aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/gpu/vk/GrVkUniformHandler.cpp
blob: fac955d8742d080e375972b6018b2631398c9d4a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/

#include "GrVkUniformHandler.h"
#include "glsl/GrGLSLProgramBuilder.h"

// To determine whether a current offset is aligned, we can just 'and' the lowest bits with the
// alignment mask. A value of 0 means aligned, any other value is how many bytes past alignment we
// are. This works since all alignments are powers of 2. The mask is always (alignment - 1).
// This alignment mask will give correct alignments for using the std430 block layout. If you want
// the std140 alignment, you can use this, but then make sure if you have an array type it is
// aligned to 16 bytes (i.e. has mask of 0xF).
uint32_t grsltype_to_alignment_mask(GrSLType type) {
    SkASSERT(GrSLTypeIsFloatType(type));
    static const uint32_t kAlignments[kGrSLTypeCount] = {
        0x0, // kVoid_GrSLType, should never return this
        0x3, // kFloat_GrSLType
        0x7, // kVec2f_GrSLType
        0xF, // kVec3f_GrSLType
        0xF, // kVec4f_GrSLType
        0x7, // kMat22f_GrSLType
        0xF, // kMat33f_GrSLType
        0xF, // kMat44f_GrSLType
        0x0, // Sampler2D_GrSLType, should never return this
        0x0, // SamplerExternal_GrSLType, should never return this
    };
    GR_STATIC_ASSERT(0 == kVoid_GrSLType);
    GR_STATIC_ASSERT(1 == kFloat_GrSLType);
    GR_STATIC_ASSERT(2 == kVec2f_GrSLType);
    GR_STATIC_ASSERT(3 == kVec3f_GrSLType);
    GR_STATIC_ASSERT(4 == kVec4f_GrSLType);
    GR_STATIC_ASSERT(5 == kMat22f_GrSLType);
    GR_STATIC_ASSERT(6 == kMat33f_GrSLType);
    GR_STATIC_ASSERT(7 == kMat44f_GrSLType);
    GR_STATIC_ASSERT(8 == kSampler2D_GrSLType);
    GR_STATIC_ASSERT(9 == kSamplerExternal_GrSLType);
    GR_STATIC_ASSERT(SK_ARRAY_COUNT(kAlignments) == kGrSLTypeCount);
    return kAlignments[type];
}

/** Returns the size in bytes taken up in vulkanbuffers for floating point GrSLTypes.
    For non floating point type returns 0 */
static inline uint32_t grsltype_to_vk_size(GrSLType type) {
    SkASSERT(GrSLTypeIsFloatType(type));
    SkASSERT(kMat22f_GrSLType != type); // TODO: handle mat2 differences between std140 and std430.
    static const uint32_t kSizes[] = {
        0,                        // kVoid_GrSLType
        sizeof(float),            // kFloat_GrSLType
        2 * sizeof(float),        // kVec2f_GrSLType
        3 * sizeof(float),        // kVec3f_GrSLType
        4 * sizeof(float),        // kVec4f_GrSLType
        8 * sizeof(float),        // kMat22f_GrSLType. TODO: this will be 4 * szof(float) on std430.
        12 * sizeof(float),       // kMat33f_GrSLType
        16 * sizeof(float),       // kMat44f_GrSLType
        0,                        // kSampler2D_GrSLType
        0,                        // kSamplerExternal_GrSLType
        0,                        // kSampler2DRect_GrSLType
        0,                        // kBool_GrSLType
        0,                        // kInt_GrSLType
        0,                        // kUint_GrSLType
    };
    return kSizes[type];

    GR_STATIC_ASSERT(0 == kVoid_GrSLType);
    GR_STATIC_ASSERT(1 == kFloat_GrSLType);
    GR_STATIC_ASSERT(2 == kVec2f_GrSLType);
    GR_STATIC_ASSERT(3 == kVec3f_GrSLType);
    GR_STATIC_ASSERT(4 == kVec4f_GrSLType);
    GR_STATIC_ASSERT(5 == kMat22f_GrSLType);
    GR_STATIC_ASSERT(6 == kMat33f_GrSLType);
    GR_STATIC_ASSERT(7 == kMat44f_GrSLType);
    GR_STATIC_ASSERT(8 == kSampler2D_GrSLType);
    GR_STATIC_ASSERT(9 == kSamplerExternal_GrSLType);
    GR_STATIC_ASSERT(10 == kSampler2DRect_GrSLType);
    GR_STATIC_ASSERT(11 == kBool_GrSLType);
    GR_STATIC_ASSERT(12 == kInt_GrSLType);
    GR_STATIC_ASSERT(13 == kUint_GrSLType);
    GR_STATIC_ASSERT(SK_ARRAY_COUNT(kSizes) == kGrSLTypeCount);
}


// Given the current offset into the ubo, calculate the offset for the uniform we're trying to add
// taking into consideration all alignment requirements. The uniformOffset is set to the offset for
// the new uniform, and currentOffset is updated to be the offset to the end of the new uniform.
void get_ubo_aligned_offset(uint32_t* uniformOffset,
                            uint32_t* currentOffset,
                            GrSLType type,
                            int arrayCount) {
    uint32_t alignmentMask = grsltype_to_alignment_mask(type);
    // We want to use the std140 layout here, so we must make arrays align to 16 bytes.
    SkASSERT(type != kMat22f_GrSLType); // TODO: support mat2.
    if (arrayCount) {
        alignmentMask = 0xF;
    }
    uint32_t offsetDiff = *currentOffset & alignmentMask;
    if (offsetDiff != 0) {
        offsetDiff = alignmentMask - offsetDiff + 1;
    }
    *uniformOffset = *currentOffset + offsetDiff;
    SkASSERT(sizeof(float) == 4);
    if (arrayCount) {
        uint32_t elementSize = SkTMax<uint32_t>(16, grsltype_to_vk_size(type));
        SkASSERT(0 == (elementSize & 0xF));
        *currentOffset = *uniformOffset + elementSize * arrayCount;
    } else {
        *currentOffset = *uniformOffset + grsltype_to_vk_size(type);
    }
}

GrGLSLUniformHandler::UniformHandle GrVkUniformHandler::internalAddUniformArray(
                                                                            uint32_t visibility,
                                                                            GrSLType type,
                                                                            GrSLPrecision precision,
                                                                            const char* name,
                                                                            bool mangleName,
                                                                            int arrayCount,
                                                                            const char** outName) {
    SkASSERT(name && strlen(name));
    SkDEBUGCODE(static const uint32_t kVisibilityMask = kVertex_GrShaderFlag|kFragment_GrShaderFlag);
    SkASSERT(0 == (~kVisibilityMask & visibility));
    SkASSERT(0 != visibility);
    SkASSERT(kDefault_GrSLPrecision == precision || GrSLTypeIsFloatType(type));

    UniformInfo& uni = fUniforms.push_back();
    uni.fVariable.setType(type);
    // TODO this is a bit hacky, lets think of a better way.  Basically we need to be able to use
    // the uniform view matrix name in the GP, and the GP is immutable so it has to tell the PB
    // exactly what name it wants to use for the uniform view matrix.  If we prefix anythings, then
    // the names will mismatch.  I think the correct solution is to have all GPs which need the
    // uniform view matrix, they should upload the view matrix in their setData along with regular
    // uniforms.
    char prefix = 'u';
    if ('u' == name[0]) {
        prefix = '\0';
    }
    fProgramBuilder->nameVariable(uni.fVariable.accessName(), prefix, name, mangleName);
    uni.fVariable.setArrayCount(arrayCount);
    // For now asserting the the visibility is either only vertex or only fragment
    SkASSERT(kVertex_GrShaderFlag == visibility || kFragment_GrShaderFlag == visibility);
    uni.fVisibility = visibility;
    uni.fVariable.setPrecision(precision);
    if (GrSLTypeIsFloatType(type)) {
        // When outputing the GLSL, only the outer uniform block will get the Uniform modifier. Thus
        // we set the modifier to none for all uniforms declared inside the block.
        uni.fVariable.setTypeModifier(GrGLSLShaderVar::kNone_TypeModifier);

        uint32_t* currentOffset = kVertex_GrShaderFlag == visibility ? &fCurrentVertexUBOOffset
                                                                     : &fCurrentFragmentUBOOffset;
        get_ubo_aligned_offset(&uni.fUBOffset, currentOffset, type, arrayCount);
        uni.fSetNumber = kUniformBufferDescSet;
        uni.fBinding = kVertex_GrShaderFlag == visibility ? kVertexBinding : kFragBinding;

        if (outName) {
            *outName = uni.fVariable.c_str();
        }
    } else {
        SkASSERT(type == kSampler2D_GrSLType);
        uni.fVariable.setTypeModifier(GrGLSLShaderVar::kUniform_TypeModifier);

        uni.fSetNumber = kSamplerDescSet;
        uni.fBinding = fCurrentSamplerBinding++;
        uni.fUBOffset = 0; // This value will be ignored, but initializing to avoid any errors.
        SkString layoutQualifier;
        layoutQualifier.appendf("set=%d, binding=%d", uni.fSetNumber, uni.fBinding);
        uni.fVariable.setLayoutQualifier(layoutQualifier.c_str());
    }

    return GrGLSLUniformHandler::UniformHandle(fUniforms.count() - 1);
}

void GrVkUniformHandler::appendUniformDecls(GrShaderFlags visibility, SkString* out) const {
    SkTArray<UniformInfo*> uniformBufferUniform;
    // Used to collect all the variables that will be place inside the uniform buffer
    SkString uniformsString;
    SkASSERT(kVertex_GrShaderFlag == visibility || kFragment_GrShaderFlag == visibility);
    uint32_t uniformBinding = (visibility == kVertex_GrShaderFlag) ? kVertexBinding : kFragBinding;
    for (int i = 0; i < fUniforms.count(); ++i) {
        const UniformInfo& localUniform = fUniforms[i];
        if (visibility == localUniform.fVisibility) {
            if (GrSLTypeIsFloatType(localUniform.fVariable.getType())) {
                SkASSERT(uniformBinding == localUniform.fBinding);
                SkASSERT(kUniformBufferDescSet == localUniform.fSetNumber);
                localUniform.fVariable.appendDecl(fProgramBuilder->glslCaps(), &uniformsString);
                uniformsString.append(";\n");
            } else {
                SkASSERT(localUniform.fVariable.getType() == kSampler2D_GrSLType);
                SkASSERT(kSamplerDescSet == localUniform.fSetNumber);
                localUniform.fVariable.appendDecl(fProgramBuilder->glslCaps(), out);
                out->append(";\n");
            }
        }
    }
    if (!uniformsString.isEmpty()) {
        const char* stage = (visibility == kVertex_GrShaderFlag) ? "vertex" : "fragment";
        out->appendf("layout (set=%d, binding=%d) uniform %sUniformBuffer\n{\n",
                     kUniformBufferDescSet, uniformBinding, stage);
        out->appendf("%s\n};\n", uniformsString.c_str());
    }
}