aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/utils/SkShadowTessellator.cpp
blob: 2cd5d9c7fdb5584702bcf566f55a52ab9a9e050e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
/*
 * Copyright 2017 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "SkShadowTessellator.h"
#include "SkColorPriv.h"
#include "SkGeometry.h"
#include "SkPath.h"
#include "SkVertices.h"

#if SK_SUPPORT_GPU
#include "GrPathUtils.h"
#endif


/**
 * Base class
 */
class SkBaseShadowTessellator {
public:
    SkBaseShadowTessellator(SkScalar radius, SkColor umbraColor, SkColor penumbraColor,
                            bool transparent);
    virtual ~SkBaseShadowTessellator() {}

    sk_sp<SkVertices> releaseVertices() {
        if (!fSucceeded) {
            return nullptr;
        }
        int vCount = this->vertexCount();
        int iCount = this->indexCount();
        // We copy here for two reasons: 1) To tighten up our arrays and 2) to get into memory
        // allocated by new[] rather than malloc.
        // TODO: If we know we're not caching then we should avoid this.
        SkPoint* positions = new SkPoint[vCount];
        SkColor* colors = new SkColor[vCount];
        uint16_t* indices = new uint16_t[iCount];
        memcpy(positions, fPositions.begin(), sizeof(SkPoint) * vCount);
        memcpy(colors, fColors.begin(), sizeof(SkColor) * vCount);
        memcpy(indices, fIndices.begin(), sizeof(uint16_t) * iCount);
        return SkVertices::MakeIndexed(SkCanvas::kTriangles_VertexMode,
                                       std::unique_ptr<const SkPoint[]>((const SkPoint*)positions),
                                       std::unique_ptr<const SkColor[]>((const SkColor*)colors),
                                       nullptr,
                                       vCount,
                                       std::unique_ptr<const uint16_t[]>((const uint16_t*)indices),
                                       iCount);
    }

protected:
    int vertexCount() const { return fPositions.count(); }
    int indexCount() const { return fIndices.count(); }

    virtual void handleLine(const SkPoint& p) = 0;
    void handleLine(const SkMatrix& m, SkPoint* p);

    void handleQuad(const SkPoint pts[3]);
    void handleQuad(const SkMatrix& m, SkPoint pts[3]);

    void handleCubic(const SkMatrix& m, SkPoint pts[4]);

    void handleConic(const SkMatrix& m, SkPoint pts[3], SkScalar w);

    void addArc(const SkVector& nextNormal);
    void finishArcAndAddEdge(const SkVector& nextPoint, const SkVector& nextNormal);
    virtual void addEdge(const SkVector& nextPoint, const SkVector& nextNormal) = 0;

    // first three points
    SkTDArray<SkPoint>  fInitPoints;
    // temporary buffer
    SkTDArray<SkPoint>  fPointBuffer;

    SkTDArray<SkPoint>  fPositions;
    SkTDArray<SkColor>  fColors;
    SkTDArray<uint16_t> fIndices;

    int                 fFirstVertex;
    SkVector            fFirstNormal;
    SkPoint             fFirstPoint;

    bool                fSucceeded;
    bool                fTransparent;

    SkColor             fUmbraColor;
    SkColor             fPenumbraColor;

    SkScalar            fRadius;
    SkScalar            fDirection;
    int                 fPrevUmbraIndex;
    SkVector            fPrevNormal;
    SkPoint             fPrevPoint;
};

static bool compute_normal(const SkPoint& p0, const SkPoint& p1, SkScalar radius, SkScalar dir,
                           SkVector* newNormal) {
    SkVector normal;
    // compute perpendicular
    normal.fX = p0.fY - p1.fY;
    normal.fY = p1.fX - p0.fX;
    if (!normal.normalize()) {
        return false;
    }
    normal *= radius*dir;
    *newNormal = normal;
    return true;
}

static void compute_radial_steps(const SkVector& v1, const SkVector& v2, SkScalar r,
                                 SkScalar* rotSin, SkScalar* rotCos, int* n) {
    const SkScalar kRecipPixelsPerArcSegment = 0.25f;

    SkScalar rCos = v1.dot(v2);
    SkScalar rSin = v1.cross(v2);
    SkScalar theta = SkScalarATan2(rSin, rCos);

    SkScalar steps = r*theta*kRecipPixelsPerArcSegment;

    SkScalar dTheta = theta / steps;
    *rotSin = SkScalarSinCos(dTheta, rotCos);
    *n = SkScalarFloorToInt(steps);
}

SkBaseShadowTessellator::SkBaseShadowTessellator(SkScalar radius, SkColor umbraColor,
                                                 SkColor penumbraColor, bool transparent)
        : fFirstVertex(-1)
        , fSucceeded(false)
        , fTransparent(transparent)
        , fUmbraColor(umbraColor)
        , fPenumbraColor(penumbraColor)
        , fRadius(radius)
        , fDirection(1)
        , fPrevUmbraIndex(-1) {
    fInitPoints.setReserve(3);

    // child classes will set reserve for positions, colors and indices
}

// tesselation tolerance values, in device space pixels
#if SK_SUPPORT_GPU
static const SkScalar kQuadTolerance = 0.2f;
static const SkScalar kCubicTolerance = 0.2f;
#endif
static const SkScalar kConicTolerance = 0.5f;

void SkBaseShadowTessellator::handleLine(const SkMatrix& m, SkPoint* p) {
    m.mapPoints(p, 1);
    this->handleLine(*p);
}

void SkBaseShadowTessellator::handleQuad(const SkPoint pts[3]) {
#if SK_SUPPORT_GPU
    // TODO: Pull PathUtils out of Ganesh?
    int maxCount = GrPathUtils::quadraticPointCount(pts, kQuadTolerance);
    fPointBuffer.setReserve(maxCount);
    SkPoint* target = fPointBuffer.begin();
    int count = GrPathUtils::generateQuadraticPoints(pts[0], pts[1], pts[2],
                                                     kQuadTolerance, &target, maxCount);
    fPointBuffer.setCount(count);
    for (int i = 0; i < count; i++) {
        this->handleLine(fPointBuffer[i]);
    }
#else
    // for now, just to draw something
    this->handleLine(pts[1]);
    this->handleLine(pts[2]);
#endif
}

void SkBaseShadowTessellator::handleQuad(const SkMatrix& m, SkPoint pts[3]) {
    m.mapPoints(pts, 3);
    this->handleQuad(pts);
}

void SkBaseShadowTessellator::handleCubic(const SkMatrix& m, SkPoint pts[4]) {
    m.mapPoints(pts, 4);
#if SK_SUPPORT_GPU
    // TODO: Pull PathUtils out of Ganesh?
    int maxCount = GrPathUtils::cubicPointCount(pts, kCubicTolerance);
    fPointBuffer.setReserve(maxCount);
    SkPoint* target = fPointBuffer.begin();
    int count = GrPathUtils::generateCubicPoints(pts[0], pts[1], pts[2], pts[3],
                                                 kCubicTolerance, &target, maxCount);
    fPointBuffer.setCount(count);
    for (int i = 0; i < count; i++) {
        this->handleLine(fPointBuffer[i]);
    }
#else
    // for now, just to draw something
    this->handleLine(pts[1]);
    this->handleLine(pts[2]);
    this->handleLine(pts[3]);
#endif
}

void SkBaseShadowTessellator::handleConic(const SkMatrix& m, SkPoint pts[3], SkScalar w) {
    m.mapPoints(pts, 3);
    SkAutoConicToQuads quadder;
    const SkPoint* quads = quadder.computeQuads(pts, w, kConicTolerance);
    SkPoint lastPoint = *(quads++);
    int count = quadder.countQuads();
    for (int i = 0; i < count; ++i) {
        SkPoint quadPts[3];
        quadPts[0] = lastPoint;
        quadPts[1] = quads[0];
        quadPts[2] = i == count - 1 ? pts[2] : quads[1];
        this->handleQuad(quadPts);
        lastPoint = quadPts[2];
        quads += 2;
    }
}

void SkBaseShadowTessellator::addArc(const SkVector& nextNormal) {
    // fill in fan from previous quad
    SkScalar rotSin, rotCos;
    int numSteps;
    compute_radial_steps(fPrevNormal, nextNormal, fRadius, &rotSin, &rotCos, &numSteps);
    SkVector prevNormal = fPrevNormal;
    for (int i = 0; i < numSteps; ++i) {
        SkVector nextNormal;
        nextNormal.fX = prevNormal.fX*rotCos - prevNormal.fY*rotSin;
        nextNormal.fY = prevNormal.fY*rotCos + prevNormal.fX*rotSin;
        *fPositions.push() = fPrevPoint + nextNormal;
        *fColors.push() = fPenumbraColor;
        *fIndices.push() = fPrevUmbraIndex;
        *fIndices.push() = fPositions.count() - 2;
        *fIndices.push() = fPositions.count() - 1;

        prevNormal = nextNormal;
    }
}

void SkBaseShadowTessellator::finishArcAndAddEdge(const SkPoint& nextPoint,
                                                  const SkVector& nextNormal) {
    // close out previous arc
    *fPositions.push() = fPrevPoint + nextNormal;
    *fColors.push() = fPenumbraColor;
    *fIndices.push() = fPrevUmbraIndex;
    *fIndices.push() = fPositions.count() - 2;
    *fIndices.push() = fPositions.count() - 1;

    this->addEdge(nextPoint, nextNormal);
}


//////////////////////////////////////////////////////////////////////////////////////////////////

class SkAmbientShadowTessellator : public SkBaseShadowTessellator {
public:
    SkAmbientShadowTessellator(const SkPath& path, const SkMatrix& ctm,
                               SkScalar radius, SkColor umbraColor,
                               SkColor penumbraColor, bool transparent);

private:
    void handleLine(const SkPoint& p) override;
    void addEdge(const SkVector& nextPoint, const SkVector& nextNormal) override;

    int                 fCentroidCount;

    typedef SkBaseShadowTessellator INHERITED;
};

SkAmbientShadowTessellator::SkAmbientShadowTessellator(const SkPath& path,
                                                       const SkMatrix& ctm,
                                                       SkScalar radius,
                                                       SkColor umbraColor,
                                                       SkColor penumbraColor,
                                                       bool transparent)
        : INHERITED(radius, umbraColor, penumbraColor, transparent) {
    // Outer ring: 3*numPts
    // Middle ring: numPts
    fPositions.setReserve(4 * path.countPoints());
    fColors.setReserve(4 * path.countPoints());
    // Outer ring: 12*numPts
    // Middle ring: 0
    fIndices.setReserve(12 * path.countPoints());

    // walk around the path, tessellate and generate outer ring
    // if original path is transparent, will accumulate sum of points for centroid
    SkPath::Iter iter(path, true);
    SkPoint pts[4];
    SkPath::Verb verb;
    if (fTransparent) {
        *fPositions.push() = SkPoint::Make(0, 0);
        *fColors.push() = umbraColor;
        fCentroidCount = 0;
    }
    while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
        switch (verb) {
            case SkPath::kLine_Verb:
                this->INHERITED::handleLine(ctm, &pts[1]);
                break;
            case SkPath::kQuad_Verb:
                this->handleQuad(ctm, pts);
                break;
            case SkPath::kCubic_Verb:
                this->handleCubic(ctm, pts);
                break;
            case SkPath::kConic_Verb:
                this->handleConic(ctm, pts, iter.conicWeight());
                break;
            case SkPath::kMove_Verb:
            case SkPath::kClose_Verb:
            case SkPath::kDone_Verb:
                break;
        }
    }

    if (!this->indexCount()) {
        return;
    }

    SkVector normal;
    if (compute_normal(fPrevPoint, fFirstPoint, fRadius, fDirection,
                       &normal)) {
        this->addArc(normal);

        // close out previous arc
        *fPositions.push() = fPrevPoint + normal;
        *fColors.push() = fPenumbraColor;
        *fIndices.push() = fPrevUmbraIndex;
        *fIndices.push() = fPositions.count() - 2;
        *fIndices.push() = fPositions.count() - 1;

        // add final edge
        *fPositions.push() = fFirstPoint + normal;
        *fColors.push() = fPenumbraColor;

        *fIndices.push() = fPrevUmbraIndex;
        *fIndices.push() = fPositions.count() - 2;
        *fIndices.push() = fFirstVertex;

        *fIndices.push() = fPositions.count() - 2;
        *fIndices.push() = fPositions.count() - 1;
        *fIndices.push() = fFirstVertex;
    }

    // finalize centroid
    if (fTransparent) {
        fPositions[0] *= SkScalarFastInvert(fCentroidCount);

        *fIndices.push() = 0;
        *fIndices.push() = fPrevUmbraIndex;
        *fIndices.push() = fFirstVertex;
    }

    // final fan
    if (fPositions.count() >= 3) {
        fPrevUmbraIndex = fFirstVertex;
        fPrevNormal = normal;
        fPrevPoint = fFirstPoint;
        this->addArc(fFirstNormal);

        *fIndices.push() = fFirstVertex;
        *fIndices.push() = fPositions.count() - 1;
        *fIndices.push() = fFirstVertex + 1;
    }
    fSucceeded = true;
}

void SkAmbientShadowTessellator::handleLine(const SkPoint& p)  {
    if (fInitPoints.count() < 2) {
        *fInitPoints.push() = p;
        return;
    }

    if (fInitPoints.count() == 2) {
        // determine if cw or ccw
        SkVector v0 = fInitPoints[1] - fInitPoints[0];
        SkVector v1 = p - fInitPoints[0];
        SkScalar perpDot = v0.fX*v1.fY - v0.fY*v1.fX;
        if (SkScalarNearlyZero(perpDot)) {
            // nearly parallel, just treat as straight line and continue
            fInitPoints[1] = p;
            return;
        }

        // if perpDot > 0, winding is ccw
        fDirection = (perpDot > 0) ? -1 : 1;

        // add first quad
        if (!compute_normal(fInitPoints[0], fInitPoints[1], fRadius, fDirection,
                            &fFirstNormal)) {
            // first two points are incident, make the third point the second and continue
            fInitPoints[1] = p;
            return;
        }

        fFirstPoint = fInitPoints[0];
        fFirstVertex = fPositions.count();
        fPrevNormal = fFirstNormal;
        fPrevPoint = fFirstPoint;
        fPrevUmbraIndex = fFirstVertex;

        *fPositions.push() = fInitPoints[0];
        *fColors.push() = fUmbraColor;
        *fPositions.push() = fInitPoints[0] + fFirstNormal;
        *fColors.push() = fPenumbraColor;
        if (fTransparent) {
            fPositions[0] += fInitPoints[0];
            fCentroidCount = 1;
        }
        this->addEdge(fInitPoints[1], fFirstNormal);

        // to ensure we skip this block next time
        *fInitPoints.push() = p;
    }

    SkVector normal;
    if (compute_normal(fPositions[fPrevUmbraIndex], p, fRadius, fDirection, &normal)) {
        this->addArc(normal);
        this->finishArcAndAddEdge(p, normal);
    }
}

void SkAmbientShadowTessellator::addEdge(const SkPoint& nextPoint, const SkVector& nextNormal) {
    // add next quad
    *fPositions.push() = nextPoint;
    *fColors.push() = fUmbraColor;
    *fPositions.push() = nextPoint + nextNormal;
    *fColors.push() = fPenumbraColor;

    *fIndices.push() = fPrevUmbraIndex;
    *fIndices.push() = fPositions.count() - 3;
    *fIndices.push() = fPositions.count() - 2;

    *fIndices.push() = fPositions.count() - 3;
    *fIndices.push() = fPositions.count() - 1;
    *fIndices.push() = fPositions.count() - 2;

    // if transparent, add point to first one in array and add to center fan
    if (fTransparent) {
        fPositions[0] += nextPoint;
        ++fCentroidCount;

        *fIndices.push() = 0;
        *fIndices.push() = fPrevUmbraIndex;
        *fIndices.push() = fPositions.count() - 2;
    }

    fPrevUmbraIndex = fPositions.count() - 2;
    fPrevNormal = nextNormal;
    fPrevPoint = nextPoint;
}

///////////////////////////////////////////////////////////////////////////////////////////////////

class SkSpotShadowTessellator : public SkBaseShadowTessellator {
public:
    SkSpotShadowTessellator(const SkPath& path, const SkMatrix& ctm,
                            SkScalar scale, const SkVector& translate,
                            SkScalar radius, SkColor umbraColor, SkColor penumbraColor,
                            bool transparent);

private:
    void computeClipBounds(const SkPath& path, const SkMatrix& ctm, SkPath* devPath);
    void checkUmbraAndTransformCentroid(SkScalar scale, const SkVector& xlate,
                                        bool useDistanceToPoint);
    bool clipUmbraPoint(const SkPoint& umbraPoint, const SkPoint& centroid, SkPoint* clipPoint);

    void handleLine(const SkPoint& p) override;

    void mapPoints(SkScalar scale, const SkVector& xlate, SkPoint* pts, int count);
    void addInnerPoint(const SkPoint& pathPoint);
    void addEdge(const SkVector& nextPoint, const SkVector& nextNormal) override;

    SkTDArray<SkPoint>  fClipPolygon;
    SkTDArray<SkVector> fClipVectors;
    SkPoint             fCentroid;

    int                 fCurrPolyPoint;
    bool                fPrevUmbraOutside;
    bool                fFirstUmbraOutside;
    bool                fValidUmbra;

    typedef SkBaseShadowTessellator INHERITED;
};

SkSpotShadowTessellator::SkSpotShadowTessellator(const SkPath& path, const SkMatrix& ctm,
                                                 SkScalar scale, const SkVector& translate,
                                                 SkScalar radius, SkColor umbraColor,
                                                 SkColor penumbraColor, bool transparent)
        : INHERITED(radius, umbraColor, penumbraColor, transparent)
        , fCurrPolyPoint(0)
        , fPrevUmbraOutside(false)
        , fFirstUmbraOutside(false)
        , fValidUmbra(true) {
    // TODO: calculate these better
    // Penumbra ring: 3*numPts
    // Umbra ring: numPts
    // Inner ring: numPts
    fPositions.setReserve(5 * path.countPoints());
    fColors.setReserve(5 * path.countPoints());
    // Penumbra ring: 12*numPts
    // Umbra ring: 3*numPts
    fIndices.setReserve(15 * path.countPoints());

    fClipPolygon.setReserve(path.countPoints());
    // compute rough clip bounds for umbra, plus centroid
    SkPath devPath;
    this->computeClipBounds(path, ctm, &devPath);
    if (fClipPolygon.count() < 3) {
        return;
    }
    // We are going to apply 'scale' and 'xlate' (in that order) to each computed path point. We
    // want the effect to be to scale the points relative to the path centroid and then translate
    // them by the 'translate' param we were passed.
    SkVector xlate = fCentroid * (1.f - scale) + translate;

    // check to see if we have a valid umbra at all
    bool usePointCheck = path.isRRect(nullptr) || path.isRect(nullptr) || path.isOval(nullptr);
    this->checkUmbraAndTransformCentroid(scale, translate, usePointCheck);

    // walk around the path, tessellate and generate inner and outer rings
    SkPath::Iter iter(devPath, true);
    SkPoint pts[4];
    SkPath::Verb verb;
    if (fTransparent) {
        *fPositions.push() = fCentroid;
        *fColors.push() = fUmbraColor;
    }
    SkMatrix shadowTransform;
    shadowTransform.setScaleTranslate(scale, scale, xlate.fX, xlate.fY);
    while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
        switch (verb) {
            case SkPath::kLine_Verb:
                this->INHERITED::handleLine(shadowTransform, &pts[1]);
                break;
            case SkPath::kQuad_Verb:
                this->handleQuad(shadowTransform, pts);
                break;
            case SkPath::kCubic_Verb:
                this->handleCubic(shadowTransform, pts);
                break;
            case SkPath::kConic_Verb:
                this->handleConic(shadowTransform, pts, iter.conicWeight());
                break;
            case SkPath::kMove_Verb:
            case SkPath::kClose_Verb:
            case SkPath::kDone_Verb:
                break;
        }
    }

    if (!this->indexCount()) {
        return;
    }

    SkVector normal;
    if (compute_normal(fPrevPoint, fFirstPoint, fRadius, fDirection,
                        &normal)) {
        this->addArc(normal);

        // close out previous arc
        *fPositions.push() = fPrevPoint + normal;
        *fColors.push() = fPenumbraColor;
        *fIndices.push() = fPrevUmbraIndex;
        *fIndices.push() = fPositions.count() - 2;
        *fIndices.push() = fPositions.count() - 1;

        // add to center fan
        if (fTransparent) {
            *fIndices.push() = 0;
            *fIndices.push() = fPrevUmbraIndex;
            *fIndices.push() = fFirstVertex;
            // or to clip ring
        } else {
            if (fFirstUmbraOutside) {
                *fIndices.push() = fPrevUmbraIndex;
                *fIndices.push() = fFirstVertex;
                *fIndices.push() = fFirstVertex + 1;
                if (fPrevUmbraOutside) {
                    // fill out quad
                    *fIndices.push() = fPrevUmbraIndex;
                    *fIndices.push() = fFirstVertex + 1;
                    *fIndices.push() = fPrevUmbraIndex + 1;
                }
            } else if (fPrevUmbraOutside) {
                // add tri
                *fIndices.push() = fPrevUmbraIndex;
                *fIndices.push() = fFirstVertex;
                *fIndices.push() = fPrevUmbraIndex + 1;
            }
        }

        // add final edge
        *fPositions.push() = fFirstPoint + normal;
        *fColors.push() = fPenumbraColor;

        *fIndices.push() = fPrevUmbraIndex;
        *fIndices.push() = fPositions.count() - 2;
        *fIndices.push() = fFirstVertex;

        *fIndices.push() = fPositions.count() - 2;
        *fIndices.push() = fPositions.count() - 1;
        *fIndices.push() = fFirstVertex;
    }

    // final fan
    if (fPositions.count() >= 3) {
        fPrevUmbraIndex = fFirstVertex;
        fPrevPoint = fFirstPoint;
        fPrevNormal = normal;
        this->addArc(fFirstNormal);

        *fIndices.push() = fFirstVertex;
        *fIndices.push() = fPositions.count() - 1;
        if (fFirstUmbraOutside) {
            *fIndices.push() = fFirstVertex + 2;
        } else {
            *fIndices.push() = fFirstVertex + 1;
        }
    }
    fSucceeded = true;
}

void SkSpotShadowTessellator::computeClipBounds(const SkPath& path, const SkMatrix& ctm,
                                                SkPath* devPath) {
    // walk around the path and compute clip polygon
    // if original path is transparent, will accumulate sum of points for centroid
    // for Bezier curves, we compute additional interior points on curve
    SkPath::Iter iter(path, true);
    SkPoint pts[4];
    SkPath::Verb verb;

    fCentroid = SkPoint::Make(0, 0);
    int centroidCount = 0;
    fClipPolygon.reset();

    // coefficients to compute cubic Bezier at t = 5/16
    const SkScalar kA = 0.32495117187f;
    const SkScalar kB = 0.44311523437f;
    const SkScalar kC = 0.20141601562f;
    const SkScalar kD = 0.03051757812f;

    SkPoint curvePoint;
    SkScalar w;
    while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
        switch (verb) {
            case SkPath::kMove_Verb:
                ctm.mapPoints(&pts[0], 1);
                devPath->moveTo(pts[0]);
                break;
            case SkPath::kLine_Verb:
                ctm.mapPoints(&pts[1], 1);
                devPath->lineTo(pts[1]);
                fCentroid += pts[1];
                centroidCount++;
                *fClipPolygon.push() = pts[1];
                break;
            case SkPath::kQuad_Verb:
                ctm.mapPoints(pts, 3);
                devPath->quadTo(pts[1], pts[2]);
                // point at t = 1/2
                curvePoint.fX = 0.25f*pts[0].fX + 0.5f*pts[1].fX + 0.25f*pts[2].fX;
                curvePoint.fY = 0.25f*pts[0].fY + 0.5f*pts[1].fY + 0.25f*pts[2].fY;
                *fClipPolygon.push() = curvePoint;
                fCentroid += curvePoint;
                *fClipPolygon.push() = pts[2];
                fCentroid += pts[2];
                centroidCount += 2;
                break;
            case SkPath::kConic_Verb:
                ctm.mapPoints(pts, 3);
                w = iter.conicWeight();
                devPath->conicTo(pts[1], pts[2], w);
                // point at t = 1/2
                curvePoint.fX = 0.25f*pts[0].fX + w*0.5f*pts[1].fX + 0.25f*pts[2].fX;
                curvePoint.fY = 0.25f*pts[0].fY + w*0.5f*pts[1].fY + 0.25f*pts[2].fY;
                curvePoint *= SkScalarInvert(0.5f + 0.5f*w);
                *fClipPolygon.push() = curvePoint;
                fCentroid += curvePoint;
                *fClipPolygon.push() = pts[2];
                fCentroid += pts[2];
                centroidCount += 2;
                break;
            case SkPath::kCubic_Verb:
                ctm.mapPoints(pts, 4);
                devPath->cubicTo(pts[1], pts[2], pts[3]);
                // point at t = 5/16
                curvePoint.fX = kA*pts[0].fX + kB*pts[1].fX + kC*pts[2].fX + kD*pts[3].fX;
                curvePoint.fY = kA*pts[0].fY + kB*pts[1].fY + kC*pts[2].fY + kD*pts[3].fY;
                *fClipPolygon.push() = curvePoint;
                fCentroid += curvePoint;
                // point at t = 11/16
                curvePoint.fX = kD*pts[0].fX + kC*pts[1].fX + kB*pts[2].fX + kA*pts[3].fX;
                curvePoint.fY = kD*pts[0].fY + kC*pts[1].fY + kB*pts[2].fY + kA*pts[3].fY;
                *fClipPolygon.push() = curvePoint;
                fCentroid += curvePoint;
                *fClipPolygon.push() = pts[3];
                fCentroid += pts[3];
                centroidCount += 3;
                break;
            case SkPath::kClose_Verb:
                devPath->close();
                break;
            default:
                SkDEBUGFAIL("unknown verb");
        }
    }

    fCentroid *= SkScalarInvert(centroidCount);
    fCurrPolyPoint = fClipPolygon.count() - 1;
}

void SkSpotShadowTessellator::checkUmbraAndTransformCentroid(SkScalar scale,
                                                             const SkVector& xlate,
                                                             bool useDistanceToPoint) {
    SkASSERT(fClipPolygon.count() >= 3);
    SkPoint transformedCentroid = fCentroid;
    transformedCentroid += xlate;

    SkScalar localRadius = fRadius / scale;
    localRadius *= localRadius;

    // init umbra check
    SkVector w = fCentroid - fClipPolygon[0];
    SkVector v0 = fClipPolygon[1] - fClipPolygon[0];
    *fClipVectors.push() = v0;
    bool validUmbra;
    SkScalar minDistance;
    // check distance against line segment
    if (useDistanceToPoint) {
        minDistance = w.lengthSqd();
    } else {
        SkScalar vSq = v0.dot(v0);
        SkScalar wDotV = w.dot(v0);
        minDistance = w.dot(w) - wDotV*wDotV/vSq;
    }
    validUmbra = (minDistance >= localRadius);

    // init centroid check
    bool hiddenCentroid = true;
    SkVector v1 = transformedCentroid - fClipPolygon[0];
    SkScalar initCross = v0.cross(v1);

    for (int p = 1; p < fClipPolygon.count(); ++p) {
        // Determine whether we have a real umbra by insetting clipPolygon by radius/scale
        // and see if it extends past centroid.
        // TODO: adjust this later for more accurate umbra calcs
        w = fCentroid - fClipPolygon[p];
        v0 = fClipPolygon[(p + 1) % fClipPolygon.count()] - fClipPolygon[p];
        *fClipVectors.push() = v0;
        // check distance against line segment
        SkScalar distance;
        if (useDistanceToPoint) {
            distance = w.lengthSqd();
        } else {
            SkScalar vSq = v0.dot(v0);
            SkScalar wDotV = w.dot(v0);
            distance = w.dot(w) - wDotV*wDotV/vSq;
        }
        if (distance < localRadius) {
            validUmbra = false;
        }
        if (distance < minDistance) {
            minDistance = distance;
        }
        // Determine if transformed centroid is inside clipPolygon.
        v1 = transformedCentroid - fClipPolygon[p];
        if (initCross*v0.cross(v1) <= 0) {
            hiddenCentroid = false;
        }
    }
    SkASSERT(fClipVectors.count() == fClipPolygon.count());

    if (!validUmbra) {
        SkScalar ratio = 256 * SkScalarSqrt(minDistance / localRadius);
        // they aren't PMColors, but the interpolation algorithm is the same
        fUmbraColor = SkPMLerp(fUmbraColor, fPenumbraColor, (unsigned)ratio);
    }

    fTransparent = fTransparent || !hiddenCentroid || !validUmbra;
    fValidUmbra = validUmbra;
    fCentroid = transformedCentroid;
}

bool SkSpotShadowTessellator::clipUmbraPoint(const SkPoint& umbraPoint, const SkPoint& centroid,
                                             SkPoint* clipPoint) {
    SkVector segmentVector = centroid - umbraPoint;

    int startPolyPoint = fCurrPolyPoint;
    do {
        SkVector dp = umbraPoint - fClipPolygon[fCurrPolyPoint];
        SkScalar denom = fClipVectors[fCurrPolyPoint].cross(segmentVector);
        SkScalar t_num = dp.cross(segmentVector);
        // if line segments are nearly parallel
        if (SkScalarNearlyZero(denom)) {
            // and collinear
            if (SkScalarNearlyZero(t_num)) {
                return false;
            }
            // otherwise are separate, will try the next poly segment
        // else if crossing lies within poly segment
        } else if (t_num >= 0 && t_num <= denom) {
            SkScalar s_num = dp.cross(fClipVectors[fCurrPolyPoint]);
            // if umbra point is inside the clip polygon
            if (s_num < 0) {
                return false;
            } else {
                segmentVector *= s_num/denom;
                *clipPoint = umbraPoint + segmentVector;
                return true;
            }
        }
        fCurrPolyPoint = (fCurrPolyPoint + 1) % fClipPolygon.count();
    } while (fCurrPolyPoint != startPolyPoint);

    return false;
}

void SkSpotShadowTessellator::mapPoints(SkScalar scale, const SkVector& xlate,
                                        SkPoint* pts, int count) {
    // TODO: vectorize
    for (int i = 0; i < count; ++i) {
        pts[i] *= scale;
        pts[i] += xlate;
    }
}

void SkSpotShadowTessellator::handleLine(const SkPoint& p) {
    if (fInitPoints.count() < 2) {
        *fInitPoints.push() = p;
        return;
    }

    if (fInitPoints.count() == 2) {
        // determine if cw or ccw
        SkVector v0 = fInitPoints[1] - fInitPoints[0];
        SkVector v1 = p - fInitPoints[0];
        SkScalar perpDot = v0.fX*v1.fY - v0.fY*v1.fX;
        if (SkScalarNearlyZero(perpDot)) {
            // nearly parallel, just treat as straight line and continue
            fInitPoints[1] = p;
            return;
        }

        // if perpDot > 0, winding is ccw
        fDirection = (perpDot > 0) ? -1 : 1;

        // add first quad
        if (!compute_normal(fInitPoints[0], fInitPoints[1], fRadius, fDirection,
                            &fFirstNormal)) {
            // first two points are incident, make the third point the second and continue
            fInitPoints[1] = p;
            return;
        }

        fFirstPoint = fInitPoints[0];
        fFirstVertex = fPositions.count();
        fPrevNormal = fFirstNormal;
        fPrevPoint = fFirstPoint;
        fPrevUmbraIndex = fFirstVertex;

        this->addInnerPoint(fFirstPoint);

        if (!fTransparent) {
            SkPoint clipPoint;
            bool isOutside = this->clipUmbraPoint(fPositions[fFirstVertex], fCentroid, &clipPoint);
            if (isOutside) {
                *fPositions.push() = clipPoint;
                *fColors.push() = fUmbraColor;
            }
            fPrevUmbraOutside = isOutside;
            fFirstUmbraOutside = isOutside;
        }

        SkPoint newPoint = fFirstPoint + fFirstNormal;
        *fPositions.push() = newPoint;
        *fColors.push() = fPenumbraColor;
        this->addEdge(fInitPoints[1], fFirstNormal);

        // to ensure we skip this block next time
        *fInitPoints.push() = p;
    }

    SkVector normal;
    if (compute_normal(fPrevPoint, p, fRadius, fDirection, &normal)) {
        this->addArc(normal);
        this->finishArcAndAddEdge(p, normal);
    }
}

void SkSpotShadowTessellator::addInnerPoint(const SkPoint& pathPoint) {
    SkVector v = fCentroid - pathPoint;
    SkScalar distance = v.length();
    SkScalar t;
    if (fValidUmbra) {
        SkASSERT(distance >= fRadius);
        t = fRadius / distance;
    } else {
        t = 0.95f;
    }
    v *= t;
    SkPoint umbraPoint = pathPoint + v;
    *fPositions.push() = umbraPoint;
    *fColors.push() = fUmbraColor;

    fPrevPoint = pathPoint;
}

void SkSpotShadowTessellator::addEdge(const SkPoint& nextPoint, const SkVector& nextNormal) {
    // add next umbra point
    this->addInnerPoint(nextPoint);
    int prevPenumbraIndex = fPositions.count() - 2;
    int currUmbraIndex = fPositions.count() - 1;

    // add to center fan if transparent or centroid showing
    if (fTransparent) {
        *fIndices.push() = 0;
        *fIndices.push() = fPrevUmbraIndex;
        *fIndices.push() = currUmbraIndex;
    // otherwise add to clip ring
    } else {
        if (!fTransparent) {
            SkPoint clipPoint;
            bool isOutside = clipUmbraPoint(fPositions[currUmbraIndex], fCentroid, &clipPoint);
            if (isOutside) {
                *fPositions.push() = clipPoint;
                *fColors.push() = fUmbraColor;

                *fIndices.push() = fPrevUmbraIndex;
                *fIndices.push() = currUmbraIndex;
                *fIndices.push() = currUmbraIndex + 1;
                if (fPrevUmbraOutside) {
                    // fill out quad
                    *fIndices.push() = fPrevUmbraIndex;
                    *fIndices.push() = currUmbraIndex + 1;
                    *fIndices.push() = fPrevUmbraIndex + 1;
                }
            } else if (fPrevUmbraOutside) {
                // add tri
                *fIndices.push() = fPrevUmbraIndex;
                *fIndices.push() = currUmbraIndex;
                *fIndices.push() = fPrevUmbraIndex + 1;
            }
            fPrevUmbraOutside = isOutside;
        }
    }

    // add next penumbra point and quad
    SkPoint newPoint = nextPoint + nextNormal;
    *fPositions.push() = newPoint;
    *fColors.push() = fPenumbraColor;

    *fIndices.push() = fPrevUmbraIndex;
    *fIndices.push() = prevPenumbraIndex;
    *fIndices.push() = currUmbraIndex;

    *fIndices.push() = prevPenumbraIndex;
    *fIndices.push() = fPositions.count() - 1;
    *fIndices.push() = currUmbraIndex;

    fPrevUmbraIndex = currUmbraIndex;
    fPrevNormal = nextNormal;
}

///////////////////////////////////////////////////////////////////////////////////////////////////

sk_sp<SkVertices> SkShadowTessellator::MakeAmbient(const SkPath& path, const SkMatrix& ctm,
                                                   SkScalar radius, SkColor umbra, SkColor penumbra,
                                                   bool transparent) {
    SkAmbientShadowTessellator ambientTess(path, ctm, radius, umbra, penumbra, transparent);
    return ambientTess.releaseVertices();
}

sk_sp<SkVertices> SkShadowTessellator::MakeSpot(const SkPath& path, const SkMatrix& ctm,
                                                SkScalar scale, const SkVector& translate,
                                                SkScalar radius, SkColor umbraColor,
                                                SkColor penumbraColor, bool transparent) {
    SkSpotShadowTessellator spotTess(path, ctm, scale, translate, radius, umbraColor,
                                     penumbraColor, transparent);
    return spotTess.releaseVertices();
}