/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkRasterPipeline_opts_DEFINED #define SkRasterPipeline_opts_DEFINED #include "SkHalf.h" #include "SkPM4f.h" #include "SkRasterPipeline.h" #include "SkSRGB.h" #include #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX2 static constexpr int N = 8; #else static constexpr int N = 4; #endif using SkNf = SkNx; using SkNi = SkNx; using SkNh = SkNx; using Body = void(SK_VECTORCALL *)(SkRasterPipeline::Stage*, size_t, SkNf,SkNf,SkNf,SkNf, SkNf,SkNf,SkNf,SkNf); using Tail = void(SK_VECTORCALL *)(SkRasterPipeline::Stage*, size_t, size_t, SkNf,SkNf,SkNf,SkNf, SkNf,SkNf,SkNf,SkNf); #define SI static inline // Stages are logically a pipeline, and physically are contiguous in an array. // To get to the next stage, we just increment our pointer to the next array element. SI void SK_VECTORCALL next_body(SkRasterPipeline::Stage* st, size_t x, SkNf r, SkNf g, SkNf b, SkNf a, SkNf dr, SkNf dg, SkNf db, SkNf da) { ((Body)st->fNext)(st+1, x, r,g,b,a, dr,dg,db,da); } SI void SK_VECTORCALL next_tail(SkRasterPipeline::Stage* st, size_t x, size_t tail, SkNf r, SkNf g, SkNf b, SkNf a, SkNf dr, SkNf dg, SkNf db, SkNf da) { ((Tail)st->fNext)(st+1, x,tail, r,g,b,a, dr,dg,db,da); } #define STAGE(name, kCallNext) \ template \ static SK_ALWAYS_INLINE void name##_kernel(void* ctx, size_t x, size_t tail, \ SkNf& r, SkNf& g, SkNf& b, SkNf& a, \ SkNf& dr, SkNf& dg, SkNf& db, SkNf& da); \ SI void SK_VECTORCALL name(SkRasterPipeline::Stage* st, size_t x, \ SkNf r, SkNf g, SkNf b, SkNf a, \ SkNf dr, SkNf dg, SkNf db, SkNf da) { \ name##_kernel(st->fCtx, x,0, r,g,b,a, dr,dg,db,da); \ if (kCallNext) { \ next_body(st, x, r,g,b,a, dr,dg,db,da); \ } \ } \ SI void SK_VECTORCALL name##_tail(SkRasterPipeline::Stage* st, size_t x, size_t tail, \ SkNf r, SkNf g, SkNf b, SkNf a, \ SkNf dr, SkNf dg, SkNf db, SkNf da) { \ name##_kernel(st->fCtx, x,tail, r,g,b,a, dr,dg,db,da); \ if (kCallNext) { \ next_tail(st, x,tail, r,g,b,a, dr,dg,db,da); \ } \ } \ template \ static SK_ALWAYS_INLINE void name##_kernel(void* ctx, size_t x, size_t tail, \ SkNf& r, SkNf& g, SkNf& b, SkNf& a, \ SkNf& dr, SkNf& dg, SkNf& db, SkNf& da) // Many xfermodes apply the same logic to each channel. #define RGBA_XFERMODE(name) \ static SK_ALWAYS_INLINE SkNf name##_kernel(const SkNf& s, const SkNf& sa, \ const SkNf& d, const SkNf& da); \ SI void SK_VECTORCALL name(SkRasterPipeline::Stage* st, size_t x, \ SkNf r, SkNf g, SkNf b, SkNf a, \ SkNf dr, SkNf dg, SkNf db, SkNf da) { \ r = name##_kernel(r,a,dr,da); \ g = name##_kernel(g,a,dg,da); \ b = name##_kernel(b,a,db,da); \ a = name##_kernel(a,a,da,da); \ next_body(st, x, r,g,b,a, dr,dg,db,da); \ } \ SI void SK_VECTORCALL name##_tail(SkRasterPipeline::Stage* st, size_t x, size_t tail, \ SkNf r, SkNf g, SkNf b, SkNf a, \ SkNf dr, SkNf dg, SkNf db, SkNf da) { \ r = name##_kernel(r,a,dr,da); \ g = name##_kernel(g,a,dg,da); \ b = name##_kernel(b,a,db,da); \ a = name##_kernel(a,a,da,da); \ next_tail(st, x,tail, r,g,b,a, dr,dg,db,da); \ } \ static SK_ALWAYS_INLINE SkNf name##_kernel(const SkNf& s, const SkNf& sa, \ const SkNf& d, const SkNf& da) // Most of the rest apply the same logic to color channels and use srcover's alpha logic. #define RGB_XFERMODE(name) \ static SK_ALWAYS_INLINE SkNf name##_kernel(const SkNf& s, const SkNf& sa, \ const SkNf& d, const SkNf& da); \ SI void SK_VECTORCALL name(SkRasterPipeline::Stage* st, size_t x, \ SkNf r, SkNf g, SkNf b, SkNf a, \ SkNf dr, SkNf dg, SkNf db, SkNf da) { \ r = name##_kernel(r,a,dr,da); \ g = name##_kernel(g,a,dg,da); \ b = name##_kernel(b,a,db,da); \ a = a + (da * (1.0f-a)); \ next_body(st, x, r,g,b,a, dr,dg,db,da); \ } \ SI void SK_VECTORCALL name##_tail(SkRasterPipeline::Stage* st, size_t x, size_t tail, \ SkNf r, SkNf g, SkNf b, SkNf a, \ SkNf dr, SkNf dg, SkNf db, SkNf da) { \ r = name##_kernel(r,a,dr,da); \ g = name##_kernel(g,a,dg,da); \ b = name##_kernel(b,a,db,da); \ a = a + (da * (1.0f-a)); \ next_tail(st, x,tail, r,g,b,a, dr,dg,db,da); \ } \ static SK_ALWAYS_INLINE SkNf name##_kernel(const SkNf& s, const SkNf& sa, \ const SkNf& d, const SkNf& da) namespace SK_OPTS_NS { SI void run_pipeline(size_t x, size_t n, void (*vBodyStart)(), SkRasterPipeline::Stage* body, void (*vTailStart)(), SkRasterPipeline::Stage* tail) { auto bodyStart = (Body)vBodyStart; auto tailStart = (Tail)vTailStart; SkNf v; // Fastest to start uninitialized. while (n >= N) { bodyStart(body, x, v,v,v,v, v,v,v,v); x += N; n -= N; } if (n > 0) { tailStart(tail, x,n, v,v,v,v, v,v,v,v); } } // Clamp colors into [0,1] premul (e.g. just before storing back to memory). SI void clamp_01_premul(SkNf& r, SkNf& g, SkNf& b, SkNf& a) { a = SkNf::Max(a, 0.0f); r = SkNf::Max(r, 0.0f); g = SkNf::Max(g, 0.0f); b = SkNf::Max(b, 0.0f); a = SkNf::Min(a, 1.0f); r = SkNf::Min(r, a); g = SkNf::Min(g, a); b = SkNf::Min(b, a); } SI SkNf inv(const SkNf& x) { return 1.0f - x; } SI SkNf lerp(const SkNf& from, const SkNf& to, const SkNf& cov) { return SkNx_fma(to-from, cov, from); } template SI SkNx load(size_t tail, const T* src) { SkASSERT(kIsTail == (tail > 0)); // TODO: maskload for 32- and 64-bit T if (kIsTail) { T buf[8] = {0}; switch (tail & (N-1)) { case 7: buf[6] = src[6]; case 6: buf[5] = src[5]; case 5: buf[4] = src[4]; case 4: buf[3] = src[3]; case 3: buf[2] = src[2]; case 2: buf[1] = src[1]; } buf[0] = src[0]; return SkNx::Load(buf); } return SkNx::Load(src); } template SI void store(size_t tail, const SkNx& v, T* dst) { SkASSERT(kIsTail == (tail > 0)); // TODO: maskstore for 32- and 64-bit T if (kIsTail) { switch (tail & (N-1)) { case 7: dst[6] = v[6]; case 6: dst[5] = v[5]; case 5: dst[4] = v[4]; case 4: dst[3] = v[3]; case 3: dst[2] = v[2]; case 2: dst[1] = v[1]; } dst[0] = v[0]; return; } v.store(dst); } SI void from_565(const SkNh& _565, SkNf* r, SkNf* g, SkNf* b) { auto _32_bit = SkNx_cast(_565); *r = SkNx_cast(_32_bit & SK_R16_MASK_IN_PLACE) * (1.0f / SK_R16_MASK_IN_PLACE); *g = SkNx_cast(_32_bit & SK_G16_MASK_IN_PLACE) * (1.0f / SK_G16_MASK_IN_PLACE); *b = SkNx_cast(_32_bit & SK_B16_MASK_IN_PLACE) * (1.0f / SK_B16_MASK_IN_PLACE); } SI SkNh to_565(const SkNf& r, const SkNf& g, const SkNf& b) { return SkNx_cast( SkNx_cast(r * SK_R16_MASK + 0.5f) << SK_R16_SHIFT | SkNx_cast(g * SK_G16_MASK + 0.5f) << SK_G16_SHIFT | SkNx_cast(b * SK_B16_MASK + 0.5f) << SK_B16_SHIFT); } STAGE(just_return, false) { } STAGE(swap_src_dst, true) { SkTSwap(r,dr); SkTSwap(g,dg); SkTSwap(b,db); SkTSwap(a,da); } // The default shader produces a constant color (from the SkPaint). STAGE(constant_color, true) { auto color = (const SkPM4f*)ctx; r = color->r(); g = color->g(); b = color->b(); a = color->a(); } // s' = d(1-c) + sc, for a constant c. STAGE(lerp_constant_float, true) { SkNf c = *(const float*)ctx; r = lerp(dr, r, c); g = lerp(dg, g, c); b = lerp(db, b, c); a = lerp(da, a, c); } // s' = sc for 8-bit c. STAGE(scale_u8, true) { auto ptr = (const uint8_t*)ctx + x; SkNf c = SkNx_cast(load(tail, ptr)) * (1/255.0f); r = r*c; g = g*c; b = b*c; a = a*c; } // s' = d(1-c) + sc for 8-bit c. STAGE(lerp_u8, true) { auto ptr = (const uint8_t*)ctx + x; SkNf c = SkNx_cast(load(tail, ptr)) * (1/255.0f); r = lerp(dr, r, c); g = lerp(dg, g, c); b = lerp(db, b, c); a = lerp(da, a, c); } // s' = d(1-c) + sc for 565 c. STAGE(lerp_565, true) { auto ptr = (const uint16_t*)ctx + x; SkNf cr, cg, cb; from_565(load(tail, ptr), &cr, &cg, &cb); r = lerp(dr, r, cr); g = lerp(dg, g, cg); b = lerp(db, b, cb); a = 1.0f; } STAGE(load_d_565, true) { auto ptr = (const uint16_t*)ctx + x; from_565(load(tail, ptr), &dr,&dg,&db); da = 1.0f; } STAGE(load_s_565, true) { auto ptr = (const uint16_t*)ctx + x; from_565(load(tail, ptr), &r,&g,&b); a = 1.0f; } STAGE(store_565, false) { clamp_01_premul(r,g,b,a); auto ptr = (uint16_t*)ctx + x; store(tail, to_565(r,g,b), ptr); } STAGE(load_d_f16, true) { auto ptr = (const uint64_t*)ctx + x; SkNh rh, gh, bh, ah; if (kIsTail) { uint64_t buf[8] = {0}; switch (tail & (N-1)) { case 7: buf[6] = ptr[6]; case 6: buf[5] = ptr[5]; case 5: buf[4] = ptr[4]; case 4: buf[3] = ptr[3]; case 3: buf[2] = ptr[2]; case 2: buf[1] = ptr[1]; } buf[0] = ptr[0]; SkNh::Load4(buf, &rh, &gh, &bh, &ah); } else { SkNh::Load4(ptr, &rh, &gh, &bh, &ah); } dr = SkHalfToFloat_finite_ftz(rh); dg = SkHalfToFloat_finite_ftz(gh); db = SkHalfToFloat_finite_ftz(bh); da = SkHalfToFloat_finite_ftz(ah); } STAGE(load_s_f16, true) { auto ptr = (const uint64_t*)ctx + x; SkNh rh, gh, bh, ah; if (kIsTail) { uint64_t buf[8] = {0}; switch (tail & (N-1)) { case 7: buf[6] = ptr[6]; case 6: buf[5] = ptr[5]; case 5: buf[4] = ptr[4]; case 4: buf[3] = ptr[3]; case 3: buf[2] = ptr[2]; case 2: buf[1] = ptr[1]; } buf[0] = ptr[0]; SkNh::Load4(buf, &rh, &gh, &bh, &ah); } else { SkNh::Load4(ptr, &rh, &gh, &bh, &ah); } r = SkHalfToFloat_finite_ftz(rh); g = SkHalfToFloat_finite_ftz(gh); b = SkHalfToFloat_finite_ftz(bh); a = SkHalfToFloat_finite_ftz(ah); } STAGE(store_f16, false) { clamp_01_premul(r,g,b,a); auto ptr = (uint64_t*)ctx + x; uint64_t buf[8]; SkNh::Store4(kIsTail ? buf : ptr, SkFloatToHalf_finite_ftz(r), SkFloatToHalf_finite_ftz(g), SkFloatToHalf_finite_ftz(b), SkFloatToHalf_finite_ftz(a)); if (kIsTail) { switch (tail & (N-1)) { case 7: ptr[6] = buf[6]; case 6: ptr[5] = buf[5]; case 5: ptr[4] = buf[4]; case 4: ptr[3] = buf[3]; case 3: ptr[2] = buf[2]; case 2: ptr[1] = buf[1]; } ptr[0] = buf[0]; } } // Load 8-bit SkPMColor-order sRGB. STAGE(load_d_srgb, true) { auto ptr = (const uint32_t*)ctx + x; auto px = load(tail, ptr); auto to_int = [](const SkNx& v) { return SkNi::Load(&v); }; dr = sk_linear_from_srgb_math(to_int((px >> SK_R32_SHIFT) & 0xff)); dg = sk_linear_from_srgb_math(to_int((px >> SK_G32_SHIFT) & 0xff)); db = sk_linear_from_srgb_math(to_int((px >> SK_B32_SHIFT) & 0xff)); da = (1/255.0f)*SkNx_cast(to_int( px >> SK_A32_SHIFT )); } STAGE(load_s_srgb, true) { auto ptr = (const uint32_t*)ctx + x; auto px = load(tail, ptr); auto to_int = [](const SkNx& v) { return SkNi::Load(&v); }; r = sk_linear_from_srgb_math(to_int((px >> SK_R32_SHIFT) & 0xff)); g = sk_linear_from_srgb_math(to_int((px >> SK_G32_SHIFT) & 0xff)); b = sk_linear_from_srgb_math(to_int((px >> SK_B32_SHIFT) & 0xff)); a = (1/255.0f)*SkNx_cast(to_int( px >> SK_A32_SHIFT )); } STAGE(store_srgb, false) { clamp_01_premul(r,g,b,a); auto ptr = (uint32_t*)ctx + x; store(tail, ( sk_linear_to_srgb_noclamp(r) << SK_R32_SHIFT | sk_linear_to_srgb_noclamp(g) << SK_G32_SHIFT | sk_linear_to_srgb_noclamp(b) << SK_B32_SHIFT | SkNx_cast(255.0f * a + 0.5f) << SK_A32_SHIFT ), (int*)ptr); } RGBA_XFERMODE(clear) { return 0.0f; } //RGBA_XFERMODE(src) { return s; } // This would be a no-op stage, so we just omit it. RGBA_XFERMODE(dst) { return d; } RGBA_XFERMODE(srcatop) { return s*da + d*inv(sa); } RGBA_XFERMODE(srcin) { return s * da; } RGBA_XFERMODE(srcout) { return s * inv(da); } RGBA_XFERMODE(srcover) { return SkNx_fma(d, inv(sa), s); } RGBA_XFERMODE(dstatop) { return srcatop_kernel(d,da,s,sa); } RGBA_XFERMODE(dstin) { return srcin_kernel (d,da,s,sa); } RGBA_XFERMODE(dstout) { return srcout_kernel (d,da,s,sa); } RGBA_XFERMODE(dstover) { return srcover_kernel(d,da,s,sa); } RGBA_XFERMODE(modulate) { return s*d; } RGBA_XFERMODE(multiply) { return s*inv(da) + d*inv(sa) + s*d; } RGBA_XFERMODE(plus_) { return s + d; } RGBA_XFERMODE(screen) { return s + d - s*d; } RGBA_XFERMODE(xor_) { return s*inv(da) + d*inv(sa); } RGB_XFERMODE(colorburn) { return (d == da ).thenElse(d + s*inv(da), (s == 0.0f).thenElse(s + d*inv(sa), sa*(da - SkNf::Min(da, (da-d)*sa/s)) + s*inv(da) + d*inv(sa))); } RGB_XFERMODE(colordodge) { return (d == 0.0f).thenElse(d + s*inv(da), (s == sa ).thenElse(s + d*inv(sa), sa*SkNf::Min(da, (d*sa)/(sa - s)) + s*inv(da) + d*inv(sa))); } RGB_XFERMODE(darken) { return s + d - SkNf::Max(s*da, d*sa); } RGB_XFERMODE(difference) { return s + d - 2.0f*SkNf::Min(s*da,d*sa); } RGB_XFERMODE(exclusion) { return s + d - 2.0f*s*d; } RGB_XFERMODE(hardlight) { return s*inv(da) + d*inv(sa) + (2.0f*s <= sa).thenElse(2.0f*s*d, sa*da - 2.0f*(da-d)*(sa-s)); } RGB_XFERMODE(lighten) { return s + d - SkNf::Min(s*da, d*sa); } RGB_XFERMODE(overlay) { return hardlight_kernel(d,da,s,sa); } RGB_XFERMODE(softlight) { SkNf m = (da > 0.0f).thenElse(d / da, 0.0f), s2 = 2.0f*s, m4 = 4.0f*m; // The logic forks three ways: // 1. dark src? // 2. light src, dark dst? // 3. light src, light dst? SkNf darkSrc = d*(sa + (s2 - sa)*(1.0f - m)), // Used in case 1. darkDst = (m4*m4 + m4)*(m - 1.0f) + 7.0f*m, // Used in case 2. liteDst = m.rsqrt().invert() - m, // Used in case 3. liteSrc = d*sa + da*(s2 - sa) * (4.0f*d <= da).thenElse(darkDst, liteDst); // 2 or 3? return s*inv(da) + d*inv(sa) + (s2 <= sa).thenElse(darkSrc, liteSrc); // 1 or (2 or 3)? } } #undef SI #undef STAGE #undef RGBA_XFERMODE #undef RGB_XFERMODE #endif//SkRasterPipeline_opts_DEFINED