/* Copyright 2015 The TensorFlow Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ==============================================================================*/ #ifndef TENSORFLOW_CORE_KERNELS_EIGEN_SPATIAL_CONVOLUTIONS_H_ #define TENSORFLOW_CORE_KERNELS_EIGEN_SPATIAL_CONVOLUTIONS_H_ #include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor" namespace Eigen { namespace internal { // WARNING: Most of the code here implicitly assumes that the matrix is in // ColMajor layout. This is guaranteed by the tensor contraction (see // TensorContraction.h). // // Inside Eigen a tensor contraction is represented by a matrix multiplication. // We don't want to actually extract image patches and reshape the result into // a matrix (this involves allocating huge extra memory), so the patch // extraction and reshape operations are implicit. // // TensorContractionInputMapper takes a matrix index and returns the coefficient // (or the packet) of the "virtual tensor", that would be at that index if we // were to actually reshape the result of patch extraction. // // TensorContractionSubMapper provides a similar view into the "virtual matrix" // at the given vertical and horizontal offsets. // // "Virtual matrix" dimensions: // *0: kernelChannels * kernelRows * kernelCols; // 1: out_height * out_width; * OTHERS (e.g batches, etc...) // // *) extracted patches are continuous in memory (innermost dimension assuming // col major layout) // // With this dimensions: // row - offset within a single patch (in code: patchId) // col - index of the extracted patch (in code: patchIndex) // patchIndex ∈ [0..num_patches * OTHERS] (batch and other dimensions) // // TODO(ezhulenev): Consolidate this part of the code with the image patch // extraction code since they are both very similar. template class TensorContractionInputMapper< Scalar_, Index, Side, TensorEvaluator< const TensorReshapingOp >, Device>, nocontract_t, contract_t, packet_size, inner_dim_contiguous, inner_dim_reordered, Alignment> { public: typedef Scalar_ Scalar; typedef TensorContractionInputMapper< Scalar, Index, Side, TensorEvaluator< const TensorReshapingOp< NewDimension, const TensorImagePatchOp >, Device>, nocontract_t, contract_t, packet_size, inner_dim_contiguous, inner_dim_reordered, Alignment> Self; typedef TensorContractionSubMapper< Scalar, Index, Side, TensorEvaluator< const TensorReshapingOp< NewDimension, const TensorImagePatchOp >, Device>, nocontract_t, contract_t, packet_size, inner_dim_contiguous, inner_dim_reordered, Alignment> SubMapper; typedef SubMapper VectorMapper; typedef SubMapper LinearMapper; typedef typename packet_traits::type Packet; EIGEN_DEVICE_FUNC TensorContractionInputMapper( const TensorEvaluator< const TensorReshapingOp< NewDimension, const TensorImagePatchOp >, Device>& tensor, const nocontract_t&, const nocontract_t&, const contract_t&, const contract_t&) : m_impl(tensor.impl().impl()) { Index patch_rows; Index patch_depth; if (internal::traits::Layout == ColMajor) { patch_depth = tensor.impl().dimensions()[0]; patch_rows = tensor.impl().dimensions()[1]; m_patch_cols = tensor.impl().dimensions()[2]; m_num_patches = tensor.impl().dimensions()[3]; } else { const size_t NumDims = tensor.impl().dimensions().size(); patch_depth = tensor.impl().dimensions()[NumDims - 1]; patch_rows = tensor.impl().dimensions()[NumDims - 2]; m_patch_cols = tensor.impl().dimensions()[NumDims - 3]; m_num_patches = tensor.impl().dimensions()[NumDims - 4]; } // Strides for navigating through the single patch. m_patch_row_stride = patch_depth; m_patch_col_stride = patch_rows * m_patch_row_stride; m_patch_row_inflate_strides = tensor.impl().rowInflateStride(); m_patch_col_inflate_strides = tensor.impl().colInflateStride(); m_colStride = patch_rows; m_outputRows = tensor.impl().outputRows(); m_row_strides = tensor.impl().userRowStride(); m_col_strides = tensor.impl().userColStride(); m_in_row_strides = tensor.impl().userInRowStride(); m_in_col_strides = tensor.impl().userInColStride(); if (internal::traits::Layout == ColMajor) { m_inputRows = tensor.impl().impl().dimensions()[1]; m_inputCols = tensor.impl().impl().dimensions()[2]; } else { const int NumDims = tensor.impl().impl().dimensions().size(); m_inputRows = tensor.impl().impl().dimensions()[NumDims - 2]; m_inputCols = tensor.impl().impl().dimensions()[NumDims - 3]; } m_rowInputStride = patch_depth; m_colInputStride = patch_depth * m_inputRows; m_patchInputStride = patch_depth * m_inputRows * m_inputCols; m_rowPaddingTop = tensor.impl().rowPaddingTop(); m_colPaddingLeft = tensor.impl().colPaddingLeft(); m_fastPatchRowStride = internal::TensorIntDivisor(m_patch_row_stride); m_fastPatchColStride = internal::TensorIntDivisor(m_patch_col_stride); m_fastInputRowStride = internal::TensorIntDivisor(m_patch_row_inflate_strides); m_fastInputColStride = internal::TensorIntDivisor(m_patch_col_inflate_strides); m_fastNumPatches = internal::TensorIntDivisor(m_num_patches); m_fastColStride = internal::TensorIntDivisor(m_colStride); m_fastOutputRows = internal::TensorIntDivisor(m_outputRows); m_fastDimZero = internal::TensorIntDivisor(patch_depth); } EIGEN_DEVICE_FUNC TensorContractionInputMapper(const TensorContractionInputMapper& base_mapper) : m_impl(base_mapper.m_impl) { m_patch_cols = base_mapper.m_patch_cols; m_num_patches = base_mapper.m_num_patches; m_patch_row_stride = base_mapper.m_patch_row_stride; m_patch_col_stride = base_mapper.m_patch_col_stride; m_patch_row_inflate_strides = base_mapper.m_patch_row_inflate_strides; m_patch_col_inflate_strides = base_mapper.m_patch_col_inflate_strides; m_colStride = base_mapper.m_colStride; m_rowInputStride = base_mapper.m_rowInputStride; m_colInputStride = base_mapper.m_colInputStride; m_patchInputStride = base_mapper.m_patchInputStride; m_inputRows = base_mapper.m_inputRows; m_inputCols = base_mapper.m_inputCols; m_outputRows = base_mapper.m_outputRows; m_row_strides = base_mapper.m_row_strides; m_col_strides = base_mapper.m_col_strides; m_in_row_strides = base_mapper.m_in_row_strides; m_in_col_strides = base_mapper.m_in_col_strides; m_rowPaddingTop = base_mapper.m_rowPaddingTop; m_colPaddingLeft = base_mapper.m_colPaddingLeft; m_fastPatchRowStride = base_mapper.m_fastPatchRowStride; m_fastPatchColStride = base_mapper.m_fastPatchColStride; m_fastInputRowStride = base_mapper.m_fastInputRowStride; m_fastInputColStride = base_mapper.m_fastInputColStride; m_fastNumPatches = base_mapper.m_fastNumPatches; m_fastColStride = base_mapper.m_fastColStride; m_fastOutputRows = base_mapper.m_fastOutputRows; m_fastDimZero = base_mapper.m_fastDimZero; } // If true, turns off some optimizations for loading packets since the image // patches are "non-standard" such as there are non-trivial strides or // inflations in the input. EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool nonStandardPatches() const { return m_in_row_strides != 1 || m_in_col_strides != 1 || m_patch_row_inflate_strides != 1 || m_patch_col_inflate_strides != 1; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE SubMapper getSubMapper(Index i, Index j) const { return SubMapper(*this, i, j); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE LinearMapper getLinearMapper(Index i, Index j) const { return LinearMapper(*this, i, j); } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Scalar operator()(Index row) const { Index rowIndex, colIndex, otherIndex; computeBaseIndices(0, rowIndex, colIndex, otherIndex); return loadCoeff(row, rowIndex, colIndex, otherIndex); } // Load the coefficient at the patchIndex location instead of the usual // m_rowIndex, // m_colIndex, m_otherIndex. This is currently only used by the gpu code. // EIGEN_DEVICE_FUNC EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(Index row, Index patchIndex) const { Index rowIndex, colIndex, otherIndex; computeBaseIndices(patchIndex, rowIndex, colIndex, otherIndex); return loadCoeff(row, rowIndex, colIndex, otherIndex); } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet loadPacket(Index row) const { Index rowIndex, colIndex, otherIndex; computeBaseIndices(0, rowIndex, colIndex, otherIndex); return loadPacket(row, rowIndex, colIndex, otherIndex); } // Load the packet at the patchIndex location instead of the usual m_rowIndex, // m_colIndex, m_otherIndex. This is currently only used by the gpu code. EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet loadPacket(Index row, Index patchIndex) const { Index rowIndex, colIndex, otherIndex; computeBaseIndices(patchIndex, rowIndex, colIndex, otherIndex); return loadPacket(row, rowIndex, colIndex, otherIndex); } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE const TensorEvaluator& impl() const { return m_impl; } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Index patchDepth() const { return m_rowInputStride; } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Index patchRows() const { return m_colStride; } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Index patchCols() const { return m_patch_cols; } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet packetNoPadding(const Index depth, const Index baseIndex) const { const Index inputIndex = depth + baseIndex; return m_impl.template packet(inputIndex); } private: friend class TensorContractionSubMapper< Scalar, Index, Side, TensorEvaluator< const TensorReshapingOp< NewDimension, const TensorImagePatchOp >, Device>, nocontract_t, contract_t, packet_size, inner_dim_contiguous, inner_dim_reordered, Alignment>; // Load coefficient from a patch specified by the "within patch offset" // (patchId) and the precomputed indices of the first element of the patch. EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar loadCoeff(Index patchId, Index rowIndex, Index colIndex, Index otherIndex) const { // Find the offset of the element wrt the location of the first element. const Index patchOffset = patchId / m_fastDimZero; const Index colOffset = patchOffset / m_fastColStride; const Index inputCol = colIndex + colOffset * m_in_col_strides; const Index origInputCol = (m_patch_col_inflate_strides == 1) ? inputCol : ((inputCol >= 0) ? (inputCol / m_fastInputColStride) : 0); const Index rowOffset = patchOffset - colOffset * m_colStride; const Index inputRow = rowIndex + rowOffset * m_in_row_strides; const Index origInputRow = (m_patch_row_inflate_strides == 1) ? inputRow : ((inputRow >= 0) ? (inputRow / m_fastInputRowStride) : 0); if (origInputCol < 0 || origInputRow < 0 || origInputCol >= m_inputCols || origInputRow >= m_inputRows || (inputCol != origInputCol * m_patch_col_inflate_strides) || (inputRow != origInputRow * m_patch_row_inflate_strides)) { return Scalar(0); } const Index depth = patchId - patchOffset * patchDepth(); const Index inputIndex = depth + origInputRow * m_rowInputStride + origInputCol * m_colInputStride + otherIndex; return m_impl.coeff(inputIndex); } // This is the same as loadCoeff(...), but optimized for all `inflate_strides` // and `in_strides` equal to 1 (template specialization without templates). EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar loadCoeffStandard(Index patchId, Index rowIndex, Index colIndex, Index otherIndex) const { eigen_assert(!nonStandardPatches()); // Find the offset of the element wrt the location of the first element. const Index patchOffset = patchId / m_fastDimZero; const Index colOffset = patchOffset / m_fastColStride; const Index rowOffset = patchOffset - colOffset * m_colStride; const Index inputCol = colIndex + colOffset; const Index inputRow = rowIndex + rowOffset; if (inputCol < 0 || inputCol >= m_inputCols || inputRow < 0 || inputRow >= m_inputRows) { return Scalar(0); } const Index depth = patchId - patchOffset * patchDepth(); const Index inputIndex = depth + inputRow * m_rowInputStride + inputCol * m_colInputStride + otherIndex; return m_impl.coeff(inputIndex); } // Load packet from a patch specified by the "within patch offset" // (patchId) and the precomputed indices of the first element of the patch. EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet loadPacket(Index patchId, Index rowIndex, Index colIndex, Index otherIndex) const { const Index packetSize = internal::unpacket_traits::size; EIGEN_STATIC_ASSERT(packetSize > 1, YOU_MADE_A_PROGRAMMING_MISTAKE) eigen_assert(patchId < patchDepth() * patchRows() * m_patch_cols); if (nonStandardPatches()) { return packetWithPossibleZero(patchId, rowIndex, colIndex, otherIndex); } return loadPacketStandard(patchId, rowIndex, colIndex, otherIndex); } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet loadPacketStandard(Index patchId, Index rowIndex, Index colIndex, Index otherIndex) const { const Index packetSize = internal::unpacket_traits::size; EIGEN_STATIC_ASSERT(packetSize > 1, YOU_MADE_A_PROGRAMMING_MISTAKE) eigen_assert(patchId < patchDepth() * patchRows() * m_patch_cols); eigen_assert(!nonStandardPatches()); if ((patchDepth() % packetSize) == 0) { return loadPacketFast(patchId, rowIndex, colIndex, otherIndex); } else { // Offsets and input calculation here are identical to // loadCoeffStandard(...), but repeated twice. const Index patchOffsets[2] = { patchId / m_fastDimZero, (patchId + packetSize - 1) / m_fastDimZero}; const Index colOffsets[2] = {patchOffsets[0] / m_fastColStride, patchOffsets[1] / m_fastColStride}; const Index inputCols[2] = {colIndex + colOffsets[0], colIndex + colOffsets[1]}; if (inputCols[0] >= m_inputCols || inputCols[1] < 0) { // all zeros return internal::pset1(Scalar(0)); } if (inputCols[0] == inputCols[1]) { const Index rowOffsets[2] = { patchOffsets[0] - colOffsets[0] * m_colStride, patchOffsets[1] - colOffsets[1] * m_colStride}; eigen_assert(rowOffsets[0] <= rowOffsets[1]); const Index inputRows[2] = {rowIndex + rowOffsets[0], rowIndex + rowOffsets[1]}; if (inputRows[0] >= m_inputRows || inputRows[1] < 0) { // all zeros return internal::pset1(Scalar(0)); } if (inputRows[0] >= 0 && inputRows[1] < m_inputRows) { // no padding const Index depth = patchId - patchOffsets[0] * patchDepth(); const Index inputIndex = depth + inputRows[0] * m_rowInputStride + inputCols[0] * m_colInputStride + otherIndex; return m_impl.template packet(inputIndex); } } } return packetWithPossibleZero(patchId, rowIndex, colIndex, otherIndex); } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet loadPacketFast(Index patchId, Index rowIndex, Index colIndex, Index otherIndex) const { const Index packetSize = internal::unpacket_traits::size; EIGEN_STATIC_ASSERT(packetSize > 1, YOU_MADE_A_PROGRAMMING_MISTAKE) eigen_assert(patchId < patchDepth() * patchRows() * m_patch_cols); eigen_assert(!nonStandardPatches()); eigen_assert((patchDepth() % packetSize) == 0); // Find the offset of the element wrt the location of the first element. const Index patchOffset = patchId / m_fastDimZero; eigen_assert((patchId + packetSize - 1) / m_fastDimZero == patchOffset); const Index colOffset = patchOffset / m_fastColStride; const Index rowOffset = patchOffset - colOffset * m_colStride; const Index inputCol = colIndex + colOffset; const Index inputRow = rowIndex + rowOffset; if (inputCol < 0 || inputRow < 0 || inputCol >= m_inputCols || inputRow >= m_inputRows) { // all zeros return internal::pset1(Scalar(0)); } // no padding const Index depth = patchId - patchOffset * patchDepth(); const Index inputIndex = depth + inputRow * m_rowInputStride + inputCol * m_colInputStride + otherIndex; return m_impl.template packet(inputIndex); } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet packetWithPossibleZero( Index patchId, Index rowIndex, Index colIndex, Index otherIndex) const { const int packetSize = internal::unpacket_traits::size; EIGEN_ALIGN_MAX typename internal::remove_const::type values[packetSize]; for (int i = 0; i < packetSize; ++i) { values[i] = loadCoeff(patchId + i, rowIndex, colIndex, otherIndex); } Packet rslt = internal::pload(values); return rslt; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void computeBaseIndices( Index patchIndex, Index& rowIndex, Index& colIndex, Index& otherIndex) const { const size_t NumInputDims = array_size< typename TensorEvaluator::Dimensions>::value; otherIndex = (NumInputDims == 3) ? 0 : patchIndex / m_fastNumPatches; const Index patch2DIndex = (NumInputDims == 3) ? patchIndex : (patchIndex - otherIndex * m_num_patches); otherIndex *= m_patchInputStride; colIndex = patch2DIndex / m_fastOutputRows; rowIndex = patch2DIndex - colIndex * m_outputRows; colIndex = colIndex * m_col_strides - m_colPaddingLeft; rowIndex = rowIndex * m_row_strides - m_rowPaddingTop; } Index m_patch_cols; // number of columns in the patch Index m_num_patches; // number of patches to extract. // Strides for navigating through the single patch. Index m_patch_row_stride; Index m_patch_col_stride; internal::TensorIntDivisor m_fastPatchRowStride; internal::TensorIntDivisor m_fastPatchColStride; Index m_patch_row_inflate_strides; // the strides for row inflation in the // image patch Index m_patch_col_inflate_strides; // the strides for col inflation in the // image patch // Fast representation of inflation strides. internal::TensorIntDivisor m_fastInputRowStride; internal::TensorIntDivisor m_fastInputColStride; Index m_otherStride; Index m_colStride; internal::TensorIntDivisor m_fastNumPatches; internal::TensorIntDivisor m_fastColStride; Index m_rowInputStride; // row stride in the input tensor Index m_colInputStride; // col stride in the input tensor Index m_patchInputStride; // patch stride in the input tensor Index m_inputRows; // Number of rows in the input tensor Index m_inputCols; // Number of cols in the input tensor Index m_outputRows; // Number of patch rows Index m_row_strides; // User specified row stride Index m_col_strides; // User specified col stride Index m_in_row_strides; // User specified input row stride Index m_in_col_strides; // User specified input col stride Index m_rowPaddingTop; // Row padding Index m_colPaddingLeft; // Column padding internal::TensorIntDivisor m_fastOutputRows; internal::TensorIntDivisor m_fastDimZero; const TensorEvaluator m_impl; }; template class TensorContractionSubMapper< Scalar, Index, Side, TensorEvaluator< const TensorReshapingOp >, Device>, nocontract_t, contract_t, packet_size, inner_dim_contiguous, inner_dim_reordered, Alignment> { public: typedef typename packet_traits::type Packet; typedef typename packet_traits::half HalfPacket; typedef TensorContractionInputMapper< Scalar, Index, Side, TensorEvaluator< const TensorReshapingOp< NewDimension, const TensorImagePatchOp >, Device>, nocontract_t, contract_t, packet_size, inner_dim_contiguous, inner_dim_reordered, Alignment> ParentMapper; typedef TensorContractionSubMapper< Scalar, Index, Side, TensorEvaluator< const TensorReshapingOp< NewDimension, const TensorImagePatchOp >, Device>, nocontract_t, contract_t, packet_size, inner_dim_contiguous, inner_dim_reordered, Alignment> Self; typedef Self LinearMapper; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorContractionSubMapper( const ParentMapper& base_mapper, Index vert_offset, Index horiz_offset) : m_base_mapper(base_mapper), m_depth_offset(vert_offset), m_col_offset(horiz_offset) { m_base_mapper.computeBaseIndices(m_col_offset, m_rowIndex, m_colIndex, m_otherIndex); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorContractionSubMapper( const Self& base_mapper, Index vert_offset, Index horiz_offset) : m_base_mapper(base_mapper.m_base_mapper), m_depth_offset(vert_offset + base_mapper.m_depth_offset), m_col_offset(horiz_offset + base_mapper.m_col_offset) { m_base_mapper.computeBaseIndices(m_col_offset, m_rowIndex, m_colIndex, m_otherIndex); } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Scalar operator()(Index i) const { return m_base_mapper.loadCoeff(i + m_depth_offset, m_rowIndex, m_colIndex, m_otherIndex); } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Scalar operator()(Index i, Index j) const { return m_base_mapper(i + m_depth_offset, j + m_col_offset); } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet loadPacket(Index i) const { return m_base_mapper.loadPacket(i + m_depth_offset, m_rowIndex, m_colIndex, m_otherIndex); } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet loadPacket(Index i, Index j) const { return m_base_mapper.template loadPacket(i + m_depth_offset, j + m_col_offset); } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Scalar loadCoeffStandard(Index i) const { return m_base_mapper.loadCoeffStandard(i + m_depth_offset, m_rowIndex, m_colIndex, m_otherIndex); } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet loadPacketFast(Index i) const { return m_base_mapper.loadPacketFast(i + m_depth_offset, m_rowIndex, m_colIndex, m_otherIndex); } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet loadPacketStandard(Index i) const { return m_base_mapper.loadPacketStandard(i + m_depth_offset, m_rowIndex, m_colIndex, m_otherIndex); } template EIGEN_DEVICE_FUNC bool aligned(Index) const { return false; } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool nonStandardPatches() const { return m_base_mapper.nonStandardPatches(); } // Max(Col|Row|Depth): compute the upper limit for the column, row and depth // index respectively that fits into the peeled_k elements starting at // m_depth_offset. EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Index maxCol(const Index peeled_k) const { const Index max_col = fastPatchColStride().divide(m_depth_offset + peeled_k); return std::min(1 + max_col, patchCols()); } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Index maxRow(const Index peeled_k, const Index col) const { const Index max_row = fastPatchRowStride().divide( m_depth_offset + peeled_k - col * patchColStride()); return std::min(1 + max_row, patchRows()); } // MaxDepth uses only the remaining number of elements in the peeled_k. EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Index maxDepth(const Index num_elements, const Index start_depth) const { return std::min(start_depth + num_elements, patchDepth()); } // Every register matters in this code, so sometimes to prevent register // spilling, instead of the variable that you would expect to see, we use // another one, that is guaranteed to have the same value. E.g. patch depth is // always the same as input depth, and it's also the same as input row stride. // Bunch of other parameters have similar relations. typedef internal::TensorIntDivisor IndexDivisor; EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Index patchDepth() const { return m_base_mapper.m_rowInputStride; } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Index patchRows() const { return m_base_mapper.m_colStride; } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Index patchCols() const { return m_base_mapper.m_patch_cols; } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Index patchRowStride() const { eigen_assert(patchDepth() == m_base_mapper.m_patch_row_stride && "Patch depth must be equal to patch row stride."); return patchDepth(); } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Index patchColStride() const { return m_base_mapper.m_patch_col_stride; } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE IndexDivisor fastPatchRowStride() const { eigen_assert(patchDepth() == m_base_mapper.m_patch_row_stride && "Patch depth must be equal to patch row stride."); return m_base_mapper.m_fastDimZero; // patch_depth } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE IndexDivisor fastPatchColStride() const { return m_base_mapper.m_fastPatchColStride; } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet packetNoPadding(const Index depth, const Index baseIndex) const { const Index inputIndex = depth + baseIndex; return m_base_mapper.m_impl.template packet(inputIndex); } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool padRow(const Index row) const { const Index r = m_rowIndex + row; return r < 0 || r >= m_base_mapper.m_inputRows; } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool padCol(const Index col) const { const Index c = m_colIndex + col; return c < 0 || c >= m_base_mapper.m_inputCols; } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Index baseIndex(const Index row, const Index col) const { const Index r = m_rowIndex + row; const Index c = m_colIndex + col; return r * m_base_mapper.m_rowInputStride + c * m_base_mapper.m_colInputStride + m_otherIndex; } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Index rowOffset() const { const Index patchOffset = m_depth_offset / m_base_mapper.m_fastDimZero; const Index colOffset = patchOffset / m_base_mapper.m_fastColStride; return patchOffset - colOffset * m_base_mapper.m_colStride; } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Index colOffset() const { const Index patchOffset = m_depth_offset / m_base_mapper.m_fastDimZero; const Index colOffset = patchOffset / m_base_mapper.m_fastColStride; return colOffset; } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Index depthOffset() const { return m_depth_offset % patchDepth(); } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE LinearMapper getLinearMapper(Index i, Index j) const { return LinearMapper(m_base_mapper, i + m_depth_offset, j + m_col_offset); } private: const ParentMapper& m_base_mapper; // that was a reference before Index m_depth_offset; // First row in the input matrix Index m_col_offset; // First col in the input matrix // Knowing that: col_offset == patchIndex * OTHERS, we keep precomputed base // indices for the first element in a patch specified by col_offset // (see computeBaseIndices(...) for details). Index m_rowIndex; Index m_colIndex; Index m_otherIndex; }; // Arrange a block of the right input matrix (in our case it's always a "virtual // matrix" constructed from extracted image patches) in contiguous memory. // // Given column major input (A0 beside A1 in memory): // A0 B0 C0 D0 E0 F0 G0 H0 ... Z0 // A1 B1 C1 D1 E1 F1 G1 H1 ... Z1 // A2 B2 C2 D2 E2 F2 G2 H2 ... Z2 // A3 B3 C3 D3 E3 F3 G3 H3 ... Z3 // A4 B4 C4 D4 E4 F4 G4 H4 ... Z4 // A5 B5 C5 D5 E5 F5 G5 H5 ... Z5 // A6 B6 C6 D6 E6 F6 G6 H6 ... Z6 // A7 B7 C7 D7 E7 F7 G7 H7 ... Z7 // A8 ... // ... // // *) A, B, C, ... - patches extracted from the original input. // *) A0, A1, A2 ... - values from the same patch at different offsets. // // The traversal (packed rhs memory) order (B0 besides A0 in memory): // A0 B0 C0 D0 A1 B1 C1 D1 ... // E0 F0 G0 H0 E1 F1 G1 H1 ... // ... // Z0 Z1 Z2 Z3 Z4 Z5 Z6 Z7 ... <- doesn't belong to any block (nr = 4) // // This traversal order must be the same as in default gemm_pack_rhs defined in // GeneralBlockPanelKernel.h. // // *) nr - number of registers along the 'n' dimension. // See GeneralBlockPanelKernel.h and "Anatomy of High-Performance Matrix // Multiplication" paper. template struct gemm_pack_rhs< Scalar, Index, TensorContractionSubMapper< Scalar, Index, Rhs, TensorEvaluator< const TensorReshapingOp< NewDimension, const TensorImagePatchOp >, Device>, nocontract_t, contract_t, packet_size, inner_dim_contiguous, inner_dim_reordered, Alignment>, nr, ColMajor, false, false> { typedef TensorContractionSubMapper< Scalar, Index, Rhs, TensorEvaluator< const TensorReshapingOp< NewDimension, const TensorImagePatchOp >, Device>, nocontract_t, contract_t, packet_size, inner_dim_contiguous, inner_dim_reordered, Alignment> SubMapper; typedef SubMapper DataMapper; typedef typename packet_traits::type Packet; EIGEN_STATIC_ASSERT((nr == 4), YOU_MADE_A_PROGRAMMING_MISTAKE); EIGEN_DEVICE_FUNC EIGEN_DONT_INLINE void operator()(Scalar* block, const DataMapper& rhs, Index depth, Index cols, Index stride = 0, Index offset = 0) const { eigen_assert(stride == 0); eigen_assert(offset == 0); const Index packet_cols4 = (cols / 4) * 4; const Index peeled_k = (depth / packet_size) * packet_size; const bool non_standard_patches = rhs.nonStandardPatches(); for (Index j2 = 0; j2 < packet_cols4; j2 += 4) { const SubMapper dm0 = rhs.getLinearMapper(0, j2 + 0); const SubMapper dm1 = rhs.getLinearMapper(0, j2 + 1); const SubMapper dm2 = rhs.getLinearMapper(0, j2 + 2); const SubMapper dm3 = rhs.getLinearMapper(0, j2 + 3); Index k = 0; if ((packet_size % 4) == 0 && !non_standard_patches) { // FAST PATH: // Iterate over patch columns and rows, if we know that a single // packet do not span across multiple rows or columns. if ((rhs.patchDepth() % packet_size) == 0) { const Index start_col = rhs.colOffset(); const Index max_col = rhs.maxCol(peeled_k); for (Index c = start_col; c < max_col; ++c) { eigen_assert(k <= peeled_k); const Index start_row = (c == start_col) ? rhs.rowOffset() : 0; const Index max_row = rhs.maxRow(peeled_k, c); const bool pad_col0 = dm0.padCol(c); const bool pad_col1 = dm1.padCol(c); const bool pad_col2 = dm2.padCol(c); const bool pad_col3 = dm3.padCol(c); for (Index r = start_row; r < max_row; ++r) { eigen_assert(k <= peeled_k); const bool pad0 = pad_col0 || dm0.padRow(r); const bool pad1 = pad_col1 || dm1.padRow(r); const bool pad2 = pad_col2 || dm2.padRow(r); const bool pad3 = pad_col3 || dm3.padRow(r); const Index idx0 = dm0.baseIndex(r, c); const Index idx1 = dm1.baseIndex(r, c); const Index idx2 = dm2.baseIndex(r, c); const Index idx3 = dm3.baseIndex(r, c); const Index start_depth = ((c == start_col) && (r == start_row)) ? rhs.depthOffset() : 0; const Index max_depth = rhs.maxDepth(peeled_k - k, start_depth); eigen_assert((max_depth - start_depth) % packet_size == 0); for (Index d = start_depth; d < max_depth; d += packet_size) { eigen_assert(k < peeled_k); PacketBlock kernel; kernel.packet[0] = pad0 ? pset1(Scalar(0)) : rhs.packetNoPadding(d, idx0); kernel.packet[1] = pad1 ? pset1(Scalar(0)) : rhs.packetNoPadding(d, idx1); kernel.packet[2] = pad2 ? pset1(Scalar(0)) : rhs.packetNoPadding(d, idx2); kernel.packet[3] = pad3 ? pset1(Scalar(0)) : rhs.packetNoPadding(d, idx3); ptranspose(kernel); pstoreu(block + 0 * packet_size, kernel.packet[0]); pstoreu(block + 1 * packet_size, kernel.packet[1]); pstoreu(block + 2 * packet_size, kernel.packet[2]); pstoreu(block + 3 * packet_size, kernel.packet[3]); block += 4 * packet_size; k += packet_size; } } } // The loop above should fill peeled_k elements. eigen_assert(peeled_k == k); } else { for (; k < peeled_k; k += packet_size) { PacketBlock kernel; kernel.packet[0] = dm0.loadPacketStandard(k); kernel.packet[1] = dm1.loadPacketStandard(k); kernel.packet[2] = dm2.loadPacketStandard(k); kernel.packet[3] = dm3.loadPacketStandard(k); ptranspose(kernel); pstoreu(block + 0 * packet_size, kernel.packet[0]); pstoreu(block + 1 * packet_size, kernel.packet[1]); pstoreu(block + 2 * packet_size, kernel.packet[2]); pstoreu(block + 3 * packet_size, kernel.packet[3]); block += 4 * packet_size; } } } // Copy the remaining coefficients of the column block after the peeled_k. if (!rhs.nonStandardPatches()) { for (; k < depth; k++) { block[0] = dm0.loadCoeffStandard(k); block[1] = dm1.loadCoeffStandard(k); block[2] = dm2.loadCoeffStandard(k); block[3] = dm3.loadCoeffStandard(k); block += 4; } } else { for (; k < depth; k++) { block[0] = dm0(k); block[1] = dm1(k); block[2] = dm2(k); block[3] = dm3(k); block += 4; } } } // copy the remaining columns one at a time (nr==1) for (Index j2 = packet_cols4; j2 < cols; ++j2) { const SubMapper dm0 = rhs.getLinearMapper(0, j2); for (Index k = 0; k < depth; k++) { *block = dm0(k); block += 1; } } } }; // Template specialization for packet_size = 2. We must special-case packet // blocks with nr > packet_size, e.g. PacketBlock. template struct gemm_pack_rhs< Scalar, Index, TensorContractionSubMapper< Scalar, Index, Rhs, TensorEvaluator< const TensorReshapingOp< NewDimension, const TensorImagePatchOp >, Device>, nocontract_t, contract_t, 2, inner_dim_contiguous, inner_dim_reordered, Alignment>, nr, ColMajor, false, false> { typedef TensorContractionSubMapper< Scalar, Index, Rhs, TensorEvaluator< const TensorReshapingOp< NewDimension, const TensorImagePatchOp >, Device>, nocontract_t, contract_t, 2, inner_dim_contiguous, inner_dim_reordered, Alignment> SubMapper; typedef SubMapper DataMapper; typedef typename packet_traits::type Packet; EIGEN_STATIC_ASSERT((nr == 4), YOU_MADE_A_PROGRAMMING_MISTAKE); EIGEN_DEVICE_FUNC EIGEN_DONT_INLINE void operator()(Scalar* block, const DataMapper& rhs, Index depth, Index cols, Index stride = 0, Index offset = 0) const { eigen_assert(stride == 0); eigen_assert(offset == 0); const int packet_size = 2; const Index packet_cols4 = (cols / 4) * 4; const Index peeled_k = (depth / packet_size) * packet_size; const bool non_standard_patches = rhs.nonStandardPatches(); for (Index j2 = 0; j2 < packet_cols4; j2 += 4) { const SubMapper dm0 = rhs.getLinearMapper(0, j2 + 0); const SubMapper dm1 = rhs.getLinearMapper(0, j2 + 1); const SubMapper dm2 = rhs.getLinearMapper(0, j2 + 2); const SubMapper dm3 = rhs.getLinearMapper(0, j2 + 3); Index k = 0; if (!non_standard_patches) { // FAST PATH: // Iterate over patch columns and rows if we know that a single // packet do not span across multiple rows or columns. if ((rhs.patchDepth() % packet_size) == 0) { const Index start_col = rhs.colOffset(); const Index max_col = rhs.maxCol(peeled_k); for (Index c = start_col; c < max_col; ++c) { eigen_assert(k <= peeled_k); const Index start_row = (c == start_col) ? rhs.rowOffset() : 0; const Index max_row = rhs.maxRow(peeled_k, c); const bool pad_col0 = dm0.padCol(c); const bool pad_col1 = dm1.padCol(c); const bool pad_col2 = dm2.padCol(c); const bool pad_col3 = dm3.padCol(c); for (Index r = start_row; r < max_row; ++r) { eigen_assert(k <= peeled_k); const bool pad0 = pad_col0 || dm0.padRow(r); const bool pad1 = pad_col1 || dm1.padRow(r); const bool pad2 = pad_col2 || dm2.padRow(r); const bool pad3 = pad_col3 || dm3.padRow(r); const Index idx0 = dm0.baseIndex(r, c); const Index idx1 = dm1.baseIndex(r, c); const Index idx2 = dm2.baseIndex(r, c); const Index idx3 = dm3.baseIndex(r, c); const Index start_depth = ((c == start_col) && (r == start_row)) ? rhs.depthOffset() : 0; const Index max_depth = rhs.maxDepth(peeled_k - k, start_depth); eigen_assert((max_depth - start_depth) % packet_size == 0); for (Index d = start_depth; d < max_depth; d += packet_size) { eigen_assert(k < peeled_k); PacketBlock kernel0; PacketBlock kernel1; kernel0.packet[0] = pad0 ? pset1(Scalar(0)) : rhs.packetNoPadding(d, idx0); kernel0.packet[1] = pad1 ? pset1(Scalar(0)) : rhs.packetNoPadding(d, idx1); kernel1.packet[0] = pad2 ? pset1(Scalar(0)) : rhs.packetNoPadding(d, idx2); kernel1.packet[1] = pad3 ? pset1(Scalar(0)) : rhs.packetNoPadding(d, idx3); ptranspose(kernel0); ptranspose(kernel1); pstoreu(block + 0 * packet_size, kernel0.packet[0]); pstoreu(block + 1 * packet_size, kernel1.packet[0]); pstoreu(block + 2 * packet_size, kernel0.packet[1]); pstoreu(block + 3 * packet_size, kernel1.packet[1]); block += 4 * packet_size; k += packet_size; } } } // The loop above should fill peeled_k elements. eigen_assert(peeled_k == k); } else { // Packet can span multiple rows or columns, so we have to go // though the slower "standard" path. for (; k < peeled_k; k += packet_size) { PacketBlock kernel0; PacketBlock kernel1; kernel0.packet[0] = dm0.loadPacketStandard(k); kernel0.packet[1] = dm1.loadPacketStandard(k); kernel1.packet[0] = dm2.loadPacketStandard(k); kernel1.packet[1] = dm3.loadPacketStandard(k); ptranspose(kernel0); ptranspose(kernel1); pstoreu(block + 0 * packet_size, kernel0.packet[0]); pstoreu(block + 1 * packet_size, kernel1.packet[0]); pstoreu(block + 2 * packet_size, kernel0.packet[1]); pstoreu(block + 3 * packet_size, kernel1.packet[1]); block += 4 * packet_size; } } } // Copy the remaining coefficients of the column block after the peeled_k. if (!non_standard_patches) { for (; k < depth; k++) { block[0] = dm0.loadCoeffStandard(k); block[1] = dm1.loadCoeffStandard(k); block[2] = dm2.loadCoeffStandard(k); block[3] = dm3.loadCoeffStandard(k); block += 4; } } else { for (; k < depth; k++) { block[0] = dm0(k); block[1] = dm1(k); block[2] = dm2(k); block[3] = dm3(k); block += 4; } } } // Copy the remaining columns one at a time (nr==1). for (Index j2 = packet_cols4; j2 < cols; ++j2) { const SubMapper dm0 = rhs.getLinearMapper(0, j2); for (Index k = 0; k < depth; k++) { *block = dm0(k); block += 1; } } } }; // Special case for non-vectorized types such as float16. template struct gemm_pack_rhs< Scalar, Index, TensorContractionSubMapper< Scalar, Index, Rhs, TensorEvaluator< const TensorReshapingOp< NewDimension, const TensorImagePatchOp >, Device>, nocontract_t, contract_t, 1, inner_dim_contiguous, inner_dim_reordered, Alignment>, nr, ColMajor, false, false> { typedef TensorContractionSubMapper< Scalar, Index, Rhs, TensorEvaluator< const TensorReshapingOp< NewDimension, const TensorImagePatchOp >, Device>, nocontract_t, contract_t, 1, inner_dim_contiguous, inner_dim_reordered, Alignment> SubMapper; typedef SubMapper DataMapper; EIGEN_STATIC_ASSERT((nr == 4), YOU_MADE_A_PROGRAMMING_MISTAKE); EIGEN_DEVICE_FUNC EIGEN_DONT_INLINE void operator()(Scalar* block, const DataMapper& rhs, Index depth, Index cols, Index stride = 0, Index offset = 0) const { eigen_assert(stride == 0); eigen_assert(offset == 0); const Index packet_cols4 = (cols / 4) * 4; for (Index j2 = 0; j2 < packet_cols4; j2 += 4) { const SubMapper dm0 = rhs.getLinearMapper(0, j2 + 0); const SubMapper dm1 = rhs.getLinearMapper(0, j2 + 1); const SubMapper dm2 = rhs.getLinearMapper(0, j2 + 2); const SubMapper dm3 = rhs.getLinearMapper(0, j2 + 3); if (!rhs.nonStandardPatches()) { for (Index k = 0; k < depth; k++) { block[0] = dm0.loadCoeffStandard(k); block[1] = dm1.loadCoeffStandard(k); block[2] = dm2.loadCoeffStandard(k); block[3] = dm3.loadCoeffStandard(k); block += 4; } } else { for (Index k = 0; k < depth; k++) { block[0] = dm0(k); block[1] = dm1(k); block[2] = dm2(k); block[3] = dm3(k); block += 4; } } } // Copy the remaining columns one at a time (nr==1). for (Index j2 = packet_cols4; j2 < cols; ++j2) { const SubMapper dm0 = rhs.getLinearMapper(0, j2); for (Index k = 0; k < depth; k++) { *block = dm0(k); block += 1; } } } }; } // end namespace internal /** SpatialConvolution * \ingroup CXX11_NeuralNetworks_Module * * \brief Applies a 2D convolution over a multichannel input image. * * The input parameter is expected to be a tensor with a rank of 3 or more * (channels, height, width, and optionally others) * The kernel parameter is expected to be a 4D tensor (filters, channels, * kernel_height, kernel_width) * The input and the kernel must both be in col-major layout. The result will * also be in col-major layout. * * If col_in_stride, row_in_stride > 1, then applies convolution with holes * (aka atrous convolution), sampling every col_in_stride, row_in_stride input * pixels. * * The result can be assigned to a tensor of rank equal to the rank of the * input. The dimensions of the result will be filters, height, width (and * others if applicable). * * It is possible to swap the order of the width and height dimensions provided * that the same order is used in the input, the kernel, and the output. * */ template EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE static const typename internal::conditional< internal::traits::Layout == ColMajor, TensorReshapingOp< const DSizes::Index, internal::traits::NumDimensions>, const TensorContractionOp< const array::Index>, 1>, const TensorReshapingOp< const DSizes::Index, 2>, const Kernel>, const TensorReshapingOp< const DSizes::Index, 2>, const TensorImagePatchOp > > >, TensorReshapingOp< const DSizes::Index, internal::traits::NumDimensions>, const TensorContractionOp< const array::Index>, 1>, const TensorReshapingOp< const DSizes::Index, 2>, const TensorImagePatchOp >, const TensorReshapingOp< const DSizes::Index, 2>, const Kernel> > > >::type SpatialConvolution(const Input& input, const Kernel& kernel, const DenseIndex row_stride = 1, const DenseIndex col_stride = 1, const PaddingType padding_type = PADDING_SAME, const DenseIndex row_in_stride = 1, const DenseIndex col_in_stride = 1) { typedef typename internal::traits::Index TensorIndex; TensorRef::Scalar, internal::traits::NumDimensions, internal::traits::Layout, TensorIndex> > in(input); TensorRef::Scalar, internal::traits::NumDimensions, internal::traits::Layout, TensorIndex> > kern(kernel); EIGEN_STATIC_ASSERT( internal::traits::Layout == internal::traits::Layout, YOU_MADE_A_PROGRAMMING_MISTAKE); const bool isColMajor = (internal::traits::Layout == ColMajor); const int NumDims = internal::traits::NumDimensions; // Number of filters to apply. This is the same as the output depth of the // result const TensorIndex kernelFilters = isColMajor ? kern.dimensions()[0] : kern.dimensions()[3]; // Number of channels. This is the same as the input depth. const TensorIndex kernelChannels = isColMajor ? kern.dimensions()[1] : kern.dimensions()[2]; const TensorIndex kernelRows = isColMajor ? kern.dimensions()[2] : kern.dimensions()[1]; const TensorIndex kernelCols = isColMajor ? kern.dimensions()[3] : kern.dimensions()[0]; const DenseIndex kernelRowsEff = kernelRows + (kernelRows - 1) * (row_in_stride - 1); const DenseIndex kernelColsEff = kernelCols + (kernelCols - 1) * (col_in_stride - 1); array, 1> contract_dims; contract_dims[0] = IndexPair(1, 0); const TensorIndex InputRows = isColMajor ? in.dimension(1) : in.dimension(NumDims - 2); const TensorIndex InputCols = isColMajor ? in.dimension(2) : in.dimension(NumDims - 3); TensorIndex out_height; TensorIndex out_width; switch (padding_type) { case PADDING_VALID: out_height = numext::ceil((InputRows - kernelRowsEff + 1.f) / static_cast(row_stride)); out_width = numext::ceil((InputCols - kernelColsEff + 1.f) / static_cast(col_stride)); break; case PADDING_SAME: out_height = numext::ceil(InputRows / static_cast(row_stride)); out_width = numext::ceil(InputCols / static_cast(col_stride)); break; default: // Initialize unused variables to avoid a compiler warning out_height = 0; out_width = 0; eigen_assert(false && "unexpected padding"); } // Molds the output of the patch extraction code into a 2d tensor: // - the first dimension (dims[0]): the patch values to be multiplied with the // kernels // - the second dimension (dims[1]): everything else DSizes pre_contract_dims; if (isColMajor) { pre_contract_dims[0] = kernelChannels * kernelRows * kernelCols; pre_contract_dims[1] = out_height * out_width; for (int i = 3; i < NumDims; ++i) { pre_contract_dims[1] *= in.dimension(i); } } else { pre_contract_dims[1] = kernelChannels * kernelRows * kernelCols; pre_contract_dims[0] = out_height * out_width; for (int i = 0; i < NumDims - 3; ++i) { pre_contract_dims[0] *= in.dimension(i); } } // Molds the output of the contraction into the shape expected by the used // (assuming this is ColMajor): // - 1st dim: kernel filters // - 2nd dim: output height // - 3rd dim: output width // - 4th dim and beyond: everything else including batch size DSizes post_contract_dims; if (isColMajor) { post_contract_dims[0] = kernelFilters; post_contract_dims[1] = out_height; post_contract_dims[2] = out_width; for (int i = 3; i < NumDims; ++i) { post_contract_dims[i] = in.dimension(i); } } else { post_contract_dims[NumDims - 1] = kernelFilters; post_contract_dims[NumDims - 2] = out_height; post_contract_dims[NumDims - 3] = out_width; for (int i = 0; i < NumDims - 3; ++i) { post_contract_dims[i] = in.dimension(i); } } DSizes kernel_dims; if (isColMajor) { kernel_dims[0] = kernelFilters; kernel_dims[1] = kernelChannels * kernelRows * kernelCols; } else { kernel_dims[0] = kernelChannels * kernelRows * kernelCols; kernel_dims[1] = kernelFilters; } // TODO(yangke): choose() is defined in TensorContraction.h -- consider // moving it to somewhere more "common". return choose( Cond::Layout == ColMajor>(), kernel.reshape(kernel_dims) .contract(input .extract_image_patches( kernelRows, kernelCols, row_stride, col_stride, row_in_stride, col_in_stride, padding_type) .reshape(pre_contract_dims), contract_dims) .reshape(post_contract_dims), input .extract_image_patches(kernelRows, kernelCols, row_stride, col_stride, row_in_stride, col_in_stride, padding_type) .reshape(pre_contract_dims) .contract(kernel.reshape(kernel_dims), contract_dims) .reshape(post_contract_dims)); } } // end namespace Eigen #endif // TENSORFLOW_CORE_KERNELS_EIGEN_SPATIAL_CONVOLUTIONS_H_