aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/utils/SkTaskGroup.cpp
diff options
context:
space:
mode:
authorGravatar mtklein <mtklein@chromium.org>2014-09-03 14:06:47 -0700
committerGravatar Commit bot <commit-bot@chromium.org>2014-09-03 14:06:48 -0700
commit9c7207b5dc71dc5a96a2eb107d401133333d5b6f (patch)
treed4a19230e5516cb03513c5ad15ab9779dc3eeac0 /src/utils/SkTaskGroup.cpp
parent00b76bd750e668a6989dd497313e715d1b476fdc (diff)
SkThreadPool ~~> SkTaskGroup
SkTaskGroup is like SkThreadPool except the threads stay in one global pool. Each SkTaskGroup itself is tiny (4 bytes) and its wait() method applies only to tasks add()ed to that instance, not the whole thread pool. This means we don't need to bring up new thread pools when tests themselves want to use multithreading (e.g. pathops, quilt). We just create a new SkTaskGroup and wait for that to complete. This should be more efficient, and allow us to expand where we use threads to really latency sensitive places. E.g. we can probably now use these in nanobench for CPU .skp rendering. Now that all threads are sharing the same pool, I think we can remove most of the custom mechanism pathops tests use to control threading. They'll just ride on the global pool with all other tests now. This (temporarily?) removes the GPU multithreading feature from DM, which we don't use. On my desktop, DM runs a little faster (57s -> 55s) in Debug, and a lot faster in Release (36s -> 24s). The bots show speedups of similar proportions, cutting more than a minute off the N4/Release and Win7/Debug runtimes. BUG=skia: R=caryclark@google.com, bsalomon@google.com, bungeman@google.com, mtklein@google.com, reed@google.com Author: mtklein@chromium.org Review URL: https://codereview.chromium.org/531653002
Diffstat (limited to 'src/utils/SkTaskGroup.cpp')
-rw-r--r--src/utils/SkTaskGroup.cpp137
1 files changed, 137 insertions, 0 deletions
diff --git a/src/utils/SkTaskGroup.cpp b/src/utils/SkTaskGroup.cpp
new file mode 100644
index 0000000000..a42c0a43af
--- /dev/null
+++ b/src/utils/SkTaskGroup.cpp
@@ -0,0 +1,137 @@
+#include "SkTaskGroup.h"
+
+#include "SkCondVar.h"
+#include "SkLazyPtr.h"
+#include "SkTDArray.h"
+#include "SkThread.h"
+#include "SkThreadUtils.h"
+
+#if defined(SK_BUILD_FOR_WIN32)
+ static inline int num_cores() {
+ SYSTEM_INFO sysinfo;
+ GetSystemInfo(&sysinfo);
+ return sysinfo.dwNumberOfProcessors;
+ }
+#else
+ #include <unistd.h>
+ static inline int num_cores() {
+ return (int) sysconf(_SC_NPROCESSORS_ONLN);
+ }
+#endif
+
+namespace {
+
+static int gThreadCount = 0;
+
+class ThreadPool : SkNoncopyable {
+public:
+ static void Add(SkRunnable* task, int32_t* pending) {
+ Global()->add(task, pending);
+ }
+
+ static void Wait(int32_t* pending) {
+ while (sk_acquire_load(pending) > 0) { // Pairs with sk_atomic_dec here or in Loop.
+ // Lend a hand until our SkTaskGroup of interest is done.
+ ThreadPool* pool = Global();
+ Work work;
+ {
+ AutoLock lock(&pool->fReady);
+ if (pool->fWork.isEmpty()) {
+ // Someone has picked up all the work (including ours). How nice of them!
+ // (They may still be working on it, so we can't assert *pending == 0 here.)
+ continue;
+ }
+ pool->fWork.pop(&work);
+ }
+ // This Work isn't necessarily part of our SkTaskGroup of interest, but that's fine.
+ // We threads gotta stick together. We're always making forward progress.
+ work.task->run();
+ sk_atomic_dec(work.pending); // Release pairs with the sk_acquire_load() just above.
+ }
+ }
+
+private:
+ struct AutoLock {
+ AutoLock(SkCondVar* c) : fC(c) { fC->lock(); }
+ ~AutoLock() { fC->unlock(); }
+ private:
+ SkCondVar* fC;
+ };
+
+ struct Work {
+ SkRunnable* task; // A task to ->run(),
+ int32_t* pending; // then sk_atomic_dec(pending) afterwards.
+ };
+
+ static ThreadPool* Create() { return SkNEW(ThreadPool); }
+ static void Destroy(ThreadPool* p) { SkDELETE(p); }
+ static ThreadPool* Global() {
+ SK_DECLARE_STATIC_LAZY_PTR(ThreadPool, global, Create, Destroy);
+ return global.get();
+ }
+
+ ThreadPool() : fDraining(false) {
+ const int threads = gThreadCount ? gThreadCount : num_cores();
+ for (int i = 0; i < threads; i++) {
+ fThreads.push(SkNEW_ARGS(SkThread, (&ThreadPool::Loop, this)));
+ fThreads.top()->start();
+ }
+ }
+
+ ~ThreadPool() {
+ SkASSERT(fWork.isEmpty()); // All SkTaskGroups should be destroyed by now.
+ {
+ AutoLock lock(&fReady);
+ fDraining = true;
+ fReady.broadcast();
+ }
+ for (int i = 0; i < fThreads.count(); i++) {
+ fThreads[i]->join();
+ }
+ SkASSERT(fWork.isEmpty()); // Can't hurt to double check.
+ fThreads.deleteAll();
+ }
+
+ void add(SkRunnable* task, int32_t* pending) {
+ Work work = { task, pending };
+ sk_atomic_inc(pending); // No barrier needed.
+ {
+ AutoLock lock(&fReady);
+ fWork.push(work);
+ fReady.signal();
+ }
+ }
+
+ static void Loop(void* arg) {
+ ThreadPool* pool = (ThreadPool*)arg;
+ Work work;
+ while (true) {
+ {
+ AutoLock lock(&pool->fReady);
+ while (pool->fWork.isEmpty()) {
+ if (pool->fDraining) {
+ return;
+ }
+ pool->fReady.wait();
+ }
+ pool->fWork.pop(&work);
+ }
+ work.task->run();
+ sk_atomic_dec(work.pending); // Release pairs with sk_acquire_load() in Wait().
+ }
+ }
+
+ SkTDArray<Work> fWork;
+ SkTDArray<SkThread*> fThreads;
+ SkCondVar fReady;
+ bool fDraining;
+};
+
+} // namespace
+
+void SkTaskGroup::SetThreadCount(int n) { gThreadCount = n; }
+
+SkTaskGroup::SkTaskGroup() : fPending(0) {}
+
+void SkTaskGroup::add(SkRunnable* task) { ThreadPool::Add(task, &fPending); }
+void SkTaskGroup::wait() { ThreadPool::Wait(&fPending); }