aboutsummaryrefslogtreecommitdiffhomepage
path: root/tools/sk_tool_utils.cpp
blob: ae6e90f7cf66e2a8de52c8f48de0aff871fe3cee (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
/*
 * Copyright 2014 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "SkBitmap.h"
#include "SkBlendMode.h"
#include "SkCanvas.h"
#include "SkColorData.h"
#include "SkColorPriv.h"
#include "SkFloatingPoint.h"
#include "SkImage.h"
#include "SkMatrix.h"
#include "SkPM4f.h"
#include "SkPaint.h"
#include "SkPath.h"
#include "SkPixelRef.h"
#include "SkPixmap.h"
#include "SkPoint3.h"
#include "SkRRect.h"
#include "SkShader.h"
#include "SkSurface.h"
#include "SkTextBlob.h"
#include "sk_tool_utils.h"

#include <cmath>
#include <cstring>
#include <memory>

namespace sk_tool_utils {

const char* alphatype_name(SkAlphaType at) {
    switch (at) {
        case kUnknown_SkAlphaType:  return "Unknown";
        case kOpaque_SkAlphaType:   return "Opaque";
        case kPremul_SkAlphaType:   return "Premul";
        case kUnpremul_SkAlphaType: return "Unpremul";
    }
    SkASSERT(false);
    return "unexpected alphatype";
}

const char* colortype_name(SkColorType ct) {
    switch (ct) {
        case kUnknown_SkColorType:      return "Unknown";
        case kAlpha_8_SkColorType:      return "Alpha_8";
        case kRGB_565_SkColorType:      return "RGB_565";
        case kARGB_4444_SkColorType:    return "ARGB_4444";
        case kRGBA_8888_SkColorType:    return "RGBA_8888";
        case kRGB_888x_SkColorType:     return "RGB_888x";
        case kBGRA_8888_SkColorType:    return "BGRA_8888";
        case kRGBA_1010102_SkColorType: return "RGBA_1010102";
        case kRGB_101010x_SkColorType:  return "RGB_101010x";
        case kGray_8_SkColorType:       return "Gray_8";
        case kRGBA_F16_SkColorType:     return "RGBA_F16";
        case kRGBA_F32_SkColorType:     return "RGBA_F32";
    }
    SkASSERT(false);
    return "unexpected colortype";
}

SkColor color_to_565(SkColor color) {
    SkPMColor pmColor = SkPreMultiplyColor(color);
    U16CPU color16 = SkPixel32ToPixel16(pmColor);
    return SkPixel16ToColor(color16);
}

void write_pixels(SkCanvas* canvas, const SkBitmap& bitmap, int x, int y,
                  SkColorType colorType, SkAlphaType alphaType) {
    SkBitmap tmp(bitmap);
    const SkImageInfo info = SkImageInfo::Make(tmp.width(), tmp.height(), colorType, alphaType);

    canvas->writePixels(info, tmp.getPixels(), tmp.rowBytes(), x, y);
}

void write_pixels(SkSurface* surface, const SkBitmap& src, int x, int y,
                  SkColorType colorType, SkAlphaType alphaType) {
    const SkImageInfo info = SkImageInfo::Make(src.width(), src.height(), colorType, alphaType);
    surface->writePixels({info, src.getPixels(), src.rowBytes()}, x, y);
}

sk_sp<SkShader> create_checkerboard_shader(SkColor c1, SkColor c2, int size) {
    SkBitmap bm;
    bm.allocPixels(SkImageInfo::MakeS32(2 * size, 2 * size, kPremul_SkAlphaType));
    bm.eraseColor(c1);
    bm.eraseArea(SkIRect::MakeLTRB(0, 0, size, size), c2);
    bm.eraseArea(SkIRect::MakeLTRB(size, size, 2 * size, 2 * size), c2);
    return SkShader::MakeBitmapShader(
            bm, SkShader::kRepeat_TileMode, SkShader::kRepeat_TileMode);
}

SkBitmap create_checkerboard_bitmap(int w, int h, SkColor c1, SkColor c2, int checkSize) {
    SkBitmap bitmap;
    bitmap.allocPixels(SkImageInfo::MakeS32(w, h, kPremul_SkAlphaType));
    SkCanvas canvas(bitmap);

    sk_tool_utils::draw_checkerboard(&canvas, c1, c2, checkSize);
    return bitmap;
}

void draw_checkerboard(SkCanvas* canvas, SkColor c1, SkColor c2, int size) {
    SkPaint paint;
    paint.setShader(create_checkerboard_shader(c1, c2, size));
    paint.setBlendMode(SkBlendMode::kSrc);
    canvas->drawPaint(paint);
}

SkBitmap create_string_bitmap(int w, int h, SkColor c, int x, int y,
                              int textSize, const char* str) {
    SkBitmap bitmap;
    bitmap.allocN32Pixels(w, h);
    SkCanvas canvas(bitmap);

    SkPaint paint;
    paint.setAntiAlias(true);
    sk_tool_utils::set_portable_typeface(&paint);
    paint.setColor(c);
    paint.setTextSize(SkIntToScalar(textSize));

    canvas.clear(0x00000000);
    canvas.drawString(str, SkIntToScalar(x), SkIntToScalar(y), paint);

    // Tag data as sRGB (without doing any color space conversion). Color-space aware configs
    // will process this correctly but legacy configs will render as if this returned N32.
    SkBitmap result;
    result.setInfo(SkImageInfo::MakeS32(w, h, kPremul_SkAlphaType));
    result.setPixelRef(sk_ref_sp(bitmap.pixelRef()), 0, 0);
    return result;
}

void add_to_text_blob_w_len(SkTextBlobBuilder* builder, const char* text, size_t len,
                            const SkPaint& origPaint, SkScalar x, SkScalar y) {
    SkPaint paint(origPaint);
    SkTDArray<uint16_t> glyphs;

    glyphs.append(paint.textToGlyphs(text, len, nullptr));
    paint.textToGlyphs(text, len, glyphs.begin());

    paint.setTextEncoding(SkPaint::kGlyphID_TextEncoding);
    const SkTextBlobBuilder::RunBuffer& run = builder->allocRun(paint, glyphs.count(), x, y,
                                                                nullptr);
    memcpy(run.glyphs, glyphs.begin(), glyphs.count() * sizeof(uint16_t));
}

void add_to_text_blob(SkTextBlobBuilder* builder, const char* text,
                      const SkPaint& origPaint, SkScalar x, SkScalar y) {
    add_to_text_blob_w_len(builder, text, strlen(text), origPaint, x, y);
}

SkPath make_star(const SkRect& bounds, int numPts, int step) {
    SkPath path;
    path.setFillType(SkPath::kEvenOdd_FillType);
    path.moveTo(0,-1);
    for (int i = 1; i < numPts; ++i) {
        int idx = i*step;
        SkScalar theta = idx * 2*SK_ScalarPI/numPts + SK_ScalarPI/2;
        SkScalar x = SkScalarCos(theta);
        SkScalar y = -SkScalarSin(theta);
        path.lineTo(x, y);
    }
    path.transform(SkMatrix::MakeRectToRect(path.getBounds(), bounds, SkMatrix::kFill_ScaleToFit));
    return path;
}

static inline void norm_to_rgb(SkBitmap* bm, int x, int y, const SkVector3& norm) {
    SkASSERT(SkScalarNearlyEqual(norm.length(), 1.0f));
    unsigned char r = static_cast<unsigned char>((0.5f * norm.fX + 0.5f) * 255);
    unsigned char g = static_cast<unsigned char>((-0.5f * norm.fY + 0.5f) * 255);
    unsigned char b = static_cast<unsigned char>((0.5f * norm.fZ + 0.5f) * 255);
    *bm->getAddr32(x, y) = SkPackARGB32(0xFF, r, g, b);
}

void create_hemi_normal_map(SkBitmap* bm, const SkIRect& dst) {
    const SkPoint center = SkPoint::Make(dst.fLeft + (dst.width() / 2.0f),
                                         dst.fTop + (dst.height() / 2.0f));
    const SkPoint halfSize = SkPoint::Make(dst.width() / 2.0f, dst.height() / 2.0f);

    SkVector3 norm;

    for (int y = dst.fTop; y < dst.fBottom; ++y) {
        for (int x = dst.fLeft; x < dst.fRight; ++x) {
            norm.fX = (x + 0.5f - center.fX) / halfSize.fX;
            norm.fY = (y + 0.5f - center.fY) / halfSize.fY;

            SkScalar tmp = norm.fX * norm.fX + norm.fY * norm.fY;
            if (tmp >= 1.0f) {
                norm.set(0.0f, 0.0f, 1.0f);
            } else {
                norm.fZ = sqrtf(1.0f - tmp);
            }

            norm_to_rgb(bm, x, y, norm);
        }
    }
}

void create_frustum_normal_map(SkBitmap* bm, const SkIRect& dst) {
    const SkPoint center = SkPoint::Make(dst.fLeft + (dst.width() / 2.0f),
                                         dst.fTop + (dst.height() / 2.0f));

    SkIRect inner = dst;
    inner.inset(dst.width()/4, dst.height()/4);

    SkPoint3 norm;
    const SkPoint3 left =  SkPoint3::Make(-SK_ScalarRoot2Over2, 0.0f, SK_ScalarRoot2Over2);
    const SkPoint3 up =    SkPoint3::Make(0.0f, -SK_ScalarRoot2Over2, SK_ScalarRoot2Over2);
    const SkPoint3 right = SkPoint3::Make(SK_ScalarRoot2Over2,  0.0f, SK_ScalarRoot2Over2);
    const SkPoint3 down =  SkPoint3::Make(0.0f,  SK_ScalarRoot2Over2, SK_ScalarRoot2Over2);

    for (int y = dst.fTop; y < dst.fBottom; ++y) {
        for (int x = dst.fLeft; x < dst.fRight; ++x) {
            if (inner.contains(x, y)) {
                norm.set(0.0f, 0.0f, 1.0f);
            } else {
                SkScalar locX = x + 0.5f - center.fX;
                SkScalar locY = y + 0.5f - center.fY;

                if (locX >= 0.0f) {
                    if (locY > 0.0f) {
                        norm = locX >= locY ? right : down;   // LR corner
                    } else {
                        norm = locX > -locY ? right : up;     // UR corner
                    }
                } else {
                    if (locY > 0.0f) {
                        norm = -locX > locY ? left : down;    // LL corner
                    } else {
                        norm = locX > locY ? up : left;       // UL corner
                    }
                }
            }

            norm_to_rgb(bm, x, y, norm);
        }
    }
}

void create_tetra_normal_map(SkBitmap* bm, const SkIRect& dst) {
    const SkPoint center = SkPoint::Make(dst.fLeft + (dst.width() / 2.0f),
                                         dst.fTop + (dst.height() / 2.0f));

    static const SkScalar k1OverRoot3 = 0.5773502692f;

    SkPoint3 norm;
    const SkPoint3 leftUp =  SkPoint3::Make(-k1OverRoot3, -k1OverRoot3, k1OverRoot3);
    const SkPoint3 rightUp = SkPoint3::Make(k1OverRoot3,  -k1OverRoot3, k1OverRoot3);
    const SkPoint3 down =  SkPoint3::Make(0.0f,  SK_ScalarRoot2Over2, SK_ScalarRoot2Over2);

    for (int y = dst.fTop; y < dst.fBottom; ++y) {
        for (int x = dst.fLeft; x < dst.fRight; ++x) {
            SkScalar locX = x + 0.5f - center.fX;
            SkScalar locY = y + 0.5f - center.fY;

            if (locX >= 0.0f) {
                if (locY > 0.0f) {
                    norm = locX >= locY ? rightUp : down;   // LR corner
                } else {
                    norm = rightUp;
                }
            } else {
                if (locY > 0.0f) {
                    norm = -locX > locY ? leftUp : down;    // LL corner
                } else {
                    norm = leftUp;
                }
            }

            norm_to_rgb(bm, x, y, norm);
        }
    }
}

#if !defined(__clang__) && defined(_MSC_VER)
    // MSVC takes ~2 minutes to compile this function with optimization.
    // We don't really care to wait that long for this function.
    #pragma optimize("", off)
#endif
void make_big_path(SkPath& path) {
    #include "BigPathBench.inc" // IWYU pragma: keep
}

static float gaussian2d_value(int x, int y, float sigma) {
    // don't bother with the scale term since we're just going to normalize the
    // kernel anyways
    float temp = expf(-(x*x + y*y)/(2*sigma*sigma));
    return temp;
}

static float* create_2d_kernel(float sigma, int* filterSize) {
    // We will actually take 2*halfFilterSize+1 samples (i.e., our filter kernel
    // sizes are always odd)
    int halfFilterSize = SkScalarCeilToInt(6*sigma)/2;
    int wh = *filterSize = 2*halfFilterSize + 1;

    float* temp = new float[wh*wh];

    float filterTot = 0.0f;
    for (int yOff = 0; yOff < wh; ++yOff) {
        for (int xOff = 0; xOff < wh; ++xOff) {
            temp[yOff*wh+xOff] = gaussian2d_value(xOff-halfFilterSize, yOff-halfFilterSize, sigma);

            filterTot += temp[yOff*wh+xOff];
        }
    }

    // normalize the kernel
    for (int yOff = 0; yOff < wh; ++yOff) {
        for (int xOff = 0; xOff < wh; ++xOff) {
            temp[yOff*wh+xOff] /= filterTot;
        }
    }

    return temp;
}

static SkPMColor blur_pixel(const SkBitmap& bm, int x, int y, float* kernel, int wh) {
    SkASSERT(wh & 0x1);

    int halfFilterSize = (wh-1)/2;

    float r = 0.0f, g = 0.0f, b = 0.0f;
    for (int yOff = 0; yOff < wh; ++yOff) {
        int ySamp = y + yOff - halfFilterSize;

        if (ySamp < 0) {
            ySamp = 0;
        } else if (ySamp > bm.height()-1) {
            ySamp = bm.height()-1;
        }

        for (int xOff = 0; xOff < wh; ++xOff) {
            int xSamp = x + xOff - halfFilterSize;

            if (xSamp < 0) {
                xSamp = 0;
            } else if (xSamp > bm.width()-1) {
                xSamp = bm.width()-1;
            }

            float filter = kernel[yOff*wh + xOff];

            SkPMColor c = *bm.getAddr32(xSamp, ySamp);

            r += SkGetPackedR32(c) * filter;
            g += SkGetPackedG32(c) * filter;
            b += SkGetPackedB32(c) * filter;
        }
    }

    U8CPU r8, g8, b8;

    r8 = (U8CPU) (r+0.5f);
    g8 = (U8CPU) (g+0.5f);
    b8 = (U8CPU) (b+0.5f);

    return SkPackARGB32(255, r8, g8, b8);
}

SkBitmap slow_blur(const SkBitmap& src, float sigma) {
    SkBitmap dst;

    dst.allocN32Pixels(src.width(), src.height(), true);

    int wh;
    std::unique_ptr<float[]> kernel(create_2d_kernel(sigma, &wh));

    for (int y = 0; y < src.height(); ++y) {
        for (int x = 0; x < src.width(); ++x) {
            *dst.getAddr32(x, y) = blur_pixel(src, x, y, kernel.get(), wh);
        }
    }

    return dst;
}

// compute the intersection point between the diagonal and the ellipse in the
// lower right corner
static SkPoint intersection(SkScalar w, SkScalar h) {
    SkASSERT(w > 0.0f || h > 0.0f);

    return SkPoint::Make(w / SK_ScalarSqrt2, h / SK_ScalarSqrt2);
}

// Use the intersection of the corners' diagonals with their ellipses to shrink
// the bounding rect
SkRect compute_central_occluder(const SkRRect& rr) {
    const SkRect r = rr.getBounds();

    SkScalar newL = r.fLeft, newT = r.fTop, newR = r.fRight, newB = r.fBottom;

    SkVector radii = rr.radii(SkRRect::kUpperLeft_Corner);
    if (!radii.isZero()) {
        SkPoint p = intersection(radii.fX, radii.fY);

        newL = SkTMax(newL, r.fLeft + radii.fX - p.fX);
        newT = SkTMax(newT, r.fTop + radii.fY - p.fY);
    }

    radii = rr.radii(SkRRect::kUpperRight_Corner);
    if (!radii.isZero()) {
        SkPoint p = intersection(radii.fX, radii.fY);

        newR = SkTMin(newR, r.fRight + p.fX - radii.fX);
        newT = SkTMax(newT, r.fTop + radii.fY - p.fY);
    }

    radii = rr.radii(SkRRect::kLowerRight_Corner);
    if (!radii.isZero()) {
        SkPoint p = intersection(radii.fX, radii.fY);

        newR = SkTMin(newR, r.fRight + p.fX - radii.fX);
        newB = SkTMin(newB, r.fBottom - radii.fY + p.fY);
    }

    radii = rr.radii(SkRRect::kLowerLeft_Corner);
    if (!radii.isZero()) {
        SkPoint p = intersection(radii.fX, radii.fY);

        newL = SkTMax(newL, r.fLeft + radii.fX - p.fX);
        newB = SkTMin(newB, r.fBottom - radii.fY + p.fY);
    }

    return SkRect::MakeLTRB(newL, newT, newR, newB);
}

// The widest inset rect
SkRect compute_widest_occluder(const SkRRect& rr) {
    const SkRect& r = rr.getBounds();

    const SkVector& ul = rr.radii(SkRRect::kUpperLeft_Corner);
    const SkVector& ur = rr.radii(SkRRect::kUpperRight_Corner);
    const SkVector& lr = rr.radii(SkRRect::kLowerRight_Corner);
    const SkVector& ll = rr.radii(SkRRect::kLowerLeft_Corner);

    SkScalar maxT = SkTMax(ul.fY, ur.fY);
    SkScalar maxB = SkTMax(ll.fY, lr.fY);

    return SkRect::MakeLTRB(r.fLeft, r.fTop + maxT, r.fRight, r.fBottom - maxB);

}

// The tallest inset rect
SkRect compute_tallest_occluder(const SkRRect& rr) {
    const SkRect& r = rr.getBounds();

    const SkVector& ul = rr.radii(SkRRect::kUpperLeft_Corner);
    const SkVector& ur = rr.radii(SkRRect::kUpperRight_Corner);
    const SkVector& lr = rr.radii(SkRRect::kLowerRight_Corner);
    const SkVector& ll = rr.radii(SkRRect::kLowerLeft_Corner);

    SkScalar maxL = SkTMax(ul.fX, ll.fX);
    SkScalar maxR = SkTMax(ur.fX, lr.fX);

    return SkRect::MakeLTRB(r.fLeft + maxL, r.fTop, r.fRight - maxR, r.fBottom);
}

bool copy_to(SkBitmap* dst, SkColorType dstColorType, const SkBitmap& src) {
    SkPixmap srcPM;
    if (!src.peekPixels(&srcPM)) {
        return false;
    }

    SkBitmap tmpDst;
    SkImageInfo dstInfo = srcPM.info().makeColorType(dstColorType);
    if (!tmpDst.setInfo(dstInfo)) {
        return false;
    }

    if (!tmpDst.tryAllocPixels()) {
        return false;
    }

    SkPixmap dstPM;
    if (!tmpDst.peekPixels(&dstPM)) {
        return false;
    }

    if (!srcPM.readPixels(dstPM)) {
        return false;
    }

    dst->swap(tmpDst);
    return true;
}

void copy_to_g8(SkBitmap* dst, const SkBitmap& src) {
    SkASSERT(kBGRA_8888_SkColorType == src.colorType() ||
             kRGBA_8888_SkColorType == src.colorType());

    SkImageInfo grayInfo = src.info().makeColorType(kGray_8_SkColorType);
    dst->allocPixels(grayInfo);
    uint8_t* dst8 = (uint8_t*)dst->getPixels();
    const uint32_t* src32 = (const uint32_t*)src.getPixels();

    const int w = src.width();
    const int h = src.height();
    const bool isBGRA = (kBGRA_8888_SkColorType == src.colorType());
    for (int y = 0; y < h; ++y) {
        if (isBGRA) {
            // BGRA
            for (int x = 0; x < w; ++x) {
                uint32_t s = src32[x];
                dst8[x] = SkComputeLuminance((s >> 16) & 0xFF, (s >> 8) & 0xFF, s & 0xFF);
            }
        } else {
            // RGBA
            for (int x = 0; x < w; ++x) {
                uint32_t s = src32[x];
                dst8[x] = SkComputeLuminance(s & 0xFF, (s >> 8) & 0xFF, (s >> 16) & 0xFF);
            }
        }
        src32 = (const uint32_t*)((const char*)src32 + src.rowBytes());
        dst8 += dst->rowBytes();
    }
}

    //////////////////////////////////////////////////////////////////////////////////////////////

    static int scale255(float x) {
        return sk_float_round2int(x * 255);
    }

    static unsigned diff(const SkColorType ct, const void* a, const void* b) {
        int dr = 0,
            dg = 0,
            db = 0,
            da = 0;
        switch (ct) {
            case kRGBA_8888_SkColorType:
            case kBGRA_8888_SkColorType: {
                SkPMColor c0 = *(const SkPMColor*)a;
                SkPMColor c1 = *(const SkPMColor*)b;
                dr = SkGetPackedR32(c0) - SkGetPackedR32(c1);
                dg = SkGetPackedG32(c0) - SkGetPackedG32(c1);
                db = SkGetPackedB32(c0) - SkGetPackedB32(c1);
                da = SkGetPackedA32(c0) - SkGetPackedA32(c1);
            } break;
            case kRGB_565_SkColorType: {
                uint16_t c0 = *(const uint16_t*)a;
                uint16_t c1 = *(const uint16_t*)b;
                dr = SkGetPackedR16(c0) - SkGetPackedR16(c1);
                dg = SkGetPackedG16(c0) - SkGetPackedG16(c1);
                db = SkGetPackedB16(c0) - SkGetPackedB16(c1);
            } break;
            case kARGB_4444_SkColorType: {
                uint16_t c0 = *(const uint16_t*)a;
                uint16_t c1 = *(const uint16_t*)b;
                dr = SkGetPackedR4444(c0) - SkGetPackedR4444(c1);
                dg = SkGetPackedG4444(c0) - SkGetPackedG4444(c1);
                db = SkGetPackedB4444(c0) - SkGetPackedB4444(c1);
                da = SkGetPackedA4444(c0) - SkGetPackedA4444(c1);
            } break;
            case kAlpha_8_SkColorType:
            case kGray_8_SkColorType:
                da = (const uint8_t*)a - (const uint8_t*)b;
                break;
            case kRGBA_F16_SkColorType: {
                const SkPM4f* c0 = (const SkPM4f*)a;
                const SkPM4f* c1 = (const SkPM4f*)b;
                dr = scale255(c0->r() - c1->r());
                dg = scale255(c0->g() - c1->g());
                db = scale255(c0->b() - c1->b());
                da = scale255(c0->a() - c1->a());
            } break;
            default:
                return 0;
        }
        dr = SkAbs32(dr);
        dg = SkAbs32(dg);
        db = SkAbs32(db);
        da = SkAbs32(da);
        return SkMax32(dr, SkMax32(dg, SkMax32(db, da)));
    }

    bool equal_pixels(const SkPixmap& a, const SkPixmap& b, unsigned maxDiff,
                      bool respectColorSpace) {
        if (a.width() != b.width() ||
            a.height() != b.height() ||
            a.colorType() != b.colorType() ||
            (respectColorSpace && (a.colorSpace() != b.colorSpace())))
        {
            return false;
        }

        for (int y = 0; y < a.height(); ++y) {
            const char* aptr = (const char*)a.addr(0, y);
            const char* bptr = (const char*)b.addr(0, y);
            if (memcmp(aptr, bptr, a.width() * a.info().bytesPerPixel())) {
                for (int x = 0; x < a.width(); ++x) {
                    if (diff(a.colorType(), a.addr(x, y), b.addr(x, y)) > maxDiff) {
                        return false;
                    }
                }
            }
            aptr += a.rowBytes();
            bptr += b.rowBytes();
        }
        return true;
    }

    bool equal_pixels(const SkBitmap& bm0, const SkBitmap& bm1, unsigned maxDiff,
                      bool respectColorSpaces) {
        SkPixmap pm0, pm1;
        return bm0.peekPixels(&pm0) && bm1.peekPixels(&pm1) &&
               equal_pixels(pm0, pm1, maxDiff, respectColorSpaces);
    }

    bool equal_pixels(const SkImage* a, const SkImage* b, unsigned maxDiff,
                      bool respectColorSpaces) {
        // ensure that peekPixels will succeed
        auto imga = a->makeRasterImage();
        auto imgb = b->makeRasterImage();
        a = imga.get();
        b = imgb.get();

        SkPixmap pm0, pm1;
        return a->peekPixels(&pm0) && b->peekPixels(&pm1) &&
               equal_pixels(pm0, pm1, maxDiff, respectColorSpaces);
    }

    sk_sp<SkSurface> makeSurface(SkCanvas* canvas, const SkImageInfo& info,
                                 const SkSurfaceProps* props) {
        auto surf = canvas->makeSurface(info, props);
        if (!surf) {
            surf = SkSurface::MakeRaster(info, props);
        }
        return surf;
    }
}  // namespace sk_tool_utils