aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/utils/SkTaskGroup.cpp
blob: a42c0a43af0b5e89c1c117d29ddc1fc3c3af09cf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
#include "SkTaskGroup.h"

#include "SkCondVar.h"
#include "SkLazyPtr.h"
#include "SkTDArray.h"
#include "SkThread.h"
#include "SkThreadUtils.h"

#if defined(SK_BUILD_FOR_WIN32)
    static inline int num_cores() {
        SYSTEM_INFO sysinfo;
        GetSystemInfo(&sysinfo);
        return sysinfo.dwNumberOfProcessors;
    }
#else
    #include <unistd.h>
    static inline int num_cores() {
        return (int) sysconf(_SC_NPROCESSORS_ONLN);
    }
#endif

namespace {

static int gThreadCount = 0;

class ThreadPool : SkNoncopyable {
public:
    static void Add(SkRunnable* task, int32_t* pending) {
        Global()->add(task, pending);
    }

    static void Wait(int32_t* pending) {
        while (sk_acquire_load(pending) > 0) {  // Pairs with sk_atomic_dec here or in Loop.
            // Lend a hand until our SkTaskGroup of interest is done.
            ThreadPool* pool = Global();
            Work work;
            {
                AutoLock lock(&pool->fReady);
                if (pool->fWork.isEmpty()) {
                    // Someone has picked up all the work (including ours).  How nice of them!
                    // (They may still be working on it, so we can't assert *pending == 0 here.)
                    continue;
                }
                pool->fWork.pop(&work);
            }
            // This Work isn't necessarily part of our SkTaskGroup of interest, but that's fine.
            // We threads gotta stick together.  We're always making forward progress.
            work.task->run();
            sk_atomic_dec(work.pending);  // Release pairs with the sk_acquire_load() just above.
        }
    }

private:
    struct AutoLock {
        AutoLock(SkCondVar* c) : fC(c) { fC->lock(); }
        ~AutoLock() { fC->unlock(); }
    private:
        SkCondVar* fC;
    };

    struct Work {
        SkRunnable* task;  // A task to ->run(),
        int32_t* pending;  // then sk_atomic_dec(pending) afterwards.
    };

    static ThreadPool* Create() { return SkNEW(ThreadPool); }
    static void Destroy(ThreadPool* p) { SkDELETE(p); }
    static ThreadPool* Global() {
        SK_DECLARE_STATIC_LAZY_PTR(ThreadPool, global, Create, Destroy);
        return global.get();
    }

    ThreadPool() : fDraining(false) {
        const int threads = gThreadCount ? gThreadCount : num_cores();
        for (int i = 0; i < threads; i++) {
            fThreads.push(SkNEW_ARGS(SkThread, (&ThreadPool::Loop, this)));
            fThreads.top()->start();
        }
    }

    ~ThreadPool() {
        SkASSERT(fWork.isEmpty());  // All SkTaskGroups should be destroyed by now.
        {
            AutoLock lock(&fReady);
            fDraining = true;
            fReady.broadcast();
        }
        for (int i = 0; i < fThreads.count(); i++) {
            fThreads[i]->join();
        }
        SkASSERT(fWork.isEmpty());  // Can't hurt to double check.
        fThreads.deleteAll();
    }

    void add(SkRunnable* task, int32_t* pending) {
        Work work = { task, pending };
        sk_atomic_inc(pending);  // No barrier needed.
        {
            AutoLock lock(&fReady);
            fWork.push(work);
            fReady.signal();
        }
    }

    static void Loop(void* arg) {
        ThreadPool* pool = (ThreadPool*)arg;
        Work work;
        while (true) {
            {
                AutoLock lock(&pool->fReady);
                while (pool->fWork.isEmpty()) {
                    if (pool->fDraining) {
                        return;
                    }
                    pool->fReady.wait();
                }
                pool->fWork.pop(&work);
            }
            work.task->run();
            sk_atomic_dec(work.pending);  // Release pairs with sk_acquire_load() in Wait().
        }
    }

    SkTDArray<Work>      fWork;
    SkTDArray<SkThread*> fThreads;
    SkCondVar            fReady;
    bool                 fDraining;
};

}  // namespace

void SkTaskGroup::SetThreadCount(int n) { gThreadCount = n; }

SkTaskGroup::SkTaskGroup() : fPending(0) {}

void SkTaskGroup::add(SkRunnable* task) { ThreadPool::Add(task, &fPending); }
void SkTaskGroup::wait()                { ThreadPool::Wait(&fPending); }