aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/gpu/gl/builders/GrGLFragmentShaderBuilder.cpp
blob: 5d5741ef9bc8f4cb04379b6e1dc60b73d34698de (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
/*
 * Copyright 2014 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "GrGLFragmentShaderBuilder.h"
#include "GrGLShaderStringBuilder.h"
#include "GrGLProgramBuilder.h"
#include "../GrGpuGL.h"

#define GL_CALL(X) GR_GL_CALL(fProgramBuilder->gpu()->glInterface(), X)
#define GL_CALL_RET(R, X) GR_GL_CALL_RET(fProgramBuilder->gpu()->glInterface(), R, X)

// ES2 FS only guarantees mediump and lowp support
static const GrGLShaderVar::Precision kDefaultFragmentPrecision = GrGLShaderVar::kMedium_Precision;
const char* GrGLFragmentShaderBuilder::kDstCopyColorName = "_dstColor";
static const char* declared_color_output_name() { return "fsColorOut"; }
static const char* dual_source_output_name() { return "dualSourceOut"; }
static void append_default_precision_qualifier(GrGLShaderVar::Precision p,
                                               GrGLStandard standard,
                                               SkString* str) {
    // Desktop GLSL has added precision qualifiers but they don't do anything.
    if (kGLES_GrGLStandard == standard) {
        switch (p) {
            case GrGLShaderVar::kHigh_Precision:
                str->append("precision highp float;\n");
                break;
            case GrGLShaderVar::kMedium_Precision:
                str->append("precision mediump float;\n");
                break;
            case GrGLShaderVar::kLow_Precision:
                str->append("precision lowp float;\n");
                break;
            case GrGLShaderVar::kDefault_Precision:
                SkFAIL("Default precision now allowed.");
            default:
                SkFAIL("Unknown precision value.");
        }
    }
}

GrGLFragmentShaderBuilder::DstReadKey
GrGLFragmentShaderBuilder::KeyForDstRead(const GrTexture* dstCopy, const GrGLCaps& caps) {
    uint32_t key = kYesDstRead_DstReadKeyBit;
    if (caps.fbFetchSupport()) {
        return key;
    }
    SkASSERT(dstCopy);
    if (!caps.textureSwizzleSupport() && GrPixelConfigIsAlphaOnly(dstCopy->config())) {
        // The fact that the config is alpha-only must be considered when generating code.
        key |= kUseAlphaConfig_DstReadKeyBit;
    }
    if (kTopLeft_GrSurfaceOrigin == dstCopy->origin()) {
        key |= kTopLeftOrigin_DstReadKeyBit;
    }
    SkASSERT(static_cast<DstReadKey>(key) == key);
    return static_cast<DstReadKey>(key);
}

GrGLFragmentShaderBuilder::FragPosKey
GrGLFragmentShaderBuilder::KeyForFragmentPosition(const GrRenderTarget* dst, const GrGLCaps&) {
    if (kTopLeft_GrSurfaceOrigin == dst->origin()) {
        return kTopLeftFragPosRead_FragPosKey;
    } else {
        return kBottomLeftFragPosRead_FragPosKey;
    }
}

GrGLFragmentShaderBuilder::GrGLFragmentShaderBuilder(GrGLProgramBuilder* program,
                                                     const GrGLProgramDesc& desc)
    : INHERITED(program)
    , fHasCustomColorOutput(false)
    , fHasSecondaryOutput(false)
    , fSetupFragPosition(false)
    , fTopLeftFragPosRead(kTopLeftFragPosRead_FragPosKey == desc.getHeader().fFragPosKey)
    , fHasReadDstColor(false)
    , fHasReadFragmentPosition(false) {
}

bool GrGLFragmentShaderBuilder::enableFeature(GLSLFeature feature) {
    switch (feature) {
        case kStandardDerivatives_GLSLFeature: {
            GrGpuGL* gpu = fProgramBuilder->gpu();
            if (!gpu->glCaps().shaderDerivativeSupport()) {
                return false;
            }
            if (kGLES_GrGLStandard == gpu->glStandard() &&
                k110_GrGLSLGeneration == gpu->glslGeneration()) {
                this->addFeature(1 << kStandardDerivatives_GLSLFeature,
                                 "GL_OES_standard_derivatives");
            }
            return true;
        }
        default:
            SkFAIL("Unexpected GLSLFeature requested.");
            return false;
    }
}

SkString GrGLFragmentShaderBuilder::ensureFSCoords2D(
        const GrGLProcessor::TransformedCoordsArray& coords, int index) {
    if (kVec3f_GrSLType != coords[index].getType()) {
        SkASSERT(kVec2f_GrSLType == coords[index].getType());
        return coords[index].getName();
    }

    SkString coords2D("coords2D");
    if (0 != index) {
        coords2D.appendf("_%i", index);
    }
    this->codeAppendf("\tvec2 %s = %s.xy / %s.z;",
                      coords2D.c_str(), coords[index].c_str(), coords[index].c_str());
    return coords2D;
}

const char* GrGLFragmentShaderBuilder::fragmentPosition() {
    fHasReadFragmentPosition = true;

    GrGpuGL* gpu = fProgramBuilder->gpu();
    // We only declare "gl_FragCoord" when we're in the case where we want to use layout qualifiers
    // to reverse y. Otherwise it isn't necessary and whether the "in" qualifier appears in the
    // declaration varies in earlier GLSL specs. So it is simpler to omit it.
    if (fTopLeftFragPosRead) {
        fSetupFragPosition = true;
        return "gl_FragCoord";
    } else if (gpu->glCaps().fragCoordConventionsSupport()) {
        if (!fSetupFragPosition) {
            if (gpu->glslGeneration() < k150_GrGLSLGeneration) {
                this->addFeature(1 << kFragCoordConventions_GLSLPrivateFeature,
                                 "GL_ARB_fragment_coord_conventions");
            }
            fInputs.push_back().set(kVec4f_GrSLType,
                                    GrGLShaderVar::kIn_TypeModifier,
                                    "gl_FragCoord",
                                    GrGLShaderVar::kDefault_Precision,
                                    GrGLShaderVar::kUpperLeft_Origin);
            fSetupFragPosition = true;
        }
        return "gl_FragCoord";
    } else {
        static const char* kCoordName = "fragCoordYDown";
        if (!fSetupFragPosition) {
            // temporarily change the stage index because we're inserting non-stage code.
            GrGLProgramBuilder::AutoStageRestore asr(fProgramBuilder);
            SkASSERT(!fProgramBuilder->fUniformHandles.fRTHeightUni.isValid());
            const char* rtHeightName;

            fProgramBuilder->fUniformHandles.fRTHeightUni =
                    fProgramBuilder->addUniform(GrGLProgramBuilder::kFragment_Visibility,
                                                kFloat_GrSLType,
                                                "RTHeight",
                                                &rtHeightName);

            // Using glFragCoord.zw for the last two components tickles an Adreno driver bug that
            // causes programs to fail to link. Making this function return a vec2() didn't fix the
            // problem but using 1.0 for the last two components does.
            this->codePrependf("\tvec4 %s = vec4(gl_FragCoord.x, %s - gl_FragCoord.y, 1.0, "
                               "1.0);\n", kCoordName, rtHeightName);
            fSetupFragPosition = true;
        }
        SkASSERT(fProgramBuilder->fUniformHandles.fRTHeightUni.isValid());
        return kCoordName;
    }
}

const char* GrGLFragmentShaderBuilder::dstColor() {
    fHasReadDstColor = true;

    GrGpuGL* gpu = fProgramBuilder->gpu();
    if (gpu->glCaps().fbFetchSupport()) {
        this->addFeature(1 << (GrGLFragmentShaderBuilder::kLastGLSLPrivateFeature + 1),
                         gpu->glCaps().fbFetchExtensionString());
        return gpu->glCaps().fbFetchColorName();
    } else if (fProgramBuilder->fUniformHandles.fDstCopySamplerUni.isValid()) {
        return kDstCopyColorName;
    } else {
        return "";
    }
}

void GrGLFragmentShaderBuilder::emitCodeToReadDstTexture() {
    bool topDown = SkToBool(kTopLeftOrigin_DstReadKeyBit & fProgramBuilder->header().fDstReadKey);
    const char* dstCopyTopLeftName;
    const char* dstCopyCoordScaleName;
    const char* dstCopySamplerName;
    uint32_t configMask;
    if (SkToBool(kUseAlphaConfig_DstReadKeyBit & fProgramBuilder->header().fDstReadKey)) {
        configMask = kA_GrColorComponentFlag;
    } else {
        configMask = kRGBA_GrColorComponentFlags;
    }
    fProgramBuilder->fUniformHandles.fDstCopySamplerUni =
            fProgramBuilder->addUniform(GrGLProgramBuilder::kFragment_Visibility,
                                        kSampler2D_GrSLType,
                                        "DstCopySampler",
                                        &dstCopySamplerName);
    fProgramBuilder->fUniformHandles.fDstCopyTopLeftUni =
            fProgramBuilder->addUniform(GrGLProgramBuilder::kFragment_Visibility,
                                        kVec2f_GrSLType,
                                        "DstCopyUpperLeft",
                                        &dstCopyTopLeftName);
    fProgramBuilder->fUniformHandles.fDstCopyScaleUni =
            fProgramBuilder->addUniform(GrGLProgramBuilder::kFragment_Visibility,
                                        kVec2f_GrSLType,
                                        "DstCopyCoordScale",
                                        &dstCopyCoordScaleName);
    const char* fragPos = this->fragmentPosition();

    this->codeAppend("// Read color from copy of the destination.\n");
    this->codeAppendf("vec2 _dstTexCoord = (%s.xy - %s) * %s;",
                      fragPos, dstCopyTopLeftName, dstCopyCoordScaleName);
    if (!topDown) {
        this->codeAppend("_dstTexCoord.y = 1.0 - _dstTexCoord.y;");
    }
    this->codeAppendf("vec4 %s = ", GrGLFragmentShaderBuilder::kDstCopyColorName);
    this->appendTextureLookup(dstCopySamplerName,
                              "_dstTexCoord",
                              configMask,
                              "rgba");
    this->codeAppend(";");
}

void GrGLFragmentShaderBuilder::enableCustomOutput() {
    SkASSERT(!fHasCustomColorOutput);
    fHasCustomColorOutput = true;
    fOutputs.push_back().set(kVec4f_GrSLType,
                             GrGLShaderVar::kOut_TypeModifier,
                             declared_color_output_name());
}

void GrGLFragmentShaderBuilder::enableSecondaryOutput() {
    SkASSERT(!fHasSecondaryOutput);
    fHasSecondaryOutput = true;
    fOutputs.push_back().set(kVec4f_GrSLType, GrGLShaderVar::kOut_TypeModifier,
                             dual_source_output_name());
}

const char* GrGLFragmentShaderBuilder::getPrimaryColorOutputName() const {
    return fHasCustomColorOutput ? declared_color_output_name() : "gl_FragColor";
}

const char* GrGLFragmentShaderBuilder::getSecondaryColorOutputName() const {
    return dual_source_output_name();
}

void GrGLFragmentShaderBuilder::enableSecondaryOutput(const GrGLSLExpr4& inputColor,
                                                      const GrGLSLExpr4& inputCoverage) {
    this->enableSecondaryOutput();
    const char* secondaryOutputName = this->getSecondaryColorOutputName();
    GrGLSLExpr4 coeff(1);
    switch (fProgramBuilder->header().fSecondaryOutputType) {
        case GrOptDrawState::kCoverage_SecondaryOutputType:
            break;
        case GrOptDrawState::kCoverageISA_SecondaryOutputType:
            // Get (1-A) into coeff
            coeff = GrGLSLExpr4::VectorCast(GrGLSLExpr1(1) - inputColor.a());
            break;
        case GrOptDrawState::kCoverageISC_SecondaryOutputType:
            // Get (1-RGBA) into coeff
            coeff = GrGLSLExpr4(1) - inputColor;
            break;
        default:
            SkFAIL("Unexpected Secondary Output");
    }
    // Get coeff * coverage into modulate and then write that to the dual source output.
    this->codeAppendf("\t%s = %s;\n", secondaryOutputName, (coeff * inputCoverage).c_str());
}

void GrGLFragmentShaderBuilder::combineColorAndCoverage(const GrGLSLExpr4& inputColor,
                                                        const GrGLSLExpr4& inputCoverage) {
    GrGLSLExpr4 fragColor = inputColor * inputCoverage;
    switch (fProgramBuilder->header().fPrimaryOutputType) {
        case GrOptDrawState::kModulate_PrimaryOutputType:
            break;
        case GrOptDrawState::kCombineWithDst_PrimaryOutputType:
            {
                // Tack on "+(1-coverage)dst onto the frag color.
                GrGLSLExpr4 dstCoeff = GrGLSLExpr4(1) - inputCoverage;
                GrGLSLExpr4 dstContribution = dstCoeff * GrGLSLExpr4(this->dstColor());
                fragColor = fragColor + dstContribution;
            }
            break;
        default:
            SkFAIL("Unknown Primary Output");
    }

    // On any post 1.10 GLSL supporting GPU, we declare custom output
    if (k110_GrGLSLGeneration != fProgramBuilder->gpu()->glslGeneration()) {
        this->enableCustomOutput();
    }

    this->codeAppendf("\t%s = %s;\n", this->getPrimaryColorOutputName(), fragColor.c_str());
}

bool GrGLFragmentShaderBuilder::compileAndAttachShaders(GrGLuint programId,
                                                        SkTDArray<GrGLuint>* shaderIds) const {
    GrGpuGL* gpu = fProgramBuilder->gpu();
    SkString fragShaderSrc(GrGetGLSLVersionDecl(gpu->ctxInfo()));
    fragShaderSrc.append(fExtensions);
    append_default_precision_qualifier(kDefaultFragmentPrecision,
                                       gpu->glStandard(),
                                       &fragShaderSrc);
    fProgramBuilder->appendUniformDecls(GrGLProgramBuilder::kFragment_Visibility, &fragShaderSrc);
    this->appendDecls(fInputs, &fragShaderSrc);
    // We shouldn't have declared outputs on 1.10
    SkASSERT(k110_GrGLSLGeneration != gpu->glslGeneration() || fOutputs.empty());
    this->appendDecls(fOutputs, &fragShaderSrc);
    fragShaderSrc.append(fFunctions);
    fragShaderSrc.append("void main() {\n");
    fragShaderSrc.append(fCode);
    fragShaderSrc.append("}\n");

    GrGLuint fragShaderId = GrGLCompileAndAttachShader(gpu->glContext(), programId,
                                                       GR_GL_FRAGMENT_SHADER, fragShaderSrc,
                                                       gpu->gpuStats());
    if (!fragShaderId) {
        return false;
    }

    *shaderIds->append() = fragShaderId;

    return true;
}

void GrGLFragmentShaderBuilder::bindFragmentShaderLocations(GrGLuint programID) {
    // ES 3.00 requires custom color output but doesn't support bindFragDataLocation
    if (fHasCustomColorOutput &&
        kGLES_GrGLStandard != fProgramBuilder->gpu()->ctxInfo().standard()) {
        GL_CALL(BindFragDataLocation(programID, 0, declared_color_output_name()));
    }
    if (fHasSecondaryOutput) {
        GL_CALL(BindFragDataLocationIndexed(programID, 0, 1, dual_source_output_name()));
    }
}

void GrGLFragmentShaderBuilder::addVarying(GrSLType type,
               const char* name,
               const char** fsInName,
               GrGLShaderVar::Precision fsPrecision) {
    fInputs.push_back().set(type, GrGLShaderVar::kVaryingIn_TypeModifier, name, fsPrecision);
    if (fsInName) {
        *fsInName = name;
    }
}