aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/core/kernels/eigen_spatial_convolutions.h
blob: e926d73f87c0bb936d068312e7973e4ff6513399 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
/* Copyright 2015 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#ifndef TENSORFLOW_CORE_KERNELS_EIGEN_SPATIAL_CONVOLUTIONS_H_
#define TENSORFLOW_CORE_KERNELS_EIGEN_SPATIAL_CONVOLUTIONS_H_

#include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor"

namespace Eigen {

namespace internal {

// WARNING: Most of the code here implicitly assumes that the matrix is in
// ColMajor layout. This is guaranteed by the tensor contraction (see
// TensorContraction.h).
//
// Inside Eigen a tensor contraction is represented by a matrix multiplication.
// We don't want to actually extract image patches and reshape the result into
// a matrix (this involves allocating huge extra memory), so the patch
// extraction and reshape operations are implicit.
//
// TensorContractionInputMapper takes a matrix index and returns the coefficient
// (or the packet) of the "virtual tensor", that would be at that index if we
// were to actually reshape the result of patch extraction.
//
// TensorContractionSubMapper provides a similar view into the "virtual matrix"
// at the given vertical and horizontal offsets.
//
// "Virtual matrix" dimensions:
//   *0: kernelChannels * kernelRows * kernelCols;
//    1: out_height * out_width; * OTHERS (e.g batches, etc...)
//
// *) extracted patches are continuous in memory (innermost dimension assuming
//    col major layout)
//
// With this dimensions:
//   row - offset within a single patch (in code: patchId)
//   col - index of the extracted patch (in code: patchIndex)
//         patchIndex ∈ [0..num_patches * OTHERS] (batch and other dimensions)
//
// TODO(ezhulenev): Consolidate this part of the code with the image patch
// extraction code since they are both very similar.
template <typename NewDimension, DenseIndex Rows, DenseIndex Cols,
          typename ArgType, typename Device, typename Scalar_, typename Index,
          typename nocontract_t, typename contract_t, int Side, int packet_size,
          bool inner_dim_contiguous, bool inner_dim_reordered, int Alignment>
class TensorContractionInputMapper<
    Scalar_, Index, Side,
    TensorEvaluator<
        const TensorReshapingOp<NewDimension,
                                const TensorImagePatchOp<Rows, Cols, ArgType> >,
        Device>,
    nocontract_t, contract_t, packet_size, inner_dim_contiguous,
    inner_dim_reordered, Alignment> {
 public:
  typedef Scalar_ Scalar;
  typedef TensorContractionInputMapper<
      Scalar, Index, Side,
      TensorEvaluator<
          const TensorReshapingOp<
              NewDimension, const TensorImagePatchOp<Rows, Cols, ArgType> >,
          Device>,
      nocontract_t, contract_t, packet_size, inner_dim_contiguous,
      inner_dim_reordered, Alignment>
      Self;
  typedef TensorContractionSubMapper<
      Scalar, Index, Side,
      TensorEvaluator<
          const TensorReshapingOp<
              NewDimension, const TensorImagePatchOp<Rows, Cols, ArgType> >,
          Device>,
      nocontract_t, contract_t, packet_size, inner_dim_contiguous,
      inner_dim_reordered, Alignment>
      SubMapper;
  typedef SubMapper VectorMapper;
  typedef SubMapper LinearMapper;
  typedef typename packet_traits<Scalar>::type Packet;

  EIGEN_DEVICE_FUNC
  TensorContractionInputMapper(
      const TensorEvaluator<
          const TensorReshapingOp<
              NewDimension, const TensorImagePatchOp<Rows, Cols, ArgType> >,
          Device>& tensor,
      const nocontract_t&, const nocontract_t&, const contract_t&,
      const contract_t&)
      : m_impl(tensor.impl().impl()) {
    Index patch_rows;
    Index patch_depth;
    if (internal::traits<ArgType>::Layout == ColMajor) {
      patch_depth = tensor.impl().dimensions()[0];
      patch_rows = tensor.impl().dimensions()[1];
      m_patch_cols = tensor.impl().dimensions()[2];
      m_num_patches = tensor.impl().dimensions()[3];
    } else {
      const size_t NumDims = tensor.impl().dimensions().size();
      patch_depth = tensor.impl().dimensions()[NumDims - 1];
      patch_rows = tensor.impl().dimensions()[NumDims - 2];
      m_patch_cols = tensor.impl().dimensions()[NumDims - 3];
      m_num_patches = tensor.impl().dimensions()[NumDims - 4];
    }

    // Strides for navigating through the single patch.
    m_patch_row_stride = patch_depth;
    m_patch_col_stride = patch_rows * m_patch_row_stride;

    m_patch_row_inflate_strides = tensor.impl().rowInflateStride();
    m_patch_col_inflate_strides = tensor.impl().colInflateStride();

    m_colStride = patch_rows;

    m_outputRows = tensor.impl().outputRows();
    m_row_strides = tensor.impl().userRowStride();
    m_col_strides = tensor.impl().userColStride();

    m_in_row_strides = tensor.impl().userInRowStride();
    m_in_col_strides = tensor.impl().userInColStride();

    if (internal::traits<ArgType>::Layout == ColMajor) {
      m_inputRows = tensor.impl().impl().dimensions()[1];
      m_inputCols = tensor.impl().impl().dimensions()[2];
    } else {
      const int NumDims = tensor.impl().impl().dimensions().size();
      m_inputRows = tensor.impl().impl().dimensions()[NumDims - 2];
      m_inputCols = tensor.impl().impl().dimensions()[NumDims - 3];
    }

    m_rowInputStride = patch_depth;
    m_colInputStride = patch_depth * m_inputRows;
    m_patchInputStride = patch_depth * m_inputRows * m_inputCols;

    m_rowPaddingTop = tensor.impl().rowPaddingTop();
    m_colPaddingLeft = tensor.impl().colPaddingLeft();

    m_fastPatchRowStride =
        internal::TensorIntDivisor<Index>(m_patch_row_stride);
    m_fastPatchColStride =
        internal::TensorIntDivisor<Index>(m_patch_col_stride);
    m_fastInputRowStride =
        internal::TensorIntDivisor<Index>(m_patch_row_inflate_strides);
    m_fastInputColStride =
        internal::TensorIntDivisor<Index>(m_patch_col_inflate_strides);
    m_fastNumPatches = internal::TensorIntDivisor<Index>(m_num_patches);
    m_fastColStride = internal::TensorIntDivisor<Index>(m_colStride);
    m_fastOutputRows = internal::TensorIntDivisor<Index>(m_outputRows);
    m_fastDimZero = internal::TensorIntDivisor<Index>(patch_depth);
  }

  EIGEN_DEVICE_FUNC
  TensorContractionInputMapper(const TensorContractionInputMapper& base_mapper)
      : m_impl(base_mapper.m_impl) {
    m_patch_cols = base_mapper.m_patch_cols;
    m_num_patches = base_mapper.m_num_patches;

    m_patch_row_stride = base_mapper.m_patch_row_stride;
    m_patch_col_stride = base_mapper.m_patch_col_stride;

    m_patch_row_inflate_strides = base_mapper.m_patch_row_inflate_strides;
    m_patch_col_inflate_strides = base_mapper.m_patch_col_inflate_strides;

    m_colStride = base_mapper.m_colStride;

    m_rowInputStride = base_mapper.m_rowInputStride;
    m_colInputStride = base_mapper.m_colInputStride;
    m_patchInputStride = base_mapper.m_patchInputStride;

    m_inputRows = base_mapper.m_inputRows;
    m_inputCols = base_mapper.m_inputCols;

    m_outputRows = base_mapper.m_outputRows;
    m_row_strides = base_mapper.m_row_strides;
    m_col_strides = base_mapper.m_col_strides;

    m_in_row_strides = base_mapper.m_in_row_strides;
    m_in_col_strides = base_mapper.m_in_col_strides;

    m_rowPaddingTop = base_mapper.m_rowPaddingTop;
    m_colPaddingLeft = base_mapper.m_colPaddingLeft;

    m_fastPatchRowStride = base_mapper.m_fastPatchRowStride;
    m_fastPatchColStride = base_mapper.m_fastPatchColStride;
    m_fastInputRowStride = base_mapper.m_fastInputRowStride;
    m_fastInputColStride = base_mapper.m_fastInputColStride;
    m_fastNumPatches = base_mapper.m_fastNumPatches;
    m_fastColStride = base_mapper.m_fastColStride;
    m_fastOutputRows = base_mapper.m_fastOutputRows;
    m_fastDimZero = base_mapper.m_fastDimZero;
  }

  // If true, turns off some optimizations for loading packets since the image
  // patches are "non-standard" such as there are non-trivial strides or
  // inflations in the input.
  EIGEN_DEVICE_FUNC
  EIGEN_ALWAYS_INLINE bool nonStandardPatches() const {
    return m_in_row_strides != 1 || m_in_col_strides != 1 ||
           m_patch_row_inflate_strides != 1 || m_patch_col_inflate_strides != 1;
  }

  EIGEN_DEVICE_FUNC
  EIGEN_STRONG_INLINE SubMapper getSubMapper(Index i, Index j) const {
    return SubMapper(*this, i, j);
  }

  EIGEN_DEVICE_FUNC
  EIGEN_STRONG_INLINE LinearMapper getLinearMapper(Index i, Index j) const {
    return LinearMapper(*this, i, j);
  }

  EIGEN_DEVICE_FUNC
  EIGEN_ALWAYS_INLINE Scalar operator()(Index row) const {
    Index rowIndex, colIndex, otherIndex;
    computeBaseIndices(0, rowIndex, colIndex, otherIndex);
    return loadCoeff(row, rowIndex, colIndex, otherIndex);
  }

  // Load the coefficient at the patchIndex location instead of the usual
  // m_rowIndex,
  // m_colIndex, m_otherIndex. This is currently only used by the gpu code.
  // EIGEN_DEVICE_FUNC
  EIGEN_DEVICE_FUNC
  EIGEN_STRONG_INLINE Scalar operator()(Index row, Index patchIndex) const {
    Index rowIndex, colIndex, otherIndex;
    computeBaseIndices(patchIndex, rowIndex, colIndex, otherIndex);
    return loadCoeff(row, rowIndex, colIndex, otherIndex);
  }

  EIGEN_DEVICE_FUNC
  EIGEN_ALWAYS_INLINE Packet loadPacket(Index row) const {
    Index rowIndex, colIndex, otherIndex;
    computeBaseIndices(0, rowIndex, colIndex, otherIndex);
    return loadPacket(row, rowIndex, colIndex, otherIndex);
  }

  // Load the packet at the patchIndex location instead of the usual m_rowIndex,
  // m_colIndex, m_otherIndex. This is currently only used by the gpu code.
  EIGEN_DEVICE_FUNC
  EIGEN_ALWAYS_INLINE Packet loadPacket(Index row, Index patchIndex) const {
    Index rowIndex, colIndex, otherIndex;
    computeBaseIndices(patchIndex, rowIndex, colIndex, otherIndex);
    return loadPacket(row, rowIndex, colIndex, otherIndex);
  }

  EIGEN_DEVICE_FUNC
  EIGEN_ALWAYS_INLINE const TensorEvaluator<ArgType, Device>& impl() const {
    return m_impl;
  }

  EIGEN_DEVICE_FUNC
  EIGEN_ALWAYS_INLINE Index patchDepth() const { return m_rowInputStride; }
  EIGEN_DEVICE_FUNC
  EIGEN_ALWAYS_INLINE Index patchRows() const { return m_colStride; }
  EIGEN_DEVICE_FUNC
  EIGEN_ALWAYS_INLINE Index patchCols() const { return m_patch_cols; }

  EIGEN_DEVICE_FUNC
  EIGEN_ALWAYS_INLINE Packet packetNoPadding(const Index depth,
                                             const Index baseIndex) const {
    const Index inputIndex = depth + baseIndex;
    return m_impl.template packet<Unaligned>(inputIndex);
  }

 private:
  friend class TensorContractionSubMapper<
      Scalar, Index, Side,
      TensorEvaluator<
          const TensorReshapingOp<
              NewDimension, const TensorImagePatchOp<Rows, Cols, ArgType> >,
          Device>,
      nocontract_t, contract_t, packet_size, inner_dim_contiguous,
      inner_dim_reordered, Alignment>;

  // Load coefficient from a patch specified by the "within patch offset"
  // (patchId) and the precomputed indices of the first element of the patch.
  EIGEN_DEVICE_FUNC
  EIGEN_STRONG_INLINE Scalar loadCoeff(Index patchId, Index rowIndex,
                                       Index colIndex, Index otherIndex) const {
    // Find the offset of the element wrt the location of the first element.
    const Index patchOffset = patchId / m_fastDimZero;

    const Index colOffset = patchOffset / m_fastColStride;
    const Index inputCol = colIndex + colOffset * m_in_col_strides;
    const Index origInputCol =
        (m_patch_col_inflate_strides == 1)
            ? inputCol
            : ((inputCol >= 0) ? (inputCol / m_fastInputColStride) : 0);

    const Index rowOffset = patchOffset - colOffset * m_colStride;
    const Index inputRow = rowIndex + rowOffset * m_in_row_strides;
    const Index origInputRow =
        (m_patch_row_inflate_strides == 1)
            ? inputRow
            : ((inputRow >= 0) ? (inputRow / m_fastInputRowStride) : 0);
    if (origInputCol < 0 || origInputRow < 0 || origInputCol >= m_inputCols ||
        origInputRow >= m_inputRows ||
        (inputCol != origInputCol * m_patch_col_inflate_strides) ||
        (inputRow != origInputRow * m_patch_row_inflate_strides)) {
      return Scalar(0);
    }
    const Index depth = patchId - patchOffset * patchDepth();
    const Index inputIndex = depth + origInputRow * m_rowInputStride +
                             origInputCol * m_colInputStride + otherIndex;
    return m_impl.coeff(inputIndex);
  }

  // This is the same as loadCoeff(...), but optimized for all `inflate_strides`
  // and `in_strides` equal to 1 (template specialization without templates).
  EIGEN_DEVICE_FUNC
  EIGEN_STRONG_INLINE Scalar loadCoeffStandard(Index patchId, Index rowIndex,
                                               Index colIndex,
                                               Index otherIndex) const {
    eigen_assert(!nonStandardPatches());

    // Find the offset of the element wrt the location of the first element.
    const Index patchOffset = patchId / m_fastDimZero;
    const Index colOffset = patchOffset / m_fastColStride;
    const Index rowOffset = patchOffset - colOffset * m_colStride;
    const Index inputCol = colIndex + colOffset;
    const Index inputRow = rowIndex + rowOffset;
    if (inputCol < 0 || inputCol >= m_inputCols || inputRow < 0 ||
        inputRow >= m_inputRows) {
      return Scalar(0);
    }
    const Index depth = patchId - patchOffset * patchDepth();
    const Index inputIndex = depth + inputRow * m_rowInputStride +
                             inputCol * m_colInputStride + otherIndex;
    return m_impl.coeff(inputIndex);
  }

  // Load packet from a patch specified by the "within patch offset"
  // (patchId) and the precomputed indices of the first element of the patch.
  EIGEN_DEVICE_FUNC
  EIGEN_ALWAYS_INLINE Packet loadPacket(Index patchId, Index rowIndex,
                                        Index colIndex,
                                        Index otherIndex) const {
    const Index packetSize = internal::unpacket_traits<Packet>::size;
    EIGEN_STATIC_ASSERT(packetSize > 1, YOU_MADE_A_PROGRAMMING_MISTAKE)
    eigen_assert(patchId < patchDepth() * patchRows() * m_patch_cols);

    if (nonStandardPatches()) {
      return packetWithPossibleZero(patchId, rowIndex, colIndex, otherIndex);
    }
    return loadPacketStandard(patchId, rowIndex, colIndex, otherIndex);
  }

  EIGEN_DEVICE_FUNC
  EIGEN_ALWAYS_INLINE Packet loadPacketStandard(Index patchId, Index rowIndex,
                                                Index colIndex,
                                                Index otherIndex) const {
    const Index packetSize = internal::unpacket_traits<Packet>::size;
    EIGEN_STATIC_ASSERT(packetSize > 1, YOU_MADE_A_PROGRAMMING_MISTAKE)
    eigen_assert(patchId < patchDepth() * patchRows() * m_patch_cols);

    eigen_assert(!nonStandardPatches());

    if ((patchDepth() % packetSize) == 0) {
      return loadPacketFast(patchId, rowIndex, colIndex, otherIndex);
    } else {
      // Offsets and input calculation here are identical to
      // loadCoeffStandard(...), but repeated twice.

      const Index patchOffsets[2] = {
          patchId / m_fastDimZero, (patchId + packetSize - 1) / m_fastDimZero};

      const Index colOffsets[2] = {patchOffsets[0] / m_fastColStride,
                                   patchOffsets[1] / m_fastColStride};
      const Index inputCols[2] = {colIndex + colOffsets[0],
                                  colIndex + colOffsets[1]};
      if (inputCols[0] >= m_inputCols || inputCols[1] < 0) {
        // all zeros
        return internal::pset1<Packet>(Scalar(0));
      }

      if (inputCols[0] == inputCols[1]) {
        const Index rowOffsets[2] = {
            patchOffsets[0] - colOffsets[0] * m_colStride,
            patchOffsets[1] - colOffsets[1] * m_colStride};
        eigen_assert(rowOffsets[0] <= rowOffsets[1]);
        const Index inputRows[2] = {rowIndex + rowOffsets[0],
                                    rowIndex + rowOffsets[1]};

        if (inputRows[0] >= m_inputRows || inputRows[1] < 0) {
          // all zeros
          return internal::pset1<Packet>(Scalar(0));
        }

        if (inputRows[0] >= 0 && inputRows[1] < m_inputRows) {
          // no padding
          const Index depth = patchId - patchOffsets[0] * patchDepth();
          const Index inputIndex = depth + inputRows[0] * m_rowInputStride +
                                   inputCols[0] * m_colInputStride + otherIndex;
          return m_impl.template packet<Unaligned>(inputIndex);
        }
      }
    }
    return packetWithPossibleZero(patchId, rowIndex, colIndex, otherIndex);
  }

  EIGEN_DEVICE_FUNC
  EIGEN_ALWAYS_INLINE Packet loadPacketFast(Index patchId, Index rowIndex,
                                            Index colIndex,
                                            Index otherIndex) const {
    const Index packetSize = internal::unpacket_traits<Packet>::size;
    EIGEN_STATIC_ASSERT(packetSize > 1, YOU_MADE_A_PROGRAMMING_MISTAKE)
    eigen_assert(patchId < patchDepth() * patchRows() * m_patch_cols);

    eigen_assert(!nonStandardPatches());
    eigen_assert((patchDepth() % packetSize) == 0);
    // Find the offset of the element wrt the location of the first element.
    const Index patchOffset = patchId / m_fastDimZero;
    eigen_assert((patchId + packetSize - 1) / m_fastDimZero == patchOffset);

    const Index colOffset = patchOffset / m_fastColStride;
    const Index rowOffset = patchOffset - colOffset * m_colStride;
    const Index inputCol = colIndex + colOffset;
    const Index inputRow = rowIndex + rowOffset;
    if (inputCol < 0 || inputRow < 0 || inputCol >= m_inputCols ||
        inputRow >= m_inputRows) {
      // all zeros
      return internal::pset1<Packet>(Scalar(0));
    }
    // no padding
    const Index depth = patchId - patchOffset * patchDepth();
    const Index inputIndex = depth + inputRow * m_rowInputStride +
                             inputCol * m_colInputStride + otherIndex;
    return m_impl.template packet<Unaligned>(inputIndex);
  }

  EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet packetWithPossibleZero(
      Index patchId, Index rowIndex, Index colIndex, Index otherIndex) const {
    const int packetSize = internal::unpacket_traits<Packet>::size;
    EIGEN_ALIGN_MAX
    typename internal::remove_const<Scalar>::type values[packetSize];
    for (int i = 0; i < packetSize; ++i) {
      values[i] = loadCoeff(patchId + i, rowIndex, colIndex, otherIndex);
    }
    Packet rslt = internal::pload<Packet>(values);
    return rslt;
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void computeBaseIndices(
      Index patchIndex, Index& rowIndex, Index& colIndex,
      Index& otherIndex) const {
    const size_t NumInputDims = array_size<
        typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
    otherIndex = (NumInputDims == 3) ? 0 : patchIndex / m_fastNumPatches;
    const Index patch2DIndex = (NumInputDims == 3)
                                   ? patchIndex
                                   : (patchIndex - otherIndex * m_num_patches);
    otherIndex *= m_patchInputStride;
    colIndex = patch2DIndex / m_fastOutputRows;
    rowIndex = patch2DIndex - colIndex * m_outputRows;
    colIndex = colIndex * m_col_strides - m_colPaddingLeft;
    rowIndex = rowIndex * m_row_strides - m_rowPaddingTop;
  }

  Index m_patch_cols;   // number of columns in the patch
  Index m_num_patches;  // number of patches to extract.

  // Strides for navigating through the single patch.
  Index m_patch_row_stride;
  Index m_patch_col_stride;
  internal::TensorIntDivisor<Index> m_fastPatchRowStride;
  internal::TensorIntDivisor<Index> m_fastPatchColStride;

  Index m_patch_row_inflate_strides;  // the strides for row inflation in the
                                      // image patch
  Index m_patch_col_inflate_strides;  // the strides for col inflation in the
                                      // image patch
  // Fast representation of inflation strides.
  internal::TensorIntDivisor<Index> m_fastInputRowStride;
  internal::TensorIntDivisor<Index> m_fastInputColStride;

  Index m_otherStride;
  Index m_colStride;
  internal::TensorIntDivisor<Index> m_fastNumPatches;
  internal::TensorIntDivisor<Index> m_fastColStride;

  Index m_rowInputStride;    // row stride in the input tensor
  Index m_colInputStride;    // col stride in the input tensor
  Index m_patchInputStride;  // patch stride in the input tensor

  Index m_inputRows;  // Number of rows in the input tensor
  Index m_inputCols;  // Number of cols in the input tensor

  Index m_outputRows;  // Number of patch rows

  Index m_row_strides;  // User specified row stride
  Index m_col_strides;  // User specified col stride

  Index m_in_row_strides;  // User specified input row stride
  Index m_in_col_strides;  // User specified input col stride

  Index m_rowPaddingTop;   // Row padding
  Index m_colPaddingLeft;  // Column padding

  internal::TensorIntDivisor<Index> m_fastOutputRows;
  internal::TensorIntDivisor<Index> m_fastDimZero;

  const TensorEvaluator<ArgType, Device> m_impl;
};

template <typename NewDimension, DenseIndex Rows, DenseIndex Cols,
          typename ArgType, typename Device, typename Scalar, typename Index,
          typename nocontract_t, typename contract_t, int Side, int packet_size,
          bool inner_dim_contiguous, bool inner_dim_reordered, int Alignment>
class TensorContractionSubMapper<
    Scalar, Index, Side,
    TensorEvaluator<
        const TensorReshapingOp<NewDimension,
                                const TensorImagePatchOp<Rows, Cols, ArgType> >,
        Device>,
    nocontract_t, contract_t, packet_size, inner_dim_contiguous,
    inner_dim_reordered, Alignment> {
 public:
  typedef typename packet_traits<Scalar>::type Packet;
  typedef typename packet_traits<Scalar>::half HalfPacket;

  typedef TensorContractionInputMapper<
      Scalar, Index, Side,
      TensorEvaluator<
          const TensorReshapingOp<
              NewDimension, const TensorImagePatchOp<Rows, Cols, ArgType> >,
          Device>,
      nocontract_t, contract_t, packet_size, inner_dim_contiguous,
      inner_dim_reordered, Alignment>
      ParentMapper;
  typedef TensorContractionSubMapper<
      Scalar, Index, Side,
      TensorEvaluator<
          const TensorReshapingOp<
              NewDimension, const TensorImagePatchOp<Rows, Cols, ArgType> >,
          Device>,
      nocontract_t, contract_t, packet_size, inner_dim_contiguous,
      inner_dim_reordered, Alignment>
      Self;
  typedef Self LinearMapper;

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorContractionSubMapper(
      const ParentMapper& base_mapper, Index vert_offset, Index horiz_offset)
      : m_base_mapper(base_mapper),
        m_depth_offset(vert_offset),
        m_col_offset(horiz_offset) {
    m_base_mapper.computeBaseIndices(m_col_offset, m_rowIndex, m_colIndex,
                                     m_otherIndex);
  }
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorContractionSubMapper(
      const Self& base_mapper, Index vert_offset, Index horiz_offset)
      : m_base_mapper(base_mapper.m_base_mapper),
        m_depth_offset(vert_offset + base_mapper.m_depth_offset),
        m_col_offset(horiz_offset + base_mapper.m_col_offset) {
    m_base_mapper.computeBaseIndices(m_col_offset, m_rowIndex, m_colIndex,
                                     m_otherIndex);
  }
  EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Scalar operator()(Index i) const {
    return m_base_mapper.loadCoeff(i + m_depth_offset, m_rowIndex, m_colIndex,
                                   m_otherIndex);
  }
  EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Scalar operator()(Index i,
                                                          Index j) const {
    return m_base_mapper(i + m_depth_offset, j + m_col_offset);
  }

  EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet loadPacket(Index i) const {
    return m_base_mapper.loadPacket(i + m_depth_offset, m_rowIndex, m_colIndex,
                                    m_otherIndex);
  }
  EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet loadPacket(Index i,
                                                          Index j) const {
    return m_base_mapper.template loadPacket<Alignment>(i + m_depth_offset,
                                                        j + m_col_offset);
  }

  EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Scalar
  loadCoeffStandard(Index i) const {
    return m_base_mapper.loadCoeffStandard(i + m_depth_offset, m_rowIndex,
                                           m_colIndex, m_otherIndex);
  }

  EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet loadPacketFast(Index i) const {
    return m_base_mapper.loadPacketFast(i + m_depth_offset, m_rowIndex,
                                        m_colIndex, m_otherIndex);
  }
  EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet
  loadPacketStandard(Index i) const {
    return m_base_mapper.loadPacketStandard(i + m_depth_offset, m_rowIndex,
                                            m_colIndex, m_otherIndex);
  }
  template <typename Packet>
  EIGEN_DEVICE_FUNC bool aligned(Index) const {
    return false;
  }

  EIGEN_DEVICE_FUNC
  EIGEN_ALWAYS_INLINE bool nonStandardPatches() const {
    return m_base_mapper.nonStandardPatches();
  }

  // Max(Col|Row|Depth): compute the upper limit for the column, row and depth
  // index respectively that fits into the peeled_k elements starting at
  // m_depth_offset.

  EIGEN_DEVICE_FUNC
  EIGEN_ALWAYS_INLINE Index maxCol(const Index peeled_k) const {
    const Index max_col =
        fastPatchColStride().divide(m_depth_offset + peeled_k);
    return std::min<Index>(1 + max_col, patchCols());
  }

  EIGEN_DEVICE_FUNC
  EIGEN_ALWAYS_INLINE Index maxRow(const Index peeled_k,
                                   const Index col) const {
    const Index max_row = fastPatchRowStride().divide(
        m_depth_offset + peeled_k - col * patchColStride());
    return std::min<Index>(1 + max_row, patchRows());
  }

  // MaxDepth uses only the remaining number of elements in the peeled_k.
  EIGEN_DEVICE_FUNC
  EIGEN_ALWAYS_INLINE Index maxDepth(const Index num_elements,
                                     const Index start_depth) const {
    return std::min<Index>(start_depth + num_elements, patchDepth());
  }

  // Every register matters in this code, so sometimes to prevent register
  // spilling, instead of the variable that you would expect to see, we use
  // another one, that is guaranteed to have the same value. E.g. patch depth is
  // always the same as input depth, and it's also the same as input row stride.
  // Bunch of other parameters have similar relations.

  typedef internal::TensorIntDivisor<Index> IndexDivisor;

  EIGEN_DEVICE_FUNC
  EIGEN_ALWAYS_INLINE Index patchDepth() const {
    return m_base_mapper.m_rowInputStride;
  }
  EIGEN_DEVICE_FUNC
  EIGEN_ALWAYS_INLINE Index patchRows() const {
    return m_base_mapper.m_colStride;
  }
  EIGEN_DEVICE_FUNC
  EIGEN_ALWAYS_INLINE Index patchCols() const {
    return m_base_mapper.m_patch_cols;
  }

  EIGEN_DEVICE_FUNC
  EIGEN_ALWAYS_INLINE Index patchRowStride() const {
    eigen_assert(patchDepth() == m_base_mapper.m_patch_row_stride &&
                 "Patch depth must be equal to patch row stride.");
    return patchDepth();
  }
  EIGEN_DEVICE_FUNC
  EIGEN_ALWAYS_INLINE Index patchColStride() const {
    return m_base_mapper.m_patch_col_stride;
  }

  EIGEN_DEVICE_FUNC
  EIGEN_ALWAYS_INLINE IndexDivisor fastPatchRowStride() const {
    eigen_assert(patchDepth() == m_base_mapper.m_patch_row_stride &&
                 "Patch depth must be equal to patch row stride.");
    return m_base_mapper.m_fastDimZero;  // patch_depth
  }
  EIGEN_DEVICE_FUNC
  EIGEN_ALWAYS_INLINE IndexDivisor fastPatchColStride() const {
    return m_base_mapper.m_fastPatchColStride;
  }

  EIGEN_DEVICE_FUNC
  EIGEN_ALWAYS_INLINE Packet packetNoPadding(const Index depth,
                                             const Index baseIndex) const {
    const Index inputIndex = depth + baseIndex;
    return m_base_mapper.m_impl.template packet<Unaligned>(inputIndex);
  }

  EIGEN_DEVICE_FUNC
  EIGEN_ALWAYS_INLINE bool padRow(const Index row) const {
    const Index r = m_rowIndex + row;
    return r < 0 || r >= m_base_mapper.m_inputRows;
  }
  EIGEN_DEVICE_FUNC
  EIGEN_ALWAYS_INLINE bool padCol(const Index col) const {
    const Index c = m_colIndex + col;
    return c < 0 || c >= m_base_mapper.m_inputCols;
  }
  EIGEN_DEVICE_FUNC
  EIGEN_ALWAYS_INLINE Index baseIndex(const Index row, const Index col) const {
    const Index r = m_rowIndex + row;
    const Index c = m_colIndex + col;
    return r * m_base_mapper.m_rowInputStride +
           c * m_base_mapper.m_colInputStride + m_otherIndex;
  }

  EIGEN_DEVICE_FUNC
  EIGEN_ALWAYS_INLINE Index rowOffset() const {
    const Index patchOffset = m_depth_offset / m_base_mapper.m_fastDimZero;
    const Index colOffset = patchOffset / m_base_mapper.m_fastColStride;
    return patchOffset - colOffset * m_base_mapper.m_colStride;
  }

  EIGEN_DEVICE_FUNC
  EIGEN_ALWAYS_INLINE Index colOffset() const {
    const Index patchOffset = m_depth_offset / m_base_mapper.m_fastDimZero;
    const Index colOffset = patchOffset / m_base_mapper.m_fastColStride;
    return colOffset;
  }

  EIGEN_DEVICE_FUNC
  EIGEN_ALWAYS_INLINE Index depthOffset() const {
    return m_depth_offset % patchDepth();
  }

  EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE LinearMapper
  getLinearMapper(Index i, Index j) const {
    return LinearMapper(m_base_mapper, i + m_depth_offset, j + m_col_offset);
  }

 private:
  const ParentMapper& m_base_mapper;  // that was a reference before
  Index m_depth_offset;               // First row in the input matrix
  Index m_col_offset;                 // First col in the input matrix

  // Knowing that: col_offset == patchIndex * OTHERS, we keep precomputed base
  // indices for the first element in a patch specified by col_offset
  // (see computeBaseIndices(...) for details).
  Index m_rowIndex;
  Index m_colIndex;
  Index m_otherIndex;
};

// Arrange a block of the right input matrix (in our case it's always a "virtual
// matrix" constructed from extracted image patches) in contiguous memory.
//
// Given column major input (A0 beside A1 in memory):
// A0 B0 C0 D0  E0 F0 G0 H0 ... Z0
// A1 B1 C1 D1  E1 F1 G1 H1 ... Z1
// A2 B2 C2 D2  E2 F2 G2 H2 ... Z2
// A3 B3 C3 D3  E3 F3 G3 H3 ... Z3
// A4 B4 C4 D4  E4 F4 G4 H4 ... Z4
// A5 B5 C5 D5  E5 F5 G5 H5 ... Z5
// A6 B6 C6 D6  E6 F6 G6 H6 ... Z6
// A7 B7 C7 D7  E7 F7 G7 H7 ... Z7
// A8 ...
// ...
//
// *) A, B, C, ... - patches extracted from the original input.
// *) A0, A1, A2 ... - values from the same patch at different offsets.
//
// The traversal (packed rhs memory) order (B0 besides A0 in memory):
// A0 B0 C0 D0 A1 B1 C1 D1 ...
// E0 F0 G0 H0 E1 F1 G1 H1 ...
// ...
// Z0 Z1 Z2 Z3 Z4 Z5 Z6 Z7 ... <- doesn't belong to any block (nr = 4)
//
// This traversal order must be the same as in default gemm_pack_rhs defined in
// GeneralBlockPanelKernel.h.
//
// *) nr - number of registers along the 'n' dimension.
//    See GeneralBlockPanelKernel.h and "Anatomy of High-Performance Matrix
//    Multiplication" paper.
template <typename NewDimension, DenseIndex Rows, DenseIndex Cols,
          typename ArgType, typename Device, typename Scalar, typename Index,
          typename nocontract_t, typename contract_t, int packet_size,
          bool inner_dim_contiguous, bool inner_dim_reordered, int Alignment,
          int nr>
struct gemm_pack_rhs<
    Scalar, Index,
    TensorContractionSubMapper<
        Scalar, Index, Rhs,
        TensorEvaluator<
            const TensorReshapingOp<
                NewDimension, const TensorImagePatchOp<Rows, Cols, ArgType> >,
            Device>,
        nocontract_t, contract_t, packet_size, inner_dim_contiguous,
        inner_dim_reordered, Alignment>,
    nr, ColMajor, false, false> {
  typedef TensorContractionSubMapper<
      Scalar, Index, Rhs,
      TensorEvaluator<
          const TensorReshapingOp<
              NewDimension, const TensorImagePatchOp<Rows, Cols, ArgType> >,
          Device>,
      nocontract_t, contract_t, packet_size, inner_dim_contiguous,
      inner_dim_reordered, Alignment>
      SubMapper;
  typedef SubMapper DataMapper;
  typedef typename packet_traits<Scalar>::type Packet;

  EIGEN_STATIC_ASSERT((nr == 4), YOU_MADE_A_PROGRAMMING_MISTAKE);

  EIGEN_DEVICE_FUNC
  EIGEN_DONT_INLINE void operator()(Scalar* block, const DataMapper& rhs,
                                    Index depth, Index cols, Index stride = 0,
                                    Index offset = 0) const {
    eigen_assert(stride == 0);
    eigen_assert(offset == 0);

    const Index packet_cols4 = (cols / 4) * 4;
    const Index peeled_k = (depth / packet_size) * packet_size;
    const bool non_standard_patches = rhs.nonStandardPatches();

    for (Index j2 = 0; j2 < packet_cols4; j2 += 4) {
      const SubMapper dm0 = rhs.getLinearMapper(0, j2 + 0);
      const SubMapper dm1 = rhs.getLinearMapper(0, j2 + 1);
      const SubMapper dm2 = rhs.getLinearMapper(0, j2 + 2);
      const SubMapper dm3 = rhs.getLinearMapper(0, j2 + 3);

      Index k = 0;
      if ((packet_size % 4) == 0 && !non_standard_patches) {
        // FAST PATH:
        // Iterate over patch columns and rows, if we know that a single
        // packet do not span across multiple rows or columns.
        if ((rhs.patchDepth() % packet_size) == 0) {
          const Index start_col = rhs.colOffset();
          const Index max_col = rhs.maxCol(peeled_k);

          for (Index c = start_col; c < max_col; ++c) {
            eigen_assert(k <= peeled_k);

            const Index start_row = (c == start_col) ? rhs.rowOffset() : 0;
            const Index max_row = rhs.maxRow(peeled_k, c);

            const bool pad_col0 = dm0.padCol(c);
            const bool pad_col1 = dm1.padCol(c);
            const bool pad_col2 = dm2.padCol(c);
            const bool pad_col3 = dm3.padCol(c);

            for (Index r = start_row; r < max_row; ++r) {
              eigen_assert(k <= peeled_k);

              const bool pad0 = pad_col0 || dm0.padRow(r);
              const bool pad1 = pad_col1 || dm1.padRow(r);
              const bool pad2 = pad_col2 || dm2.padRow(r);
              const bool pad3 = pad_col3 || dm3.padRow(r);

              const Index idx0 = dm0.baseIndex(r, c);
              const Index idx1 = dm1.baseIndex(r, c);
              const Index idx2 = dm2.baseIndex(r, c);
              const Index idx3 = dm3.baseIndex(r, c);

              const Index start_depth = ((c == start_col) && (r == start_row))
                                            ? rhs.depthOffset()
                                            : 0;
              const Index max_depth = rhs.maxDepth(peeled_k - k, start_depth);
              eigen_assert((max_depth - start_depth) % packet_size == 0);

              for (Index d = start_depth; d < max_depth; d += packet_size) {
                eigen_assert(k < peeled_k);
                PacketBlock<Packet, 4> kernel;
                kernel.packet[0] = pad0 ? pset1<Packet>(Scalar(0))
                                        : rhs.packetNoPadding(d, idx0);
                kernel.packet[1] = pad1 ? pset1<Packet>(Scalar(0))
                                        : rhs.packetNoPadding(d, idx1);
                kernel.packet[2] = pad2 ? pset1<Packet>(Scalar(0))
                                        : rhs.packetNoPadding(d, idx2);
                kernel.packet[3] = pad3 ? pset1<Packet>(Scalar(0))
                                        : rhs.packetNoPadding(d, idx3);
                ptranspose(kernel);
                pstoreu(block + 0 * packet_size, kernel.packet[0]);
                pstoreu(block + 1 * packet_size, kernel.packet[1]);
                pstoreu(block + 2 * packet_size, kernel.packet[2]);
                pstoreu(block + 3 * packet_size, kernel.packet[3]);
                block += 4 * packet_size;
                k += packet_size;
              }
            }
          }

          // The loop above should fill peeled_k elements.
          eigen_assert(peeled_k == k);

        } else {
          for (; k < peeled_k; k += packet_size) {
            PacketBlock<Packet, 4> kernel;
            kernel.packet[0] = dm0.loadPacketStandard(k);
            kernel.packet[1] = dm1.loadPacketStandard(k);
            kernel.packet[2] = dm2.loadPacketStandard(k);
            kernel.packet[3] = dm3.loadPacketStandard(k);
            ptranspose(kernel);
            pstoreu(block + 0 * packet_size, kernel.packet[0]);
            pstoreu(block + 1 * packet_size, kernel.packet[1]);
            pstoreu(block + 2 * packet_size, kernel.packet[2]);
            pstoreu(block + 3 * packet_size, kernel.packet[3]);
            block += 4 * packet_size;
          }
        }
      }

      // Copy the remaining coefficients of the column block after the peeled_k.
      if (!rhs.nonStandardPatches()) {
        for (; k < depth; k++) {
          block[0] = dm0.loadCoeffStandard(k);
          block[1] = dm1.loadCoeffStandard(k);
          block[2] = dm2.loadCoeffStandard(k);
          block[3] = dm3.loadCoeffStandard(k);
          block += 4;
        }
      } else {
        for (; k < depth; k++) {
          block[0] = dm0(k);
          block[1] = dm1(k);
          block[2] = dm2(k);
          block[3] = dm3(k);
          block += 4;
        }
      }
    }

    // copy the remaining columns one at a time (nr==1)
    for (Index j2 = packet_cols4; j2 < cols; ++j2) {
      const SubMapper dm0 = rhs.getLinearMapper(0, j2);
      for (Index k = 0; k < depth; k++) {
        *block = dm0(k);
        block += 1;
      }
    }
  }
};

// Template specialization for packet_size = 2. We must special-case packet
// blocks with nr > packet_size, e.g. PacketBlock<Packet2d, 4>.
template <typename NewDimension, DenseIndex Rows, DenseIndex Cols,
          typename ArgType, typename Device, typename Scalar, typename Index,
          typename nocontract_t, typename contract_t, bool inner_dim_contiguous,
          bool inner_dim_reordered, int Alignment, int nr>
struct gemm_pack_rhs<
    Scalar, Index,
    TensorContractionSubMapper<
        Scalar, Index, Rhs,
        TensorEvaluator<
            const TensorReshapingOp<
                NewDimension, const TensorImagePatchOp<Rows, Cols, ArgType> >,
            Device>,
        nocontract_t, contract_t, 2, inner_dim_contiguous, inner_dim_reordered,
        Alignment>,
    nr, ColMajor, false, false> {
  typedef TensorContractionSubMapper<
      Scalar, Index, Rhs,
      TensorEvaluator<
          const TensorReshapingOp<
              NewDimension, const TensorImagePatchOp<Rows, Cols, ArgType> >,
          Device>,
      nocontract_t, contract_t, 2, inner_dim_contiguous, inner_dim_reordered,
      Alignment>
      SubMapper;
  typedef SubMapper DataMapper;
  typedef typename packet_traits<Scalar>::type Packet;

  EIGEN_STATIC_ASSERT((nr == 4), YOU_MADE_A_PROGRAMMING_MISTAKE);

  EIGEN_DEVICE_FUNC
  EIGEN_DONT_INLINE void operator()(Scalar* block, const DataMapper& rhs,
                                    Index depth, Index cols, Index stride = 0,
                                    Index offset = 0) const {
    eigen_assert(stride == 0);
    eigen_assert(offset == 0);

    const int packet_size = 2;
    const Index packet_cols4 = (cols / 4) * 4;
    const Index peeled_k = (depth / packet_size) * packet_size;
    const bool non_standard_patches = rhs.nonStandardPatches();

    for (Index j2 = 0; j2 < packet_cols4; j2 += 4) {
      const SubMapper dm0 = rhs.getLinearMapper(0, j2 + 0);
      const SubMapper dm1 = rhs.getLinearMapper(0, j2 + 1);
      const SubMapper dm2 = rhs.getLinearMapper(0, j2 + 2);
      const SubMapper dm3 = rhs.getLinearMapper(0, j2 + 3);

      Index k = 0;
      if (!non_standard_patches) {
        // FAST PATH:
        // Iterate over patch columns and rows if we know that a single
        // packet do not span across multiple rows or columns.
        if ((rhs.patchDepth() % packet_size) == 0) {
          const Index start_col = rhs.colOffset();
          const Index max_col = rhs.maxCol(peeled_k);

          for (Index c = start_col; c < max_col; ++c) {
            eigen_assert(k <= peeled_k);

            const Index start_row = (c == start_col) ? rhs.rowOffset() : 0;
            const Index max_row = rhs.maxRow(peeled_k, c);

            const bool pad_col0 = dm0.padCol(c);
            const bool pad_col1 = dm1.padCol(c);
            const bool pad_col2 = dm2.padCol(c);
            const bool pad_col3 = dm3.padCol(c);

            for (Index r = start_row; r < max_row; ++r) {
              eigen_assert(k <= peeled_k);

              const bool pad0 = pad_col0 || dm0.padRow(r);
              const bool pad1 = pad_col1 || dm1.padRow(r);
              const bool pad2 = pad_col2 || dm2.padRow(r);
              const bool pad3 = pad_col3 || dm3.padRow(r);

              const Index idx0 = dm0.baseIndex(r, c);
              const Index idx1 = dm1.baseIndex(r, c);
              const Index idx2 = dm2.baseIndex(r, c);
              const Index idx3 = dm3.baseIndex(r, c);

              const Index start_depth = ((c == start_col) && (r == start_row))
                                            ? rhs.depthOffset()
                                            : 0;
              const Index max_depth = rhs.maxDepth(peeled_k - k, start_depth);
              eigen_assert((max_depth - start_depth) % packet_size == 0);

              for (Index d = start_depth; d < max_depth; d += packet_size) {
                eigen_assert(k < peeled_k);
                PacketBlock<Packet, 2> kernel0;
                PacketBlock<Packet, 2> kernel1;
                kernel0.packet[0] = pad0 ? pset1<Packet>(Scalar(0))
                                         : rhs.packetNoPadding(d, idx0);
                kernel0.packet[1] = pad1 ? pset1<Packet>(Scalar(0))
                                         : rhs.packetNoPadding(d, idx1);
                kernel1.packet[0] = pad2 ? pset1<Packet>(Scalar(0))
                                         : rhs.packetNoPadding(d, idx2);
                kernel1.packet[1] = pad3 ? pset1<Packet>(Scalar(0))
                                         : rhs.packetNoPadding(d, idx3);
                ptranspose(kernel0);
                ptranspose(kernel1);
                pstoreu(block + 0 * packet_size, kernel0.packet[0]);
                pstoreu(block + 1 * packet_size, kernel1.packet[0]);
                pstoreu(block + 2 * packet_size, kernel0.packet[1]);
                pstoreu(block + 3 * packet_size, kernel1.packet[1]);
                block += 4 * packet_size;
                k += packet_size;
              }
            }
          }

          // The loop above should fill peeled_k elements.
          eigen_assert(peeled_k == k);

        } else {
          // Packet can span multiple rows or columns, so we have to go
          // though the slower "standard" path.
          for (; k < peeled_k; k += packet_size) {
            PacketBlock<Packet, 2> kernel0;
            PacketBlock<Packet, 2> kernel1;
            kernel0.packet[0] = dm0.loadPacketStandard(k);
            kernel0.packet[1] = dm1.loadPacketStandard(k);
            kernel1.packet[0] = dm2.loadPacketStandard(k);
            kernel1.packet[1] = dm3.loadPacketStandard(k);
            ptranspose(kernel0);
            ptranspose(kernel1);
            pstoreu(block + 0 * packet_size, kernel0.packet[0]);
            pstoreu(block + 1 * packet_size, kernel1.packet[0]);
            pstoreu(block + 2 * packet_size, kernel0.packet[1]);
            pstoreu(block + 3 * packet_size, kernel1.packet[1]);
            block += 4 * packet_size;
          }
        }
      }

      // Copy the remaining coefficients of the column block after the peeled_k.
      if (!non_standard_patches) {
        for (; k < depth; k++) {
          block[0] = dm0.loadCoeffStandard(k);
          block[1] = dm1.loadCoeffStandard(k);
          block[2] = dm2.loadCoeffStandard(k);
          block[3] = dm3.loadCoeffStandard(k);
          block += 4;
        }
      } else {
        for (; k < depth; k++) {
          block[0] = dm0(k);
          block[1] = dm1(k);
          block[2] = dm2(k);
          block[3] = dm3(k);
          block += 4;
        }
      }
    }

    // Copy the remaining columns one at a time (nr==1).
    for (Index j2 = packet_cols4; j2 < cols; ++j2) {
      const SubMapper dm0 = rhs.getLinearMapper(0, j2);
      for (Index k = 0; k < depth; k++) {
        *block = dm0(k);
        block += 1;
      }
    }
  }
};

// Special case for non-vectorized types such as float16.
template <typename NewDimension, DenseIndex Rows, DenseIndex Cols,
          typename ArgType, typename Device, typename Scalar, typename Index,
          typename nocontract_t, typename contract_t, bool inner_dim_contiguous,
          bool inner_dim_reordered, int Alignment, int nr>
struct gemm_pack_rhs<
    Scalar, Index,
    TensorContractionSubMapper<
        Scalar, Index, Rhs,
        TensorEvaluator<
            const TensorReshapingOp<
                NewDimension, const TensorImagePatchOp<Rows, Cols, ArgType> >,
            Device>,
        nocontract_t, contract_t, 1, inner_dim_contiguous, inner_dim_reordered,
        Alignment>,
    nr, ColMajor, false, false> {
  typedef TensorContractionSubMapper<
      Scalar, Index, Rhs,
      TensorEvaluator<
          const TensorReshapingOp<
              NewDimension, const TensorImagePatchOp<Rows, Cols, ArgType> >,
          Device>,
      nocontract_t, contract_t, 1, inner_dim_contiguous, inner_dim_reordered,
      Alignment>
      SubMapper;
  typedef SubMapper DataMapper;

  EIGEN_STATIC_ASSERT((nr == 4), YOU_MADE_A_PROGRAMMING_MISTAKE);

  EIGEN_DEVICE_FUNC
  EIGEN_DONT_INLINE void operator()(Scalar* block, const DataMapper& rhs,
                                    Index depth, Index cols, Index stride = 0,
                                    Index offset = 0) const {
    eigen_assert(stride == 0);
    eigen_assert(offset == 0);

    const Index packet_cols4 = (cols / 4) * 4;

    for (Index j2 = 0; j2 < packet_cols4; j2 += 4) {
      const SubMapper dm0 = rhs.getLinearMapper(0, j2 + 0);
      const SubMapper dm1 = rhs.getLinearMapper(0, j2 + 1);
      const SubMapper dm2 = rhs.getLinearMapper(0, j2 + 2);
      const SubMapper dm3 = rhs.getLinearMapper(0, j2 + 3);

      if (!rhs.nonStandardPatches()) {
        for (Index k = 0; k < depth; k++) {
          block[0] = dm0.loadCoeffStandard(k);
          block[1] = dm1.loadCoeffStandard(k);
          block[2] = dm2.loadCoeffStandard(k);
          block[3] = dm3.loadCoeffStandard(k);
          block += 4;
        }
      } else {
        for (Index k = 0; k < depth; k++) {
          block[0] = dm0(k);
          block[1] = dm1(k);
          block[2] = dm2(k);
          block[3] = dm3(k);
          block += 4;
        }
      }
    }

    // Copy the remaining columns one at a time (nr==1).
    for (Index j2 = packet_cols4; j2 < cols; ++j2) {
      const SubMapper dm0 = rhs.getLinearMapper(0, j2);
      for (Index k = 0; k < depth; k++) {
        *block = dm0(k);
        block += 1;
      }
    }
  }
};

}  // end namespace internal

/** SpatialConvolution
 * \ingroup CXX11_NeuralNetworks_Module
 *
 * \brief Applies a 2D convolution over a multichannel input image.
 *
 * The input parameter is expected to be a tensor with a rank of 3 or more
 * (channels, height, width, and optionally others)
 * The kernel parameter is expected to be a 4D tensor (filters, channels,
 * kernel_height, kernel_width)
 * The input and the kernel must both be in col-major layout. The result will
 * also be in col-major layout.
 *
 * If col_in_stride, row_in_stride > 1, then applies convolution with holes
 * (aka atrous convolution), sampling every col_in_stride, row_in_stride input
 * pixels.
 *
 * The result can be assigned to a tensor of rank equal to the rank of the
 * input. The dimensions of the result will be filters, height, width (and
 * others if applicable).
 *
 * It is possible to swap the order of the width and height dimensions provided
 * that the same order is used in the input, the kernel, and the output.
 *
 */
template <typename Input, typename Kernel>
EIGEN_DEVICE_FUNC
    EIGEN_ALWAYS_INLINE static const typename internal::conditional<
        internal::traits<Input>::Layout == ColMajor,
        TensorReshapingOp<
            const DSizes<typename internal::traits<Input>::Index,
                         internal::traits<Input>::NumDimensions>,
            const TensorContractionOp<
                const array<IndexPair<typename internal::traits<Input>::Index>,
                            1>,
                const TensorReshapingOp<
                    const DSizes<typename internal::traits<Input>::Index, 2>,
                    const Kernel>,
                const TensorReshapingOp<
                    const DSizes<typename internal::traits<Input>::Index, 2>,
                    const TensorImagePatchOp<Dynamic, Dynamic,
                                             const Input> > > >,
        TensorReshapingOp<
            const DSizes<typename internal::traits<Input>::Index,
                         internal::traits<Input>::NumDimensions>,
            const TensorContractionOp<
                const array<IndexPair<typename internal::traits<Input>::Index>,
                            1>,
                const TensorReshapingOp<
                    const DSizes<typename internal::traits<Input>::Index, 2>,
                    const TensorImagePatchOp<Dynamic, Dynamic, const Input> >,
                const TensorReshapingOp<
                    const DSizes<typename internal::traits<Input>::Index, 2>,
                    const Kernel> > > >::type
    SpatialConvolution(const Input& input, const Kernel& kernel,
                       const DenseIndex row_stride = 1,
                       const DenseIndex col_stride = 1,
                       const PaddingType padding_type = PADDING_SAME,
                       const DenseIndex row_in_stride = 1,
                       const DenseIndex col_in_stride = 1) {
  typedef typename internal::traits<Input>::Index TensorIndex;
  TensorRef<Tensor<typename internal::traits<Input>::Scalar,
                   internal::traits<Input>::NumDimensions,
                   internal::traits<Input>::Layout, TensorIndex> >
      in(input);
  TensorRef<Tensor<typename internal::traits<Kernel>::Scalar,
                   internal::traits<Kernel>::NumDimensions,
                   internal::traits<Kernel>::Layout, TensorIndex> >
      kern(kernel);

  EIGEN_STATIC_ASSERT(
      internal::traits<Input>::Layout == internal::traits<Kernel>::Layout,
      YOU_MADE_A_PROGRAMMING_MISTAKE);
  const bool isColMajor = (internal::traits<Input>::Layout == ColMajor);

  const int NumDims = internal::traits<Input>::NumDimensions;

  // Number of filters to apply. This is the same as the output depth of the
  // result
  const TensorIndex kernelFilters =
      isColMajor ? kern.dimensions()[0] : kern.dimensions()[3];
  // Number of channels. This is the same as the input depth.
  const TensorIndex kernelChannels =
      isColMajor ? kern.dimensions()[1] : kern.dimensions()[2];
  const TensorIndex kernelRows =
      isColMajor ? kern.dimensions()[2] : kern.dimensions()[1];
  const TensorIndex kernelCols =
      isColMajor ? kern.dimensions()[3] : kern.dimensions()[0];

  const DenseIndex kernelRowsEff =
      kernelRows + (kernelRows - 1) * (row_in_stride - 1);
  const DenseIndex kernelColsEff =
      kernelCols + (kernelCols - 1) * (col_in_stride - 1);

  array<IndexPair<TensorIndex>, 1> contract_dims;
  contract_dims[0] = IndexPair<TensorIndex>(1, 0);

  const TensorIndex InputRows =
      isColMajor ? in.dimension(1) : in.dimension(NumDims - 2);
  const TensorIndex InputCols =
      isColMajor ? in.dimension(2) : in.dimension(NumDims - 3);

  TensorIndex out_height;
  TensorIndex out_width;
  switch (padding_type) {
    case PADDING_VALID:
      out_height = numext::ceil((InputRows - kernelRowsEff + 1.f) /
                                static_cast<float>(row_stride));
      out_width = numext::ceil((InputCols - kernelColsEff + 1.f) /
                               static_cast<float>(col_stride));
      break;
    case PADDING_SAME:
      out_height = numext::ceil(InputRows / static_cast<float>(row_stride));
      out_width = numext::ceil(InputCols / static_cast<float>(col_stride));
      break;
    default:
      // Initialize unused variables to avoid a compiler warning
      out_height = 0;
      out_width = 0;
      eigen_assert(false && "unexpected padding");
  }

  // Molds the output of the patch extraction code into a 2d tensor:
  // - the first dimension (dims[0]): the patch values to be multiplied with the
  // kernels
  // - the second dimension (dims[1]): everything else
  DSizes<TensorIndex, 2> pre_contract_dims;
  if (isColMajor) {
    pre_contract_dims[0] = kernelChannels * kernelRows * kernelCols;
    pre_contract_dims[1] = out_height * out_width;
    for (int i = 3; i < NumDims; ++i) {
      pre_contract_dims[1] *= in.dimension(i);
    }
  } else {
    pre_contract_dims[1] = kernelChannels * kernelRows * kernelCols;
    pre_contract_dims[0] = out_height * out_width;
    for (int i = 0; i < NumDims - 3; ++i) {
      pre_contract_dims[0] *= in.dimension(i);
    }
  }

  // Molds the output of the contraction into the shape expected by the used
  // (assuming this is ColMajor):
  // - 1st dim: kernel filters
  // - 2nd dim: output height
  // - 3rd dim: output width
  // - 4th dim and beyond: everything else including batch size
  DSizes<TensorIndex, NumDims> post_contract_dims;
  if (isColMajor) {
    post_contract_dims[0] = kernelFilters;
    post_contract_dims[1] = out_height;
    post_contract_dims[2] = out_width;
    for (int i = 3; i < NumDims; ++i) {
      post_contract_dims[i] = in.dimension(i);
    }
  } else {
    post_contract_dims[NumDims - 1] = kernelFilters;
    post_contract_dims[NumDims - 2] = out_height;
    post_contract_dims[NumDims - 3] = out_width;
    for (int i = 0; i < NumDims - 3; ++i) {
      post_contract_dims[i] = in.dimension(i);
    }
  }

  DSizes<TensorIndex, 2> kernel_dims;
  if (isColMajor) {
    kernel_dims[0] = kernelFilters;
    kernel_dims[1] = kernelChannels * kernelRows * kernelCols;
  } else {
    kernel_dims[0] = kernelChannels * kernelRows * kernelCols;
    kernel_dims[1] = kernelFilters;
  }
  // TODO(yangke): choose() is defined in TensorContraction.h -- consider
  // moving it to somewhere more "common".
  return choose(
      Cond<internal::traits<Input>::Layout == ColMajor>(),
      kernel.reshape(kernel_dims)
          .contract(input
                        .extract_image_patches(
                            kernelRows, kernelCols, row_stride, col_stride,
                            row_in_stride, col_in_stride, padding_type)
                        .reshape(pre_contract_dims),
                    contract_dims)
          .reshape(post_contract_dims),
      input
          .extract_image_patches(kernelRows, kernelCols, row_stride, col_stride,
                                 row_in_stride, col_in_stride, padding_type)
          .reshape(pre_contract_dims)
          .contract(kernel.reshape(kernel_dims), contract_dims)
          .reshape(post_contract_dims));
}

}  // end namespace Eigen

#endif  // TENSORFLOW_CORE_KERNELS_EIGEN_SPATIAL_CONVOLUTIONS_H_