/* * Copyright 2014 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkBitmap.h" #include "SkBlendMode.h" #include "SkCanvas.h" #include "SkColorData.h" #include "SkColorPriv.h" #include "SkFloatingPoint.h" #include "SkImage.h" #include "SkMatrix.h" #include "SkPM4f.h" #include "SkPaint.h" #include "SkPath.h" #include "SkPixelRef.h" #include "SkPixmap.h" #include "SkPoint3.h" #include "SkRRect.h" #include "SkShader.h" #include "SkSurface.h" #include "SkTextBlob.h" #include "sk_tool_utils.h" #include #include #include namespace sk_tool_utils { const char* alphatype_name(SkAlphaType at) { switch (at) { case kUnknown_SkAlphaType: return "Unknown"; case kOpaque_SkAlphaType: return "Opaque"; case kPremul_SkAlphaType: return "Premul"; case kUnpremul_SkAlphaType: return "Unpremul"; } SkASSERT(false); return "unexpected alphatype"; } const char* colortype_name(SkColorType ct) { switch (ct) { case kUnknown_SkColorType: return "Unknown"; case kAlpha_8_SkColorType: return "Alpha_8"; case kRGB_565_SkColorType: return "RGB_565"; case kARGB_4444_SkColorType: return "ARGB_4444"; case kRGBA_8888_SkColorType: return "RGBA_8888"; case kRGB_888x_SkColorType: return "RGB_888x"; case kBGRA_8888_SkColorType: return "BGRA_8888"; case kRGBA_1010102_SkColorType: return "RGBA_1010102"; case kRGB_101010x_SkColorType: return "RGB_101010x"; case kGray_8_SkColorType: return "Gray_8"; case kRGBA_F16_SkColorType: return "RGBA_F16"; case kRGBA_F32_SkColorType: return "RGBA_F32"; } SkASSERT(false); return "unexpected colortype"; } SkColor color_to_565(SkColor color) { SkPMColor pmColor = SkPreMultiplyColor(color); U16CPU color16 = SkPixel32ToPixel16(pmColor); return SkPixel16ToColor(color16); } void write_pixels(SkCanvas* canvas, const SkBitmap& bitmap, int x, int y, SkColorType colorType, SkAlphaType alphaType) { SkBitmap tmp(bitmap); const SkImageInfo info = SkImageInfo::Make(tmp.width(), tmp.height(), colorType, alphaType); canvas->writePixels(info, tmp.getPixels(), tmp.rowBytes(), x, y); } void write_pixels(SkSurface* surface, const SkBitmap& src, int x, int y, SkColorType colorType, SkAlphaType alphaType) { const SkImageInfo info = SkImageInfo::Make(src.width(), src.height(), colorType, alphaType); surface->writePixels({info, src.getPixels(), src.rowBytes()}, x, y); } sk_sp create_checkerboard_shader(SkColor c1, SkColor c2, int size) { SkBitmap bm; bm.allocPixels(SkImageInfo::MakeS32(2 * size, 2 * size, kPremul_SkAlphaType)); bm.eraseColor(c1); bm.eraseArea(SkIRect::MakeLTRB(0, 0, size, size), c2); bm.eraseArea(SkIRect::MakeLTRB(size, size, 2 * size, 2 * size), c2); return SkShader::MakeBitmapShader( bm, SkShader::kRepeat_TileMode, SkShader::kRepeat_TileMode); } SkBitmap create_checkerboard_bitmap(int w, int h, SkColor c1, SkColor c2, int checkSize) { SkBitmap bitmap; bitmap.allocPixels(SkImageInfo::MakeS32(w, h, kPremul_SkAlphaType)); SkCanvas canvas(bitmap); sk_tool_utils::draw_checkerboard(&canvas, c1, c2, checkSize); return bitmap; } void draw_checkerboard(SkCanvas* canvas, SkColor c1, SkColor c2, int size) { SkPaint paint; paint.setShader(create_checkerboard_shader(c1, c2, size)); paint.setBlendMode(SkBlendMode::kSrc); canvas->drawPaint(paint); } SkBitmap create_string_bitmap(int w, int h, SkColor c, int x, int y, int textSize, const char* str) { SkBitmap bitmap; bitmap.allocN32Pixels(w, h); SkCanvas canvas(bitmap); SkPaint paint; paint.setAntiAlias(true); sk_tool_utils::set_portable_typeface(&paint); paint.setColor(c); paint.setTextSize(SkIntToScalar(textSize)); canvas.clear(0x00000000); canvas.drawString(str, SkIntToScalar(x), SkIntToScalar(y), paint); // Tag data as sRGB (without doing any color space conversion). Color-space aware configs // will process this correctly but legacy configs will render as if this returned N32. SkBitmap result; result.setInfo(SkImageInfo::MakeS32(w, h, kPremul_SkAlphaType)); result.setPixelRef(sk_ref_sp(bitmap.pixelRef()), 0, 0); return result; } void add_to_text_blob_w_len(SkTextBlobBuilder* builder, const char* text, size_t len, const SkPaint& origPaint, SkScalar x, SkScalar y) { SkPaint paint(origPaint); SkTDArray glyphs; glyphs.append(paint.textToGlyphs(text, len, nullptr)); paint.textToGlyphs(text, len, glyphs.begin()); paint.setTextEncoding(SkPaint::kGlyphID_TextEncoding); const SkTextBlobBuilder::RunBuffer& run = builder->allocRun(paint, glyphs.count(), x, y, nullptr); memcpy(run.glyphs, glyphs.begin(), glyphs.count() * sizeof(uint16_t)); } void add_to_text_blob(SkTextBlobBuilder* builder, const char* text, const SkPaint& origPaint, SkScalar x, SkScalar y) { add_to_text_blob_w_len(builder, text, strlen(text), origPaint, x, y); } SkPath make_star(const SkRect& bounds, int numPts, int step) { SkPath path; path.setFillType(SkPath::kEvenOdd_FillType); path.moveTo(0,-1); for (int i = 1; i < numPts; ++i) { int idx = i*step; SkScalar theta = idx * 2*SK_ScalarPI/numPts + SK_ScalarPI/2; SkScalar x = SkScalarCos(theta); SkScalar y = -SkScalarSin(theta); path.lineTo(x, y); } path.transform(SkMatrix::MakeRectToRect(path.getBounds(), bounds, SkMatrix::kFill_ScaleToFit)); return path; } static inline void norm_to_rgb(SkBitmap* bm, int x, int y, const SkVector3& norm) { SkASSERT(SkScalarNearlyEqual(norm.length(), 1.0f)); unsigned char r = static_cast((0.5f * norm.fX + 0.5f) * 255); unsigned char g = static_cast((-0.5f * norm.fY + 0.5f) * 255); unsigned char b = static_cast((0.5f * norm.fZ + 0.5f) * 255); *bm->getAddr32(x, y) = SkPackARGB32(0xFF, r, g, b); } void create_hemi_normal_map(SkBitmap* bm, const SkIRect& dst) { const SkPoint center = SkPoint::Make(dst.fLeft + (dst.width() / 2.0f), dst.fTop + (dst.height() / 2.0f)); const SkPoint halfSize = SkPoint::Make(dst.width() / 2.0f, dst.height() / 2.0f); SkVector3 norm; for (int y = dst.fTop; y < dst.fBottom; ++y) { for (int x = dst.fLeft; x < dst.fRight; ++x) { norm.fX = (x + 0.5f - center.fX) / halfSize.fX; norm.fY = (y + 0.5f - center.fY) / halfSize.fY; SkScalar tmp = norm.fX * norm.fX + norm.fY * norm.fY; if (tmp >= 1.0f) { norm.set(0.0f, 0.0f, 1.0f); } else { norm.fZ = sqrtf(1.0f - tmp); } norm_to_rgb(bm, x, y, norm); } } } void create_frustum_normal_map(SkBitmap* bm, const SkIRect& dst) { const SkPoint center = SkPoint::Make(dst.fLeft + (dst.width() / 2.0f), dst.fTop + (dst.height() / 2.0f)); SkIRect inner = dst; inner.inset(dst.width()/4, dst.height()/4); SkPoint3 norm; const SkPoint3 left = SkPoint3::Make(-SK_ScalarRoot2Over2, 0.0f, SK_ScalarRoot2Over2); const SkPoint3 up = SkPoint3::Make(0.0f, -SK_ScalarRoot2Over2, SK_ScalarRoot2Over2); const SkPoint3 right = SkPoint3::Make(SK_ScalarRoot2Over2, 0.0f, SK_ScalarRoot2Over2); const SkPoint3 down = SkPoint3::Make(0.0f, SK_ScalarRoot2Over2, SK_ScalarRoot2Over2); for (int y = dst.fTop; y < dst.fBottom; ++y) { for (int x = dst.fLeft; x < dst.fRight; ++x) { if (inner.contains(x, y)) { norm.set(0.0f, 0.0f, 1.0f); } else { SkScalar locX = x + 0.5f - center.fX; SkScalar locY = y + 0.5f - center.fY; if (locX >= 0.0f) { if (locY > 0.0f) { norm = locX >= locY ? right : down; // LR corner } else { norm = locX > -locY ? right : up; // UR corner } } else { if (locY > 0.0f) { norm = -locX > locY ? left : down; // LL corner } else { norm = locX > locY ? up : left; // UL corner } } } norm_to_rgb(bm, x, y, norm); } } } void create_tetra_normal_map(SkBitmap* bm, const SkIRect& dst) { const SkPoint center = SkPoint::Make(dst.fLeft + (dst.width() / 2.0f), dst.fTop + (dst.height() / 2.0f)); static const SkScalar k1OverRoot3 = 0.5773502692f; SkPoint3 norm; const SkPoint3 leftUp = SkPoint3::Make(-k1OverRoot3, -k1OverRoot3, k1OverRoot3); const SkPoint3 rightUp = SkPoint3::Make(k1OverRoot3, -k1OverRoot3, k1OverRoot3); const SkPoint3 down = SkPoint3::Make(0.0f, SK_ScalarRoot2Over2, SK_ScalarRoot2Over2); for (int y = dst.fTop; y < dst.fBottom; ++y) { for (int x = dst.fLeft; x < dst.fRight; ++x) { SkScalar locX = x + 0.5f - center.fX; SkScalar locY = y + 0.5f - center.fY; if (locX >= 0.0f) { if (locY > 0.0f) { norm = locX >= locY ? rightUp : down; // LR corner } else { norm = rightUp; } } else { if (locY > 0.0f) { norm = -locX > locY ? leftUp : down; // LL corner } else { norm = leftUp; } } norm_to_rgb(bm, x, y, norm); } } } #if !defined(__clang__) && defined(_MSC_VER) // MSVC takes ~2 minutes to compile this function with optimization. // We don't really care to wait that long for this function. #pragma optimize("", off) #endif void make_big_path(SkPath& path) { #include "BigPathBench.inc" // IWYU pragma: keep } static float gaussian2d_value(int x, int y, float sigma) { // don't bother with the scale term since we're just going to normalize the // kernel anyways float temp = expf(-(x*x + y*y)/(2*sigma*sigma)); return temp; } static float* create_2d_kernel(float sigma, int* filterSize) { // We will actually take 2*halfFilterSize+1 samples (i.e., our filter kernel // sizes are always odd) int halfFilterSize = SkScalarCeilToInt(6*sigma)/2; int wh = *filterSize = 2*halfFilterSize + 1; float* temp = new float[wh*wh]; float filterTot = 0.0f; for (int yOff = 0; yOff < wh; ++yOff) { for (int xOff = 0; xOff < wh; ++xOff) { temp[yOff*wh+xOff] = gaussian2d_value(xOff-halfFilterSize, yOff-halfFilterSize, sigma); filterTot += temp[yOff*wh+xOff]; } } // normalize the kernel for (int yOff = 0; yOff < wh; ++yOff) { for (int xOff = 0; xOff < wh; ++xOff) { temp[yOff*wh+xOff] /= filterTot; } } return temp; } static SkPMColor blur_pixel(const SkBitmap& bm, int x, int y, float* kernel, int wh) { SkASSERT(wh & 0x1); int halfFilterSize = (wh-1)/2; float r = 0.0f, g = 0.0f, b = 0.0f; for (int yOff = 0; yOff < wh; ++yOff) { int ySamp = y + yOff - halfFilterSize; if (ySamp < 0) { ySamp = 0; } else if (ySamp > bm.height()-1) { ySamp = bm.height()-1; } for (int xOff = 0; xOff < wh; ++xOff) { int xSamp = x + xOff - halfFilterSize; if (xSamp < 0) { xSamp = 0; } else if (xSamp > bm.width()-1) { xSamp = bm.width()-1; } float filter = kernel[yOff*wh + xOff]; SkPMColor c = *bm.getAddr32(xSamp, ySamp); r += SkGetPackedR32(c) * filter; g += SkGetPackedG32(c) * filter; b += SkGetPackedB32(c) * filter; } } U8CPU r8, g8, b8; r8 = (U8CPU) (r+0.5f); g8 = (U8CPU) (g+0.5f); b8 = (U8CPU) (b+0.5f); return SkPackARGB32(255, r8, g8, b8); } SkBitmap slow_blur(const SkBitmap& src, float sigma) { SkBitmap dst; dst.allocN32Pixels(src.width(), src.height(), true); int wh; std::unique_ptr kernel(create_2d_kernel(sigma, &wh)); for (int y = 0; y < src.height(); ++y) { for (int x = 0; x < src.width(); ++x) { *dst.getAddr32(x, y) = blur_pixel(src, x, y, kernel.get(), wh); } } return dst; } // compute the intersection point between the diagonal and the ellipse in the // lower right corner static SkPoint intersection(SkScalar w, SkScalar h) { SkASSERT(w > 0.0f || h > 0.0f); return SkPoint::Make(w / SK_ScalarSqrt2, h / SK_ScalarSqrt2); } // Use the intersection of the corners' diagonals with their ellipses to shrink // the bounding rect SkRect compute_central_occluder(const SkRRect& rr) { const SkRect r = rr.getBounds(); SkScalar newL = r.fLeft, newT = r.fTop, newR = r.fRight, newB = r.fBottom; SkVector radii = rr.radii(SkRRect::kUpperLeft_Corner); if (!radii.isZero()) { SkPoint p = intersection(radii.fX, radii.fY); newL = SkTMax(newL, r.fLeft + radii.fX - p.fX); newT = SkTMax(newT, r.fTop + radii.fY - p.fY); } radii = rr.radii(SkRRect::kUpperRight_Corner); if (!radii.isZero()) { SkPoint p = intersection(radii.fX, radii.fY); newR = SkTMin(newR, r.fRight + p.fX - radii.fX); newT = SkTMax(newT, r.fTop + radii.fY - p.fY); } radii = rr.radii(SkRRect::kLowerRight_Corner); if (!radii.isZero()) { SkPoint p = intersection(radii.fX, radii.fY); newR = SkTMin(newR, r.fRight + p.fX - radii.fX); newB = SkTMin(newB, r.fBottom - radii.fY + p.fY); } radii = rr.radii(SkRRect::kLowerLeft_Corner); if (!radii.isZero()) { SkPoint p = intersection(radii.fX, radii.fY); newL = SkTMax(newL, r.fLeft + radii.fX - p.fX); newB = SkTMin(newB, r.fBottom - radii.fY + p.fY); } return SkRect::MakeLTRB(newL, newT, newR, newB); } // The widest inset rect SkRect compute_widest_occluder(const SkRRect& rr) { const SkRect& r = rr.getBounds(); const SkVector& ul = rr.radii(SkRRect::kUpperLeft_Corner); const SkVector& ur = rr.radii(SkRRect::kUpperRight_Corner); const SkVector& lr = rr.radii(SkRRect::kLowerRight_Corner); const SkVector& ll = rr.radii(SkRRect::kLowerLeft_Corner); SkScalar maxT = SkTMax(ul.fY, ur.fY); SkScalar maxB = SkTMax(ll.fY, lr.fY); return SkRect::MakeLTRB(r.fLeft, r.fTop + maxT, r.fRight, r.fBottom - maxB); } // The tallest inset rect SkRect compute_tallest_occluder(const SkRRect& rr) { const SkRect& r = rr.getBounds(); const SkVector& ul = rr.radii(SkRRect::kUpperLeft_Corner); const SkVector& ur = rr.radii(SkRRect::kUpperRight_Corner); const SkVector& lr = rr.radii(SkRRect::kLowerRight_Corner); const SkVector& ll = rr.radii(SkRRect::kLowerLeft_Corner); SkScalar maxL = SkTMax(ul.fX, ll.fX); SkScalar maxR = SkTMax(ur.fX, lr.fX); return SkRect::MakeLTRB(r.fLeft + maxL, r.fTop, r.fRight - maxR, r.fBottom); } bool copy_to(SkBitmap* dst, SkColorType dstColorType, const SkBitmap& src) { SkPixmap srcPM; if (!src.peekPixels(&srcPM)) { return false; } SkBitmap tmpDst; SkImageInfo dstInfo = srcPM.info().makeColorType(dstColorType); if (!tmpDst.setInfo(dstInfo)) { return false; } if (!tmpDst.tryAllocPixels()) { return false; } SkPixmap dstPM; if (!tmpDst.peekPixels(&dstPM)) { return false; } if (!srcPM.readPixels(dstPM)) { return false; } dst->swap(tmpDst); return true; } void copy_to_g8(SkBitmap* dst, const SkBitmap& src) { SkASSERT(kBGRA_8888_SkColorType == src.colorType() || kRGBA_8888_SkColorType == src.colorType()); SkImageInfo grayInfo = src.info().makeColorType(kGray_8_SkColorType); dst->allocPixels(grayInfo); uint8_t* dst8 = (uint8_t*)dst->getPixels(); const uint32_t* src32 = (const uint32_t*)src.getPixels(); const int w = src.width(); const int h = src.height(); const bool isBGRA = (kBGRA_8888_SkColorType == src.colorType()); for (int y = 0; y < h; ++y) { if (isBGRA) { // BGRA for (int x = 0; x < w; ++x) { uint32_t s = src32[x]; dst8[x] = SkComputeLuminance((s >> 16) & 0xFF, (s >> 8) & 0xFF, s & 0xFF); } } else { // RGBA for (int x = 0; x < w; ++x) { uint32_t s = src32[x]; dst8[x] = SkComputeLuminance(s & 0xFF, (s >> 8) & 0xFF, (s >> 16) & 0xFF); } } src32 = (const uint32_t*)((const char*)src32 + src.rowBytes()); dst8 += dst->rowBytes(); } } ////////////////////////////////////////////////////////////////////////////////////////////// static int scale255(float x) { return sk_float_round2int(x * 255); } static unsigned diff(const SkColorType ct, const void* a, const void* b) { int dr = 0, dg = 0, db = 0, da = 0; switch (ct) { case kRGBA_8888_SkColorType: case kBGRA_8888_SkColorType: { SkPMColor c0 = *(const SkPMColor*)a; SkPMColor c1 = *(const SkPMColor*)b; dr = SkGetPackedR32(c0) - SkGetPackedR32(c1); dg = SkGetPackedG32(c0) - SkGetPackedG32(c1); db = SkGetPackedB32(c0) - SkGetPackedB32(c1); da = SkGetPackedA32(c0) - SkGetPackedA32(c1); } break; case kRGB_565_SkColorType: { uint16_t c0 = *(const uint16_t*)a; uint16_t c1 = *(const uint16_t*)b; dr = SkGetPackedR16(c0) - SkGetPackedR16(c1); dg = SkGetPackedG16(c0) - SkGetPackedG16(c1); db = SkGetPackedB16(c0) - SkGetPackedB16(c1); } break; case kARGB_4444_SkColorType: { uint16_t c0 = *(const uint16_t*)a; uint16_t c1 = *(const uint16_t*)b; dr = SkGetPackedR4444(c0) - SkGetPackedR4444(c1); dg = SkGetPackedG4444(c0) - SkGetPackedG4444(c1); db = SkGetPackedB4444(c0) - SkGetPackedB4444(c1); da = SkGetPackedA4444(c0) - SkGetPackedA4444(c1); } break; case kAlpha_8_SkColorType: case kGray_8_SkColorType: da = (const uint8_t*)a - (const uint8_t*)b; break; case kRGBA_F16_SkColorType: { const SkPM4f* c0 = (const SkPM4f*)a; const SkPM4f* c1 = (const SkPM4f*)b; dr = scale255(c0->r() - c1->r()); dg = scale255(c0->g() - c1->g()); db = scale255(c0->b() - c1->b()); da = scale255(c0->a() - c1->a()); } break; default: return 0; } dr = SkAbs32(dr); dg = SkAbs32(dg); db = SkAbs32(db); da = SkAbs32(da); return SkMax32(dr, SkMax32(dg, SkMax32(db, da))); } bool equal_pixels(const SkPixmap& a, const SkPixmap& b, unsigned maxDiff, bool respectColorSpace) { if (a.width() != b.width() || a.height() != b.height() || a.colorType() != b.colorType() || (respectColorSpace && (a.colorSpace() != b.colorSpace()))) { return false; } for (int y = 0; y < a.height(); ++y) { const char* aptr = (const char*)a.addr(0, y); const char* bptr = (const char*)b.addr(0, y); if (memcmp(aptr, bptr, a.width() * a.info().bytesPerPixel())) { for (int x = 0; x < a.width(); ++x) { if (diff(a.colorType(), a.addr(x, y), b.addr(x, y)) > maxDiff) { return false; } } } aptr += a.rowBytes(); bptr += b.rowBytes(); } return true; } bool equal_pixels(const SkBitmap& bm0, const SkBitmap& bm1, unsigned maxDiff, bool respectColorSpaces) { SkPixmap pm0, pm1; return bm0.peekPixels(&pm0) && bm1.peekPixels(&pm1) && equal_pixels(pm0, pm1, maxDiff, respectColorSpaces); } bool equal_pixels(const SkImage* a, const SkImage* b, unsigned maxDiff, bool respectColorSpaces) { // ensure that peekPixels will succeed auto imga = a->makeRasterImage(); auto imgb = b->makeRasterImage(); a = imga.get(); b = imgb.get(); SkPixmap pm0, pm1; return a->peekPixels(&pm0) && b->peekPixels(&pm1) && equal_pixels(pm0, pm1, maxDiff, respectColorSpaces); } sk_sp makeSurface(SkCanvas* canvas, const SkImageInfo& info, const SkSurfaceProps* props) { auto surf = canvas->makeSurface(info, props); if (!surf) { surf = SkSurface::MakeRaster(info, props); } return surf; } } // namespace sk_tool_utils