aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/opts/SkRasterPipeline_opts.h
blob: f072f843bdedc55cf2fb116bc0a82ebc4bd91f05 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
/*
 * Copyright 2016 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#ifndef SkRasterPipeline_opts_DEFINED
#define SkRasterPipeline_opts_DEFINED

#include "SkHalf.h"
#include "SkPM4f.h"
#include "SkRasterPipeline.h"
#include "SkSRGB.h"
#include <utility>

#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX2
    static constexpr int N = 8;
#else
    static constexpr int N = 4;
#endif

using SkNf = SkNx<N, float>;
using SkNi = SkNx<N, int>;
using SkNh = SkNx<N, uint16_t>;

using Body = void(SK_VECTORCALL *)(SkRasterPipeline::Stage*, size_t,
                                   SkNf,SkNf,SkNf,SkNf,
                                   SkNf,SkNf,SkNf,SkNf);
using Tail = void(SK_VECTORCALL *)(SkRasterPipeline::Stage*, size_t, size_t,
                                   SkNf,SkNf,SkNf,SkNf,
                                   SkNf,SkNf,SkNf,SkNf);

#define SI static inline

// Stages are logically a pipeline, and physically are contiguous in an array.
// To get to the next stage, we just increment our pointer to the next array element.
SI void SK_VECTORCALL next_body(SkRasterPipeline::Stage* st, size_t x,
                                SkNf  r, SkNf  g, SkNf  b, SkNf  a,
                                SkNf dr, SkNf dg, SkNf db, SkNf da) {
    ((Body)st->fNext)(st+1, x, r,g,b,a, dr,dg,db,da);
}
SI void SK_VECTORCALL next_tail(SkRasterPipeline::Stage* st, size_t x, size_t tail,
                                SkNf  r, SkNf  g, SkNf  b, SkNf  a,
                                SkNf dr, SkNf dg, SkNf db, SkNf da) {
    ((Tail)st->fNext)(st+1, x,tail, r,g,b,a, dr,dg,db,da);
}


#define STAGE(name, kCallNext)                                                              \
    template <bool kIsTail>                                                                 \
    static SK_ALWAYS_INLINE void name##_kernel(void* ctx, size_t x, size_t tail,            \
                                               SkNf&  r, SkNf&  g, SkNf&  b, SkNf&  a,      \
                                               SkNf& dr, SkNf& dg, SkNf& db, SkNf& da);     \
    SI void SK_VECTORCALL name(SkRasterPipeline::Stage* st, size_t x,                       \
                               SkNf  r, SkNf  g, SkNf  b, SkNf  a,                          \
                               SkNf dr, SkNf dg, SkNf db, SkNf da) {                        \
        name##_kernel<false>(st->fCtx, x,0, r,g,b,a, dr,dg,db,da);                          \
        if (kCallNext) {                                                                    \
            next_body(st, x, r,g,b,a, dr,dg,db,da);                                         \
        }                                                                                   \
    }                                                                                       \
    SI void SK_VECTORCALL name##_tail(SkRasterPipeline::Stage* st, size_t x, size_t tail,   \
                                      SkNf  r, SkNf  g, SkNf  b, SkNf  a,                   \
                                      SkNf dr, SkNf dg, SkNf db, SkNf da) {                 \
        name##_kernel<true>(st->fCtx, x,tail, r,g,b,a, dr,dg,db,da);                        \
        if (kCallNext) {                                                                    \
            next_tail(st, x,tail, r,g,b,a, dr,dg,db,da);                                    \
        }                                                                                   \
    }                                                                                       \
    template <bool kIsTail>                                                                 \
    static SK_ALWAYS_INLINE void name##_kernel(void* ctx, size_t x, size_t tail,            \
                                               SkNf&  r, SkNf&  g, SkNf&  b, SkNf&  a,      \
                                               SkNf& dr, SkNf& dg, SkNf& db, SkNf& da)


// Many xfermodes apply the same logic to each channel.
#define RGBA_XFERMODE(name)                                                                \
    static SK_ALWAYS_INLINE SkNf name##_kernel(const SkNf& s, const SkNf& sa,              \
                                               const SkNf& d, const SkNf& da);             \
    SI void SK_VECTORCALL name(SkRasterPipeline::Stage* st, size_t x,                      \
                               SkNf  r, SkNf  g, SkNf  b, SkNf  a,                         \
                               SkNf dr, SkNf dg, SkNf db, SkNf da) {                       \
        r = name##_kernel(r,a,dr,da);                                                      \
        g = name##_kernel(g,a,dg,da);                                                      \
        b = name##_kernel(b,a,db,da);                                                      \
        a = name##_kernel(a,a,da,da);                                                      \
        next_body(st, x, r,g,b,a, dr,dg,db,da);                                            \
    }                                                                                      \
    SI void SK_VECTORCALL name##_tail(SkRasterPipeline::Stage* st, size_t x, size_t tail,  \
                                      SkNf  r, SkNf  g, SkNf  b, SkNf  a,                  \
                                      SkNf dr, SkNf dg, SkNf db, SkNf da) {                \
        r = name##_kernel(r,a,dr,da);                                                      \
        g = name##_kernel(g,a,dg,da);                                                      \
        b = name##_kernel(b,a,db,da);                                                      \
        a = name##_kernel(a,a,da,da);                                                      \
        next_tail(st, x,tail, r,g,b,a, dr,dg,db,da);                                       \
    }                                                                                      \
    static SK_ALWAYS_INLINE SkNf name##_kernel(const SkNf& s, const SkNf& sa,              \
                                               const SkNf& d, const SkNf& da)

// Most of the rest apply the same logic to color channels and use srcover's alpha logic.
#define RGB_XFERMODE(name)                                                                 \
    static SK_ALWAYS_INLINE SkNf name##_kernel(const SkNf& s, const SkNf& sa,              \
                                               const SkNf& d, const SkNf& da);             \
    SI void SK_VECTORCALL name(SkRasterPipeline::Stage* st, size_t x,                      \
                               SkNf  r, SkNf  g, SkNf  b, SkNf  a,                         \
                               SkNf dr, SkNf dg, SkNf db, SkNf da) {                       \
        r = name##_kernel(r,a,dr,da);                                                      \
        g = name##_kernel(g,a,dg,da);                                                      \
        b = name##_kernel(b,a,db,da);                                                      \
        a = a + (da * (1.0f-a));                                                           \
        next_body(st, x, r,g,b,a, dr,dg,db,da);                                            \
    }                                                                                      \
    SI void SK_VECTORCALL name##_tail(SkRasterPipeline::Stage* st, size_t x, size_t tail,  \
                                      SkNf  r, SkNf  g, SkNf  b, SkNf  a,                  \
                                      SkNf dr, SkNf dg, SkNf db, SkNf da) {                \
        r = name##_kernel(r,a,dr,da);                                                      \
        g = name##_kernel(g,a,dg,da);                                                      \
        b = name##_kernel(b,a,db,da);                                                      \
        a = a + (da * (1.0f-a));                                                           \
        next_tail(st, x,tail, r,g,b,a, dr,dg,db,da);                                       \
    }                                                                                      \
    static SK_ALWAYS_INLINE SkNf name##_kernel(const SkNf& s, const SkNf& sa,              \
                                               const SkNf& d, const SkNf& da)


namespace SK_OPTS_NS {

    SI void run_pipeline(size_t x, size_t n,
                         void (*vBodyStart)(), SkRasterPipeline::Stage* body,
                         void (*vTailStart)(), SkRasterPipeline::Stage* tail) {
        auto bodyStart = (Body)vBodyStart;
        auto tailStart = (Tail)vTailStart;
        SkNf v;  // Fastest to start uninitialized.
        while (n >= N) {
            bodyStart(body, x, v,v,v,v, v,v,v,v);
            x += N;
            n -= N;
        }
        if (n > 0) {
            tailStart(tail, x,n, v,v,v,v, v,v,v,v);
        }
    }

    // Clamp colors into [0,1] premul (e.g. just before storing back to memory).
    SI void clamp_01_premul(SkNf& r, SkNf& g, SkNf& b, SkNf& a) {
        a = SkNf::Max(a, 0.0f);
        r = SkNf::Max(r, 0.0f);
        g = SkNf::Max(g, 0.0f);
        b = SkNf::Max(b, 0.0f);

        a = SkNf::Min(a, 1.0f);
        r = SkNf::Min(r, a);
        g = SkNf::Min(g, a);
        b = SkNf::Min(b, a);
    }

    SI SkNf inv(const SkNf& x) { return 1.0f - x; }

    SI SkNf lerp(const SkNf& from, const SkNf& to, const SkNf& cov) {
        return SkNx_fma(to-from, cov, from);
    }

    template <bool kIsTail, typename T>
    SI SkNx<N,T> load(size_t tail, const T* src) {
        SkASSERT(kIsTail == (tail > 0));
        // TODO: maskload for 32- and 64-bit T
        if (kIsTail) {
            T buf[8] = {0};
            switch (tail & (N-1)) {
                case 7: buf[6] = src[6];
                case 6: buf[5] = src[5];
                case 5: buf[4] = src[4];
                case 4: buf[3] = src[3];
                case 3: buf[2] = src[2];
                case 2: buf[1] = src[1];
            }
            buf[0] = src[0];
            return SkNx<N,T>::Load(buf);
        }
        return SkNx<N,T>::Load(src);
    }

    template <bool kIsTail, typename T>
    SI void store(size_t tail, const SkNx<N,T>& v, T* dst) {
        SkASSERT(kIsTail == (tail > 0));
        // TODO: maskstore for 32- and 64-bit T
        if (kIsTail) {
            switch (tail & (N-1)) {
                case 7: dst[6] = v[6];
                case 6: dst[5] = v[5];
                case 5: dst[4] = v[4];
                case 4: dst[3] = v[3];
                case 3: dst[2] = v[2];
                case 2: dst[1] = v[1];
            }
            dst[0] = v[0];
            return;
        }
        v.store(dst);
    }

    SI void from_565(const SkNh& _565, SkNf* r, SkNf* g, SkNf* b) {
        auto _32_bit = SkNx_cast<int>(_565);

        *r = SkNx_cast<float>(_32_bit & SK_R16_MASK_IN_PLACE) * (1.0f / SK_R16_MASK_IN_PLACE);
        *g = SkNx_cast<float>(_32_bit & SK_G16_MASK_IN_PLACE) * (1.0f / SK_G16_MASK_IN_PLACE);
        *b = SkNx_cast<float>(_32_bit & SK_B16_MASK_IN_PLACE) * (1.0f / SK_B16_MASK_IN_PLACE);
    }

    SI SkNh to_565(const SkNf& r, const SkNf& g, const SkNf& b) {
        return SkNx_cast<uint16_t>( SkNx_cast<int>(r * SK_R16_MASK + 0.5f) << SK_R16_SHIFT
                                  | SkNx_cast<int>(g * SK_G16_MASK + 0.5f) << SK_G16_SHIFT
                                  | SkNx_cast<int>(b * SK_B16_MASK + 0.5f) << SK_B16_SHIFT);
    }

    STAGE(just_return, false) { }

    STAGE(swap_src_dst, true) {
        SkTSwap(r,dr);
        SkTSwap(g,dg);
        SkTSwap(b,db);
        SkTSwap(a,da);
    }

    // The default shader produces a constant color (from the SkPaint).
    STAGE(constant_color, true) {
        auto color = (const SkPM4f*)ctx;
        r = color->r();
        g = color->g();
        b = color->b();
        a = color->a();
    }

    // s' = d(1-c) + sc, for a constant c.
    STAGE(lerp_constant_float, true) {
        SkNf c = *(const float*)ctx;

        r = lerp(dr, r, c);
        g = lerp(dg, g, c);
        b = lerp(db, b, c);
        a = lerp(da, a, c);
    }

    // s' = sc for 8-bit c.
    STAGE(scale_u8, true) {
        auto ptr = (const uint8_t*)ctx + x;

        SkNf c = SkNx_cast<float>(load<kIsTail>(tail, ptr)) * (1/255.0f);
        r = r*c;
        g = g*c;
        b = b*c;
        a = a*c;
    }

    // s' = d(1-c) + sc for 8-bit c.
    STAGE(lerp_u8, true) {
        auto ptr = (const uint8_t*)ctx + x;

        SkNf c = SkNx_cast<float>(load<kIsTail>(tail, ptr)) * (1/255.0f);
        r = lerp(dr, r, c);
        g = lerp(dg, g, c);
        b = lerp(db, b, c);
        a = lerp(da, a, c);
    }

    // s' = d(1-c) + sc for 565 c.
    STAGE(lerp_565, true) {
        auto ptr = (const uint16_t*)ctx + x;
        SkNf cr, cg, cb;
        from_565(load<kIsTail>(tail, ptr), &cr, &cg, &cb);

        r = lerp(dr, r, cr);
        g = lerp(dg, g, cg);
        b = lerp(db, b, cb);
        a = 1.0f;
    }

    STAGE(load_d_565, true) {
        auto ptr = (const uint16_t*)ctx + x;
        from_565(load<kIsTail>(tail, ptr), &dr,&dg,&db);
        da = 1.0f;
    }

    STAGE(load_s_565, true) {
        auto ptr = (const uint16_t*)ctx + x;
        from_565(load<kIsTail>(tail, ptr), &r,&g,&b);
        a = 1.0f;
    }

    STAGE(store_565, false) {
        clamp_01_premul(r,g,b,a);
        auto ptr = (uint16_t*)ctx + x;
        store<kIsTail>(tail, to_565(r,g,b), ptr);
    }

    STAGE(load_d_f16, true) {
        auto ptr = (const uint64_t*)ctx + x;

        SkNh rh, gh, bh, ah;
        if (kIsTail) {
            uint64_t buf[8] = {0};
            switch (tail & (N-1)) {
                case 7: buf[6] = ptr[6];
                case 6: buf[5] = ptr[5];
                case 5: buf[4] = ptr[4];
                case 4: buf[3] = ptr[3];
                case 3: buf[2] = ptr[2];
                case 2: buf[1] = ptr[1];
            }
            buf[0] = ptr[0];
            SkNh::Load4(buf, &rh, &gh, &bh, &ah);
        } else {
            SkNh::Load4(ptr, &rh, &gh, &bh, &ah);
        }

        dr = SkHalfToFloat_finite_ftz(rh);
        dg = SkHalfToFloat_finite_ftz(gh);
        db = SkHalfToFloat_finite_ftz(bh);
        da = SkHalfToFloat_finite_ftz(ah);
    }

    STAGE(load_s_f16, true) {
        auto ptr = (const uint64_t*)ctx + x;

        SkNh rh, gh, bh, ah;
        if (kIsTail) {
            uint64_t buf[8] = {0};
            switch (tail & (N-1)) {
                case 7: buf[6] = ptr[6];
                case 6: buf[5] = ptr[5];
                case 5: buf[4] = ptr[4];
                case 4: buf[3] = ptr[3];
                case 3: buf[2] = ptr[2];
                case 2: buf[1] = ptr[1];
            }
            buf[0] = ptr[0];
            SkNh::Load4(buf, &rh, &gh, &bh, &ah);
        } else {
            SkNh::Load4(ptr, &rh, &gh, &bh, &ah);
        }

        r = SkHalfToFloat_finite_ftz(rh);
        g = SkHalfToFloat_finite_ftz(gh);
        b = SkHalfToFloat_finite_ftz(bh);
        a = SkHalfToFloat_finite_ftz(ah);
    }

    STAGE(store_f16, false) {
        clamp_01_premul(r,g,b,a);
        auto ptr = (uint64_t*)ctx + x;

        uint64_t buf[8];
        SkNh::Store4(kIsTail ? buf : ptr, SkFloatToHalf_finite_ftz(r),
                                          SkFloatToHalf_finite_ftz(g),
                                          SkFloatToHalf_finite_ftz(b),
                                          SkFloatToHalf_finite_ftz(a));
        if (kIsTail) {
            switch (tail & (N-1)) {
                case 7: ptr[6] = buf[6];
                case 6: ptr[5] = buf[5];
                case 5: ptr[4] = buf[4];
                case 4: ptr[3] = buf[3];
                case 3: ptr[2] = buf[2];
                case 2: ptr[1] = buf[1];
            }
            ptr[0] = buf[0];
        }
    }


    // Load 8-bit SkPMColor-order sRGB.
    STAGE(load_d_srgb, true) {
        auto ptr = (const uint32_t*)ctx + x;

        auto px = load<kIsTail>(tail, ptr);
        auto to_int = [](const SkNx<N, uint32_t>& v) { return SkNi::Load(&v); };
        dr =    sk_linear_from_srgb_math(to_int((px >> SK_R32_SHIFT) & 0xff));
        dg =    sk_linear_from_srgb_math(to_int((px >> SK_G32_SHIFT) & 0xff));
        db =    sk_linear_from_srgb_math(to_int((px >> SK_B32_SHIFT) & 0xff));
        da = (1/255.0f)*SkNx_cast<float>(to_int( px >> SK_A32_SHIFT        ));
    }

    STAGE(load_s_srgb, true) {
        auto ptr = (const uint32_t*)ctx + x;

        auto px = load<kIsTail>(tail, ptr);
        auto to_int = [](const SkNx<N, uint32_t>& v) { return SkNi::Load(&v); };
        r =    sk_linear_from_srgb_math(to_int((px >> SK_R32_SHIFT) & 0xff));
        g =    sk_linear_from_srgb_math(to_int((px >> SK_G32_SHIFT) & 0xff));
        b =    sk_linear_from_srgb_math(to_int((px >> SK_B32_SHIFT) & 0xff));
        a = (1/255.0f)*SkNx_cast<float>(to_int( px >> SK_A32_SHIFT        ));
    }

    STAGE(store_srgb, false) {
        clamp_01_premul(r,g,b,a);
        auto ptr = (uint32_t*)ctx + x;
        store<kIsTail>(tail, (      sk_linear_to_srgb_noclamp(r) << SK_R32_SHIFT
                             |      sk_linear_to_srgb_noclamp(g) << SK_G32_SHIFT
                             |      sk_linear_to_srgb_noclamp(b) << SK_B32_SHIFT
                             | SkNx_cast<int>(255.0f * a + 0.5f) << SK_A32_SHIFT ), (int*)ptr);
    }

    RGBA_XFERMODE(clear)    { return 0.0f; }
  //RGBA_XFERMODE(src)      { return s; }   // This would be a no-op stage, so we just omit it.
    RGBA_XFERMODE(dst)      { return d; }

    RGBA_XFERMODE(srcatop)  { return s*da + d*inv(sa); }
    RGBA_XFERMODE(srcin)    { return s * da; }
    RGBA_XFERMODE(srcout)   { return s * inv(da); }
    RGBA_XFERMODE(srcover)  { return SkNx_fma(d, inv(sa), s); }
    RGBA_XFERMODE(dstatop)  { return srcatop_kernel(d,da,s,sa); }
    RGBA_XFERMODE(dstin)    { return srcin_kernel  (d,da,s,sa); }
    RGBA_XFERMODE(dstout)   { return srcout_kernel (d,da,s,sa); }
    RGBA_XFERMODE(dstover)  { return srcover_kernel(d,da,s,sa); }

    RGBA_XFERMODE(modulate) { return s*d; }
    RGBA_XFERMODE(multiply) { return s*inv(da) + d*inv(sa) + s*d; }
    RGBA_XFERMODE(plus_)    { return s + d; }
    RGBA_XFERMODE(screen)   { return s + d - s*d; }
    RGBA_XFERMODE(xor_)     { return s*inv(da) + d*inv(sa); }

    RGB_XFERMODE(colorburn) {
        return (d == da  ).thenElse(d + s*inv(da),
               (s == 0.0f).thenElse(s + d*inv(sa),
                                    sa*(da - SkNf::Min(da, (da-d)*sa/s)) + s*inv(da) + d*inv(sa)));
    }
    RGB_XFERMODE(colordodge) {
        return (d == 0.0f).thenElse(d + s*inv(da),
               (s == sa  ).thenElse(s + d*inv(sa),
                                    sa*SkNf::Min(da, (d*sa)/(sa - s)) + s*inv(da) + d*inv(sa)));
    }
    RGB_XFERMODE(darken)     { return s + d - SkNf::Max(s*da, d*sa); }
    RGB_XFERMODE(difference) { return s + d - 2.0f*SkNf::Min(s*da,d*sa); }
    RGB_XFERMODE(exclusion)  { return s + d - 2.0f*s*d; }
    RGB_XFERMODE(hardlight) {
        return s*inv(da) + d*inv(sa)
             + (2.0f*s <= sa).thenElse(2.0f*s*d, sa*da - 2.0f*(da-d)*(sa-s));
    }
    RGB_XFERMODE(lighten) { return s + d - SkNf::Min(s*da, d*sa); }
    RGB_XFERMODE(overlay) { return hardlight_kernel(d,da,s,sa); }
    RGB_XFERMODE(softlight) {
        SkNf m  = (da > 0.0f).thenElse(d / da, 0.0f),
             s2 = 2.0f*s,
             m4 = 4.0f*m;

        // The logic forks three ways:
        //    1. dark src?
        //    2. light src, dark dst?
        //    3. light src, light dst?
        SkNf darkSrc = d*(sa + (s2 - sa)*(1.0f - m)),     // Used in case 1.
             darkDst = (m4*m4 + m4)*(m - 1.0f) + 7.0f*m,  // Used in case 2.
             liteDst = m.rsqrt().invert() - m,            // Used in case 3.
             liteSrc = d*sa + da*(s2 - sa) * (4.0f*d <= da).thenElse(darkDst, liteDst);  // 2 or 3?
        return s*inv(da) + d*inv(sa) + (s2 <= sa).thenElse(darkSrc, liteSrc);  // 1 or (2 or 3)?
    }
}

#undef SI
#undef STAGE
#undef RGBA_XFERMODE
#undef RGB_XFERMODE

#endif//SkRasterPipeline_opts_DEFINED