aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/utils/SkShadowUtils.cpp
blob: bacc51a49ccb4b0a26518503ff4d7584d72eaca7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
/*
* Copyright 2017 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/

#include "SkShadowUtils.h"
#include "SkCanvas.h"
#include "SkColorFilter.h"
#include "SkColorData.h"
#include "SkDevice.h"
#include "SkDrawShadowInfo.h"
#include "SkPath.h"
#include "SkPM4f.h"
#include "SkRandom.h"
#include "SkRasterPipeline.h"
#include "SkResourceCache.h"
#include "SkShadowTessellator.h"
#include "SkString.h"
#include "SkTLazy.h"
#include "SkVertices.h"
#if SK_SUPPORT_GPU
#include "GrShape.h"
#include "effects/GrBlurredEdgeFragmentProcessor.h"
#endif

/**
*  Gaussian color filter -- produces a Gaussian ramp based on the color's B value,
*                           then blends with the color's G value.
*                           Final result is black with alpha of Gaussian(B)*G.
*                           The assumption is that the original color's alpha is 1.
*/
class SkGaussianColorFilter : public SkColorFilter {
public:
    static sk_sp<SkColorFilter> Make() {
        return sk_sp<SkColorFilter>(new SkGaussianColorFilter);
    }

#if SK_SUPPORT_GPU
    std::unique_ptr<GrFragmentProcessor> asFragmentProcessor(
            GrContext*, const GrColorSpaceInfo&) const override;
#endif

    SK_TO_STRING_OVERRIDE()
    SK_DECLARE_PUBLIC_FLATTENABLE_DESERIALIZATION_PROCS(SkGaussianColorFilter)

protected:
    void flatten(SkWriteBuffer&) const override {}
    void onAppendStages(SkRasterPipeline* pipeline, SkColorSpace* dstCS, SkArenaAlloc* alloc,
                        bool shaderIsOpaque) const override {
        pipeline->append(SkRasterPipeline::gauss_a_to_rgba);
    }
private:
    SkGaussianColorFilter() : INHERITED() {}

    typedef SkColorFilter INHERITED;
};

sk_sp<SkFlattenable> SkGaussianColorFilter::CreateProc(SkReadBuffer&) {
    return Make();
}

#ifndef SK_IGNORE_TO_STRING
void SkGaussianColorFilter::toString(SkString* str) const {
    str->append("SkGaussianColorFilter ");
}
#endif

#if SK_SUPPORT_GPU

std::unique_ptr<GrFragmentProcessor> SkGaussianColorFilter::asFragmentProcessor(
        GrContext*, const GrColorSpaceInfo&) const {
    return GrBlurredEdgeFragmentProcessor::Make(GrBlurredEdgeFragmentProcessor::Mode::kGaussian);
}
#endif

///////////////////////////////////////////////////////////////////////////////////////////////////

namespace {

uint64_t resource_cache_shared_id() {
    return 0x2020776f64616873llu;  // 'shadow  '
}

/** Factory for an ambient shadow mesh with particular shadow properties. */
struct AmbientVerticesFactory {
    SkScalar fOccluderHeight = SK_ScalarNaN;  // NaN so that isCompatible will fail until init'ed.
    bool fTransparent;
    SkVector fOffset;

    bool isCompatible(const AmbientVerticesFactory& that, SkVector* translate) const {
        if (fOccluderHeight != that.fOccluderHeight || fTransparent != that.fTransparent) {
            return false;
        }
        *translate = that.fOffset;
        return true;
    }

    sk_sp<SkVertices> makeVertices(const SkPath& path, const SkMatrix& ctm,
                                   SkVector* translate) const {
        SkPoint3 zParams = SkPoint3::Make(0, 0, fOccluderHeight);
        // pick a canonical place to generate shadow
        SkMatrix noTrans(ctm);
        if (!ctm.hasPerspective()) {
            noTrans[SkMatrix::kMTransX] = 0;
            noTrans[SkMatrix::kMTransY] = 0;
        }
        *translate = fOffset;
        return SkShadowTessellator::MakeAmbient(path, noTrans, zParams, fTransparent);
    }
};

/** Factory for an spot shadow mesh with particular shadow properties. */
struct SpotVerticesFactory {
    enum class OccluderType {
        // The umbra cannot be dropped out because either the occluder is not opaque,
        // or the center of the umbra is visible.
        kTransparent,
        // The umbra can be dropped where it is occluded.
        kOpaquePartialUmbra,
        // It is known that the entire umbra is occluded.
        kOpaqueNoUmbra
    };

    SkVector fOffset;
    SkPoint  fLocalCenter;
    SkScalar fOccluderHeight = SK_ScalarNaN; // NaN so that isCompatible will fail until init'ed.
    SkPoint3 fDevLightPos;
    SkScalar fLightRadius;
    OccluderType fOccluderType;

    bool isCompatible(const SpotVerticesFactory& that, SkVector* translate) const {
        if (fOccluderHeight != that.fOccluderHeight || fDevLightPos.fZ != that.fDevLightPos.fZ ||
            fLightRadius != that.fLightRadius || fOccluderType != that.fOccluderType) {
            return false;
        }
        switch (fOccluderType) {
            case OccluderType::kTransparent:
            case OccluderType::kOpaqueNoUmbra:
                // 'this' and 'that' will either both have no umbra removed or both have all the
                // umbra removed.
                *translate = that.fOffset;
                return true;
            case OccluderType::kOpaquePartialUmbra:
                // In this case we partially remove the umbra differently for 'this' and 'that'
                // if the offsets don't match.
                if (fOffset == that.fOffset) {
                    translate->set(0, 0);
                    return true;
                }
                return false;
        }
        SK_ABORT("Uninitialized occluder type?");
        return false;
    }

    sk_sp<SkVertices> makeVertices(const SkPath& path, const SkMatrix& ctm,
                                   SkVector* translate) const {
        bool transparent = OccluderType::kTransparent == fOccluderType;
        SkPoint3 zParams = SkPoint3::Make(0, 0, fOccluderHeight);
        if (ctm.hasPerspective() || OccluderType::kOpaquePartialUmbra == fOccluderType) {
            translate->set(0, 0);
            return SkShadowTessellator::MakeSpot(path, ctm, zParams,
                                                 fDevLightPos, fLightRadius, transparent);
        } else {
            // pick a canonical place to generate shadow, with light centered over path
            SkMatrix noTrans(ctm);
            noTrans[SkMatrix::kMTransX] = 0;
            noTrans[SkMatrix::kMTransY] = 0;
            SkPoint devCenter(fLocalCenter);
            noTrans.mapPoints(&devCenter, 1);
            SkPoint3 centerLightPos = SkPoint3::Make(devCenter.fX, devCenter.fY, fDevLightPos.fZ);
            *translate = fOffset;
            return SkShadowTessellator::MakeSpot(path, noTrans, zParams,
                                                 centerLightPos, fLightRadius, transparent);
        }
    }
};

/**
 * This manages a set of tessellations for a given shape in the cache. Because SkResourceCache
 * records are immutable this is not itself a Rec. When we need to update it we return this on
 * the FindVisitor and let the cache destroy the Rec. We'll update the tessellations and then add
 * a new Rec with an adjusted size for any deletions/additions.
 */
class CachedTessellations : public SkRefCnt {
public:
    size_t size() const { return fAmbientSet.size() + fSpotSet.size(); }

    sk_sp<SkVertices> find(const AmbientVerticesFactory& ambient, const SkMatrix& matrix,
                           SkVector* translate) const {
        return fAmbientSet.find(ambient, matrix, translate);
    }

    sk_sp<SkVertices> add(const SkPath& devPath, const AmbientVerticesFactory& ambient,
                          const SkMatrix& matrix, SkVector* translate) {
        return fAmbientSet.add(devPath, ambient, matrix, translate);
    }

    sk_sp<SkVertices> find(const SpotVerticesFactory& spot, const SkMatrix& matrix,
                           SkVector* translate) const {
        return fSpotSet.find(spot, matrix, translate);
    }

    sk_sp<SkVertices> add(const SkPath& devPath, const SpotVerticesFactory& spot,
                          const SkMatrix& matrix, SkVector* translate) {
        return fSpotSet.add(devPath, spot, matrix, translate);
    }

private:
    template <typename FACTORY, int MAX_ENTRIES>
    class Set {
    public:
        size_t size() const { return fSize; }

        sk_sp<SkVertices> find(const FACTORY& factory, const SkMatrix& matrix,
                               SkVector* translate) const {
            for (int i = 0; i < MAX_ENTRIES; ++i) {
                if (fEntries[i].fFactory.isCompatible(factory, translate)) {
                    const SkMatrix& m = fEntries[i].fMatrix;
                    if (matrix.hasPerspective() || m.hasPerspective()) {
                        if (matrix != fEntries[i].fMatrix) {
                            continue;
                        }
                    } else if (matrix.getScaleX() != m.getScaleX() ||
                               matrix.getSkewX() != m.getSkewX() ||
                               matrix.getScaleY() != m.getScaleY() ||
                               matrix.getSkewY() != m.getSkewY()) {
                        continue;
                    }
                    return fEntries[i].fVertices;
                }
            }
            return nullptr;
        }

        sk_sp<SkVertices> add(const SkPath& path, const FACTORY& factory, const SkMatrix& matrix,
                              SkVector* translate) {
            sk_sp<SkVertices> vertices = factory.makeVertices(path, matrix, translate);
            if (!vertices) {
                return nullptr;
            }
            int i;
            if (fCount < MAX_ENTRIES) {
                i = fCount++;
            } else {
                i = fRandom.nextULessThan(MAX_ENTRIES);
                fSize -= fEntries[i].fVertices->approximateSize();
            }
            fEntries[i].fFactory = factory;
            fEntries[i].fVertices = vertices;
            fEntries[i].fMatrix = matrix;
            fSize += vertices->approximateSize();
            return vertices;
        }

    private:
        struct Entry {
            FACTORY fFactory;
            sk_sp<SkVertices> fVertices;
            SkMatrix fMatrix;
        };
        Entry fEntries[MAX_ENTRIES];
        int fCount = 0;
        size_t fSize = 0;
        SkRandom fRandom;
    };

    Set<AmbientVerticesFactory, 4> fAmbientSet;
    Set<SpotVerticesFactory, 4> fSpotSet;
};

/**
 * A record of shadow vertices stored in SkResourceCache of CachedTessellations for a particular
 * path. The key represents the path's geometry and not any shadow params.
 */
class CachedTessellationsRec : public SkResourceCache::Rec {
public:
    CachedTessellationsRec(const SkResourceCache::Key& key,
                           sk_sp<CachedTessellations> tessellations)
            : fTessellations(std::move(tessellations)) {
        fKey.reset(new uint8_t[key.size()]);
        memcpy(fKey.get(), &key, key.size());
    }

    const Key& getKey() const override {
        return *reinterpret_cast<SkResourceCache::Key*>(fKey.get());
    }

    size_t bytesUsed() const override { return fTessellations->size(); }

    const char* getCategory() const override { return "tessellated shadow masks"; }

    sk_sp<CachedTessellations> refTessellations() const { return fTessellations; }

    template <typename FACTORY>
    sk_sp<SkVertices> find(const FACTORY& factory, const SkMatrix& matrix,
                           SkVector* translate) const {
        return fTessellations->find(factory, matrix, translate);
    }

private:
    std::unique_ptr<uint8_t[]> fKey;
    sk_sp<CachedTessellations> fTessellations;
};

/**
 * Used by FindVisitor to determine whether a cache entry can be reused and if so returns the
 * vertices and a translation vector. If the CachedTessellations does not contain a suitable
 * mesh then we inform SkResourceCache to destroy the Rec and we return the CachedTessellations
 * to the caller. The caller will update it and reinsert it back into the cache.
 */
template <typename FACTORY>
struct FindContext {
    FindContext(const SkMatrix* viewMatrix, const FACTORY* factory)
            : fViewMatrix(viewMatrix), fFactory(factory) {}
    const SkMatrix* const fViewMatrix;
    // If this is valid after Find is called then we found the vertices and they should be drawn
    // with fTranslate applied.
    sk_sp<SkVertices> fVertices;
    SkVector fTranslate = {0, 0};

    // If this is valid after Find then the caller should add the vertices to the tessellation set
    // and create a new CachedTessellationsRec and insert it into SkResourceCache.
    sk_sp<CachedTessellations> fTessellationsOnFailure;

    const FACTORY* fFactory;
};

/**
 * Function called by SkResourceCache when a matching cache key is found. The FACTORY and matrix of
 * the FindContext are used to determine if the vertices are reusable. If so the vertices and
 * necessary translation vector are set on the FindContext.
 */
template <typename FACTORY>
bool FindVisitor(const SkResourceCache::Rec& baseRec, void* ctx) {
    FindContext<FACTORY>* findContext = (FindContext<FACTORY>*)ctx;
    const CachedTessellationsRec& rec = static_cast<const CachedTessellationsRec&>(baseRec);
    findContext->fVertices =
            rec.find(*findContext->fFactory, *findContext->fViewMatrix, &findContext->fTranslate);
    if (findContext->fVertices) {
        return true;
    }
    // We ref the tessellations and let the cache destroy the Rec. Once the tessellations have been
    // manipulated we will add a new Rec.
    findContext->fTessellationsOnFailure = rec.refTessellations();
    return false;
}

class ShadowedPath {
public:
    ShadowedPath(const SkPath* path, const SkMatrix* viewMatrix)
            : fPath(path)
            , fViewMatrix(viewMatrix)
#if SK_SUPPORT_GPU
            , fShapeForKey(*path, GrStyle::SimpleFill())
#endif
    {}

    const SkPath& path() const { return *fPath; }
    const SkMatrix& viewMatrix() const { return *fViewMatrix; }
#if SK_SUPPORT_GPU
    /** Negative means the vertices should not be cached for this path. */
    int keyBytes() const { return fShapeForKey.unstyledKeySize() * sizeof(uint32_t); }
    void writeKey(void* key) const {
        fShapeForKey.writeUnstyledKey(reinterpret_cast<uint32_t*>(key));
    }
    bool isRRect(SkRRect* rrect) { return fShapeForKey.asRRect(rrect, nullptr, nullptr, nullptr); }
#else
    int keyBytes() const { return -1; }
    void writeKey(void* key) const { SK_ABORT("Should never be called"); }
    bool isRRect(SkRRect* rrect) { return false; }
#endif

private:
    const SkPath* fPath;
    const SkMatrix* fViewMatrix;
#if SK_SUPPORT_GPU
    GrShape fShapeForKey;
#endif
};

// This creates a domain of keys in SkResourceCache used by this file.
static void* kNamespace;

/**
 * Draws a shadow to 'canvas'. The vertices used to draw the shadow are created by 'factory' unless
 * they are first found in SkResourceCache.
 */
template <typename FACTORY>
    void draw_shadow(const FACTORY& factory,
                     std::function<void(const SkVertices*, SkBlendMode, const SkPaint&,
                     SkScalar tx, SkScalar ty)> drawProc, ShadowedPath& path, SkColor color) {
    FindContext<FACTORY> context(&path.viewMatrix(), &factory);

    SkResourceCache::Key* key = nullptr;
    SkAutoSTArray<32 * 4, uint8_t> keyStorage;
    int keyDataBytes = path.keyBytes();
    if (keyDataBytes >= 0) {
        keyStorage.reset(keyDataBytes + sizeof(SkResourceCache::Key));
        key = new (keyStorage.begin()) SkResourceCache::Key();
        path.writeKey((uint32_t*)(keyStorage.begin() + sizeof(*key)));
        key->init(&kNamespace, resource_cache_shared_id(), keyDataBytes);
        SkResourceCache::Find(*key, FindVisitor<FACTORY>, &context);
    }

    sk_sp<SkVertices> vertices;
    bool foundInCache = SkToBool(context.fVertices);
    if (foundInCache) {
        vertices = std::move(context.fVertices);
    } else {
        // TODO: handle transforming the path as part of the tessellator
        if (key) {
            // Update or initialize a tessellation set and add it to the cache.
            sk_sp<CachedTessellations> tessellations;
            if (context.fTessellationsOnFailure) {
                tessellations = std::move(context.fTessellationsOnFailure);
            } else {
                tessellations.reset(new CachedTessellations());
            }
            vertices = tessellations->add(path.path(), factory, path.viewMatrix(),
                                          &context.fTranslate);
            if (!vertices) {
                return;
            }
            auto rec = new CachedTessellationsRec(*key, std::move(tessellations));
            SkResourceCache::Add(rec);
        } else {
            vertices = factory.makeVertices(path.path(), path.viewMatrix(),
                                            &context.fTranslate);
            if (!vertices) {
                return;
            }
        }
    }

    SkPaint paint;
    // Run the vertex color through a GaussianColorFilter and then modulate the grayscale result of
    // that against our 'color' param.
    paint.setColorFilter(SkColorFilter::MakeComposeFilter(
            SkColorFilter::MakeModeFilter(color, SkBlendMode::kModulate),
            SkGaussianColorFilter::Make()));

    drawProc(vertices.get(), SkBlendMode::kModulate, paint,
             context.fTranslate.fX, context.fTranslate.fY);
}
}

static bool tilted(const SkPoint3& zPlaneParams) {
    return !SkScalarNearlyZero(zPlaneParams.fX) || !SkScalarNearlyZero(zPlaneParams.fY);
}

static SkPoint3 map(const SkMatrix& m, const SkPoint3& pt) {
    SkPoint3 result;
    m.mapXY(pt.fX, pt.fY, (SkPoint*)&result.fX);
    result.fZ = pt.fZ;
    return result;
}

static SkColor compute_render_color(SkColor color, float alpha, bool useTonalColor) {
    if (useTonalColor) {
        SkScalar colorScale;
        SkScalar tonalAlpha;
        SkColor4f color4f = SkColor4f::FromColor(color);
        SkShadowUtils::ComputeTonalColorParams(color4f.fR,
                                               color4f.fG,
                                               color4f.fB,
                                               color4f.fA*alpha,
                                               &colorScale, &tonalAlpha);
        // After pre-multiplying, we want the alpha to be scaled by tonalAlpha, and
        // the color scaled by colorScale. This scale factor gives that.
        SkScalar unPremulScale = colorScale / tonalAlpha;

        return SkColorSetARGB(tonalAlpha*255.999f, unPremulScale*SkColorGetR(color),
                              unPremulScale*SkColorGetG(color), unPremulScale*SkColorGetB(color));
    }

    return SkColorSetARGB(alpha*SkColorGetA(color), SkColorGetR(color),
                          SkColorGetG(color), SkColorGetB(color));
}

// Draw an offset spot shadow and outlining ambient shadow for the given path.
void SkShadowUtils::DrawShadow(SkCanvas* canvas, const SkPath& path, const SkPoint3& zPlaneParams,
                               const SkPoint3& devLightPos, SkScalar lightRadius,
                               SkScalar ambientAlpha, SkScalar spotAlpha, SkColor color,
                               uint32_t flags) {
    SkMatrix inverse;
    if (!canvas->getTotalMatrix().invert(&inverse)) {
        return;
    }
    SkPoint pt = inverse.mapXY(devLightPos.fX, devLightPos.fY);

    SkDrawShadowRec rec;
    rec.fZPlaneParams   = zPlaneParams;
    rec.fLightPos       = { pt.fX, pt.fY, devLightPos.fZ };
    rec.fLightRadius    = lightRadius;
    rec.fAmbientAlpha   = SkScalarToFloat(ambientAlpha);
    rec.fSpotAlpha      = SkScalarToFloat(spotAlpha);
    rec.fColor          = color;
    rec.fFlags          = flags;

    canvas->private_draw_shadow_rec(path, rec);
}

void SkBaseDevice::drawShadow(const SkPath& path, const SkDrawShadowRec& rec) {
    auto drawVertsProc = [this](const SkVertices* vertices, SkBlendMode mode, const SkPaint& paint,
                                SkScalar tx, SkScalar ty) {
        SkAutoDeviceCTMRestore adr(this, SkMatrix::Concat(this->ctm(),
                                                          SkMatrix::MakeTrans(tx, ty)));
        this->drawVertices(vertices, mode, paint);
    };

    SkMatrix viewMatrix = this->ctm();
    SkAutoDeviceCTMRestore adr(this, SkMatrix::I());

    ShadowedPath shadowedPath(&path, &viewMatrix);

    bool tiltZPlane = tilted(rec.fZPlaneParams);
    bool transparent = SkToBool(rec.fFlags & SkShadowFlags::kTransparentOccluder_ShadowFlag);
    bool uncached = tiltZPlane || path.isVolatile();
    bool useTonalColor = !SkToBool(rec.fFlags & kDisableTonalColor_ShadowFlag);

    SkColor color = rec.fColor;
    SkPoint3 zPlaneParams = rec.fZPlaneParams;
    SkPoint3 devLightPos = map(viewMatrix, rec.fLightPos);
    float lightRadius = rec.fLightRadius;

    float ambientAlpha = rec.fAmbientAlpha;
    if (ambientAlpha > 0) {
        ambientAlpha = SkTMin(ambientAlpha, 1.f);
        SkColor renderColor;
        if (useTonalColor) {
            renderColor = compute_render_color(SK_ColorBLACK, ambientAlpha, false);
        } else {
            renderColor = compute_render_color(color, ambientAlpha, false);
        }
        if (uncached) {
            sk_sp<SkVertices> vertices = SkShadowTessellator::MakeAmbient(path, viewMatrix,
                                                                          zPlaneParams,
                                                                          transparent);
            if (vertices) {
                SkPaint paint;
                // Run the vertex color through a GaussianColorFilter and then modulate the
                // grayscale result of that against our 'color' param.
                paint.setColorFilter(SkColorFilter::MakeComposeFilter(
                    SkColorFilter::MakeModeFilter(renderColor, SkBlendMode::kModulate),
                    SkGaussianColorFilter::Make()));
                this->drawVertices(vertices.get(), SkBlendMode::kModulate, paint);
            }
        } else {
            AmbientVerticesFactory factory;
            factory.fOccluderHeight = zPlaneParams.fZ;
            factory.fTransparent = transparent;
            if (viewMatrix.hasPerspective()) {
                factory.fOffset.set(0, 0);
            } else {
                factory.fOffset.fX = viewMatrix.getTranslateX();
                factory.fOffset.fY = viewMatrix.getTranslateY();
            }

            draw_shadow(factory, drawVertsProc, shadowedPath, renderColor);
        }
    }

    float spotAlpha = rec.fSpotAlpha;
    if (spotAlpha > 0) {
        spotAlpha = SkTMin(spotAlpha, 1.f);
        SkColor renderColor = compute_render_color(color, spotAlpha, useTonalColor);
        if (uncached) {
            sk_sp<SkVertices> vertices = SkShadowTessellator::MakeSpot(path, viewMatrix,
                                                                       zPlaneParams,
                                                                       devLightPos, lightRadius,
                                                                       transparent);
            if (vertices) {
                SkPaint paint;
                // Run the vertex color through a GaussianColorFilter and then modulate the
                // grayscale result of that against our 'color' param.
                paint.setColorFilter(SkColorFilter::MakeComposeFilter(
                    SkColorFilter::MakeModeFilter(renderColor, SkBlendMode::kModulate),
                    SkGaussianColorFilter::Make()));
                this->drawVertices(vertices.get(), SkBlendMode::kModulate, paint);
            }
        } else {
            SpotVerticesFactory factory;
            SkScalar occluderHeight = zPlaneParams.fZ;
            float zRatio = SkTPin(occluderHeight / (devLightPos.fZ - occluderHeight), 0.0f, 0.95f);
            SkScalar radius = lightRadius * zRatio;

            // Compute the scale and translation for the spot shadow.
            SkScalar scale = devLightPos.fZ / (devLightPos.fZ - occluderHeight);
            SkPoint center = SkPoint::Make(path.getBounds().centerX(), path.getBounds().centerY());
            factory.fLocalCenter = center;
            viewMatrix.mapPoints(&center, 1);
            factory.fOffset = SkVector::Make(zRatio * (center.fX - devLightPos.fX),
                                             zRatio * (center.fY - devLightPos.fY));
            factory.fOccluderHeight = occluderHeight;
            factory.fDevLightPos = devLightPos;
            factory.fLightRadius = lightRadius;
            SkRect devBounds;
            viewMatrix.mapRect(&devBounds, path.getBounds());
            if (transparent ||
                SkTAbs(factory.fOffset.fX) > 0.5f*devBounds.width() ||
                SkTAbs(factory.fOffset.fY) > 0.5f*devBounds.height()) {
                // if the translation of the shadow is big enough we're going to end up
                // filling the entire umbra, so we can treat these as all the same
                factory.fOccluderType = SpotVerticesFactory::OccluderType::kTransparent;
            } else if (factory.fOffset.length()*scale + scale < radius) {
                // if we don't translate more than the blur distance, can assume umbra is covered
                factory.fOccluderType = SpotVerticesFactory::OccluderType::kOpaqueNoUmbra;
            } else {
                factory.fOccluderType = SpotVerticesFactory::OccluderType::kOpaquePartialUmbra;
            }
            // need to add this after we classify the shadow
            factory.fOffset.fX += viewMatrix.getTranslateX();
            factory.fOffset.fY += viewMatrix.getTranslateY();
#ifdef DEBUG_SHADOW_CHECKS
            switch (factory.fOccluderType) {
                case SpotVerticesFactory::OccluderType::kTransparent:
                    color = 0xFFD2B48C;  // tan for transparent
                    break;
                case SpotVerticesFactory::OccluderType::kOpaquePartialUmbra:
                    color = 0xFFFFA500;   // orange for opaque
                    break;
                case SpotVerticesFactory::OccluderType::kOpaqueNoUmbra:
                    color = 0xFFE5E500;  // corn yellow for covered
                    break;
            }
#endif
            draw_shadow(factory, drawVertsProc, shadowedPath, renderColor);
        }
    }
}