aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/core/kernels/resource_variable_ops.cc
blob: 678d675c4a77d13380e9c355e63d2e05dd0a2b7e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
/* Copyright 2016 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

// Our general strategy for preventing conflicts between concurrent
// reads and writes of resource variables is to:
// * For read operations, we:
//   - acquire the variable's mutex (in "shared" mode);
//   - make a (shallow) copy of the Tensor object, which increments
//     the reference count on the variable's TensorBuffer;
//   - release the variable's mutex;
//   - use the copy of the Tensor object to do the read.
// * For write operations, we:
//   - acquire the variable's mutex (in "exclusive" mode);
//   - check the reference count of variable's TensorBuffer and
//     if it is >1, make a deep copy of the variable's Tensor;
//   - mutate the variable's Tensor;
//   - and release the variable's mutex.
// This allows several read operations to all use the same
// TensorBuffer without needing to copy. When it comes time to write
// it will only make a copy if there is an outstanding read using the
// buffer. Write operations are serialized by the variable's mutex.
//
// For sparse operations (scatter, gather, sparse optimizer updates),
// we need to avoid copies, since there may not be enough memory for
// to copies of the whole tensor. To support this, we make two
// modifications to the above strategy:
// * For sparse reads (gather), we hold the variable's mutex (still in
//   "shared" mode) for the duration of the whole read. This means
//   that as long as you only do sparse read operations no write will
//   see the reference count >1.
// * For sparse write operations where the user explicitly specifies
//   that they want to perform the write without locks held
//   (use_locking=false), we never copy even if the variable's
//   reference count is >1.

#define EIGEN_USE_THREADS

#if GOOGLE_CUDA
#define EIGEN_USE_GPU
#endif

#include <memory>
#include <vector>

#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/framework/register_types.h"
#include "tensorflow/core/framework/resource_mgr.h"
#include "tensorflow/core/framework/tensor_types.h"
#include "tensorflow/core/framework/variant_op_registry.h"
#include "tensorflow/core/kernels/bounds_check.h"
#include "tensorflow/core/kernels/dense_update_functor.h"
#include "tensorflow/core/kernels/gather_functor.h"
#include "tensorflow/core/kernels/resource_variable_ops.h"
#include "tensorflow/core/kernels/scatter_functor.h"
#include "tensorflow/core/kernels/training_op_helpers.h"
#include "tensorflow/core/kernels/variable_ops.h"
#include "tensorflow/core/lib/core/errors.h"
#include "tensorflow/core/lib/core/refcount.h"
#include "tensorflow/core/platform/mem.h"
#include "tensorflow/core/platform/mutex.h"
#include "tensorflow/core/platform/types.h"
#include "tensorflow/core/util/util.h"

namespace tensorflow {

REGISTER_RESOURCE_HANDLE_KERNEL(Var);
REGISTER_KERNEL_BUILDER(Name("_VarHandlesOp").Device(DEVICE_CPU),
                        ResourceHandlesOp<Var>);

ReadVariableOp::ReadVariableOp(OpKernelConstruction* c) : OpKernel(c) {
  OP_REQUIRES_OK(c, c->GetAttr("dtype", &dtype_));
}

void ReadVariableOp::Compute(OpKernelContext* ctx) {
  Var* variable = nullptr;
  const ResourceHandle& handle = HandleFromInput(ctx, 0);
  const auto status = LookupResource(ctx, handle, &variable);
  OP_REQUIRES(ctx, status.ok(),
              errors::FailedPrecondition(
                  "Error while reading resource variable ", handle.name(),
                  " from Container: ", handle.container(),
                  ". This could mean that the variable was uninitialized. ",
                  status.ToString()));

  core::ScopedUnref s(variable);
  // We're acquiring a reference to the underlying buffer while
  // holding a shared lock to guarantee ordering of reads and
  // writes.
  tf_shared_lock ml(*variable->mu());
  const Tensor& t = *variable->tensor();
  OP_REQUIRES(ctx, dtype_ == t.dtype(),
              errors::InvalidArgument(
                  "Trying to read variable with wrong dtype. Expected ",
                  DataTypeString(dtype_), " got ", DataTypeString(t.dtype())));
  ctx->set_output(0, t);
}

ReadVariablesOp::ReadVariablesOp(OpKernelConstruction* c) : OpKernel(c) {
  int n;
  OP_REQUIRES_OK(c, c->GetAttr("N", &n));
  OP_REQUIRES_OK(c, c->GetAttr("dtypes", &dtypes_));
  OP_REQUIRES(c, n == dtypes_.size(),
              errors::InvalidArgument(
                  "Mismatched number of arguments to ReadVariablesOp (", n,
                  " vs. ", dtypes_.size(), ")"));
}

void ReadVariablesOp::Compute(OpKernelContext* ctx) {
  std::vector<std::unique_ptr<Var, core::RefCountDeleter>> variables(
      dtypes_.size());
  std::vector<const ResourceHandle*> handles(dtypes_.size());
  for (size_t i = 0; i < dtypes_.size(); ++i) {
    handles[i] = &HandleFromInput(ctx, i);
  }
  const auto status = LookupResources(ctx, handles, &variables);
  OP_REQUIRES(ctx, status.ok(),
              errors::FailedPrecondition(
                  "Error while reading resource variable. This could mean that "
                  "the variable was uninitialized. ",
                  status.ToString()));

  for (size_t i = 0; i < dtypes_.size(); ++i) {
    // We're acquiring a reference to the underlying buffer while
    // holding a shared lock to guarantee ordering of reads and
    // writes.
    tf_shared_lock ml(*variables[i]->mu());
    const Tensor& t = *variables[i]->tensor();
    OP_REQUIRES(ctx, dtypes_[i] == t.dtype(),
                errors::InvalidArgument(
                    "Trying to read variable ", handles[i]->name(),
                    " from Container: ", handles[i]->container(),
                    " with wrong dtype. Expected ", DataTypeString(dtypes_[i]),
                    " got ", DataTypeString(t.dtype())));
    ctx->set_output(i, t);
  }
}

REGISTER_KERNEL_BUILDER(Name("ReadVariableOp").Device(DEVICE_CPU),
                        ReadVariableOp);
REGISTER_KERNEL_BUILDER(Name("_ReadVariablesOp").Device(DEVICE_CPU),
                        ReadVariablesOp);

#if GOOGLE_CUDA
REGISTER_KERNEL_BUILDER(
    Name("ReadVariableOp").Device(DEVICE_GPU).HostMemory("resource"),
    ReadVariableOp);
REGISTER_KERNEL_BUILDER(
    Name("_ReadVariablesOp").Device(DEVICE_GPU).HostMemory("resources"),
    ReadVariablesOp);

#define REGISTER_GPU_KERNELS(type)                             \
  namespace functor {                                          \
  template <>                                                  \
  void DenseUpdate<GPUDevice, type, ASSIGN>::operator()(       \
      const GPUDevice& d, typename TTypes<type>::Flat lhs,     \
      typename TTypes<type>::ConstFlat rhs);                   \
  extern template struct DenseUpdate<GPUDevice, type, ASSIGN>; \
  }                                                            \
  REGISTER_KERNEL_BUILDER(Name("VarHandleOp")                  \
                              .Device(DEVICE_GPU)              \
                              .HostMemory("resource")          \
                              .TypeConstraint<type>("dtype"),  \
                          ResourceHandleOp<Var>)
TF_CALL_GPU_ALL_TYPES(REGISTER_GPU_KERNELS);
TF_CALL_int64(REGISTER_GPU_KERNELS);
TF_CALL_variant(REGISTER_GPU_KERNELS);
#undef REGISTER_GPU_KERNELS

REGISTER_KERNEL_BUILDER(Name("_VarHandlesOp")
                            .Device(DEVICE_GPU)
                            .HostMemory("resources")
                            .TypeConstraint("dtypes",
                                            {DT_INT64, DT_COMPLEX64,
                                             DT_COMPLEX128, DT_HALF, DT_FLOAT,
                                             DT_DOUBLE, DT_BOOL, DT_VARIANT}),
                        ResourceHandlesOp<Var>);

#endif  // GOOGLE_CUDA

template <typename T>
class VariableShapeOp : public OpKernel {
 public:
  explicit VariableShapeOp(OpKernelConstruction* c) : OpKernel(c) {}

  void Compute(OpKernelContext* ctx) override {
    Var* variable = nullptr;
    OP_REQUIRES_OK(ctx,
                   LookupResource(ctx, HandleFromInput(ctx, 0), &variable));
    core::ScopedUnref s(variable);
    variable->mu()->lock_shared();
    TensorShape shape = variable->tensor()->shape();
    variable->mu()->unlock_shared();
    Tensor* output;
    OP_REQUIRES_OK(ctx, ctx->allocate_output(0, {shape.dims()}, &output));
    for (int i = 0; i < shape.dims(); ++i) {
      output->flat<T>()(i) = shape.dim_size(i);
    }
  }
};

REGISTER_KERNEL_BUILDER(
    Name("VariableShape").Device(DEVICE_CPU).TypeConstraint<int32>("out_type"),
    VariableShapeOp<int32>);
REGISTER_KERNEL_BUILDER(
    Name("VariableShape").Device(DEVICE_CPU).TypeConstraint<int64>("out_type"),
    VariableShapeOp<int64>);

#if GOOGLE_CUDA

REGISTER_KERNEL_BUILDER(Name("VariableShape")
                            .Device(DEVICE_GPU)
                            .TypeConstraint<int32>("out_type")
                            .HostMemory("output")
                            .HostMemory("input"),
                        VariableShapeOp<int32>);
REGISTER_KERNEL_BUILDER(Name("VariableShape")
                            .Device(DEVICE_GPU)
                            .TypeConstraint<int64>("out_type")
                            .HostMemory("output")
                            .HostMemory("input"),
                        VariableShapeOp<int64>);

#endif  // GOOGLE_CUDA

DestroyResourceOp::DestroyResourceOp(OpKernelConstruction* ctx)
    : OpKernel(ctx) {
  OP_REQUIRES_OK(ctx,
                 ctx->GetAttr("ignore_lookup_error", &ignore_lookup_error_));
}

void DestroyResourceOp::Compute(OpKernelContext* ctx) {
  const ResourceHandle& p = HandleFromInput(ctx, 0);
  Status status = DeleteResource(ctx, p);
  if (ignore_lookup_error_ && errors::IsNotFound(status)) {
    return;
  }
  OP_REQUIRES_OK(ctx, status);
}

REGISTER_KERNEL_BUILDER(Name("DestroyResourceOp").Device(DEVICE_CPU),
                        DestroyResourceOp);
REGISTER_KERNEL_BUILDER(
    Name("DestroyResourceOp").Device(DEVICE_GPU).HostMemory("resource"),
    DestroyResourceOp);

template <typename Device, typename T>
class AssignVariableOp : public OpKernel {
 public:
  explicit AssignVariableOp(OpKernelConstruction* c) : OpKernel(c) {
    OP_REQUIRES_OK(c, c->GetAttr("dtype", &dtype_));
    if (!c->GetAttr("_grappler_relax_allocator_constraints",
                    &relax_constraints_)
             .ok()) {
      relax_constraints_ = false;
    }
  }

  void Compute(OpKernelContext* context) override {
    OP_REQUIRES(context, dtype_ == context->input(1).dtype(),
                errors::InvalidArgument(
                    "Variable and value dtypes don't match; respectively, ",
                    DataTypeString(dtype_), " and ",
                    DataTypeString(context->input(1).dtype())));
    Var* variable = nullptr;
    const Tensor& value = context->input(1);
    // Note: every resource-variable-manipulating op assumes copy-on-write
    // semantics, and creates a copy of the variable's Tensor if its refcount is
    // bigger than 1 when we try to modify it. This means we never need to copy
    // the original tensor for AssignVariableOp; even if there are other live
    // users of it we know none can modify it so this is always safe (even in
    // esoteric cases where the same tensor is used to initialize multiple
    // variables or the tensor is a constant this is safe, as future writes will
    // trigger copies).
    OP_REQUIRES_OK(context, LookupOrCreateResource<Var>(
                                context, HandleFromInput(context, 0), &variable,
                                [this, &value](Var** ptr) {
                                  *ptr = new Var(dtype_);
                                  *(*ptr)->tensor() = value;
                                  (*ptr)->is_initialized = true;
                                  return Status::OK();
                                }));
    core::ScopedUnref s(variable);
    mutex_lock ml(*variable->mu());
    OP_REQUIRES(context, variable->tensor()->dtype() == dtype_,
                errors::InvalidArgument(
                    "Trying to assign variable with wrong dtype. Expected ",
                    DataTypeString(variable->tensor()->dtype()), " got ",
                    DataTypeString(dtype_)));
    variable->is_initialized = true;
    *variable->tensor() = value;
  }

 private:
  DataType dtype_;
  bool relax_constraints_;
};

template <typename Device>
class AssignVariableOp<Device, Variant> : public OpKernel {
 public:
  explicit AssignVariableOp(OpKernelConstruction* c) : OpKernel(c) {
    OP_REQUIRES_OK(c, c->GetAttr("dtype", &dtype_));
    OP_REQUIRES(c, dtype_ == DT_VARIANT,
                errors::Internal("Variant kernel called with dtype: ",
                                 DataTypeString(dtype_)));
  }

  void Compute(OpKernelContext* context) override {
    const Tensor& value = context->input(1);
    Var* variable = nullptr;
    OP_REQUIRES_OK(context, LookupOrCreateResource<Var>(
                                context, HandleFromInput(context, 0), &variable,
                                [](Var** ptr) {
                                  // Created on host.
                                  *ptr = new Var(DT_VARIANT);
                                  return Status::OK();
                                }));
    core::ScopedUnref s(variable);

    // For purposes of forwarding DT_VARIANT, we want the least
    // restrictive attr; we already know the input is on host.
    AllocatorAttributes attr;

    // Copying is unnecessary if we are the last user of the value
    // tensor, we can just adopt the input tensor's buffer instead.
    // Note that Variant objects themselves always reside on host.
    //
    // We nevertheless want to signal to the runtime that the tensor
    // should reside in memory of the associated device, as Variant
    // tensors may be marked as sitting on either CPU or GPU.  This
    // helps to elide one or more copies.
    std::unique_ptr<Tensor> input_alias = context->forward_input(
        1, OpKernelContext::Params::kNoReservation /*output_index*/, DT_VARIANT,
        value.shape(),
        DEVICE_MEMORY /* HOST_MEMORY is only reserved for special cases */,
        attr);

    mutex_lock ml(*variable->mu());
    OP_REQUIRES(context, variable->tensor()->dtype() == DT_VARIANT,
                errors::InvalidArgument(
                    "Trying to assign variable with wrong dtype. Expected ",
                    DataTypeString(variable->tensor()->dtype()), " got ",
                    DataTypeString(DT_VARIANT)));
    variable->is_initialized = true;
    *variable->tensor() = Tensor(DT_VARIANT, value.shape());

    if (input_alias) {
      *variable->tensor() = *input_alias;
      return;
    }

    // Need to copy, but maybe we can re-use variable's buffer?
    if (!variable->tensor()->RefCountIsOne() ||
        !variable->tensor()->shape().IsSameSize(value.shape())) {
      PersistentTensor unused;
      Tensor* tmp;
      // Allocation of DT_VARIANT is always on host.
      attr.set_on_host(true);
      OP_REQUIRES_OK(context,
                     context->allocate_persistent(DT_VARIANT, value.shape(),
                                                  &unused, &tmp, attr));
      *variable->tensor() = *tmp;
    }

    const auto elements_in = value.flat<Variant>();
    auto elements_out = variable->tensor()->flat<Variant>();
    for (int64 i = 0; i < elements_in.size(); ++i) {
      elements_out(i) = elements_in(i);
    }
  }

 private:
  DataType dtype_;
};

#define REGISTER_KERNELS(type)                                \
  REGISTER_KERNEL_BUILDER(Name("AssignVariableOp")            \
                              .Device(DEVICE_CPU)             \
                              .TypeConstraint<type>("dtype"), \
                          AssignVariableOp<Eigen::ThreadPoolDevice, type>);

TF_CALL_ALL_TYPES(REGISTER_KERNELS);
TF_CALL_QUANTIZED_TYPES(REGISTER_KERNELS);
#undef REGISTER_KERNELS

#if GOOGLE_CUDA
#define REGISTER_GPU_KERNELS(type)                           \
  REGISTER_KERNEL_BUILDER(Name("AssignVariableOp")           \
                              .Device(DEVICE_GPU)            \
                              .TypeConstraint<type>("dtype") \
                              .HostMemory("resource"),       \
                          AssignVariableOp<GPUDevice, type>);

TF_CALL_GPU_ALL_TYPES(REGISTER_GPU_KERNELS);
TF_CALL_int64(REGISTER_GPU_KERNELS);
TF_CALL_variant(REGISTER_GPU_KERNELS);
#undef REGISTER_GPU_KERNELS
#endif  // GOOGLE_CUDA

template <typename Device, typename T, DenseUpdateType Op>
class AssignUpdateVariableOp : public OpKernel {
 public:
  explicit AssignUpdateVariableOp(OpKernelConstruction* c) : OpKernel(c) {}

  void Compute(OpKernelContext* context) override {
    Var* variable = nullptr;
    OP_REQUIRES_OK(context, LookupResource(context, HandleFromInput(context, 0),
                                           &variable));
    core::ScopedUnref s(variable);

    const Tensor& value = context->input(1);
    // TODO(apassos): We could possibly avoid the copy done by
    // PrepareToUpdateVariable() for commutative operations like Op ==
    // ADD if value's refcount was 1.
    mutex_lock ml(*variable->mu());
    Tensor* var_tensor = variable->tensor();
    OP_REQUIRES(context, var_tensor->shape().IsSameSize(value.shape()),
                errors::InvalidArgument("Cannot update variable with shape ",
                                        var_tensor->shape().DebugString(),
                                        " using a Tensor with shape ",
                                        value.shape().DebugString(),
                                        ", shapes must be equal."));
    OP_REQUIRES_OK(context,
                   PrepareToUpdateVariable<Device, T>(context, var_tensor));
    functor::DenseUpdate<Device, T, Op> update_functor;
    update_functor(context->eigen_device<Device>(), var_tensor->flat<T>(),
                   value.flat<T>());
  }
};

#define REGISTER_KERNELS(type)                                     \
  REGISTER_KERNEL_BUILDER(                                         \
      Name("AssignAddVariableOp")                                  \
          .Device(DEVICE_CPU)                                      \
          .TypeConstraint<type>("dtype"),                          \
      AssignUpdateVariableOp<Eigen::ThreadPoolDevice, type, ADD>); \
  REGISTER_KERNEL_BUILDER(                                         \
      Name("AssignSubVariableOp")                                  \
          .Device(DEVICE_CPU)                                      \
          .TypeConstraint<type>("dtype"),                          \
      AssignUpdateVariableOp<Eigen::ThreadPoolDevice, type, SUB>);

TF_CALL_NUMBER_TYPES(REGISTER_KERNELS);
#undef REGISTER_KERNELS

#if GOOGLE_CUDA
#define REGISTER_GPU_KERNELS(type)                                       \
  REGISTER_KERNEL_BUILDER(Name("AssignAddVariableOp")                    \
                              .Device(DEVICE_GPU)                        \
                              .HostMemory("resource")                    \
                              .TypeConstraint<type>("dtype"),            \
                          AssignUpdateVariableOp<GPUDevice, type, ADD>); \
  REGISTER_KERNEL_BUILDER(Name("AssignSubVariableOp")                    \
                              .Device(DEVICE_GPU)                        \
                              .HostMemory("resource")                    \
                              .TypeConstraint<type>("dtype"),            \
                          AssignUpdateVariableOp<GPUDevice, type, SUB>);

TF_CALL_GPU_NUMBER_TYPES(REGISTER_GPU_KERNELS);
TF_CALL_int64(REGISTER_GPU_KERNELS);
#undef REGISTER_GPU_KERNELS
#endif  // GOOGLE_CUDA

class VarIsInitializedOp : public OpKernel {
 public:
  explicit VarIsInitializedOp(OpKernelConstruction* c) : OpKernel(c) {}

  void Compute(OpKernelContext* context) override {
    Tensor* output = nullptr;
    OP_REQUIRES_OK(context,
                   context->allocate_output(0, TensorShape({}), &output));
    auto output_tensor = output->tensor<bool, 0>();
    Var* variable = nullptr;
    Status s = LookupResource(context, HandleFromInput(context, 0), &variable);
    if (!s.ok()) {
      output_tensor() = false;
      return;
    }
    core::ScopedUnref su(variable);
    mutex_lock ml(*variable->mu());
    output_tensor() = variable->is_initialized;
  }
};

REGISTER_KERNEL_BUILDER(Name("VarIsInitializedOp").Device(DEVICE_CPU),
                        VarIsInitializedOp);

#if GOOGLE_CUDA
REGISTER_KERNEL_BUILDER(Name("VarIsInitializedOp")
                            .Device(DEVICE_GPU)
                            .HostMemory("resource")
                            .HostMemory("is_initialized"),
                        IsResourceInitialized<Var>);
#endif  // GOOGLE_CUDA

template <typename Device, typename T, typename Index>
class ResourceGatherOp : public OpKernel {
 public:
  explicit ResourceGatherOp(OpKernelConstruction* c) : OpKernel(c) {}

  void Compute(OpKernelContext* c) override {
    Var* v = nullptr;
    OP_REQUIRES_OK(c, LookupResource(c, HandleFromInput(c, 0), &v));
    core::ScopedUnref su(v);
    // NOTE: We hold the lock for the whole gather operation instead
    // of increasing the reference count of v->tensor() to avoid a
    // situation where a write to the same variable will see a
    // reference count greater than one and make a copy of the
    // (potentially very large) tensor buffer.
    tf_shared_lock ml(*v->mu());
    const Tensor& params = *v->tensor();
    const Tensor& indices = c->input(1);
    OP_REQUIRES(
        c, TensorShapeUtils::IsVectorOrHigher(params.shape()),
        errors::InvalidArgument("params must be at least 1 dimensional"));

    // Check that we have enough index space
    const int64 N = indices.NumElements();
    OP_REQUIRES(
        c, params.dim_size(0) <= std::numeric_limits<Index>::max(),
        errors::InvalidArgument("params.shape[0] too large for ",
                                DataTypeString(DataTypeToEnum<Index>::v()),
                                " indexing: ", params.dim_size(0), " > ",
                                std::numeric_limits<Index>::max()));

    // The result shape is indices.shape + params.shape[1:].
    TensorShape result_shape = indices.shape();
    for (int i = 1; i < params.dims(); i++) {
      result_shape.AddDim(params.dim_size(i));
    }

    Tensor* out = nullptr;
    Tensor tmp;
    if (params.dtype() == DT_VARIANT) {
      tmp = Tensor(DT_VARIANT, result_shape);
      c->set_output(0, tmp);
      out = &tmp;
    } else {
      OP_REQUIRES_OK(c, c->allocate_output(0, result_shape, &out));
    }
    if (N > 0) {
      const int64 gather_dim_size = params.dim_size(0);
      int64 inner_size = 1;
      for (int i = 1; i < params.dims(); i++) {
        inner_size *= params.dim_size(i);
      }
      auto params_flat = params.shaped<T, 3>({1, gather_dim_size, inner_size});
      auto indices_flat = indices.flat<Index>();
      auto out_flat = out->shaped<T, 3>({1, N, out->NumElements() / N});

      functor::GatherFunctor<Device, T, Index> functor;
      int64 bad_i = functor(c, params_flat, indices_flat, out_flat);

      OP_REQUIRES(
          c, bad_i < 0,
          errors::InvalidArgument(
              "indices", SliceDebugString(indices.shape(), bad_i), " = ",
              indices_flat(bad_i), " is not in [0, ", params.dim_size(0), ")"));
    }
  }
};

#define REGISTER_GATHER_FULL(dev, type, index_type)                    \
  REGISTER_KERNEL_BUILDER(Name("ResourceGather")                       \
                              .Device(DEVICE_##dev)                    \
                              .HostMemory("resource")                  \
                              .TypeConstraint<type>("dtype")           \
                              .TypeConstraint<index_type>("Tindices"), \
                          ResourceGatherOp<dev##Device, type, index_type>)

#define REGISTER_GATHER_ALL_INDICES(dev, type) \
  REGISTER_GATHER_FULL(dev, type, int32);      \
  REGISTER_GATHER_FULL(dev, type, int64)

#define REGISTER_GATHER_CPU(type) REGISTER_GATHER_ALL_INDICES(CPU, type)

// Registration of the CPU implementations.
TF_CALL_ALL_TYPES(REGISTER_GATHER_CPU);
TF_CALL_QUANTIZED_TYPES(REGISTER_GATHER_CPU);

// Registers GPU kernels.
#if GOOGLE_CUDA
#define REGISTER_GATHER_GPU(type) REGISTER_GATHER_ALL_INDICES(GPU, type)

TF_CALL_GPU_NUMBER_TYPES(REGISTER_GATHER_GPU);

// Variant objects themselves sit on CPU, even if they contain data
// pointing to a device.
REGISTER_KERNEL_BUILDER(Name("ResourceGather")
                            .Device(DEVICE_GPU)
                            .HostMemory("resource")
                            .HostMemory("indices")
                            .TypeConstraint<Variant>("dtype")
                            .TypeConstraint<int32>("Tindices"),
                        ResourceGatherOp<GPUDevice, Variant, int32>)
REGISTER_KERNEL_BUILDER(Name("ResourceGather")
                            .Device(DEVICE_GPU)
                            .HostMemory("resource")
                            .HostMemory("indices")
                            .TypeConstraint<Variant>("dtype")
                            .TypeConstraint<int64>("Tindices"),
                        ResourceGatherOp<GPUDevice, Variant, int64>)

#endif  // GOOGLE_CUDA

#undef REGISTER_GATHER_CPU
#undef REGISTER_GATHER_GPU
#undef REGISTER_GATHER_ALL_INDICES
#undef REGISTER_GATHER_FULL

template <typename Device, typename T, typename Index, scatter_op::UpdateOp op>
class ResourceScatterUpdateOp : public OpKernel {
 public:
  explicit ResourceScatterUpdateOp(OpKernelConstruction* c) : OpKernel(c) {}

  void Compute(OpKernelContext* c) override {
    Var* v = nullptr;
    OP_REQUIRES_OK(c, LookupResource(c, HandleFromInput(c, 0), &v));
    core::ScopedUnref unref_v(v);
    mutex_lock ml(*v->mu());
    Tensor* params = v->tensor();
    OP_REQUIRES_OK(c, PrepareToUpdateVariable<Device, T>(c, params));
    const Tensor& indices = c->input(1);
    const Tensor& updates = c->input(2);

    // Check that we have enough index space
    const int64 N_big = indices.NumElements();
    OP_REQUIRES(
        c, N_big <= std::numeric_limits<Index>::max(),
        errors::InvalidArgument("indices has too many elements for ",
                                DataTypeString(DataTypeToEnum<Index>::v()),
                                " indexing: ", N_big, " > ",
                                std::numeric_limits<Index>::max()));
    const Index N = static_cast<Index>(N_big);
    OP_REQUIRES(
        c, params->dim_size(0) <= std::numeric_limits<Index>::max(),
        errors::InvalidArgument("params.shape[0] too large for ",
                                DataTypeString(DataTypeToEnum<Index>::v()),
                                " indexing: ", params->dim_size(0), " > ",
                                std::numeric_limits<Index>::max()));

    if (N > 0) {
      auto indices_flat = indices.flat<Index>();
      auto params_flat = params->flat_outer_dims<T>();
      if (TensorShapeUtils::IsScalar(updates.shape())) {
        const auto update = updates.scalar<T>();

        functor::ScatterScalarFunctor<Device, T, Index, op> functor;
        const Index bad_i = functor(c, c->template eigen_device<Device>(),
                                    params_flat, update, indices_flat);
        OP_REQUIRES(c, bad_i < 0,
                    errors::InvalidArgument(
                        "indices", SliceDebugString(indices.shape(), bad_i),
                        " = ", indices_flat(bad_i), " is not in [0, ",
                        params->dim_size(0), ")"));
      } else {
        int64 num_updates = updates.NumElements();
        OP_REQUIRES(c, num_updates % N == 0,
                    errors::InvalidArgument(
                        "shape of indices (", indices.shape().DebugString(),
                        ") is not compatible with the shape of updates (",
                        updates.shape().DebugString(), ")"));
        auto updates_flat = updates.shaped<T, 2>({N, num_updates / N});

        functor::ScatterFunctor<Device, T, Index, op> functor;
        const Index bad_i = functor(c, c->template eigen_device<Device>(),
                                    params_flat, updates_flat, indices_flat);
        OP_REQUIRES(c, bad_i < 0,
                    errors::InvalidArgument(
                        "indices", SliceDebugString(indices.shape(), bad_i),
                        " = ", indices_flat(bad_i), " is not in [0, ",
                        params->dim_size(0), ")"));
      }
    }
  }
};

#define REGISTER_SCATTER_KERNEL_INDEX(type, index_type, dev, name, op) \
  REGISTER_KERNEL_BUILDER(                                             \
      Name(name)                                                       \
          .Device(DEVICE_##dev)                                        \
          .HostMemory("resource")                                      \
          .TypeConstraint<type>("dtype")                               \
          .TypeConstraint<index_type>("Tindices"),                     \
      ResourceScatterUpdateOp<dev##Device, type, index_type, op>)

#define REGISTER_SCATTER_KERNEL(type, dev, name, op)         \
  REGISTER_SCATTER_KERNEL_INDEX(type, int32, dev, name, op); \
  REGISTER_SCATTER_KERNEL_INDEX(type, int64, dev, name, op);

#define REGISTER_SCATTER_ARITHMETIC(type, dev)                \
  REGISTER_SCATTER_KERNEL(type, dev, "ResourceScatterAdd",    \
                          scatter_op::UpdateOp::ADD);         \
  REGISTER_SCATTER_KERNEL(type, dev, "ResourceScatterSub",    \
                          scatter_op::UpdateOp::SUB);         \
  REGISTER_SCATTER_KERNEL(type, dev, "ResourceScatterMul",    \
                          scatter_op::UpdateOp::MUL);         \
  REGISTER_SCATTER_KERNEL(type, dev, "ResourceScatterDiv",    \
                          scatter_op::UpdateOp::DIV);         \
  REGISTER_SCATTER_KERNEL(type, dev, "ResourceScatterUpdate", \
                          scatter_op::UpdateOp::ASSIGN);
#define REGISTER_SCATTER_MINMAX(type, dev)                 \
  REGISTER_SCATTER_KERNEL(type, dev, "ResourceScatterMin", \
                          scatter_op::UpdateOp::MIN);      \
  REGISTER_SCATTER_KERNEL(type, dev, "ResourceScatterMax", \
                          scatter_op::UpdateOp::MAX);

// Registers CPU kernels.
#define REGISTER_SCATTER_ARITHMETIC_CPU(type) \
  REGISTER_SCATTER_ARITHMETIC(type, CPU);
#define REGISTER_SCATTER_MINMAX_CPU(type) REGISTER_SCATTER_MINMAX(type, CPU);

TF_CALL_NUMBER_TYPES(REGISTER_SCATTER_ARITHMETIC_CPU);
TF_CALL_REAL_NUMBER_TYPES(REGISTER_SCATTER_MINMAX_CPU);

REGISTER_SCATTER_KERNEL(string, CPU, "ResourceScatterUpdate",
                        scatter_op::UpdateOp::ASSIGN);
REGISTER_SCATTER_KERNEL(bool, CPU, "ResourceScatterUpdate",
                        scatter_op::UpdateOp::ASSIGN);
REGISTER_SCATTER_KERNEL(Variant, CPU, "ResourceScatterUpdate",
                        scatter_op::UpdateOp::ASSIGN);

// Registers GPU kernels.
#if GOOGLE_CUDA
#define REGISTER_SCATTER_ARITHMETIC_GPU(type) \
  REGISTER_SCATTER_ARITHMETIC(type, GPU);
#define REGISTER_SCATTER_MINMAX_GPU(type) REGISTER_SCATTER_MINMAX(type, GPU);

#define REGISTER_SCATTER_UPDATE_GPU(type) REGISTER_SCATTER_UPDATE(type, GPU);

TF_CALL_GPU_NUMBER_TYPES_NO_HALF(REGISTER_SCATTER_ARITHMETIC_GPU);
TF_CALL_GPU_NUMBER_TYPES_NO_HALF(REGISTER_SCATTER_MINMAX_GPU);

REGISTER_KERNEL_BUILDER(Name("ResourceScatterUpdate")
                            .Device(DEVICE_GPU)
                            .HostMemory("resource")
                            .HostMemory("indices")
                            .TypeConstraint<Variant>("dtype")
                            .TypeConstraint<int32>("Tindices"),
                        ResourceScatterUpdateOp<GPUDevice, Variant, int32,
                                                scatter_op::UpdateOp::ASSIGN>)
REGISTER_KERNEL_BUILDER(Name("ResourceScatterUpdate")
                            .Device(DEVICE_GPU)
                            .HostMemory("resource")
                            .TypeConstraint<bool>("dtype")
                            .TypeConstraint<int32>("Tindices"),
                        ResourceScatterUpdateOp<GPUDevice, bool, int32,
                                                scatter_op::UpdateOp::ASSIGN>)
REGISTER_KERNEL_BUILDER(Name("ResourceScatterUpdate")
                            .Device(DEVICE_GPU)
                            .HostMemory("resource")
                            .HostMemory("indices")
                            .TypeConstraint<Variant>("dtype")
                            .TypeConstraint<int64>("Tindices"),
                        ResourceScatterUpdateOp<GPUDevice, Variant, int64,
                                                scatter_op::UpdateOp::ASSIGN>)

#endif  // GOOGLE_CUDA

#undef REGISTER_SCATTER_ARITHMETIC
#undef REGISTER_SCATTER_ARITHMETIC_CPU
#undef REGISTER_SCATTER_MINMAX
#undef REGISTER_SCATTER_MINMAX_CPU
#undef REGISTER_SCATTER_KERNEL
#undef REGISTER_SCATTER_KERNEL_INDEX

}  // namespace tensorflow