = int(num_batches_per_epoch * cifar10.NUM_EPOCHS_PER_DECAY)

    # Decay the learning rate exponentially based on the number of steps.
    lr = tf.train.exponential_decay(cifar10.INITIAL_LEARNING_RATE,
                                    global_step,
                                    decay_steps,
                                    cifar10.LEARNING_RATE_DECAY_FACTOR,
                                    staircase=True)

    # Create an optimizer that performs gradient descent.
    opt = tf.train.GradientDescentOptimizer(lr)

    # Calculate the gradients for each model tower.
    tower_grads = []
    for i in xrange(FLAGS.num_gpus):
      with tf.device('/gpu:%d' % i):
        with tf.name_scope('%s_%d' % (cifar10.TOWER_NAME, i)) as scope:
          # Calculate the loss for one tower of the CIFAR model. This function
          # constructs the entire CIFAR model but shares the variables across
          # all towers.
          loss = tower_loss(scope)

          # Reuse variables for the next tower.
          tf.get_variable_scope().reuse_variables()

          # Retain the summaries from the final tower.
          summaries = tf.get_collection(tf.GraphKeys.SUMMARIES, scope)

          # Calculate the gradients for the batch of data on this CIFAR tower.
          grads = opt.compute_gradients(loss)

          # Keep track of the gradients across all towers.
          tower_grads.append(grads)

    # We must calculate the mean of each gradient. Note that this is the
    # synchronization point across all towers.
    grads = average_gradients(tower_grads)

    # Add a summary to track the learning rate.
    summaries.append(tf.scalar_summary('learning_rate', lr))

    # Add histograms for gradients.
    for grad, var in grads:
      if grad:
        summaries.append(
            tf.histogram_summary(var.op.name + '/gradients', grad))

    # Apply the gradients to adjust the shared variables.
    apply_gradient_op = opt.apply_gradients(grads, global_step=global_step)

    # Add histograms for trainable variables.
    for var in tf.trainable_variables():
      summaries.append(tf.histogram_summary(var.op.name, var))

    # Track the moving averages of all trainable variables.
    variable_averages = tf.train.ExponentialMovingAverage(
        cifar10.MOVING_AVERAGE_DECAY, global_step)
    variables_averages_op = variable_averages.apply(tf.trainable_variables())

    # Group all updates to into a single train op.
    train_op = tf.group(apply_gradient_op, variables_averages_op)

    # Create a saver.
    saver = tf.train.Saver(tf.all_variables())

    # Build the summary operation from the last tower summaries.
    summary_op = tf.merge_summary(summaries)

    # Build an initialization operation to run below.
    init = tf.initialize_all_variables()

    # Start running operations on the Graph. allow_soft_placement must be set to
    # True to build towers on GPU, as some of the ops do not have GPU
    # implementations.
    sess = tf.Session(config=tf.ConfigProto(
        allow_soft_placement=True,
        log_device_placement=FLAGS.log_device_placement))
    sess.run(init)

    # Start the queue runners.
    tf.train.start_queue_runners(sess=sess)

    summary_writer = tf.train.SummaryWriter(FLAGS.train_dir,
                                            graph_def=sess.graph_def)

    for step in xrange(FLAGS.max_steps):
      start_time = time.time()
      _, loss_value = sess.run([train_op, loss])
      duration = time.time() - start_time

      assert not np.isnan(loss_value), 'Model diverged with loss = NaN'

      if step % 10 == 0:
        num_examples_per_step = FLAGS.batch_size * FLAGS.num_gpus
        examples_per_sec = num_examples_per_step / float(duration)
        sec_per_batch = float(duration) / FLAGS.num_gpus

        format_str = ('%s: step %d, loss = %.2f (%.1f examples/sec; %.3f '
                      'sec/batch)')
        print (format_str % (datetime.now(), step, loss_value,
                             examples_per_sec, sec_per_batch))

      if step % 100 == 0:
        summary_str = sess.run(summary_op)
        summary_writer.add_summary(summary_str, step)

      # Save the model checkpoint periodically.
      if step % 1000 == 0 or (step + 1) == FLAGS.max_steps:
        checkpoint_path = os.path.join(FLAGS.train_dir, 'model.ckpt')
        saver.save(sess, checkpoint_path, global_step=step)


def main(argv=None):  # pylint: disable=unused-argument
  cifar10.maybe_download_and_extract()
  if gfile.Exists(FLAGS.train_dir):
    gfile.DeleteRecursively(FLAGS.train_dir)
  gfile.MakeDirs(FLAGS.train_dir)
  train()


if __name__ == '__main__':
  tf.app.run()