aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/gpu/vk/GrVkUniformHandler.cpp
blob: d92d8d2fd618b6fd3afd2fbca773fe6bc92b435b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/

#include "GrVkUniformHandler.h"
#include "glsl/GrGLSLProgramBuilder.h"

// To determine whether a current offset is aligned, we can just 'and' the lowest bits with the
// alignment mask. A value of 0 means aligned, any other value is how many bytes past alignment we
// are. This works since all alignments are powers of 2. The mask is always (alignment - 1).
// This alignment mask will give correct alignments for using the std430 block layout. If you want
// the std140 alignment, you can use this, but then make sure if you have an array type it is
// aligned to 16 bytes (i.e. has mask of 0xF).
// These are designated in the Vulkan spec, section 14.5.4 "Offset and Stride Assignment".
// https://www.khronos.org/registry/vulkan/specs/1.0-wsi_extensions/html/vkspec.html#interfaces-resources-layout
uint32_t grsltype_to_alignment_mask(GrSLType type) {
    switch(type) {
        case kShort_GrSLType: // fall through
        case kUShort_GrSLType:
            return 0x1;
        case kShort2_GrSLType: // fall through
        case kUShort2_GrSLType:
            return 0x3;
        case kShort3_GrSLType: // fall through
        case kShort4_GrSLType:
        case kUShort3_GrSLType:
        case kUShort4_GrSLType:
            return 0x7;
        case kInt_GrSLType:
        case kUint_GrSLType:
            return 0x3;
        case kHalf_GrSLType: // fall through
        case kFloat_GrSLType:
            return 0x3;
        case kHalf2_GrSLType: // fall through
        case kFloat2_GrSLType:
            return 0x7;
        case kHalf3_GrSLType: // fall through
        case kFloat3_GrSLType:
            return 0xF;
        case kHalf4_GrSLType: // fall through
        case kFloat4_GrSLType:
            return 0xF;
        case kUint2_GrSLType:
            return 0x7;
        case kInt2_GrSLType:
            return 0x7;
        case kInt3_GrSLType:
            return 0xF;
        case kInt4_GrSLType:
            return 0xF;
        case kHalf2x2_GrSLType: // fall through
        case kFloat2x2_GrSLType:
            return 0x7;
        case kHalf3x3_GrSLType: // fall through
        case kFloat3x3_GrSLType:
            return 0xF;
        case kHalf4x4_GrSLType: // fall through
        case kFloat4x4_GrSLType:
            return 0xF;

        // This query is only valid for certain types.
        case kVoid_GrSLType:
        case kBool_GrSLType:
        case kTexture2DSampler_GrSLType:
        case kTextureExternalSampler_GrSLType:
        case kTexture2DRectSampler_GrSLType:
        case kBufferSampler_GrSLType:
        case kTexture2D_GrSLType:
        case kSampler_GrSLType:
            break;
    }
    SK_ABORT("Unexpected type");
    return 0;
}

/** Returns the size in bytes taken up in vulkanbuffers for GrSLTypes. */
static inline uint32_t grsltype_to_vk_size(GrSLType type) {
    switch(type) {
        case kShort_GrSLType:
            return sizeof(int16_t);
        case kShort2_GrSLType:
            return 2 * sizeof(int16_t);
        case kShort3_GrSLType:
            return 3 * sizeof(int16_t);
        case kShort4_GrSLType:
            return 4 * sizeof(int16_t);
        case kUShort_GrSLType:
            return sizeof(uint16_t);
        case kUShort2_GrSLType:
            return 2 * sizeof(uint16_t);
        case kUShort3_GrSLType:
            return 3 * sizeof(uint16_t);
        case kUShort4_GrSLType:
            return 4 * sizeof(uint16_t);
        case kInt_GrSLType:
            return sizeof(int32_t);
        case kUint_GrSLType:
            return sizeof(int32_t);
        case kHalf_GrSLType: // fall through
        case kFloat_GrSLType:
            return sizeof(float);
        case kHalf2_GrSLType: // fall through
        case kFloat2_GrSLType:
            return 2 * sizeof(float);
        case kHalf3_GrSLType: // fall through
        case kFloat3_GrSLType:
            return 3 * sizeof(float);
        case kHalf4_GrSLType: // fall through
        case kFloat4_GrSLType:
            return 4 * sizeof(float);
        case kUint2_GrSLType:
            return 2 * sizeof(uint32_t);
        case kInt2_GrSLType:
            return 2 * sizeof(int32_t);
        case kInt3_GrSLType:
            return 3 * sizeof(int32_t);
        case kInt4_GrSLType:
            return 4 * sizeof(int32_t);
        case kHalf2x2_GrSLType: // fall through
        case kFloat2x2_GrSLType:
            //TODO: this will be 4 * szof(float) on std430.
            return 8 * sizeof(float);
        case kHalf3x3_GrSLType: // fall through
        case kFloat3x3_GrSLType:
            return 12 * sizeof(float);
        case kHalf4x4_GrSLType: // fall through
        case kFloat4x4_GrSLType:
            return 16 * sizeof(float);

        // This query is only valid for certain types.
        case kVoid_GrSLType:
        case kBool_GrSLType:
        case kTexture2DSampler_GrSLType:
        case kTextureExternalSampler_GrSLType:
        case kTexture2DRectSampler_GrSLType:
        case kBufferSampler_GrSLType:
        case kTexture2D_GrSLType:
        case kSampler_GrSLType:
            break;
    }
    SK_ABORT("Unexpected type");
    return 0;
}


// Given the current offset into the ubo, calculate the offset for the uniform we're trying to add
// taking into consideration all alignment requirements. The uniformOffset is set to the offset for
// the new uniform, and currentOffset is updated to be the offset to the end of the new uniform.
void get_ubo_aligned_offset(uint32_t* uniformOffset,
                            uint32_t* currentOffset,
                            GrSLType type,
                            int arrayCount) {
    uint32_t alignmentMask = grsltype_to_alignment_mask(type);
    // We want to use the std140 layout here, so we must make arrays align to 16 bytes.
    if (arrayCount || type == kFloat2x2_GrSLType) {
        alignmentMask = 0xF;
    }
    uint32_t offsetDiff = *currentOffset & alignmentMask;
    if (offsetDiff != 0) {
        offsetDiff = alignmentMask - offsetDiff + 1;
    }
    *uniformOffset = *currentOffset + offsetDiff;
    SkASSERT(sizeof(float) == 4);
    if (arrayCount) {
        uint32_t elementSize = SkTMax<uint32_t>(16, grsltype_to_vk_size(type));
        SkASSERT(0 == (elementSize & 0xF));
        *currentOffset = *uniformOffset + elementSize * arrayCount;
    } else {
        *currentOffset = *uniformOffset + grsltype_to_vk_size(type);
    }
}

GrGLSLUniformHandler::UniformHandle GrVkUniformHandler::internalAddUniformArray(
                                                                            uint32_t visibility,
                                                                            GrSLType type,
                                                                            GrSLPrecision precision,
                                                                            const char* name,
                                                                            bool mangleName,
                                                                            int arrayCount,
                                                                            const char** outName) {
    SkASSERT(name && strlen(name));
    // For now asserting the the visibility is either geometry types (vertex, tesselation, geometry,
    // etc.) or only fragment.
    SkASSERT(kVertex_GrShaderFlag == visibility ||
             kGeometry_GrShaderFlag == visibility ||
             (kVertex_GrShaderFlag | kGeometry_GrShaderFlag) == visibility ||
             kFragment_GrShaderFlag == visibility);
    SkASSERT(kDefault_GrSLPrecision == precision || GrSLTypeIsFloatType(type));
    GrSLTypeIsFloatType(type);

    UniformInfo& uni = fUniforms.push_back();
    uni.fVariable.setType(type);
    // TODO this is a bit hacky, lets think of a better way.  Basically we need to be able to use
    // the uniform view matrix name in the GP, and the GP is immutable so it has to tell the PB
    // exactly what name it wants to use for the uniform view matrix.  If we prefix anythings, then
    // the names will mismatch.  I think the correct solution is to have all GPs which need the
    // uniform view matrix, they should upload the view matrix in their setData along with regular
    // uniforms.
    char prefix = 'u';
    if ('u' == name[0] || !strncmp(name, GR_NO_MANGLE_PREFIX, strlen(GR_NO_MANGLE_PREFIX))) {
        prefix = '\0';
    }
    fProgramBuilder->nameVariable(uni.fVariable.accessName(), prefix, name, mangleName);
    uni.fVariable.setArrayCount(arrayCount);
    uni.fVisibility = visibility;
    uni.fVariable.setPrecision(precision);
    // When outputing the GLSL, only the outer uniform block will get the Uniform modifier. Thus
    // we set the modifier to none for all uniforms declared inside the block.
    uni.fVariable.setTypeModifier(GrShaderVar::kNone_TypeModifier);

    uint32_t* currentOffset;
    uint32_t geomStages = kVertex_GrShaderFlag | kGeometry_GrShaderFlag;
    if (geomStages & visibility) {
        currentOffset = &fCurrentGeometryUBOOffset;
    } else {
        SkASSERT(kFragment_GrShaderFlag == visibility);
        currentOffset = &fCurrentFragmentUBOOffset;
    }
    get_ubo_aligned_offset(&uni.fUBOffset, currentOffset, type, arrayCount);

    SkString layoutQualifier;
    layoutQualifier.appendf("offset=%d", uni.fUBOffset);
    uni.fVariable.addLayoutQualifier(layoutQualifier.c_str());

    if (outName) {
        *outName = uni.fVariable.c_str();
    }

    return GrGLSLUniformHandler::UniformHandle(fUniforms.count() - 1);
}

GrGLSLUniformHandler::SamplerHandle GrVkUniformHandler::addSampler(uint32_t visibility,
                                                                   GrSwizzle swizzle,
                                                                   GrSLType type,
                                                                   GrSLPrecision precision,
                                                                   const char* name) {
    SkASSERT(name && strlen(name));
    // For now asserting the the visibility is either only vertex, geometry, or fragment
    SkASSERT(kVertex_GrShaderFlag == visibility ||
             kFragment_GrShaderFlag == visibility ||
             kGeometry_GrShaderFlag == visibility);
    SkString mangleName;
    char prefix = 'u';
    fProgramBuilder->nameVariable(&mangleName, prefix, name, true);

    UniformInfo& info = fSamplers.push_back();
    SkASSERT(GrSLTypeIsCombinedSamplerType(type));
    info.fVariable.setType(type);
    info.fVariable.setTypeModifier(GrShaderVar::kUniform_TypeModifier);
    info.fVariable.setPrecision(precision);
    info.fVariable.setName(mangleName);
    SkString layoutQualifier;
    layoutQualifier.appendf("set=%d, binding=%d", kSamplerDescSet, fSamplers.count() - 1);
    info.fVariable.addLayoutQualifier(layoutQualifier.c_str());
    info.fVisibility = visibility;
    info.fUBOffset = 0;
    fSamplerSwizzles.push_back(swizzle);
    SkASSERT(fSamplerSwizzles.count() == fSamplers.count());
    return GrGLSLUniformHandler::SamplerHandle(fSamplers.count() - 1);
}

void GrVkUniformHandler::appendUniformDecls(GrShaderFlags visibility, SkString* out) const {
    SkASSERT(kVertex_GrShaderFlag == visibility ||
             kGeometry_GrShaderFlag == visibility ||
             kFragment_GrShaderFlag == visibility);

    for (int i = 0; i < fSamplers.count(); ++i) {
        const UniformInfo& sampler = fSamplers[i];
        SkASSERT(sampler.fVariable.getType() == kTexture2DSampler_GrSLType);
        if (visibility == sampler.fVisibility) {
            sampler.fVariable.appendDecl(fProgramBuilder->shaderCaps(), out);
            out->append(";\n");
        }
    }

#ifdef SK_DEBUG
    bool firstGeomOffsetCheck = false;
    bool firstFragOffsetCheck = false;
    for (int i = 0; i < fUniforms.count(); ++i) {
        const UniformInfo& localUniform = fUniforms[i];
        if (kVertex_GrShaderFlag == localUniform.fVisibility ||
            kGeometry_GrShaderFlag == localUniform.fVisibility ||
            (kVertex_GrShaderFlag | kGeometry_GrShaderFlag) == localUniform.fVisibility) {
            if (!firstGeomOffsetCheck) {
                // Check to make sure we are starting our offset at 0 so the offset qualifier we
                // set on each variable in the uniform block is valid.
                SkASSERT(0 == localUniform.fUBOffset);
                firstGeomOffsetCheck = true;
            }
        } else {
            SkASSERT(kFragment_GrShaderFlag == localUniform.fVisibility);
            if (!firstFragOffsetCheck) {
                // Check to make sure we are starting our offset at 0 so the offset qualifier we
                // set on each variable in the uniform block is valid.
                SkASSERT(0 == localUniform.fUBOffset);
                firstFragOffsetCheck = true;
            }
        }
    }
#endif

    SkString uniformsString;
    for (int i = 0; i < fUniforms.count(); ++i) {
        const UniformInfo& localUniform = fUniforms[i];
        if (visibility & localUniform.fVisibility) {
            if (GrSLTypeIsFloatType(localUniform.fVariable.getType())) {
                localUniform.fVariable.appendDecl(fProgramBuilder->shaderCaps(), &uniformsString);
                uniformsString.append(";\n");
            }
        }
    }

    if (!uniformsString.isEmpty()) {
        uint32_t uniformBinding;
        const char* stage;
        if (kVertex_GrShaderFlag == visibility) {
            uniformBinding = kGeometryBinding;
            stage = "vertex";
        } else if (kGeometry_GrShaderFlag == visibility) {
            uniformBinding = kGeometryBinding;
            stage = "geometry";
        } else {
            SkASSERT(kFragment_GrShaderFlag == visibility);
            uniformBinding = kFragBinding;
            stage = "fragment";
        }
        out->appendf("layout (set=%d, binding=%d) uniform %sUniformBuffer\n{\n",
                     kUniformBufferDescSet, uniformBinding, stage);
        out->appendf("%s\n};\n", uniformsString.c_str());
    }
}